
Computing and Informatics, Vol. 36, 2017, 1001–1018, doi: 10.4149/cai 2017 5 1001

USING AVX2 INSTRUCTION SET TO INCREASE
PERFORMANCE OF HIGH PERFORMANCE
COMPUTING CODE

Pawel Gepner

Intel Corporation
Pipers Way, Swindon, Wiltshire
SN3 1RJ, United Kingdom
e-mail: pawel.gepner@intel.com

Abstract. In this paper we discuss new Intel instruction extensions – Intel Advance
Vector Extensions 2 (AVX2) and what these bring to high performance computing
(HPC). To illustrate this new systems utilizing AVX2 are evaluated to demonstrate
how to effectively exploit AVX2 for HPC types of the code and expose the situation
when AVX2 might not be the most effective way to increase performance.

Keywords: FMA operations, performance of AVX2 instruction set, benchmarking,
Haswell processor, 4th generation Intel Core processor, Intel Xeon E5-2600v3 series
processor

Mathematics Subject Classification 2010: 68M07, 68M20

1 INTRODUCTION

In the field of computational science, a synergistic approach based on separated but
connected domains, taking into account knowledge about the problem, tools and
environments for obtaining a simulation model of the given problem and a properly
chosen computer architecture for research is foreseen. Selection of each element
of such an approach is equally important, hence the development of simulation
systems is usually a complicated task, requiring a collaborative effort from many
domain specialists, built with demanding advances in computing/computer sciences.



1002 P. Gepner

Each domain, as the element of the approach is to be evolved separately, but with
limitations following from the requirements for collaboration.

Development of High Performance Computing (HPC) architectures is performed
at different levels, following from their functional construction, with processors as
a primary interest. Since the new processor with a novel implementation of Ad-
vanced Vector Extensions (AVX) instruction set – AVX2 has brought new level of
performance for floating point operations and changed the landscape of HPC, the
new era of calculation began. Therefore, the focus of this paper is on efficient han-
dling of floating point operations, as often used in scientific computing and in linear
algebra operations in particular. As linear algebra operations, often used in HPC,
operate mainly on matrices and scalar functions with focus on basic-type opera-
tions like multiplications and additions, a deep study will be done concentrated on
operations throughput and latency in different scenario context.

The Haswell processor is the first Intel CPU supporting the AVX2 instruction
set, correspondingly the graphics unit has been completely redefined which doubled
the graphics performance and made this product even more attractive for the end-
users. In addition to AVX2 a new DDR4 memory interface is available within
the Intel Xeon E5 family portfolio. In particular AVX2 appears to be very useful
for high-performance computing, however, the new graphics unit is dedicated more
towards desktop and laptop users. The scope of this paper will not focus on graphics
quality as it is concentrated on HPC-type applications.

The rest of the paper is organized as follows. In the next section the overview of
existing approaches on FMA implementations are recapitulated and roughly com-
pared. Section 3 outlines the problem under study together with the experimental
setup used for experiments, while the following sections report the problem solution,
results and conclusions. Outlook for the future research recapitulates the paper.

2 STATE OF THE ART

In March 2008 Intel introduced the first AVX extensions, new products from the
Sandy Bridge and Ivy Bridge family established and brought significant advantage
for HPC types of code and started a new era of HPC systems. Nevertheless, Intel’s
architects realised that a lack of a FMA extension and the possibility to expand
vector integer SSE and AVX instructions to 256 bits were still required and worked
hard to include these new additions. These capabilities were later added to the x86
instruction set architecture and AVX2 with FMA support has been added to Intel
CPU family with the launch of the Haswell CPU.

A fused multiply-addition (FMA) is a floating point multiply-addition opera-
tion performed in one step, with a single rounding. A FMA computes the entire
operation a+b×c to its full precision before rounding the final result down to N sig-
nificant bits. The main advantages of using FMA operations are performance and
accuracy. Typical implementation of fused multiply-addition operation performs ac-
tually faster than a multiply operation followed by an addition and requires only one



Using AVX2 Instruction Set to Increase Performance 1003

step versus two steps needed for separated operations. In addition, separated and
following multiply and addition operations would compute the product b × c first,
round it to N significant bits and then add the result to a, and round back again
to N significant bits, while again, for fused multiply-addition operation computes
the entire sum a+ b× c to its full precision before rounding the final result down to
N significant bits. Of course, such implementation requires a large amount of logic
and extra transistors, but performance benefits compensate the cost of additional
resources, as it is going to be demonstrated in this paper.

Intel’s AVX2 is not the first implementation of FMA for the x86 family as AMD
processors supported it before Intel. Unfortunately, the implementation of AMD is
not compatible with Intel’s and, more importantly, it is not as powerful. There are
two variants of FMA implementation: FMA4 and FMA3. Both implementations
have identical functionality but they are not compatible, FMA3 instructions have
three operands while FMA4 ones have four. The 3-operand is Intel’s version of
FMA and makes the code shorter and the hardware implementation slightly sim-
pler and faster. Other CPU vendors implemented FMA in their products as well.
The first implementation of FMA has been done by IBM in the IBM POWER1
processor, and then followed by HP PA-8000, Intel Itanium, Fujitsu SPARC64 VI
and other vendors. Today even GPUs and ARM processor are equipped with FMA
functionality.

Since the official launch of AVX2, FMA has become the standard operation
for Intel’s ISA but the evolution did not stop here. In 2013 Intel proposed 512-bit
extensions to the 256-bit Advanced Vector Extensions SIMD instructions for x86 and
the use of FMA has been extended. This extension is not only limited to 512-bit
but also adding new Integer Fused Multiply Add instructions (IFMA52) operating
on 52-bit integers data. For the first implementation of AVX-512 we need to wait,
but definitely this shows the trend, importance and role FMA plays already and it
is going to play in the future.

