
Computing and Informatics, Vol. 36, 2017, 887–907, doi: 10.4149/cai 2017 4 887

EVALUATION AND IMPLEMENTATION
OF N -GRAM-BASED ALGORITHM
FOR FAST TEXT COMPARISON

Maciej Wielgosz, Pawe l Szczepka, Pawe l Russek
Ernest Jamro, Kazimierz Wiatr

AGH University of Science and Technology
Mickiewicza 30 Av., 30-059 Krakow, Poland
e-mail: {wielgosz, russek, jamro, wiatr}@agh.edu.pl

Marcin Pietroń, Dominik Żurek

ACC Cyfronet AGH
Nawojki 11, 30-950 Krakow, Poland
e-mail: {marcin.pietron, dominik.zurek}@cyfronet.pl

Abstract. This paper presents a study of an n-gram-based document comparison
method. The method is intended to build a large-scale plagiarism detection sys-
tem. The work focuses not only on an efficiency of the text similarity extraction
but also on the execution performance of the implemented algorithms. We took
notice of detection performance, storage requirements and execution time of the
proposed approach. The obtained results show the trade-offs between detection
quality and computational requirements. The GPGPU and multi-CPU platforms
were considered to implement the algorithms and to achieve good execution speed.
The method consists of two main algorithms: a document’s feature extraction and
fast text comparison. The winnowing algorithm is used to generate a compressed
representation of the analyzed documents. The authors designed and implemented
a dedicated test framework for the algorithm. That allowed for the tuning, evalua-
tion, and optimization of the parameters. Well-known metrics (e.g. precision, recall)
were used to evaluate detection performance. The authors conducted the tests to
determine the performance of the winnowing algorithm for obfuscated and unobfus-
cated texts for a different window and n-gram size. Also, a simplified version of the
text comparison algorithm was proposed and evaluated to reduce the computational

888 M. Wielgosz, P. Szczepka, P. Russek, E. Jamro, K. Wiatr, M. Pietroń, D. Żurek

complexity of the text comparison process. The paper also presents GPGPU and
multi-CPU implementations of the algorithms for different data structures. The
implementation speed was tested for different algorithms’ parameters and the size
of data. The scalability of the algorithm on multi-CPU platforms was verified. The
authors of the paper provide the repository of software tools and programs used to
perform the conducted experiments.

Keywords: Text similarity analysis, n-gram-based model, GPGPU implementa-
tion, multi-CPU implementation

1 INTRODUCTION

Nowadays, a vast amount of data is generated by millions of electronic media sources.
It is estimated that all the data collected on the internet domain amounted to 2.7 ZB
in 2012. It is a 48 % growth if compared to 2011. At the end of 2013, this number
reached 4 ZB [1, 2]. As a result, an internet user can quickly find information in
any area and subject he is interested. Today, researchers and students need reliable
knowledge and information sources which are accessible as soon as possible. Simul-
taneously, data is an essential source of knowledge for companies, businesses, and
individual people. Unfortunately, the free and unlimited access to digitally stored
information causes new problems. One of them is the widespread usage of dishon-
est web material and author’s rights violation. A class of the above phenomena is
plagiarism, which affects science and education mainly. Plagiarism raises the need
for developing cheap and robust plagiarism detection tools and services. Unfortu-
nately, the building and running of an anti-plagiarism system requires substantial
investments and funds.

Web search operations for the most frequent Polish word: ‘siȩ’, returns over 600
million web pages. Consequently, the number of pages in the Polish language that
are indexed in the web and should be analyzed by the anti-plagiarism system is
significant. The average number of words for a web page is over 2 400 words, i.e.
approximately two pages. The number of Polish students who graduate is nearly 0.5
million each year. Let us assume that every student writes 50 pages of his final thesis.
Thus, roughly 25 million pages are generated each year. Summing up, a national
center for plagiarism detection should be able to store at least 600 million pages,
and 25 million pages should be added every year. Rough approximation presented
later in this article shows that the straightforward comparison of eight pages with
the database containing 0.6 billion documents requires roughly 1 280 seconds. Let
us assume that servers power consumption is 200 W, and an energy price is $ 0.2
per one kWh. Consequently, one has to spend $ 45 000 to compare 25 million pages
against a 600 million document database ($ 45 000 ≈ 25 000 000 ∗ (1 280/3 600) h ∗
0.2 kW ∗ $ 0.2 kWh−1/8 pages). As we can see, the cost of running the system can
be substantial and adequate algorithms should be chosen very carefully.

Evaluation and Implementation of n-Gram-Based . . . 889

The primary focus of the authors’ study is to examine the n-gram-based algo-
rithm and its implementation, which would be useful to build a system capable of
comparing millions of files in a short time. The system should be cheap in terms
of computational and storage requirements. Therefore, the authors examined the
feasibility of using the winnowing method [3, 4] and its different implementations to
address this goal.

2 TEXT SIMILARITY SEARCH AND FILE COMPARISON

Plagiarism detection is a particular kind of document analysis, which is focused
on similarity detection. It uses the very same set of tools as other techniques in
the field. Research on duplication detection has been examined in several papers,
e.g. [5, 6, 7]. There are two major approaches to document similarity detection:
external and intrinsic. The first one covers all the material resources, which are
available in a given database. The overall detection procedure has been devised and
well described in [7]. It is built around the three steps: the heuristic retrieval step,
a detailed analysis step, and the post-processing step. The intrinsic approach focuses
only on the text at hand. That means that no external documents are necessary
to be used. The text is processed with a high focus on inconsistencies, which may
indicate that using external sources have been used to compile the document. This
task is difficult, highly sophisticated, and it requires that the system can recognize
writing style changes in the text. Consequently, the intrinsic approach is not in
practical use due to its imperfections.

