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Abstract. Cognitive radio (CR) is the underlying platform for the application
of dynamic spectrum access (DSA) networks. Although the auction theory and
spectrum trading mechanisms have been discussed in the CR related works, their
joint techno-economic impact on the efficiency of distributed CR networks has not
been researched yet. In this paper we assume heterogeneous primary channels with
network availability statistics unknown to each secondary user (SU) terminal. In
order to detect the idle primary user (PU) network channels, the SU terminals
trigger regularly the spectrum sensing mechanism and make the cooperative deci-
sion regarding the channel status at the fusion center. The imperfections of the
spectrum mechanism create the possibility of the channel collision, resulting in the
existence of the risk (in terms of user collision) in the network. The spectrum trad-
ing within SU network is governed by the application of the sealed-bid first-price
auction, which takes into account the channel valuation as well as the statistical
probability of the risk existence. In order to maximize the long-term payoff, the SU
terminals take an advantage of the reinforcement comparison strategy. The results
demonstrate that in the investigated model, total revenue and total payoff of the SU
operator (auctioneer) and SU terminals (bidders) are characterized by the existence
of the global optimum, thus there exists the optimal sensing time guaranteeing the

optimum economic factors for both SU operator and SU terminals.
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1 INTRODUCTION

Dynamic spectrum access (DSA) network promises to revolutionize the way wireless
communication operators and networks behave through sophisticated assignment
of frequency resources. Currently, the available spectrum is divided into several
frequency bands, which are allocated traditionally to a specific operator in return
for the monetary gain [I]. However, the recent measurements show that the spec-
trum utilization in the 0-6 GHz varies from 15 to 85 % depending on the time and
geographical location [2]. It implies that the traditional licensing schemes present
serious bottleneck for deployment of larger density of wireless devices. We note that
the scarcity of RF spectrum is not a result of lack of spectrum but a result of waste-
ful static spectrum allocations [3]. These observations motivate the researchers and
industrial bodies to come up with the solution enabling higher spectrum utilization
with only minor requirement changes on the existing operators’ infrastructure. The
cognitive radio (CR) platform, whereby secondary user (SU) terminals are allowed
to access vacant frequency resources of the primary user (PU) network, has a great
potential to increase the spectrum efficiency utilization without major changes to
the existing PU networks. The major restriction posed on the secondary spectrum
access in DSA consists in the fact that the transmission of SU terminals does not
cause any measurable interference to the PU network. Therefore, SU terminals
must identify possible free and not occupied space-time-frequency slots where the
transmission of the PU network is not present [4].

Several methods exist for protecting PU network licensing rights (in terms of
the cross-interference due to the SU network), ranging from sensing-only meth-
ods [B] to geo-location database techniques [6]. The reliability of these methods is of
a major concern of practical applicability of DSA networks. Sensing-only detection
methods face challenging performance and design issues, as verified by recent FCC
testing of experimental TV white space (TVWS) devices [7, 8]. On the other hand,
geo-location database techniques rely on known private information related to the
occupancy of the frequency bands, including the exact types of services present and
their specific interference requirements. This information is the subject of imme-
diate change and thus, maintaining of the database of such type remains a huge
concern [9]. Sensing-only devices do not possess the same level of knowledge about
the bands, but have the potential to detect the vacant channels thanks to the coop-
erative behavior of the SU terminals.

In spectrum sensing, SU terminal analyzes its radio environment, creates a test
statistics from the received signal and decides if the transmission of the PU net-
work is present in the received signal. There exist several algorithms of sensing
methods in the literature [I0)]. Matched-filter detection or cyclostationary sensing
detection techniques need prior knowledge of the PU network signal. Conversely, the
energy detection and interference-based spectrum detection form the group of sens-
ing mechanisms, where no knowledge about the PU network signal is needed prior
to the detection. Sensing results can be significantly improved by exploiting the
spatial diversity of several spatially distributed SU terminals and making the final
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sensing decision based on the local sensing results. This is referred to as cooperative
spectrum sensing [T1].

In cooperative spectrum sensing, multiple SU terminals work together to ex-
change the information to detect the activity of PU network. This technique ex-
ploits the spatial diversity intrinsic to a multiuser network. It can be accomplished
in a centralized or distributed fashion. In a centralized manner, each SU terminal
reports its spectrum observations to a central controller that processes the informa-
tion and creates a spectrum occupancy map of the overall network. In a distributed
fashion, the SU terminals exchange spectrum observations among themselves and
each individually develops a spectrum occupancy map [12, 13, [T4]. In our paper
we focus on the former approach due to its higher potential to be applied in the
networks, where most of the processing capabilities are localized in the secondary
operator’s base-station (BTS).

The accuracy of the spectrum sensing strongly impacts the economy of DSA
networks, mainly operating in the shared-used model. In the shared-used DSA
networks, the radio spectrum can be simultaneously shared between PU and SU
networks. In this model, SU terminals can opportunistically access the radio spec-
trum if it is not occupied or fully utilized by PU network, in return for the increased
monetary gain of PU operator [I5]. On the other hand, the SU network commu-
nication in the licensed band of PU network creates the possibility of simultaneous
voice/data traffic on the same channel, resulting in the interference. Thus, shared
model of DSA is exposed to the performance degradation due to the imperfect spec-
trum sensing, resulting in the occurrence of a collision. This kind of interference
is coined throughout the paper as risk and it reflects the probability of the missed
detection of the PU network activity. Nevertheless, most current works on spec-
trum trading have so far assumed the exclusive-usage model (see e.g. [16] [I'7] and
the references therein). In these kind of models, the spectrum privileges are sold
by the PU network to SU operator for a specific period of time and thus, no risk is
present in the system. On the other hand, we register only a few papers (e.g. [I8])
dealing with both of them, spectrum trading and spectrum sensing mechanisms and
their joint optimization. For example, Tehrani et al. in [I8] proposed analytical
framework allowing the investigation of the mutual impact of spectrum trading and
sensing in the shared-used based DSA networks. Many research challenges seen in
the shared-used model of DSA networks motivated us to shed more light on the
issue of joint optimization of spectrum sensing and trading parameters to improve
the measured indicators of both, PU and SU network.