3 PROBLEM DESCRIPTION AND EXPERIMENTAL SETUP

The main problem studied in this paper is how to effectively utilize AVX2 for HPC
code and expose the situation when AVX2 might not be the most effective way to
increase performance. The systems and CPU carefully selected for this study are
described below.

3.1 Architecture and System Configuration

For this study, several Intel Xeon platforms with the Haswell processor have been
selected: E3-1270v3 single socket server version, as well as dual socket servers based
on Intel Xeon E5-2697v3 and Intel Xeon E5-2680v3.

The Intel Xeon E3-1270v3 processor is a quad core, with 3.5 GHz 80 W CPU
in an LGA package. It is dedicated to single socket servers and workstations. The



1004 P. Gepner

Intel Rainbow Pass platform has been selected as the validation vehicle with 16 GB
of system memory (2 × 8 GB DDR3-1600 MHz) has been installed and with enter-
prise class Intel SSD X25-E hard disk drives. The system utilizes the Linux kernel
installed, known as bullxlinux6.3 (based on Linux 2.6.32 kernel).

The Intel Xeon E5-2697v3 processor has 14 cores, with 2.6 GHz, 145 W CPU
in FCLGA2011-3 package. It is dedicated to dual socket servers and workstations.
The Intel Xeon E5-2680v3 processor has 12 cores, with 2.5 GHz, 120 W CPU in
FCLGA2011-3 package. The Intel Server Wildcat Pass S2600WT platform has been
selected as the validation vehicle for all Intel Xeon E5-2600v3 product members.
Populated system memory contains 64 GB of (8 × 8 GB DDR4-2133 MHz) for both
configurations. The Intel Xeon E5-2600v3 series systems are based on Linux RHEL7
64-bit with a kernel vmlinuz-3.10.0-123.el7.x86 64.

The latest versions of the Intel tools suite are installed on all systems, amongst
others, Intel C/C++/Fortran Compiler XE 13.1 Update 1, Intel Math Kernel Li-
brary version 1.2 update 2 and Intel VTune Amplifier XE 2013 Update 5. The
new compiler and libraries offer advanced vectorization support, including sup-
port for AVX-2 and include Intel Parallel Building Blocks (PBB), OpenMP, High-
Performance Parallel Optimizer (HPO), Interprocedural Optimization (IPO) and
Profile-Guided Optimization (PGO). All performance tools and libraries provide
optimized parallel functions and data processing routines for high-performance ap-
plications.

3.2 CPU Characteristic

The Haswell processor family is based on the same micro-architecture principles as
its predecessor, however, it becomes wider and armed with more resources. As the
first members of the Haswell family, the 4th generation Intel Core processors have
been designated for the mobile market, the power consumption, performances of the
graphics unit as well as performance per Watt characteristic were the primary design
goals. Even though those processors are focused on the mobile and desktop markets,
some of the technologies, in particular AVX2, are expected to be very applicable for
the HPC segment. Of course, the real product for technical computing is coming
from the Xeon line as the Intel Xeon E5-2600v3 series. In addition to more cores,
bigger cache and more channels of memory, the Intel Xeon E5-2600v3 series supports
new DDR4 memory whereas the 4th generation Intel Core processor family still uses
DDR3.

It is very important to emphasize that since each Haswell processor is based
on the same architecture as other members of the family it does not matter if the
product is dedicated for high-end server or desktop or mobile use. The architecture
of the single core remains identical for all members, only what is known as “out-
core” architecture and configuration details are changed. It is worth understanding
that all benefits evaluated on the core level are consistent in the whole family.

The 4th generation Intel Core processor family has been manufactured on 22 nm
Hi-k metal Tri-Gate 3-D gate silicon technology and has 1.44 billion transistors for



Using AVX2 Instruction Set to Increase Performance 1005

the quad-core version. Almost 30 % of this transistor budget is dedicated to the
graphics unit. From a transistor count perspective, this is an increase of 45 % from
995 million transistors implemented on Sandy Bridge. The die size of the new the
4th generation Intel Core processor is 177 mm2 and it is only 7 mm2 bigger than quad
core version of Ivy Bridge. It operates at the same frequency as Ivy Bridge, however
performance will not increase through frequency or core counts growth in this case
but via extension to instruction set architecture. The new support for the AVX2
has been added and it is main driver of the floating-point performance increase. To
make this improvement powerful two fused multiply-add (FMA) units have been
added. Comparing separate dependent multiply and add instructions latency versus
FMA difference goes from eight to only five cycles. This is a 60 % instruction latency
improvement compared to the previous processors. To support the AVX2 extensions
in the Haswell processor the bus width is increased to 256 bits, this effectively doubles
the L1 cache bandwidth for AVX type of entries but for integer it remains the same
as it was in the Sandy Bridge family.

Utilizing both AVX2 and FMA, the 4th generation Intel Core processor delivers
a peak of 16 double-precision flops per cycle – twice as much as the Ivy Bridge and
Sandy Bridge processors and four times more then Gulftown and Lynnfield. The
AVX2 instruction set also supports integer operations with 256-bit vectors. Since the
primary design philosophy of the 4th generation Intel Core processor was to increase
performance of a single core – a third ALU, a second store-address generator and
a second branch unit have been added. In addition to that two extra ports were
added to the unified reservation station, so the 4th generation Intel Core processor
can issue and execute eight micro-ops per cycle, which is 33 % more than Ivy Bridge
can do, however only four micro-ops per cycle can be decoded and written back [1].

If a code has many branches, the extra branch unit on one of the added ports will
definitely help. This new extra branch unit also reduces potential conflicts on one
of the existing ports. Similarly, the new store address generation unit on the second
added port extends load-address generation operations. Now the 4th generation Intel
Core processor can generate two load addresses and one store address in the same
cycle [2].