Plagiarism detection systems are presented in [7]. They are built on architectural
and algorithmic foundations which are reflected in data representation. Namely,
two models are dominant: the Vector Space Model (VSM) [8] and the Boolean
model [9] but there are also some other approaches such as Document Occurrence
Representation [10]. Table 1 in [7] presents the performance comparison of the
systems, and there are two algorithms based on n-grams among six enumerated in
this table. These systems were firstly classified in [11] and achieved an f-measure of
0.69 and 0.61, respectively. The VSM that is based on n-grams proved to yield the
best results. There has been a huge leap forward in the course of recent years, which
is reflected in a rising similarity detection efficiency of the systems taking part in the
PAN competition. The results of consecutive years can be found in [7, 12, 13, 14, 15].

In the algorithmic study part of this paper examines winnowing, the n-gram-
based method, and its effectiveness in the mapping from the text to the document
comparison space. This process of mapping directly affects comparison results. In
other words, the authors show the relationships between the choice of a fingerprint
and detection quality. Detection of exact matches is a relatively easy task, but
it is not satisfactory in some cases. For instance, it would miss similarities where
documents differ in minor details resulting from intentional modifications or artifacts
introduced by text-to-feature transformation. Moreover, it would miss most of the
important textual relationships between documents. The above problem can be

890 M. Wielgosz, P. Szczepka, P. Russek, E. Jamro, K. Wiatr, M. Pietroń, D. Żurek

mitigated if the algorithms parameters are properly tuned. The most important part
of the plagiarism detection method is a choice of the right criterion for notification
of a plagiarism occurrence in the examined record. The particular threshold of
a similarity value must be set to trigger a plagiarism alert. Also, it must be decided
if the similarity value is measured with respect to the aggregated all-documents data
set or in the one-to-one document manner. Since the comparison scenario affects
the system performance, it will also be an important part of the paper.

3 WINNOWING ALGORITHMS

An n-gram is a continuous substring of n letters, which is selected from an original
document. The number of n-grams that are generated from a document is large,
and it is roughly equal to the number of letters in a paper. It can be calculated
precisely from the Equation (1).

N = (n− k + 1) (1)

where N – total number of n-grams, n – number of letters in a document, k – size
of an n-gram.

Using all the document’s n-grams for a file comparison would result in an over-
whelming number of computations. Therefore, only a fraction of n-grams, which
are denoted as fingerprints are considered. The choice of a proper n-gram’s subset,
raises the question of adequate selection policy, i.e. which n-grams should be selected
to represent the document content. The patterns of the selection algorithm impact
significantly the later result of files comparison. Several approaches from work [16]
were adopted in [17]. These are the 0 mod p, the minimum, and the maximum value
in a given range. Respectively, the authors proposed choosing the smallest n-gram’s
hashes as fingerprints in [3].

Fixing the number of n-grams per document makes the system more scalable,
but does not guarantee that materials significantly different in size can be com-
pared meaningfully. It is important to provide a balanced text coverage, i.e. the
fingerprint must be composed of n-grams (hashes) uniformly distributed over the
whole document. It makes the algorithm robust to obfuscation and straightforward
rephrasing. Therefore, in this paper the winnowing procedure was employed for
fingerprints selection.

The idea behind the algorithm is to represent a document’s text in a finger-
print uniformly. The detailed description of winnowing algorithm is included in [3].
Here only a brief outline will be presented. Winnowing starts with hash the gener-
ation for all the text’s n-grams. Consequently, it creates a subset of text’s hashes
{h(1), h(2), h(3), . . . , h(w)} where w is called a window size. The sliding window
techniques is used to produce all the subsets. Winnowing guarantees the detection
of similar text fragments, which are at least w+ k− 1 letters long. To maintain the
above guarantee, it is necessary that at least one hash from every window of the
size w contributes to the fingerprint.

Evaluation and Implementation of n-Gram-Based . . . 891

The following example illustrates the idea behind the algorithm. Given a sample
set of hashes: [26 122 19 46 88 42 19 47 111 64 28 64 65 28 38 11 17 110 112]
and window size w = 5 the following steps are to be conducted in order to form
a fingerprint: (26 122 19 46 88), (122 19 46 88 42), (19 46 88 42 19) (46 88 42 19
47), (88 42 19 47 111), (42 19 47 111 64), (19 47 111 64 28), (47 111 64 28 64), (111
64 28 64 65) (64 28 64 65 28), (28 64 65 28 38), (64 65 28 38 11), (65 28 38 11 17),
(28 38 11 17 110), (38 11 17 110 112). Consequently, the fingerprint is composed of
a set of hashes: [19 19 28 28 11].

Figure 1 shows the scheme of the document’s fingerprint generation. The input
text is pre-processed to eliminate unimportant information in the first step. N -grams
are selected, and their hashes computed in the subsequent steps. The final stage
is the most important one since it generates the document’s fingerprint. The files’
similarity criteria are based on inclusion measures given by the Formula (2) and
Formula (3).

Figure 1. The N-gram generation scheme (n-gram size: 4, window size: 4)

similarity(A,B) = |Ha ∩Hb|/|Ha| (2)

similarity(B,A) = |Ha ∩Hb|/|Hb| (3)

where Ha and Hb are cardinalities of A and B documents’ hash sets.

