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Abstract. This paper proposes a real-time traffic light detection and recognition
algorithm that would allow for the recognition of traffic signals in intelligent vehicles.
This algorithm is based on C-HOG features (Color and HOG features) and Support
Vector Machine (SVM). The algorithm extracted red and green areas in the video
accurately, and then screened the eligible area. Thereafter, the C-HOG features
of all kinds of lights could be extracted. Finally, this work used SVM to build
a classifier of corresponding category lights. This algorithm obtained accurate real-
time information based on the judgment of the decision function. Furthermore,
experimental results show that this algorithm demonstrated accuracy and good
real-time performance.
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1 INTRODUCTION

The increasing levels of automotive vehicle usage on roads have increased the traffic
crash frequencies, which in turn, causes an increase in the number of fatalities and
injuries on roads every year. Consequently, Intelligent Transportation Systems (ITS)
have caught researchers’ attention, particularly the visual systems based on image
processing technologies. Most importantly, this includes a road sign recognition,
a crossing pedestrian recognition, a license plate recognition, and a traffic light
recognition [1, 2]. Traffic signal detection plays an important role that would allow
ITS to ensure safety when driving through intersections.

Main research question of this study is to use machine learning method to achieve
the recognition of traffic lights in intelligent cars. This paper presents a method for
the traffic signal identification that is based on the C-HOG feature. C-HOG feature
is a new feature proposed in this paper. C-HOG includes a HOG component and
a block color histogram component. The HOG (Histograms of Oriented Gradients)
is a method that was first proposed by Dalal and Triggs in 2005. The edge of
the traffic light is where the gradient largely exists, and the nature of the HOG
is a statistic of the gradient information, allowing the HOG to accurately describe
the shape of the traffic light. At the same time, the histogram divided the entire
target area into sub-blocks, allowing the target local color to be reflected in the
whole eigenvector. This method has some interference immunity; C-HOG features
combine two characteristics: shape and color, which describes the characteristics of
traffic lights. This paper will first show how to convert the RGB space to the YCbCr
space to identify the red and green areas, and then filter out the irrelevant region.
The C-HOG feature of the target area will then be extracted, finally allowing the
traffic lights to be identified by an SVM classifier. This method can be applied in
intelligent vehicles and ensure safety. Intelligent cars can identify traffic lights in
real time by the proposed method, and with a higher accuracy rate. This is the
main goal of this paper.

2 BACKGROUND

This section reviews the most relevant methods for automatic traffic light identifica-
tion. In recent years, many researchers have focused on intelligent identification of
traffic lights with attention to the following aspects: signal characteristics, includ-
ing the color and shape of the traffic lights; the machine’s learning process; a priori
map.

Several previous studies aimed to identify color characteristics of traffic signals,
such as studies based on HIS space [3, 4, 5], HSV space [6] [7, 8], RGB space [9, [10],
and the similar distance of RGB space [I1], and Lab color space [12, [13]. Since
the color component is closely related to luminance in the RGB color space, three
components including R, G and B will subsequently change as long as brightness
changes, so RGB color space has a poor threshold adaptation and it is not suitable
for extraction of the color signal. Wavelet transformation was used to convert RGB
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space to HIS or HSV space, although other space is possible in order to eliminate the
correlation between components. However, other problems exist, including the large
amount of computation time, it is time-consuming, which results in poor real-time
performance, plus the singularity problems.

Furthermore, other researchers studied the shape features of traffic signals [14,
15, 16, 17, 18, 19, 20, 21] including calculating circularity of the candidate area |14,
15, [16], calculating the standard deviation of the round candidate area [I7], Hough
transform circle detection [I8, 19 20], and calculating the rectangle of the candi-
date region [2I]. These methods require high quality images obtained from the
video, an obvious characteristic, but they are not conducive to shape recognition at
large distances. Another method used by Cheng uses the light’s rectangular plate
for template matching [22], but it relies too much on the rectangle plate, which is not
highly detectable in evenings or on cloudy days. Charette [23] and Iwasaki [24] also
applied the template matching method to identify traffic lights, but template match-
ing is time and computer memory consuming. In 2009, Charette and Nashashibi [25]
proposed an approach to detect traffic lights using the geometry information of traf-
fic light poles, what has showed promising results. However, this method requires
exceptionally high quality images. At the same time, the practicability was poor
because there is not a single shape of traffic light poles.