The 4th generation Intel Core processor has implemented an extra multiplier
and consequently two ports can do two multiplications simultaneously. In addition,
the integer unit reduces the load on two ports, liberating them for supplementary
vector operations. The unified L2 TLB was doubled in size to 1024 entries and
now can support 4K and 2M pages. The 4th generation Intel Core processor also
improves some of the technology that is not suitable for client market but will at-
tract the server segment, e.g., virtualization, crypto algorithms and highly threaded
workloads. Fast context switching implementation improves multiple virtualiza-
tion sessions and makes them more elastic. Crypto algorithms also benefit from
new instructions. A good example could be the PCLMULQDQ instructions. The
PCLMULQDQ instruction performs carry-less multiplication of two 64-bit operands,
which can be used for CRC computation and block cipher encryption and runs over
three times faster on Haswell compared with Ivy Bridge.



1006 P. Gepner

The 4th generation Intel Core processor has a number of other system enhance-
ments such as support for up to three monitors, dynamic (no reboot required) over-
clocking control and integrated voltage regulator. For HPC the most important
enhancements are FMA and AVX2.

Of course, the Intel Xeon E5-2600v3 series has a lot of more enhancements
and new technologies like DDR4 memory support, L3 cache or Intel Turbo Boost
Technology 2.0 and many others that provide significant improvement for HPC
type of the code being outside the scope of this paper. This study does not focus
on them – it just concentrates on single core performance and innovations and look
what type of implication they may have for the HPC type of workloads.

4 DESCRIPTION OF A PROBLEM

The main concerns of the paper is how to effectively utilize AVX2 for HPC type of
the code and expose the situation when AVX2 might not be the most effective way
to increase performance. As mentioned before, the linear algebra operations benefit
from AVX2 instructions, deep analysis of throughput and latency of multiplication
and addition operations are essentially taken into consideration. As the multipli-
cation and addition operations are critical for scalars and matrices computations it
is very interesting to compare and analyse previous generations of Intel Instruction
Set Architectures (ISA) for these operations.

The presented performance review allows us to demonstrate the improvement of
AVX2. Through the process of an extensive and analytic approach the performance
of Intel AVX2 instruction extension in a HPC scenario utilizing Intel software tools
including Intel MKL [3, 4, 5] is discussed.

General innovation of Intel AVX2 is based on the new way of promoting the ma-
jority of 128-bit integer SIMD instruction sets to operate with 256-bit wide YMM
registers. AVX2 instructions are encoded using the VEX prefix and require the
same operating system support as AVX. Most of the promoted 256-bit vector inte-
ger instructions follow the 128-bit lane operation, similar to the promoted 256-bit
floating-point SIMD instructions in AVX. Novel functionalities in AVX2 fall into the
following categories:

• integer data types expanded to 256-bit SIMD,

• bit manipulation instructions,

• gather instructions,

• vector to vector shifts,

• Floating Point Multiply Accumulate (FMA).

The AVX2 instruction operates on scalars, 128-bit packed single and double precision
data types, and 256-bit packed single and double-precision data types. Double
amount of Flops reached compared to previous generations are complemented by
doubled cache bandwidth to feed FMA’s execution units. Table 1 shows theoretical
performance and bandwidth of four generations Intel Microarchitecture based CPUs.



Using AVX2 Instruction Set to Increase Performance 1007

Intel Microarchitectures Peak Flop/Clock Peak Cache Bytes/Clock

Banias 4 8

Merom 8 16

Sandy Bridge 16 32

Haswell 32 64

Table 1. Performance of Intel Microarchitectures

5 RESULTS

Having performance in mind it is important to take into account that the tran-
sition between AVX/AVX2 and its predecessor, the legacy Intel Streaming SIMD
Extensions (SSEx), may result in latency penalties. Because the two instruction
sets operate on different levels of YMM registers the hardware during the transition
has to first save and then retrieve the contents of the YMM register which penalizes
each operation with several tens of additional cycles.

There are ways to avoid penalties related to transitions between AVX/AVX2
and SSEx. One of them is to zero the upper 128 bits of the YMM register with the
VZEROUPPER instructions. The complier introduces the VZEROUPPER instruc-
tion code at the beginning and the end of the function with AVX/AVX2 instruction
code that prevents the transitions from happening when calling the functions in
those files from routines containing SSEx instructions.

Another method to avoid penalty during the transition is to have legacy Intel
SSEx code converted to AVX/AVX2-128 bit instructions. This can be done by
using QxCORE-AVX2 function to convert the auto-generate 128-bit AVX/AVX2
from legacy SSEx code and add VZEROUPPER instruction code.

5.1 Importance of VZEROUPPER

It is important to handle registers and conversions related to transitions between
AVX/AVX2 and SSEx, a good example is illustrated by Algorithm 1 which demon-
strates performance implications of basic atomic instructions and consequences of
appropriate usage of them. This example uses 5 analogous loops (only two of them
fully displayed but loop1, loop2, loop3 are constructed based on the same analogy
as loop and loop4), where each of them contains 8 interchangeable instructions such
as vaddpd, vmulpd or vfmadd132pd.

loop :
vaddpd ymm0, ymm0, ymm15
vaddpd ymm1, ymm1, ymm15
vaddpd ymm2, ymm2, ymm15
vaddpd ymm3, ymm3, ymm15
vaddpd ymm4, ymm4, ymm15
vaddpd ymm5, ymm5, ymm15
vaddpd ymm6, ymm6, ymm15
vaddpd ymm7, ymm7, ymm15
add rcx , 1
cmp rcx , r epeat



1008 P. Gepner

jb loop
loop1 :

vmulpd ymm0, ymm0, ymm15
. . .
add rcx , 1
cmp rcx , r epeat
jb loop1

loop2 :
vmulpd ymm0, ymm15, ymm15
. . .
add rcx , 1
cmp rcx , r epeat
jb loop2

loop3 :
vfmadd132pd ymm0, ymm15, ymm15
. . .
add rcx , 1
cmp rcx , r epeat
jb loop3
. . .