892 M. Wielgosz, P. Szczepka, P. Russek, E. Jamro, K. Wiatr, M. Pietroń, D. Żurek

Consequently, the following steps should be accomplished to compare two doc-
uments:

• selection of the n-gram size,

• computation of the hashes of all the n-grams,

• fingerprint generation from the hashes’ set,

• documents similarity computation using the respective measures (Equation (2)
or (3)).

4 EXPERIMENTS AND DISCUSSION

The authors carried out several experiments to evaluate the winnowing method
performance in terms of both detection quality and computation workload. The
detection quality was determined using a corpus provided by Bauhaus-Universität
Weimar for the PAN competition [18]. The proposed test framework assumes that
the architecture of the duplication detection algorithm is composed of two sections.
Those are the retrieval and alignment sections, as it was described in [7, 12, 13, 14,
15].

The three well-known metrics are used to evaluate the detection quality of the
algorithm in the PAN competition [7]:

precision =
(relevant pairs) ∩ (retrieved pairs)

(retrieved pairs)
, (4)

recall =
(relevant pairs) ∩ (retrieved pairs)

(relevant pairs)
, (5)

f-measure = 2× precision× recall

precision + recall
. (6)

The role of the retrieval stage is to select the subset of documents that will be
analyzed in detail in the alignment phase. The algorithms employed in the first
stage are not complex so they can handle all the input files in a reasonable time.
The system throughput and recall for the retrieval step should be high. Great recall
rate ensures that a small number of documents are missed for the processing in
the alignment stage. The role of the alignment stage is a detailed analysis of the
documents selected in the retrieval stage and denoted as suspicious. It is worth
noting that low recall at the retrieval stage results in a substantial document loss
that is unrecoverable. However, the alignment phase can make up for poor precision
at the expense of higher computational effort.

The authors designed and implemented the test environment that is based on
the scripts delivered by PAN. It was used together with the corpus built from the
files that belong to four different categories:

Evaluation and Implementation of n-Gram-Based . . . 893

• no obfuscation,

• random obfuscation,

• translation obfuscation,

• summary obfuscation.

PAN’s 2013 test database contains 1 827 suspicious and 3 230 source documents,
which are composed of:

• 1 000 cases of no obfuscation plagiarism,

• 1 000 cases of random obfuscation,

• 1 000 cases of transformation plagiarism,

• 1 185 cases of summary obfuscation.

The test script generates a report (a file with tags) for each document. The
report links a suspicious file with one or several original records. The tags are
used to compute the comparison quality measures that are given by Equations (4),
(5), and (6). For the winnowing algorithm, the authors had adopted several test
scenarios for both obfuscated and unobfuscated documents.

4.1 Winnowing with No Obfuscation

The results of detection quality tests that were conducted are given in Figures 2
and 3. The goal of the experiments was to find the threshold value, n-gram width,
and window size, which yield the best results in terms of the three performance
metrics. Here, the threshold is defined as the fraction of hashes, which are repeated
in the compared files that classifies them as duplicates. The figures show that the
experiment results match the theoretical expectations, i.e. recall drops with an in-
crease in the threshold. Precision is inversely proportional to the recall. The results
show that the more similarity is expected between documents (i.e. the threshold is
set higher), the fewer files are falsely categorized as duplicates, but fewer duplicates
are missed (larger precision). In the case of the two-stage system, which is com-
posed of the retrieval and alignment phase such a phenomenon means that for the
higher threshold, fewer files pass the alignment phase. On the other hand, the lower
similarity (the lower the threshold) of two documents is the required in retrieval
step, the more materials are thrown into the alignment phase.

Interestingly, precision is only slightly affected by the window size, which means
that there is very little performance penalty (loss of detection quality loss) for a big
window size parameter. Consequently, there is a relatively modest impact on the
window size of f-measure, which is mainly determined by the threshold. Conse-
quently, the use of large windows does not degrade the f-measure (recognition ef-
ficiency) for unobfuscated documents. Thus, it is a useful conclusion, to use large
windows to reduce the fingerprint size and overall system throughput performance.

Figures 4, 6, and 5 present how the gram size, window size, and threshold affect
recall, precision, and f-measure for unobfuscated winnowing. The figures clearly

894 M. Wielgosz, P. Szczepka, P. Russek, E. Jamro, K. Wiatr, M. Pietroń, D. Żurek

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

M
e
a
s
u
r
e

Threshold

Window size=16, n-gram size=8

Measure
f-measure
recall
precision

Figure 2. Winnowing with no obfuscation, n-gram size = 8, Window size = 16

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60

M
e
a
s
u
r
e

Window size

Threshold=0.04, n-gram size=16

Measure
f-measure
recall
precision

Figure 3. Winnowing with no obfuscation, n-gram size = 32, Threshold = 0.04

depict that the threshold has a much more significant impact on the performance of
the algorithm than the n-gram size. According to the conducted experiments, the
best results were obtained for window and n-gram size of 40 and 32, respectively.

4.2 No-Threshold Experiment

This experiment was conducted to verify the hypothesis that recall will converge to
one if a large n-gram size is chosen and the threshold is set to 0. For this analysis,
a long n-gram instead of a set of shorter n-grams is used, and a long enough piece of
text should overlap in the examined documents to detect duplication. This experi-

Evaluation and Implementation of n-Gram-Based . . . 895

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

R
e
c
a
l
l

Threshold

n-gram size
6
12
30
60

Figure 4. Recall for the unobfuscated winnowing (window size is 40)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

P
r
e
c
i
s
i
o
n

Threshold

n-gram size
6
12
30
60

Figure 5. Precision for the unobfuscated winnowing (window size is 40)

ment was necessary to verify the accuracy of the fastest implementation presented in
Section 5.3. The text sample in documents is considered a duplicate if the n-grams
of a large size match. The threshold eliminates the need for additional computation
of overlapped text percentage and substantially increase the performance of the pro-
posed implementation. Just one text overlap occurrence will trigger the similarity
flag.