A few other researchers used machine learning to identify traffic lights, most of
which were based on the classifier, such as the method used by Chiang et al. [26].
Their method extracted the local binary features of traffic lights and used classifiers
to train and recognize their characteristics, but the study was limited and could
only identify circular traffic lights. Another method by Cai et al. [27] used a wavelet
transform and a classifier to identify the arrow-shaped lights, but the processing
time per frame reached 152 millisecond, and therefore it could not fulfill real-time
requirements. Kim [28] used the SVM method to identify lights; however, this
method was only applicable during nights.

Other researchers have used a method based on an A Priori Map [29, B0]. The
drawing of an a priori map in advance is necessary, and the vehicle must be equipped
with GPS and with inertial sensors and cameras to draw a large number of images.
The position of the traffic lights appearing in the camera is calculated based on
a priori maps. However, this method requires a lot of manpower and resources to
draw the a priori map.

3 DETECTION AND IDENTIFICATION OF TRAFFIC LIGHTS
USING THE C-HOG FEATURE

The method used in this paper can be implemented at different times during the
daylight only (morning, noon and afternoon). It also can be implemented during
different weather conditions — in sunny, cloudy, and overcast days. Different types of
lights can be identified using this method, including circular lights, and directional
arrow-shaped lights. Moreover, this method can recognize colors including red and
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green. The algorithm is divided into two parts: detection and identification of traffic
lights.

4 DETECTION OF TRAFFIC LIGHTS

Figure [I] shows three steps to traffic light detection: color extraction, color suppres-
sion and regional filter.
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Figure 1. Three steps of detection

4.1 Color Extraction

Choosing an appropriate color space is the key for color extraction. The YCbCr
space can describe the color characteristics in traffic lights, and was used by Cai
et al. [31]. By observing the red light histogram at the Cb channel and the green
light histogram at the Cr channel, the value of red color is found to have a range
in Cb channel, the value of green color is found to have a range in Cr channel.
By observing these ranges, the thresholds were determined in order to segment
colors. Furthermore, the conversion from RGB to the YCbCr space requires less
time compared to other spaces. After many experiments the results have shown
that the YCbCr space is relatively stable to identify colors.

The color of traffic lights is observable at the Cb and Cr channels. The cor-
responding pixel values of red and green areas at the Cb and Cr channels were
extracted to find the region of interest. This is followed by the Color Suppression
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step, which incorporates enhancing the color of the ROI (Region of Interest) and
repressing the color of other non-related areas, as shown in Figure[l} This step aims
to enhance the colors of red and green areas in an image.

4.2 Region Filter

The next step includes excluding other objects that have similar colors to traf-
fic lights and were not excluded in the previous step. As this research developed
a recognition algorithm for each color area, any increase in the color areas would
increase the time required to perform the algorithm. Therefore the use of a regional
filter could reduce the number of the non-light areas, thus improving the running
time and accuracy of the algorithm. A threshold was used during the region filter
process. Thresholds were obtained through a large number of experiments and thus
the accuracy of the filtering process was ensured. In order to avoid the impact on
the detection and identification of any interference, binarization was implemented
on the ROI. All the contours of the binary images were then traversed, and the areas
in line with the characteristics of traffic lights based on contour feature were filtered
out.

4.2.1 Area Filter

Because of the light present in a small proportion of the images, other characteristics
were not obvious at longer distances. For example, a red light appears as a red dot
at a distance, and therefore making lights difficult to identify, regardless of the
use of other features as circle feature, etc. Therefore, the algorithm is only valid at
a maximum distance of 70 meters from the signalized intersection stop line, while the
minimum distance is 0.5 meters or less. However, the algorithm can still identify
the lights at distances over the maximum value, but at slightly lower accuracy.
Assuming there are N profiles in the image, marked as R;, then we strike the area
of the contours. A represents the area of all the contours.

1a Amax S A S Amiru

Bool(R;(A)) = { (1)

0, otherwise.

4.2.2 Circumscribed Rectangular Filter

The circumscribed rectangle of each contour was struck one by one to find the
appropriate width and height, the condition of the filter is the aspect ratio [25] of
the rectangle.