loop4 :
vfmadd132pd ymm0, ymm15, ymm15
vfmadd132pd ymm1, ymm15, ymm15
vfmadd132pd ymm2, ymm15, ymm15
vfmadd132pd ymm3, ymm15, ymm15
vfmadd132pd ymm4, ymm15, ymm15
vfmadd132pd ymm5, ymm15, ymm15
vfmadd132pd ymm6, ymm15, ymm15
vfmadd132pd ymm7, ymm15, ymm15
vzeroupper
movaps xmm15, xmm0
add rcx , 1
cmp rcx , r epeat
jb loop4

Algorithm 1. Independent 5 loops operating on vaddpd, vmulpd (running with no
dependency and with dependency) vfmadd132pd (running with VZEROUPPER and
without VZEROUPPER)

Instructions Cycles per Iteration

ADD 8.02

MUL 4.01

MUL (add dependency) 5.01

FMA (VZEROUPPER) 5.04

FMA (SSE/AVX – without proper register handling) 160.78

Table 2. Number of cycles per iteration running Algorithm 1

By running each of the loops in Algorithm 1 independently, it can be seen
that ADDs are twice as slow as MULs if there is no register dependency. FMA
is a bit slower than MUL but almost twice faster than ADD. When insert depen-
dencies to MUL (i.e. accumulate values) then time goes up to match almost the
FMA time. It also demonstrates how important VZEROUPPER is in this code.
Using it in an appropriate way makes all the difference. It almost triggers a 30×
improvement versus the code without a proper code converting mechanism. Ta-



Using AVX2 Instruction Set to Increase Performance 1009

ble 2 shows an average execution time of instructions for different atomic types of
instruction.

5.2 Linpack

Certainly FMA brings the most impressive performance improvement and acceler-
ates computations significantly. To verify that further the Linpack benchmark has
been adopted, with the results summarized in Table 3. The SMP version of Linpack
has been executed for the problem size 45 000 compiled against different instruc-
tion sets: SSE 4.2, AVX and AVX2 utilizing Intel MKL version 1.2 update 2. The
switching between SSE 4.2, AVX and AVX2 has been done using Intel MKL library
dispatch (MKL DEBUG CPU TYPE) [6, 7]. For this experiment the Intel Server
Wildcat Pass S2600WT platform has been selected as the validation vehicle based
on Intel Xeon E5-2697v3 processor.

Instruction Set Architecture GFlop/s Improvement AVXx/SSE 4.2

SSE 4.2 297.16 1

AVX 500.56 1.68

AVX2 906.01 3.05

Table 3. SMP Linpack performance

You can clearly see that the AVX2 version utilizing FMA is 81 % faster than
version operating on the AVX instructions set and 3 times more powerful than code,
which is relying on the SSE 4.2 instruction set architecture only. The improvement
between SSE 4.2 versus AVX is smaller than AVX2/AVX because of frequency
scaling issue. The problem appears when AVX or AVX2 instructions are executed,
processor may run at less than the rated frequency of the CPU, see Section 5.5 [8,
9, 10].

5.3 Inefficiency of FMA

FMA does not guarantee a perfect solution for every multiplication and addition
scenario. For instance in the situation of calculating the formula: x = a× b + c× d
using FMA is presented in Algorithm 2.
x = VMULPS(a , b) ;
x = VFAMDD213PS( c , d , x ) ;

Algorithm 2. Calculating x = a× b + c× d using FMA

These two operations are performed in 10 cycles while the same calculation
could be performed with separate multiply and addition instructions as Algorithm
3 shows.
x = VMULPS(a , b) ;
y = VMULPS( c , d ) ;
x = VADDPS(x , y ) ;

Algorithm 3. Calculating x = a× b + c× d using multiply and addition instructions



1010 P. Gepner

These require only 8 cycles due to parallel execution of two multiplications
x = VMULPS(a, b) and y = VMULPS(c, d), performed simultaneously on different
ports with the latency of 5 cycles plus additional 3 cycles for x = VADDPS(x, y).

To illustrate this scenario we ran these small kernels 100 000 times each and
after all these iterations the non FMA enable kernel was able to provide 10 % less
cycles than version utilizing the FMA instructions.

The latency gap will be even larger for a formula like this one x = a×b+c×d+
e×f +g×h. FMA implementation with dependency chain through the accumulator
will require 20 cycles. This implementation is presented in Algorithm 4

x = VMULPS(a , b) ;
x = VFAMDD213PS( c , d , x ) ;
x = VFAMDD213PS( e , f , x ) ;
x = VFAMDD213PS(g , h , x ) ;

Algorithm 4. Calculating x = a× b + c× d + e× f + g × h using FMA

Alternative parallel accumulator version without usage of FMA instructions
is illustrated in Algorithm 5. This implementation costs only 13 cycles as x =
VMULPS(a, b) and y = VMULPS(e, f) are completed concurrently during the 5 cy-
cles, the same as x = VFAMDD213PS(c, d, x) and y = VFAMDD213PS(g, h, y). So
with 10 cycles 4 instructions are completed concurrently utilizing two FMA ready
ports. The last x = VADDPS(x, y) operation will be executed in 3 cycles.

x = VMULPS(a , b) ;
y = VMULPS( e , f ) ;
x = VFAMDD213PS( c , d , x ) ;
y = VFAMDD213PS(g , h , y ) ;
x = VADDPS(x , y ) ;

Algorithm 5. Calculating x = a× b + c× d + e× f + g × h without FMA

For this bigger scenario presented in Algorithms 4 and 5 the 100 000 times iter-
ations test verifies that the kernels show 28 % less cycle utilizing non FMA enabled
versions and clearly demonstrates that FMA is not always the best solution for every
ADD and MUL coding situation.