Table 1 shows that the results in terms of recall are better than in the previous
cases. Recall roughly reaches one, which means that all the duplication pairs were
detected. This approach is superior to the previous one because its efficiency does

896 M. Wielgosz, P. Szczepka, P. Russek, E. Jamro, K. Wiatr, M. Pietroń, D. Żurek

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

F
-
m
e
a
s
u
r
e

Threshold

n-gram size
6
12
30
60

Figure 6. F-measure for the unobfuscated winnowing (window size is 40)

(Ngram; Window) threshold precision recall f-measure

(200; 40) 0 0.691 0.912 0.786
(100; 40) 0 0.691 1 0.817

Table 1. Winnowing, no obfuscation

not depend on the document length. In the standard implementation, a very low
threshold should be set to obtain proper results. That rule means that for short doc-
uments fewer n-grams are sufficient to qualify them as similar. The document length
issue can be solved by changing the similarity measures (Equations (2) and (3)).

4.3 Winnowing with Obfuscation

The previous sections present the results of unobfuscated duplication detection,
which involves simple text copying without any modifications. Such type of pla-
giarism is very common, however in some cases the text is modified, e.g. the order
of words or sentences is changed. Sometimes different phrasing and tenses are to
preserve the original meaning while changing the actual words and sentences.

Figure 7 presents the results obtained for the obfuscated documents comparison.
Recall is higher for smaller window size values (6 or 8). The results for obfuscated
material depend on this algorithm’s parameter because an obfuscation breaks long
similarity patterns which exist in duplication with no obfuscation. However, it is
possible to find the duplication pairs, which do not correlate with high precision.
For recall that is close to one, precision is approximately 0.5 which requires an ef-
ficient alignment phase to process twice as much data as in an ideal retrieval case.
Furthermore, this number is expected to drop with a rise the number of documents
in the test corpus.

Evaluation and Implementation of n-Gram-Based . . . 897

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

R
e
c
a
l
l

Threshold

n-gram size
6
12
16

Figure 7. Recall as a function of the n-gram size and the threshold for the obfuscated
winnowing

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

P
r
e
c
i
s
i
o
n

Threshold

n-gram size
6
12
16

Figure 8. F-measure as a function of an n-gram size and threshold for the obfuscated
winnowing

5 IMPLEMENTATION RESULTS

Two of the most critical sections of the winnowing algorithm were extracted to
speed up the computation and limit system power consumption simultaneously.
The authors optimized the implementation of fingerprint generation and fingerprint
comparison that are the algorithm’s computational kernels. The implementations
were prepared for Intel’s many-CPU (Xeon E5645, 2.40 GHz) and GPGPU (Nvidia’s
Tesla M2090) processors compiled with -O3 flags. This section provides results of

898 M. Wielgosz, P. Szczepka, P. Russek, E. Jamro, K. Wiatr, M. Pietroń, D. Żurek

both approaches with a particular focus on the selection of the right platforms for
each task. A series of tests were conducted for different architectures, and the same
structure of benchmark data was used. Each document in the set was composed of
8 192 hashes, and each hash was four bytes long.

The number of hashes in document’s fingerprint is not higher than N/w. When
we refer to a single document or record in this paper, we assume eight pages material.
A document of eight pages consists of 40 000 characters for example. For the window
size of five, we assume approximately 8 192 hashes per document in this work.

5.1 Fingerprint Generation

For the fingerprint computation on a GPGPU, the documents were transferred from
the host to the global device memory first. Then, each block’s thread copies a part
of the document to the block shared memory. The block’s threads compute hash
values of the documents n-grams. Selected threads handle writing results to the
global memory. Text data is uniformly allocated to the threads. A computed hash
position in the text (pos) is directly linked to the working global thread identifier
(thId), i.e. thId = pos mod nbrOfTh, where nbrOfThreads is the total number of
all threads.

The experiment was conducted for an n-gram size that suits detection of similar-
ities between obfuscated text, i.e. k = 4. Table 2 shows that a GPGPU outperforms
a CPU up to 14 times for an experiment with 60 000 documents. The speedup was
calculated as the CPU execution time divided by the GPU execution time. The
increase over 10 000 in the number of documents has no impact on the acceleration.
It should be noted that a fingerprint is generated once, and it can be kept in the
database for subsequent use in most cases. It is reused many times during the finger-
prints comparison phase. Increasing the number of documents has a significant effect
on the GPGPU performance, which allows for massive parallel computations. For
a CPU (single core), computation time is proportional to the number of documents.
The average computation time is roughly 1.4µs per document. The algorithm can
be easily parallelized in many CPU cores, where each core generates a fingerprint
for a different record.

M GPU [ms] 1-Core CPU [ms] GPU Speedup

2 000 2.8 30.7 10.8
8 000 9.9 147.8 14.8

30 000 36.1 472.1 13.0
60 000 71.0 970.8 13.6

Table 2. The GPU and CPU results for an n-gram generation. M is a number of docu-
ments; the window size is four

Evaluation and Implementation of n-Gram-Based . . . 899

5.2 Direct Documents Comparison

Documents are compared one to another in the direct document’s comparison. This
text-to-text comparison scheme is necessary for obfuscated document because it
allows the calculation of the percentage of matching hashes for selected documents.
However, such comparison is a very time-consuming operation. Different to the hash
generation, the hash comparison in the entire database needs to be performed for
every single document addition. Therefore, in the case when generated hash reusing
is possible, hash generation time has the insignificant effect on the total computation
time.