RL(Wldth)

wh — 2
Bun R;(height)’ )

1, 08< Ry, <15,
BOO[(Ri(Rwh)) =

0, otherwise.
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4.2.3 Density Filter

All filtration steps of Section 4.2 have been based on binary images. Each pixel
value of the ROl is 1. Therefore, the density is defined as a ratio of all pixels in the
ROI, divided by the area of ROI. The threshold was calculated using a large number
of relevant experiments. p represents the density of the contour, f(x,y) represents
the pixel value of the point (z,y), A represents the area.

P="m n (4)
Z Z f(z,y)
1, p=06,
BoollBi(p)) = { 0, otherwise (5)

After three filtration steps defined above, the color blocks that met the conditions
were retained. Then the coordinates of the center of the color block and the width
and height of the circumscribed rectangle were calculated.

R;, Bool(R;(A)) N Bool(R;(Rur)) N Bool(R;(p)),

0, otherwise.

Filter(R;) = { (6)
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Figure 2. Filter schematic
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5 IDENTIFICATION OF TRAFFIC LIGHTS
5.1 Region Selection

The areas to be detected were determined in the original image according to the
coordinates of the center, width and height of the color area in the binary image.
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For example, the red light in the binary image of the red light is a white circle, with
known location information. That location information was used to locate the red
circle in the original image. The width (W) and height (H) of the external rectangle
of the red circle is known, it was calculated in the Section 4.2.2. The width of the
area to be detected is 1.4 W; the height of the area to be detected is 4.2 H. This area
can include the edge of the light and extract the features that are richer, as shown
below: The thresholds in this section are the means after a great deal of testing,
and have strong generalization ability.

4.2H

AW
TLAWS

Figure 3. Region schematic

5.2 C-HOG Feature Extraction

The HOG features can describe the shape of the lights, the block color histogram
feature can describe local colors, and the combination of the two features called
C-HOG in this paper is a perfect description of the whole feature of traffic lights.

5.2.1 HOG Feature Extraction

The HOG (Histograms of Oriented Gradients) is a method that was first proposed by
Dalal and Triggs [32] in 2005. HOG describes the distribution of gradient intensity
and gradient orientation in an image, so the image can be better shown in shape
and appearance. The HOG feature generation process is as follows: the image is
divided into a plurality of small units called “cells”, which consist of a block, called
“block”; finally, the histograms of the oriented gradients “cell” and “block” were
counted.

The rectangular areas to (20,40) were scaled before the extraction of HOG
feature; the process is further described as follows:

1. The gradient value of the horizontal direction and the vertical direction of the
image is calculated in Equation (7):

{ Gx(x,y):H(Jc—l—l,y)—H(x—l,y), (7)

Gy(z,y) =H(z,y+1)— H(z,y —1).
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2. The gradient magnitude and direction of the pixel are calculated in Equations (8)
and (9):

G(x,y) = Gu(z,y) — Gy(x:y>’ (8)
afz,y) = tan™! <g;g:z;> . 9)

3. The image is uniformly divided into several cells, divide the gradient direction
into 9 bins, then get the HOG characteristics of the cells.

4. The adjacent cells (5,5) constitute one block, finally the blocks are normalized
to obtain the HOG feature of the block.

Figure 4. Gradient map

5.2.2 The Block Color Histogram Feature Extraction

Color histogram is a color feature with scaling and rotation invariance that is widely
used to describe the proportion of different color areas in a whole image. An ordinary
color histogram is known as a type of target characteristics that can extract color
information from the target, but cannot effectively express the color distribution in
different positions when the statistical range includes an entire area but a part of
the local color information is missing. The block color histogram feature was chosen
in which the image area to be detected was divided into a small region histogram,
so the local color information of the traffic lights could be reflected, and even when
the target was partly obscured, the impact of the target color on the histogram was
limited, and did not affect other areas. This process is shown below:

1. The Red, Green, and Blue (R, G, and B) components of the pixels of the detected
rectangular area are extracted.

2. The current image area to be detected into n units (cell) are then divided; the
cell size was 5 x 5, similar to the HOG feature cell size; at the same time the
histogram features of each cell are calculated into three components.
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3. The histogram feature of each cell is comprehensively normalized, and the color
histogram feature of the image area is obtained for detection.