As it was already discussed, one benefit of the Haswell microarchitecture is
the introduction of the FMA instruction in the AVX2 instruction set architecture.
Haswell microarchitecture is able to handle two FMA instructions at the same time,
(on two dedicated execution ports) with a latency of five cycles and a throughput
of one instruction per clock cycle and per execution port (two FMA instructions
total per cycle). Intel also designed the Haswell microarchitecture to handle two
MUL operations in the same cycle (with latency of 5 cycles on two ports) but with
‘only’ one ADD operation on port (with latency of 3 cycles). So in theory, a floating
point numerical code, which is using more addition than multiply operations cannot
take advantage of the Haswell microarchitecture compared to prior generation (Ivy
Bridge).

The benefit of having two FMA execution ports for the code, when using a lot
of addition instructions is based on the fact that a + b = a × 1.0 + b. Comparing
this to the standard ADD instruction, numerically the result is expected to be the
same, however the latency of the two instructions will differ, increasing from 3



Using AVX2 Instruction Set to Increase Performance 1011

to 5 cycles but second execution port counts. The latency for FMA instruction
is higher but because two FMA instructions can be executed simultaneously two
operations a×1.0 + b are executed on both ports in 5 cycle when two a+ b on single
port require 6 cycles.

To demonstrate this, a very simple kernel of sum reductions of an array of simple
precision floating-point numbers will be considered. That array will be correctly
aligned in memory and the number of elements has been chosen to fit the L1 data
cache of a processor core (32 Kbytes).

Pseudo C-code of the kernel is presented in Algorithm 6:

T0 = rdt s c ( ) ;
f o r ( j=0 ; j<M; j++)
{

sum = 0 . 0 f ;
f o r ( i=0 ; i<N; i++) {sum += a [ i ] ; }

}
T1 = rdt s c ( ) − T0 − rd t s c ove rhead ;

Algorithm 6. Pseudosum reduction C-code

The main sum reduction is done in the inner loop with the index i. Performance
is measured in terms of rate of data moved. In order to get accurate performance
estimation, time measured is performed using the rdtsc (read time-stamp counter)
instruction. The processor time stamp records the number of clock cycles since
the last reset. Moreover, the test is repeated M times (outer loop with index j) to
increase the statistical significance of the test, lowering the overhead of the rdtsc

instruction can be done. rdtsc overhead is also estimated on runtime by a simple
loop training and the instruction latency rdtsc overhead is then deducted and
cycle count measurement is accordingly corrected.

Hiding all latencies and considering a throughput of 1 instruction per cycle of the
ADD instruction, to move one 256-bits vector per cycle, representing a theoretical
peak of 32 bytes/cycle or 41.6 GFlop/s/core can be expected.

The code is compiled using the Intel C compiler (icc) and with the compiler
flags -xCORE-AVX2 -O2 -ip. The code is monothreaded and thread is pinned
on the core using sched affinity instruction in order to avoid operating system
context switching penalties. The performance measured is 31.5 bytes/cycle so close
to the expected theoretical peak of 32 bytes/cycle, on both Haswell and Ivy Bridge
architecture as this is presented in Table 4.

Assembly code inspection shows that the main loop is unrolled eight times.
Assembly code has been generated using the compiler options -S -masm=intel to
generate Intel syntax assembly output. Loop unrolling is of course necessary to hide
the 3-cycle latency of the ADD instruction as expected.

5.4 Influence of the Unrolling Factor

To measure the influence of the unrolling factor the loop has been re-written using
C compiler intrinsics and tested on Haswell and Ivy Bridge architecture. Algorithm 7
shows pseudocode for an unrolling factor of eight.



1012 P. Gepner

T0 = rdt s c ( ) ;
f o r ( j=0 ; j<M; j++) {
y7 = y6 = y5 = y4 = y3 = y2 = y1 = y0 = mm256 setzero ps ( ) ;
f o r ( i=0 ; i<N; i+=64) { // Unro l l ed 8 t imes

y0 = mm256 add ps ( y0 , mm256 load ps ( a+i ) ) ;
y1 = mm256 add ps ( y1 , mm256 load ps ( a+i +8) ) ;
y2 = mm256 add ps ( y2 , mm256 load ps ( a+i +16) ) ;
y3 = mm256 add ps ( y3 , mm256 load ps ( a+i +24) ) ;
y4 = mm256 add ps ( y4 , mm256 load ps ( a+i +32) ) ;
y5 = mm256 add ps ( y5 , mm256 load ps ( a+i +40) ) ;
y6 = mm256 add ps ( y6 , mm256 load ps ( a+i +48) ) ;
y7 = mm256 add ps ( y7 , mm256 load ps ( a+i +56) ) ;
k += 1 ;

}
T1 = rdt s c ( ) ;
// Fina l sum reduct ion
y1 = mm256 hadd ps (
mm256 add ps ( mm256 add ps ( y0 , y1 ) , mm256 add ps ( y6 , y7 ) ) ,
mm256 add ps ( mm256 add ps ( y2 , y3 ) , mm256 add ps ( y4 , y5 ) ) ) ;

f 0 = ( ( f l o a t ∗)&y1 ) [ 0 ] + ( ( f l o a t ∗)&y1 ) [ 1 ] +
( ( f l o a t ∗)&y1 ) [ 2 ] + ( ( f l o a t ∗)&y1 ) [ 3 ] +
( ( f l o a t ∗)&y1 ) [ 4 ] + ( ( f l o a t ∗)&y1 ) [ 5 ] +
( ( f l o a t ∗)&y1 ) [ 6 ] + ( ( f l o a t ∗)&y1 ) [ 7 ] ;

Algorithm 7. Pseudocode for an unrolling factor of eight

The code is compiled exactly in the same way as the legacy standard C code.
The results presented in Table 4 clearly show that the loop has to be unrolled by at
least a factor of 4 to hide the 3-cycle latency of the ADD instruction as expected.
All results are in accordance with the theoretical expectation.