Computation time, which is required for hash comparison can be significantly
reduced if two assumptions are introduced. First, the examined text is compared
with the aggregated fingerprints of the whole database, and the second, fingerprint’s
hashes are first sorted. This sorting can be a part of the fingerprint generation
process, and it is performed only once per document.

To emphasize a CPU’s and GPGPU’s unique platform features, the authors
implemented two versions of the fingerprint comparison operation. Those are the
plain method and sorting-base method. Comparison times of the single document
with databases of different sizes, when fingerprints’ hashes are unsorted, are given
in Table 3. Corresponding execution times for the unsorted fingerprints’ hashes can
be seen in Table 4.

M GPU [s] 1-Core CPU [s] GPU Speedup

1 024 14 210 14.5
8 192 114 1 648 14.7

Table 3. Comparison time for unsorted fingerprints. M is a number of documents.

M GPU [ms] 1-Core CPU [ms] 12-Core CPU [ms] CPU Speedup

8 192 106 98 15 7.06
16 384 217 244 29 7.48
32 768 406 440 59 6.88
49 152 575 650 100 5.75
65 536 762 900 135 5.64

131 072 1 550 1 720 280 5.53

Table 4. Comparison time for sorted fingerprints. M is the number of documents.

Assuming that each document is represented by h hashes. Comparing one docu-
ment with a database containing M documents requires an order of O(M ∗h2) hash
comparisons for unsorted and only O(M ∗ h) for sorted hashes. Assuming that the
number of hashes h = 8 192, the 1-core CPU computation time for sorted hashes is
roughly 16 000 times smaller (compare results for 8 192 documents in Tables 3 and 4).
Additionally, as a CPU can benefit from parallel execution here, an OpenMP im-
plementation for 12 core was tested as well. Unfortunately, for the sorted hashes,

900 M. Wielgosz, P. Szczepka, P. Russek, E. Jamro, K. Wiatr, M. Pietroń, D. Żurek

the GPGPU implementation did not introduce any speedup in comparison to the
multi-core CPU solution. The above results were gathered as average values from
ten experiments (standard deviation less than a few percent).

If the hash value distribution was different, i.e., the data range was narrower, it
would be possible to employ the histogram computation and intersection calculation.
This method could be easily parallelized on a GPU. Unfortunately, the input data
is unsuitable for the histogram-based solution.

5.3 Reverse Index Fingerprint Comparison

The n-gram comparison, which adopts the threshold value is computation intensive,
and therefore it should be adopted only if it is unavoidable. This could be the
case when obfuscated text is expected, or detailed fine grain document comparison
is desired. A Threshold-based n-gram text comparison would be necessary for the
refinement stage of an anti-plagiarism system for example. The method that is
based on the no-threshold experiment, which was presented in Section 4.2, can
be considered for a large plagiarism detection system. The method presented in
Section 4.2 is suitable to implement the data retrieval stage only. An extrapolation
of the result for the database that contains 131 072 pages (Table 4) leads to the
conclusion that comparison of one document to a database containing 600 million
documents (M = 600 000 000) requires roughly 1 280 seconds if 12 CPUs are used
(1 280 s ≈ 0.28 s× 600 000 000/131 072). Consequently for large databases a reverse
index comparison is proposed. The following solution is suitable to detect exact text
similarities, i.e. documents that share few large n-grams.

The idea of reverse index comparison is to search similarities in a new document
not with respect to each database’s record separately, but to the whole database
simultaneously. A custom reverse-index-like data structure was introduced for this
purpose. A hash table with a linked list was initially selected [19], but better results
are obtained for a hash table with a sorted dynamic array, which is presented in
Figure 9.

Figure 9. A custom data structure for reverse indexing

Dynamic arrays allow for sequential memory access and require less memory
because there is no need to use pointers that point to the next element. As generated
hashes, i.e., elements of the fingerprint are uniformly distributed, only the most

Evaluation and Implementation of n-Gram-Based . . . 901

significant bits (MSBs) of the hash index the hash table. Besides, these MSBs may
not be stored in a dynamic array as every hash entry in this array has the same
MSBs. Instead of MSBs, a document identification number (docID) is stored in the
dynamic array. There are enough bits available because the size of the hash table L is
higher than the number of documents M . The main drawback of employing sorted
dynamic array (if compared to linked list) is that the insertion of a new element
requires relatively large data movements. Therefore, different average array sizes A
and sizes of the hash table L were tested (see Table 5). It should be noted that
A ∗L = M ∗ h, where: M is the number of documents, and h is an average number
of hashes per document.

As it can be seen in Table 5, the optimum array size A is 64 to 256.

It should be noted that the larger the A, the less memory allocation operation
is necessary. It is necessary to allocate and move data to the new bigger and delete
the old memory to enlarge the hash array. Simultaneously, for large A (A > 16)
more data movement is required to insert a new element into the array as the array
structure is sorted. To be more specific, on average A/2 elements should be shifted
one position to the right to insert a new element.

Consequently, time to perform data movement dominates for larger A, and
dynamic memory allocation increases the computation time for smaller A values.
An array size is increased by the quantum of A/8 when a bigger array is required to
store new elements to decrease the number of allocation and de-allocation functions
calls. Thus, the allocation function is called roughly 8 ∗ L times during the entire
structure creation process.