The HOG features and the block color histogram features were connected into
C-HOG features sequentially, as the input feature vector of the SVM.

Block color
= mmm)  HOG feature histogram feature
% I o I (.
I o I
1777 1 [ 1 11
¥ v v ¥ L ¥

C-HOG feature descriptor

Figure 5. C-HOG features schematic

5.3 SVM Classifier

SVM is a pattern recognition method based on statistical learning, and is widely used
in areas of pattern recognition, such as pedestrian detection and face recognition.
It is a common method of machine learning when the training samples are limited.

The C-HOG features were extracted using a linear SVM classification which
was coded in the C computer language. The penalty coefficient C of the model
parameters was set as 0.8 because it has shown the best prediction accuracy through
many experiments.

5.3.1 Sample Training

Pictures of traffic lights were collected from the video under actual road conditions;
the color of the lights might be red or green, and the shape might be round or arrow.
The pictures were collected in different sizes, under different weather conditions and
at different times of day when they were taken, so there was enough generalization
ability.

3000 positive samples and 5000 negative samples were collected for training.
We arranged and combined the positive and negative samples to extract the HOG
feature and generate the feature vector, which was obtained and trained by the lin-
ear SVM. Two kinds of classification were obtained when the training was complete,
each of which had four groups. So far, we had obtained the classification support
vector and the separating hyper-plane. The weights w, bias b and the HOG eigen-
vector x extracted from the detection window were set as variable inputs of the SVM
classification hyper-plane.
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5.3.2 Classification and Identification

For the new detection window, the next step was to extract the C-HOG features. Af-
ter the feature extraction, classifiers were used to find the corresponding recognition
results.

Classifier Classifier
(red) (green)

Figure 6. Schematic of the classifier identification

In this research red lights have four classifiers and green lights also have four
classifiers. If there is a red right arrow light to be identified, then only the four
classifiers of red light can be selected based on its red color. The positive samples
from the first classifier were all the red lights; negative samples included any pic-
tures in addition to the traffic lights. After identifying using the first classifier, the
current area could be identified as a traffic light. Positive samples in the second
classifier included a collection of all circular red lights; negative samples included
the collection of all arrow lights. This region was not a red round light determined
by the second classifier. Positive samples in the third classifier included a collection
of all the red straight arrow lights; negative samples included the collection of left
arrow lights and right arrow lights. Positive samples in the fourth classifier con-
sisted of a collection of all the red left arrow lights; negative samples consisted of
the collection of right arrow lights. The third classifier determines this region as
not including the straight arrow lights. Because the third classifier did not identify
the type of the current light, the fourth classifier was used. The fourth classifier
provided the final results. However, if the current region was a red round light, the
algorithm was set to end after the second classifier recognition. This includes the
identification process for green lights as well.
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5.4 Discrimination of Location Information

For an intelligent vehicle, information relating to color and shape is not enough; the
vehicle also needs to identify the relative position of the traffic light. When there
is a traffic light in the area, its color and shape can be determined through the
judgment of the SVM; the center coordinate of the color region is also known. The
location information will be certified once the size of the horizontal centers has been
sorted according to size. The location information, type, and color of the traffic
lights all provide a reliable basis for the vehicle’s decision making process.

The diagram in Figure [7]is an example to illustrate the process. Classifiers can
identify the color and shape of the traffic light. The result of red left arrow light and
green circle light can be obtained from classifiers. At the same time, coordinates of
two lights can be known. After analyzing the information provided by the classifiers
and the coordinate information from the traffic light, it was concluded that red left-
arrow light is on the left; the green circle light is on the right. The results would then
be sent to the intelligent vehicle’s decision-making system. An intelligent vehicle also
can get lane information through other devices. If we assume that the intelligent
vehicle is located in the left lane, we do not consider right lane information; because
the left light is red, the intelligent vehicle should stop before the stop line.

i 1 i
1 1 L
Figure 7. Auxiliary function of location information

6 EXPERIMENTAL SETUP

The equipment used in the experiments is shown in Figure [§ For this paper the
PIKE-F100 industrial digital camera was chosen, with a resolution of 1000 x 1000
and a frame rate up to 60fps, using the data interface 1394. This camera was
installed on the vehicle’s front window glass 1.2m above the ground level. During
the test, the camera’s frame rate was set to 30 fps to obtain a real-time image in front
of the vehicle. The IPC we used is from the GEMOTECH series with an i7 processor,
2.67 GHz CPU, 3.17 GB of available memory; it also has excellent resistance to high
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temperatures and a capability for anti-electro-magnetic interference. Two types of
traffic lights were customized and chosen, which were located at the southwest and
the northeast side of the testing ground, with exactly the same configuration as the
actual road.