Unrolling Factor
Bytes/Cycle

Ivy Bridge Haswell

2 21.2 21.2

4 30.7 31.3

8 30.6 31.5

10 30.0 30.5

16 30.2 30.6

Table 4. Comparing Haswell and Ivy Bridge bytes/cycle

The Algorithm 7 contains the code modified by replacing ADD instruction y[·] =
y[·] + a[·] by the FMA instruction sequence y[·] = 1.0 × y[·] + a[·]. Theoretically,
optimally unrolled, a bunch of two FMA instructions can be scheduled in the same
cycle, theoretically doubling the performance comparing to the usual ADD kernel
implementation.

m256 one = mm256 set ps (1 . 0 f , 1 . 0 f , 1 . 0 f , 1 . 0 f , 1 . 0 f , 1 . 0 f , 1 . 0 f , 1 . 0 f ) ;
T0 = rdt s c ( ) ;
f o r ( j=0 ; j<M; j++) {
y7 = y6 = y5 = y4 = y3 = y2 = y1 = y0 = mm256 setzero ps ( ) ;
f o r ( i=0 ; i<N; i+=64) {

y0 = mm256 fmadd ps ( one , y0 , mm256 load ps ( a+i ) ) ;
y1 = mm256 fmadd ps ( one , y1 , mm256 load ps ( a+i +8) ) ;
y2 = mm256 fmadd ps ( one , y2 , mm256 load ps ( a+i +16) ) ;



Using AVX2 Instruction Set to Increase Performance 1013

y3 = mm256 fmadd ps ( one , y3 , mm256 load ps ( a+i +24) ) ;
y4 = mm256 fmadd ps ( one , y4 , mm256 load ps ( a+i +32) ) ;
y5 = mm256 fmadd ps ( one , y5 , mm256 load ps ( a+i +40) ) ;
y6 = mm256 fmadd ps ( one , y6 , mm256 load ps ( a+i +48) ) ;
y7 = mm256 fmadd ps ( one , y7 , mm256 load ps ( a+i +56) ) ;
k += 1 ;

}
T1 = rdt s c ( ) ;
// Fina l sum reduct ion
y1 = mm256 hadd ps (
mm256 add ps ( mm256 add ps ( y0 , y1 ) , mm256 add ps ( y6 , y7 ) ) ,
mm256 add ps ( mm256 add ps ( y2 , y3 ) , mm256 add ps ( y4 , y5 ) ) ) ;

f 0 = ( ( f l o a t ∗)&y1 ) [ 0 ] + ( ( f l o a t ∗)&y1 ) [ 1 ] +
( ( f l o a t ∗)&y1 ) [ 2 ] + ( ( f l o a t ∗)&y1 ) [ 3 ] +
( ( f l o a t ∗)&y1 ) [ 4 ] + ( ( f l o a t ∗)&y1 ) [ 5 ] +
( ( f l o a t ∗)&y1 ) [ 6 ] + ( ( f l o a t ∗)&y1 ) [ 7 ] ;

Algorithm 8. Modified version of Algorithm 7 by replacing ADD instruction by the FMA
instruction sequence

After modification, the code is compiled and executed exactly in the same way
as the previous kernel exposed in Algorithm 7. Results are presented in Table 5.

Unrolling Factor
Bytes/Cycle

ADD FMA Improvement by Replacing ADD by FMA

1 11.1 6.7 −65 %

2 21.2 13.1 −62 %

4 31.3 25.6 −22 %

8 31.5 45.2 43 %

10 30.5 45.8 50 %

16 30.6 43.9 43 %

Table 5. Comparing Haswell bytes/cycle ratio replacing ADD by FMA

The performance improved by 50 % compared to the previous and usual al-
gorithms. Latency of FMA instruction is 5 cycles (versus 3 cycle latency of the
ADD instruction), a higher level of unrolling is necessary. It looks that on average,
2 or 3 extra cycles are observed per iteration explaining the difference between our
theoretical expectation and the measurements. These extra cycles can be explained
by higher pressure on the cache access in AVX2 (higher computational or numeri-
cal intensity). The result with an unrolling factor of 16 is significantly lower than
our expectation because of register spilling; 16 YMM registers are not sufficient to
permit to hide all instructions or access latencies.

5.5 Benefits of Using AVX2 in Professional Libraries Implementations

The next example of effective use of AVX/AVX2 comes from the DSP field. The
company NA Software distributes Digital Signal Processing (DSP) libraries used
within the industries requiring very fast processing such as aerospace or defence
sectors. As part of a study a very popular AVX Vector Signal Processing Library



1014 P. Gepner

(VSIPL) has been tested on Haswell and Ivy Bridge platforms. In order to bench-
mark DSP processes, various libraries including NAS, IPP (Intel Integrated Perfor-
mance Primitives) and MKL (Math Kernel Library) DSP have been utilised as part
of VSIPL [11].

The majority of the benchmarks, including 2D in-place Complex-to-Complex
FTT, Multiple 1D Complex to Complex FFTs, Complex Vector Multiply and Vec-
tor Scatter show that the tested libraries execute more successfully on the Haswell
platform during testing. In some exceptions the benchmarks including 1D in-place
Complex-to-Complex FFT and Complex Transpose proved that NAS is optimised
better for complex vector operations. It is also the case when the data is not
reduced during the sin/cosine operations (Vector Sine and Vector Cosine bench-
marks).

The Complex Vector Multiply performed using VSIPL library depicts very clear-
ly the difference that the Advanced Vector Extensions make to the benchmarking
process as Figure 1 illustrates. In the case of both NAS AVX (Ivy Bridge) and
AVX2 (Haswell) libraries across all data lengths the results are better than the IPP
and MKL implementation without AVX/AVX2 optimisation. With that in mind
the peak performance of AVX2 on Haswell was better by over 50 % than AVX on
Ivy Bridge.