A Generation [s] Comparison per Doc. [ms]

16 18.3 1.14
64 17.1 1.53

256 17.0 1.46
1 024 26.6 1.86

Table 5. Database generation and the document comparison times for different average
dynamic array size A, M = 8 k, h = 8 k

The main advantage of the sorted array, which contains all fingerprints’ hashes
is that the search time is reduced. The most commonly used method for searching
an element in a sorted array is a binary (half-interval) search. The uniform distribu-
tion of hashes is exploited in the proposed algorithm. Consequently, as a searched
hash and array size are known, the place where the hash should be expected is
roughly evaluated and then only neighboring hashes compared. Table 6 gives the
generation and comparison times for the different number of documents M . In Ta-
bles 5 and 6 the generation time is the time required to construct the database from
the start (fingerprints generation is not included). The comparison time measure-
ments were performed for a set of 1 000 input documents, and the values that are
given in the tables corresponds to the time of a one document analysis. It can be

902 M. Wielgosz, P. Szczepka, P. Russek, E. Jamro, K. Wiatr, M. Pietroń, D. Żurek

seen from Table 6 that the generation time per document grows insignificantly with
the number of records M . The comparison time is roughly constant.

When comparing Table 4 with Table 6, a conclusion can be drawn. The direct
comparison should be used when a few documents from the database are compared
only, or text obfuscation is expected. In the case, when material added to the
database can be compared with the aggregated fingerprint data and no additional
join operation is necessary, the reverse index comparison works much faster. If it is
required to calculate the percentage of shared fingerprints’ hashes of two distinctive
documents, a join operation over docID is necessary. As we know short n-grams
should be used for obfuscated material. If it is possible to tell the similarity by
a single n-gram matches no further join operation is necessary.

M Generation [s] Gen. per Doc. [ms] Comparision per Doc. [ms]

1 k 1.51 1.47 1.13
4 k 8.22 2.00 1.52

16 k 38 2.32 1.59
64 k 190 2.90 1.30

128 k 435 3.32 1.31

Table 6. Database generation and the document comparison times for a different number
of documents M , h = 8 k, A = 64

The reverse index requires similar memory resources as a direct method. All
hashes in the table have the same document docID in the direct method. In the re-
verse index method, most significant bits of hashes are the same. Therefore, they do
not need to be stored, and this space can be used to store documents’ docID. Lower
memory usage can be obtained thanks to the hashes compression. The simplest
method is to use differential coding for sorted hashes. For a larger number of doc-
uments, the database is too large to be stored in the operation memory. Therefore,
disk storage is required. In that case, the comparison time is determined mostly by
disk access time. Consequently, the GPGPU implementation is not considered at
this moment as the reverse index algorithm is sequential and requires large memory
transfers rather than computation power.

6 CONCLUSIONS AND FUTURE WORK

The experiments conducted by the authors showed that there is a certain threshold
of n-gram and window values which yield the best results for obfuscated and un-
obfuscated material. The presented n-gram-based approach is mostly effective for
unobfuscated duplication, i.e. one-to-one ‘copy and paste’ operation. Duplication
detection for obfuscated material is more challenging than for unobfuscated mate-
rial. Nevertheless, it was possible to adjust the n-gram and window size in the course
of experiments to get satisfactory results. Unfortunately, the detection results were
worse than for unobfuscated documents, which is reflected in the lower precision
value.

Evaluation and Implementation of n-Gram-Based . . . 903

GPGPU acceleration results for fingerprint generation are high. However, it is
worth noting that the comparisons were conducted against a single CPU core and
with no SSE operations implemented.

The source files of the modules are available at [20]. The system is currently
at its early development stage and has been partially implemented. Nevertheless,
the authors described the n-gram-based algorithms along with the results of the
preliminary detection quality measurements. The authors are going to implement
the parts of the algorithm as hardware modules in the future [21, 22]. The most
suitable for hardware implementation are the modules that perform massive parallel
pattern matching such as fingerprint comparison [23, 24, 25, 26, 27].

Acknowledgments

The work presented in this paper was financed by Polish National Center for Re-
search and Development through Synat (SP/I/1/77065/10), PLGrid Plus
(POIG.02.03.00-00-096/10) and PLGrid Core (POIG.02.03.00-12-137/13) the re-
search programs.

REFERENCES

[1] IDC Predicts 2012 Will Be the Year of Mobile and Cloud Platform
Wars as IT Vendors Vie for Leadership While the Industry Redefines
Itself. http://www.businesswire.com/news/home/20111201005201/en/

IDC-Predicts-2012-Year-Mobile-Cloud-Platform [access: 16.01.2014].

[2] Hilbert, M.—López, P.: The Worlds Technological Capacity to Store. Science,
Vol. 332, 2011, No. 6025, pp. 60–65.

[3] Schleimer, S.—Wilkerson, D. S.—Aiken, A.: Winnowing: Local Algo-
rithms for Document Fingerprinting. Proceedings of the ACM SIGMOD Interna-
tional Conference on Management of Data (SIGMOD ’03), 2003, pp. 76–85, doi:
10.1145/872757.872770.

[4] Miller, E.—Shen, D.—Liu, J.—Nicholas, Ch.—Chen, T.: Techniques for
Gigabyte-Scale N-Gram Based Information Retrieval on Personal Computers. Pro-
ceedings of the 1999 International Conference on Parallel and Distributed Processing
Techniques and Applications (PDPTA ’99). CSREA Press, 1999, pp. 1410–1416.