Figure 8. Schematic of equipment in test field

7 EXPERIMENTAL RESULTS AND DISCUSSION

The classification accuracy rate is typically the indicator to evaluate the performance
of the SVM classifier. There are 4 conditions of the classifier predictions; a total of
four types of situations are referred to as: TP, FN, FP, TN. 3000 samples of the red
left arrow lights have been chosen as examples to perform the test. In this paper,
the ten-fold cross-validation method was adopted, and made 10 times to calculate
average to obtain the final accuracy, which was 99.36 %.

7.1 Test of the Basic Conditions

After the classifier’s accuracy test, the classifier can be seen as having the condition
with further experiments. The program was loaded on an intelligent vehicle before
the real road test. Many repetitive experiments were carried out on the testing
ground with the basic conditions, and good experimental results were achieved.
The diagram of the testing ground is in Figure

Traffic lights were located at the northeast and the southwest corners of the
playground. The playground is the intelligent vehicle test site seen in Figure
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Figure 9. Schematic of the basic conditions

The intelligent vehicle completes 2 cycles of traffic light identification when driving
a lap around the playground. The vehicle used in these experiments is illustrated
in Figure [§] and the experimental results are shown in Figures 10, 11 and 12.

The basic testing ground is found outdoors because it meets the requirements for
different weather conditions. At the same time, the test lane one side reached 123.5
meters, allowing it to meet diverse requirements for distance. Color features are very
sensitive to illumination changes, especially in different weather conditions. Methods
proposed by Chiang et al. [26] were found under different weather conditions, so
the experiments were also carried out under different conditions, including sunny,
overcast days and in the fog. Most methods require the test to be performed under
a normal light environment during sunny days. Cai et al. [3I] performed the test
under different light conditions and light directions. The test environment for this
paper includes the following: the sun at its highest in front of the camera and
behind the camera. The two states in this paper are called non-normal light; in the
non-normal state, the image will be overexposed and colors will appear distorted,
even the color on edge of the light will be white, similar to a blooming effect. This
paper performs the test under conditions of non-normal light to verify the accuracy
of the algorithm. For an intelligent vehicle, if the light is red it is necessary to
stop before the stop line. The stop line is an indicator in an intersection, and
the state of the lights at intersections can determine whether an intelligent vehicle
will go or not. The test range is from 0 to 70 meters from the stop line; a test
was performed every 10 meters within this range, equaling a total of eight tests.
This paper includes statistics on traffic light recognition results at intersections; the
changes in the accuracy ratio with distance can be found below.
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Figure 12. Schematic of accuracy rate on cloudy day

It was difficult to distinguish in the initial training because the environment
of the test ground was relatively simple and there were no-signal samples similar
to the traffic lights. So it had to be retrained to find a negative sample set. The
retraining process consisted of making some pictures for negative sample training.
The pictures identified in the pictures that as lights were not in fact lights. The
classifiers obtained had a higher accuracy than before the training.

The accuracy rate was expected to drop in the towards-light environment set-
tings because of the halo phenomenon; the center color distortion made the image
of the traffic lights white. At the same time as the camera was installed inside the
vehicle, there were colorful lights in the images as a result of reflections in the front
glass. The accuracy rate was a little higher in the backlight environment. The best
test results were under normal light, when compared to the “backlight” and the
“towards-light” settings.