Figure 1. Complex Vector Multiply. NAS vsip cvmul f with complex split data

Similarly in both Vector Gather and Vector Scatter the AVX NAS VSIP DSP
library performs significantly better on Haswell compared to Ivy Bridge at almost
all data lengths. Haswell gains an advantage during Vector Gather after a vector
length of 4K on NAS where in Vector scatter it maintains constant and reasonably
predictable lead.

Also all three benchmarks of complex-to-complex FFT operations show that the
Haswell systems with the advantage of AVX2 are notably better than Ivy Bridge
with AVX support only. In the cases where Haswell with AVX2 has not perform
as well as Ivy Bridge (AVX) the advantage is usually re-gained with longer data
lengths being available [12].



Using AVX2 Instruction Set to Increase Performance 1015

SiSoftware Sandra 2014 has released a study about Cryptohash acceleration
through SHA extensions where it shows the impact of the new instruction sets
(including AVX and AVX2) available on modern CPUs. In essence, the authors
have tested several types of extensions and compared how quickly the data can be
encrypted/decrypted per second in MB/s. The Advanced Vector Extensions appear
not to be available on the low end/power CPUs [13].

In Figure 2 an almost double performance increase across all three benchmarks
is presented. The major improvement on AVX2 is due to double the amount of
buffers as it functions on 256-bit integer operations, as opposed to 128-bit integer
on AVX [14].

Very similar improvements have been observed during the evaluation of the
various small synthetic benchmarks, e.g. MANDELBROT, this small test developed
by IT4Innovations National Supercomputing Centre, VSB-Technical University of
Ostrava, Czech Republic reported the same level of the benefits delivered by AVX2
versus AVX only version. The second test MULTIDIS that is the chemistry-oriented
solver (developed also by IT4Innovations), comparing trajectories of Argon gas,
shows 134 % performance improvement when is running on Haswell versus AVX
only enabled system [15, 16, 17].

Unfortunately, usage of AVX2 has some negative effect on frequency and Turbo
scaling. As outlined, the addition of AVX2 instructions provides drastic performance
improvement compared to non-AVX workloads, but when executing AVX2/AVX
instructions, the processor may run at less than rated frequency. Of course global
performance when using AVX2/AVX instructions is significantly greater than non-
AVX instructions even when the processor is operating at a slightly lower frequency.
At the same time Intel Turbo Boost Technology continues to provide opportunistic
frequency increases based on workload, number of active cores, temperature, power
and current. It is important to notice that the amount of turbo frequency achieved
depends on all the above elements. Due to workload dependency, separate AVX base
and turbo frequencies have been defined for the Haswell product family. There is
a new AVX disclaimer explaining that when AVX/AVX2 instructions are executed,
it may run at less than the rated frequency.

6 CONCLUSION

The presented study has proven direct evidence of the doubling of the theoretical
floating-point capacity with the new AVX2 capability to increase HPC code per-
formance, e.g. the BLAS function of DGEMM or Linpack. For these subroutine
and benchmarks, the performance to near double over SSE 4.2 code is observed.
Also for the bigger code where a lot of matrix and vector operations are used, new
AVX2 extension brings a lot of value, although frequency and Turbo may interfere
with ideal scaling. Nevertheless, it is very important to notice that to achieve this
level of performance increase, the use of MKL is essential as it simplifies the process
of optimization. However, not everything is fully automatic and even a powerful



1016 P. Gepner

AVX-Multi-Buffer AVX2-Multi-Buffer
0

2

4

6

1.2

2.38

4

7.12

1.71

3.37

SHA2-521
SHA1
SHA2-256

Figure 2. SHA performance utilizing AVX and AVX2

instrument like the FMA instructions are not always the best option to use. The
best recommended practice is to always look at the nature of the problem and seek
to find the optimal instrumentation.

As the instruction set architecture is evolving and bringing new extensions, e.g.
Intel AVX512, the future study is going to be concentrated on the evolution of the
new extension and benefits they may bring to the HPC field in particular.

Acknowledgments

The special acknowledgments for contribution and support provided go to Victor
Gamayunov, Wieslawa Litke, Hudson Pyke from Intel EMEA Technical Group,
Jamie Wilcox from Intel EMEA Technical Marketing HPC Lab and Ludovic Sauge,
Cyril Mazauric, Johann Peyrard and Sylvain Cohard from Bull Extreme Computing
Applications & Performance Team.

REFERENCES

[1] Optimize for Intelr AVX Using Intelr Math Kernel Library’s Basic Linear Algebra
Subprograms (BLAS) with DGEMM Routine, The Intel Developer Zone Web
Site: https://software.intel.com/en-us/articles/optimize-for-intel-avx-

using-intel-math-kernel-librarys-basic-linear-algebra-subprograms-

blas-with-dgemm-routine.

[2] Intelr Architecture Instruction Set Extensions Programming Reference, Intel Corp.,
2015.

https://software.intel.com/en-us/articles/optimize-for-intel-avx-using-intel-math-kernel-librarys-basic-linear-algebra-subprograms-blas-with-dgemm-routine
https://software.intel.com/en-us/articles/optimize-for-intel-avx-using-intel-math-kernel-librarys-basic-linear-algebra-subprograms-blas-with-dgemm-routine
https://software.intel.com/en-us/articles/optimize-for-intel-avx-using-intel-math-kernel-librarys-basic-linear-algebra-subprograms-blas-with-dgemm-routine


Using AVX2 Instruction Set to Increase Performance 1017

[3] Intelr AVX2 optimization in Intelr MKL. Web site: http://software.intel.com/
en-us/articles/intel-mkl-support-for-intel-avx2.