[5] Maurer, H.—Kappe, F.—Zaka, B.: Plagiarism – A Survey. Journal of Universal
Computer Science, Vol. 12, 2006, No. 8, pp. 1050–1084.

[6] Sheard, J.—Dick, M.: Directions and Dimensions in Managing Cheating and
Plagiarism of IT Students. Proceedings of the Fourteenth Australasian Computing
Education Conference, Vol. 123, 2012, pp. 177–186.

[7] Potthast, M.—Stein, B.—Eiselt, A.—Barrón-Cedeño, A.—Rosso, P.:
Overview of the 1st International Competition on Plagiarism Detection. In: Stein, B.,
Rosso, P., Stamatatos, E., Koppel, M., Agirre, E. (Eds.): SEPLN 09 Workshop on
Uncovering Plagiarism, Authorship, and Social Software Misuse (PAN ’09), 2009.

http://www.businesswire.com/news/home/20111201005201/en/IDC-Predicts-2012-Year-Mobile-Cloud-Platform
http://www.businesswire.com/news/home/20111201005201/en/IDC-Predicts-2012-Year-Mobile-Cloud-Platform
https://doi.org/10.1145/872757.872770

904 M. Wielgosz, P. Szczepka, P. Russek, E. Jamro, K. Wiatr, M. Pietroń, D. Żurek

[8] Kiela, D.—Clark, S.: A Systematic Study of Semantic Vector Space Model
Parameters. Proceedings of the 2nd Workshop on Continuous Vector Space Mod-
els and Their Compositionality (CVSC) at EACL 2014, 2014, pp. 21–30, doi:
10.3115/v1/W14-1503.

[9] Lashkari, A. H.—Mahdavi, F.—Ghomi, V.: A Boolean Model in Information
Retrieval for Search Engines. Proceedings of the International Conference on In-
formation Management and Engineering (ICIME 2009), 2009, pp. 385–389, doi:
10.1109/ICIME.2009.101.

[10] Carrillo, M.—Eliasmith, Ch.—López-López, A.: Combining Text Vector
Representations for Information Retrieval. Proceedings of the 12th International Con-
ference on Text, Speech and Dialogue (TSD ’09), Springer-Verlag, Berlin, Heidelberg,
2009, pp. 24–31, doi: 10.1007/978-3-642-04208-9 7.

[11] Grozea, C.—Popescu, M.: Encoplot-Performance in the Second International
Plagiarism Detection Challenge – Lab Report for PAN at CLEF 2010.

[12] Potthast, M.—Stein, B.—Eiselt, A.—Barrón-Cedeño, A.—Rosso, P.:
Overview of the 2nd International Competition on Plagiarism Detection. In:
Braschler, M., Harman, D., Pianta, E. (Eds.): Notebook Papers of CLEF 10 Labs
and Workshops, 2010.

[13] Potthast, M.—Stein, B.—Eiselt, A.—Barrón-Cedeño, A.—Rosso, P.:
Overview of the 3rd International Competition on Plagiarism Detection. In: Pe-
tras, V., Forner, P., Clough, P. D. (Eds.): Notebook Papers of CLEF 11 Labs and
Workshops, 2011.

[14] Potthast, M.—Gollub, T.—Hagen, M.—Graßegger, J.—Kiesel, J.—
Michel, M.—Oberländer, A.—Tippmann, M.—Barrón-Cedeño, A.—
Gupta, P.—Rosso, P.—Stein, B.: Overview of the 4th International Competition
on Plagiarism Detection. In: Forner, P., Karlgren, J., Womser-Hacker, Ch. (Eds.):
CLEF 2012 Evaluation Labs and Workshop – Working Notes Papers, 2012.

[15] Potthast, M.—Hagen, M.—Gollub, T.—Tippmann, M.—Kiesel, J.—
Rosso, P.—Stamatatos, E.—Stein, B.: Overview of the 5th International Com-
petition on Plagiarism Detection. In: Forner, P., Navigli, R., Tufis, D. (Eds.): Work-
ing Notes Papers of the CLEF, 2013.

[16] Cavnar, W. B.—Trenkle, J. M.: N-Gram-Based Text Categorization. Proceed-
ings of 3rd Annual Symposium on Document Analysis and Information Retrieval,
(SDAIR-94), 1994, pp. 161–175.

[17] Heintze, N.: Scalable Document Fingerprinting. Proceedings Usenix Workshop on
Electronic Commerce, 1996.

[18] PAN Competition – http://pan.webis.de/ [Accessed: 10.02.2014].

[19] Cormen, T.—Leiserson, C.—Rivest R.: Introduction to Algorithms. MIT, 1994.

[20] Piertoń, M.—Jamro, E.—Żurek D.: The Experiments Source Files.
https://git.plgrid.pl/users/plgwielgosz/repos/evaluation_and_

implementation_of_n-gram-based_algorithm_for_fast_text_comparison,
2015.

[21] Wielgosz, M.—Mazur, G.—Makowski, M.—Jamro, E.—Russek, P.—
Wiatr, K.: Analysis of the Basic Implementation Aspects of Hardware-Accelerated

https://doi.org/10.3115/v1/W14-1503
https://doi.org/10.1109/ICIME.2009.101
https://doi.org/10.1007/978-3-642-04208-9_7
http://pan.webis.de/
https://git.plgrid.pl/users/plgwielgosz/repos/evaluation_and_implementation_of_n-gram-based_algorithm_for_fast_text_comparison
https://git.plgrid.pl/users/plgwielgosz/repos/evaluation_and_implementation_of_n-gram-based_algorithm_for_fast_text_comparison

Evaluation and Implementation of n-Gram-Based . . . 905

Density Functional Theory Calculations. Computing and Informatics, Vol. 29, 2010,
No. 6, pp. 989–1000.