On the foggy day, the information regarding color and shape was relatively clear
at light-fog conditions; however, heavy fog caused the recognition rate to decline
significantly because the color information was weak and the outline was not clear.
The overall recognition rate was low on the cloudy day compared to the sunny day
because the poor light led to a low quality of the picture obtained by the camera
and the details of the images information were missing, but the overall recognition
rate could meet the requirements.
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7.2 Actual Road Testing
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Figure 13. Schematic of accuracy rate on actual road

From the results of the basic test environment above, the accuracy was higher
when the light was normal on sunny day, compared to cloudy and the foggy days.
The tests on actual urban roads under the 3 conditions above were carried out. The
test began when distance from the stop line was 70 m. The results are found below:
Figure [[3] shows that the accuracy rate of the simplest environment is lower than
the rate of the actual scene, because the background was more complicated in the
actual scene. There were more types of interference, the instances of which were
too numerous to train in negative samples. Meanwhile, a series of experiments were
performed on all kinds of traffic lights when the light was normal on a sunny day.
The accuracy rate is below.

The experiment data illustrated in Figure [[4] was analyzed and it showed weak
color information which explained why some pictures were missed. The color area
could not be extracted because there was no identifiable area. This was caused
by the fact that the round and arrow lights were confusing when the shape of the
traffic light was not clear. A small number of non-signal objects were also misjudged.
Overall, we found good results on the actual road in clear weather and when the
distance from the lights was adequate.
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7.3 Processing Time

809

As can be seen from the data of the simplest test environment above, the accuracy
was high when the light was normal on a sunny day, a bit cloudy day and in a foggy
day. We carried out the test on actual urban roads in the 3 conditions above. The
test began when distance from the stop line was 70 m. The results are below.

7.4 Comparison with Other Methods

The data in Table 1 is from the referenced literature; referenced literature has been

marked out.

Method

‘ Type of Light ‘ Red Light ‘ Green Light

Color feature and structural information [20]
LBP and SVM [26]

C-HOG and SVM

Wavelet transform and nearest classifier [27]
C-HOG and SVM

Circle
Circle
Circle
Arrow
Arrow

89 %
91.67%
97.67%
92.72%

93%

Table 1. Comparison of the accuracy rate with different methods

89 %
96.84 %
97.11%
92.72%
92.78 %
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Table 1 compares the accuracy of the different methods. The vast majority
of previous research did not provide accuracy of recognition, so there are fewer
methods in Table 1. The LBP and SVM method identifies circular types of lights,
its recognition accuracy for red lights is 91.67 %, and its recognition accuracy for
green lights is 96.84 %. Due to the fact that fewer papers used classifiers to identify
arrow lights, the recognition accuracy of the method given at present has not been
found. Compared with other algorithms, the recognition rate for the round red
light improved, the recognition rate for other types of lights increased slightly. The
algorithm in this paper also has the following advantages:

The tests were completed in an intelligent vehicle that was modified by the
China Beijing Automotive Group from two new models: C70 and C30. The vehicle
meets the conditions for actual environmental testing. The test time for the basic
test environment accumulated more than 300 hours; the actual test environment
accumulated more than 500 hours. It was able to obtain real-time processing of
each frame and had a good robustness.

The processing time per frame of the algorithm was about 90 ms; the fastest
reached 72ms. The algorithm met the real-time requirements of the intelligent
vehicle in an actual environment.

The actual testing environment for the algorithm was an urban road in Beijing.
The traffic was heavy and complicated, with diverse varieties of intersection lights.
During the testing process, although there were occasional instances of missed detec-
tion and misjudgment, the vehicle passed through the intersections safely with the
help of mistake exclusion mechanisms. The accuracy rate testing on the complicated
road is shown in the Figure [[3]

II II..- I II I
II I T I II I

Figure 15. Schematic of the error exclusion mechanism

8 CONCLUSIONS

This paper presents an algorithm for detection and identification of traffic lights
based on C-HOG features and SVM. A new feature called C-HOG was proposed
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for identification tasks. This feature is a combination of HOG features and color
features. Machine learning methods were brought into the field of traffic light de-
tection and identification to identify the different types of lights. In this paper, the
steps were to extract the C-HOG features of a traffic light, and then use SVM to
recognize those features. Experimental results show that the proposed method can
detect a traffic light in a reasonable time with an accuracy level that is superior
to other methods. In order to further improve the method, there are two improve-
ments to make in the future. The first is how to accurately identify yellow lights.
The second is to expand the application scope of the algorithm, to ensure that the
algorithm can accurately identify the lights at night. Another research area of this
paper in the future is to use tracking algorithm to identify a traffic light.
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