[4] Demmel, J.—Dongarra, J.—Eijkhout, V.—Fuentes, E.—Petitet, A.—
Vuduc, R.—Whaley, R.—Yelick, K.: Self-Adapting Linear Algebra Algo-
rithms and Software. Proceedings of the IEEE, Vol. 93, 2005, pp. 293–312, doi:
10.1109/JPROC.2004.840848.

[5] Dongarra, J.—Du Croz, J.—Hammarling, S.—Duff, I. S.: A Set of Level
3 Basic Linear Algebra Subprograms. ACM Transactions on Mathematical Software
(TOMS), Vol. 16, 1990, pp. 1–17, doi: 10.1145/77626.79170.

[6] Henry, G.: Optimize for Intel AVX Using Intel Math Kernel Library’s Basic Linear
Algebra Subprograms (BLAS) with DGEMM Routine. Intel Software Network, July
2009.

[7] Jeffers, J.—Reinders, J.: Intel Xeon Phi Coprocessor High Performance Pro-
gramming. Morgan Kaufmann, 2013.

[8] Gepner, P.—Gamayunov, V.—Fraser, D. L.: Early Performance Evaluation
of AVX for HPC. Procedia Computer Science, Vol. 4, 2011, pp. 452–460, doi:
10.1016/j.procs.2011.04.047.

[9] Gepner, P.—Gamayunov, V.—Fraser, D. L.: Evaluation of Executing
DGEMM Algorithms on Modern MultiCore CPU. Proceedings of Parallel and Dis-
tributed Computing and Systems 2011 Conference, Dallas, December 2011, doi:
10.2316/P.2011.757-029.

[10] Goto, K.—van de Geijn, R.A.: Anatomy of High-Performance Matrix Multipli-
cation. ACM Transactions on Mathematical Software (TOMS), Vol. 34, 2008, No. 3,
Art. No. 12.

[11] Intel AVX VSIPL Benchmarks. http://www.nasoftware.co.uk/home/

attachments/NAS_vsipl_benchmarks.pdf.

[12] Kopta, P.—Kulczewski, M.—Kurowski, K.—Piontek, T.—Gepner, P.—
Puchalski, M.—Komasa, J.: Parallel Application Benchmarks and Performance
Evaluation of the Intel Xeon 7500 Family Processors. Procedia Computer Science,
Vol. 4, 2011, pp. 372–381.

[13] Crypto Hash Acceleration Through SHA Extensions (HWA). http://www.

sisoftware.co.uk/?d=qa&f=cpu_sha_hw.

[14] Strassen, V.: Gaussian Elimination Is Not Optimal. Numerische Mathematik,
Vol. 13, 1969, No. 4, pp. 354–356, doi: 10.1007/BF02165411.

[15] Krotkiewski, M.—Dabrowski, M.: Parallel Symmetric Sparse Matrix-Vector
Product on Scalar Multi-Core CPUs. Parallel Computing, Vol. 36, 2010, No. 4,
pp. 181–198, doi: 10.1016/j.parco.2010.02.003.

[16] Bell, N.—Garland, M.: Implementing Sparse Matrix-Vector Multiplication on
Throughput-Oriented Processors. Proceedings of High Performance Computing Net-
working, Storage and Analysis (SC ’09), ACM, 2009, Art. No. 18.

[17] Gepner, P.—Gamayunov, V.—Fraser, D. L.—Houdard, E.—Sauge, L.—
Declat, D.—Dubois, M.: Evaluation of DGEMM Implementation on Intel
Xeon Phi Coprocessor. ICCSIT 2013, Journal of Computers, Vol. 9, 2014, No. 7,
pp. 1566–1571, doi: 10.4304/jcp.9.7.1566-1571.

http://software.intel.com/en-us/articles/intel-mkl-support-for-intel-avx2
http://software.intel.com/en-us/articles/intel-mkl-support-for-intel-avx2
https://doi.org/10.1109/JPROC.2004.840848
https://doi.org/10.1145/77626.79170
https://doi.org/10.1016/j.procs.2011.04.047
https://doi.org/10.2316/P.2011.757-029
http://www.nasoftware.co.uk/home/attachments/NAS_vsipl_benchmarks.pdf
http://www.nasoftware.co.uk/home/attachments/NAS_vsipl_benchmarks.pdf
http://www.sisoftware.co.uk/?d=qa&f=cpu_sha_hw
http://www.sisoftware.co.uk/?d=qa&f=cpu_sha_hw
https://doi.org/10.1007/BF02165411
https://doi.org/10.1016/j.parco.2010.02.003
https://doi.org/10.4304/jcp.9.7.1566-1571


1018 P. Gepner

Pawel Gepner is Intel Corporation Platform Architect focused
on high performance computing at DCG FAE Team EMEA. He
has joined Intel in 1996 as Field Application Engineer for Cen-
tral and Eastern Europe. In 2001, he became EMEA Architect
focused on HPC area. Currently he is responsible for the devel-
opment and design of future server platforms and HPC systems
at one of Intel’s leading EMEA partners. He is Intel Corporation
spoke person responsible for communication with the press re-
garding technical and technology aspect of Intel’s products and
technology. He led couple of server development projects includ-

ing first Fault Tolerance Systems based on IA-32 from Stratus Technology. He was re-
sponsible for driving Pentium III server project at IBM Development Center in Greenock.
He also led the team of Intel architects that developed Bull’s Itanium 2 system. He was
also involved in Itanium 2 projects at Siemens AG and Eriksson. He led the development
team for the first teraflop computing projects in EMEA and first Itanium 2 teraflop in-
stallations. He was driving many of the HPC projects in including TASK, SKODA, VW,
CERN, and many others. He is graduated in computer science and he holds Master’s
and Ph.D. degrees from Warsaw University of Technology, Poland and habilitation from
Czestochowa University of Technology. He has written 50 technical papers on computer
science and technology. He is also a board member and technology advisor for many
international scientific and commercial HPC projects.