[22] Jamro, E.—Russek, P.—Dabrowska-Boruch, A.—Wielgosz, M.—
Wiatr, K.: The Implementation of the Customized, Parallel Architecture for a Fast
Word-Match Program. Computer System Science and Engineering, Vol. 26, 2011,
pp. 285–292.

[23] Pietron, M.–Wielgosz, M.—Zurek, D.—Jamro, E.—Wiatr, K.: Compar-
ison of GPU and FPGA Implementation of SVM Algorithm for Fast Image Seg-
mentation. Proceedings of Architecture of Computing Systems: 26th International
Conference. Springer-Verlag, Lecture Notes in Computer Science, Vol. 7767, 2013,
pp. 292–302.

[24] Wielgosz, M.—Panggabean, M.—Wang, J.—Rønningen, L. A.: An FPGA-
Based Platform for a Network Architecture with Delay Guarantee. Journal of Cir-
cuits Systems and Computers, Vol. 22, 2013, No. 6, pp. 1350045-1–1350045-20, doi:
10.1142/S021812661350045X.

[25] Kryjak, T.—Gorgon, M.: Pipeline Implementation of Peer Group Filtering in
FPGA. Computing and Informatics, Vol. 31, 2013, No. 4, pp. 727–741.

[26] Zurek, D.—Pietroń, M.—Wielgosz, M.—Wiatr, K.: Comparison of Hybrid
Sorting Algorithms Implemented on Different Parallel Hardware Platforms. Computer
Science, Vol. 14, 2013, No. 4, pp. 679–691.

[27] Kuta, M.—Kitowski, J.: Comparison of Latent Semantic Analysis and Probabilis-
tic Latent Semantic Analysis for Documents Clustering. Computing and Informatics,
Vol. 33, 2014, No. 3, pp. 652–666.

Maciej Wielgosz received his Engineering degree and his
Ph.D. degree (with honors) in electronics from the AGH Uni-
versity of Science and Technology, Krakow, Poland, in 2006 and
2010, respectively. He is currently Assistant Professor in the
Department of Electronics, AGH and works in the Academic
Computing Centre CYFRONET. His main areas of research in-
terest are machine learning, image and natural langue process-
ing, and hardware architectures for artificial intelligence. He has
published over 80 technical papers.

Pawe l Szczepka received his B.Sc. Eng. and M.Sc. degrees in
electronic engineering in 2012 and 2013, respectively, from the
AGH University of Science and Technology, Kraków, Poland.
Currently he works at FORTRESS Gaming Technologies. His
research interests include data mining and natural language pro-
cessing.

https://doi.org/10.1142/S021812661350045X

906 M. Wielgosz, P. Szczepka, P. Russek, E. Jamro, K. Wiatr, M. Pietroń, D. Żurek

Pawe l Russek received his Ph.D. degree in electronics from the
AGH University of Science and Technology in Krakow, Poland
in 2002. He is currently Assistant Professor at the AGH-UST
at Faculty of Computer Science, Electronics and Telecommu-
nications, and also, he works in the Academic Computer Cen-
tre Cyfronet AGH as a manager of the Computing Accelera-
tion Group. His interests focus on novel computer architectures,
hardware accelerators, and custom computing processors. He is
an author and co-author of over 100 publications in the area of
accelerated computing using GPGPU and FPGA-enabled hybrid

systems. His research has been focused on new algorithms suited for efficient processing
by custom computing architectures.

Ernest Jamro received his M.Sc. degree in electronic engineer-
ing from the AGH University of Science and Technology (AGH-
UST), Krakow, Poland in 1996, M.Phil. degree from the Univer-
sity of Huddersfield (U.K.) in 1997; his Ph.D. and habilitation
(Dr.Hab.) degrees from the AGH-UST in 2001 and 2014, respec-
tively. He is currently Assistant Professor in the Department of
Electronics, AGH-UST. His research interests include reconfig-
urable hardware (especially Field Programmable Gate Arays –
FPGAs), reconfigurable computing systems, system on chip, and
artificial intelligence.

Kazimierz Wiatr received his M.Sc. and Ph.D. degrees in elec-
trical engineering from the AGH University of Science and Tech-
nology, Krakow, Poland, in 1980 and 1987, respectively, and the
Dr.Hab. degree in electronics from the University of Technology
of Lódź in 1999. He is Full Professor since 2002. His research
interests include design and performance of dedicated hardware
structures and reconfigurable processors employing FPGAs for
acceleration computing. Currently he is Director of the Aca-
demic Computing Centre CYFORNET AGH.

Marcin Pietro�n received his M.Sc. degree in electronic engi-
neering and in computer science in 2003 and his Ph.D. degree
in 2013 from the AGH University of Science and Technology,
Krakow, Poland. He currently works in the Academic Comput-
ing Centre CYFRONET AGH and at the University of Science
and Technology. His research interests include parallel comput-
ing, automatic parallelization and machine learning.

Evaluation and Implementation of n-Gram-Based . . . 907

Dominik _Zurek received his B.Sc. Eng. and M.Sc. degrees in
electronic engineering in 2011 and 2012, respectively, from the
AGH University of Science and Technology, Kraków, Poland.
Currently he is a Ph.D. student. His research interests include
parallel computing, automatic parallelization and data mining.