To design efficient and effective DSA networks, the related technical aspects
(e.g. channel detection, power control) as well as economic aspects (e.g. pricing,
spectrum auction) need to be considered. In other words, also the economic indica-
tors (retail pricing, operator’s profit, etc.) contribute to the overall picture of DSA
networks application [I9]. Thus, the operators could potentially see DSA networks
and underlying CR platform as a threat to their own privilege spectrum rights and
regulators are still discussing this complex topic without a clear perspective on their
role to facilitate the implementation of DSA networks. Large scale deployment of
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this technology may be expected in the near future, however meantime the potential
economic and social value of such reform should be investigated.

In this paper, we propose an agent-based model of spectrum trading for a shared
usage model of DSA. We consider primary network consisting of the PU opera-
tor broadcasting in TVWS band and secondary network consisting of secondary
BTS and multiple SU terminals. Our intention is to propose the model consistent
with any future system using CR technology in the shared-model. For example, in
an 802.22 system, agents can be built on base stations, which lease (or sense) the
spectrum of VHF/UHF TV bands and serve all its associated Consumer Premise
Equipments without any harmful interference to TV receivers [20]. SU network
performs cooperative sensing, where the partial SU measurements are processed
in the fusion center located at the secondary BTS. We consider two well-known
cooperative spectrum sensing rules, namely LOGIC-AND and LOGIC-OR rule.
Due to their nature, these rules create different level of the risk in the system,
which eventually impacts the investigated metrics, such as SU operator’s revenue,
SU terminals’ payoff, etc. In our case, the presented agent-based model aims to
analyze and investigate the impact of the imperfect spectrum sensing determined
by the duration of the spectrum sensing itself. For the purpose of the spectrum
trading we use well-known auction mechanism. In the auction process, the buy-
ers (SU terminals) submit their spectrum bids and the profit of a spectrum seller
(secondary BTS) is maximized by allocating spectrum to the buyer(s) submitting
the highest bidding price [21]. In our model we use sealed-bid multiple unit se-
quential spectrum auction which allows us to create the scenario where SU termi-
nals compete for the block of vacant frequency channels [22]. The auction strate-
gies of the SU terminals are governed by the reinforcement comparison learning,
and the knowledge of SU terminals is limited to the instantaneous payoff obtained
in each auction round, thus no global environment knowledge is required. Last,
the main advantage of the agent-based approach is that it can efficiently simu-
late the real-world scenario, where the agents (e.g. SU terminals) have only limited
knowledge about their environment and distributed intelligence is of more inter-
est.

The rest of the paper is organized as follows. Section [ describes the sys-
tem model considered in the paper. The agent-based model and the description
of each network entity is described in Section [} Numerical analysis of the pro-
posed model is pointed out in the Section ] Finally, conclusion is given in the last
Section 5.

2 SYSTEM MODEL

Our model represents a typical IEEE 802.22 system, where the SU network op-
erates in the licensed frequency band of PU network. Here, under the joined
term SU network we recognize secondary operator’s BTS and N SU terminals
(see Figure [l)). SU terminals are randomly distributed in the investigated re-
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gion. Fusion center is physically located on the secondary operators’” BTS. Pri-
mary user BTS generates the traffic over the dedicated channels, while the va-
cant channels are allowed to be re-used by SU network. Assuming perfect re-
porting channels, every SU terminal performs spectrum sensing and reports the
sensing result to the fusion center. Eventually the fusion center decides the pres-
ence or the absence of PU network. In order to detect idle licensed channels, the
cooperative spectrum sensing is performed by SU network. The spectrum auc-
tion is eventually recalled in order to assign the channels to respective SU termi-
nals. If all channels are identified as occupied by PU network traffic, no action
will be taken and no transmission will take place. Further details regarding the
spectrum sensing and spectrum trading schemes will be described in the next sec-
tions.

[0V}
é Primary User BTS

Secondary User BTS

D -

D

D <

Secondary User

< --» Spectrum auction

Figure 1. IEEE 802.22 network model with corresponding interacting entities

2.1 Spectrum Sensing

Throughout the paper we take an advantage of the cooperative spectrum sensing,
whereby the energy detector provides the local measurements of SU terminals, which
are eventually processed in the fusion center. These particular steps are introduced
in the following text.

2.1.1 General Model

In this section, spectrum sensing preliminaries that involve multiple SU terminals
are discussed. In general, the goal of spectrum sensing is to decide on the hypotheses
if the PU network signal is present #; or not H, as follows [23]:

Hoo y(n) = w(n), 1)
Hi: y(n) = h(n)s(n) + w(n) (2)
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where

e y(n) denotes the signal received by each SU terminal,

e s(n) is the licensed PU network signal,

e w(n) ~ N(0,02) is the additive while Gaussian noise with zero mean and vari-
ance 2. In turn signal-to-noise ratio (SNR) v equals: v = Lt

o2
e h(n) denotes the Rayleigh fading channel gain of the sensing channel between
the PU network and SU terminal,

o the licensed PU network signal s(n) is un-correlated with noise w(n).

The channel considered between the PU network and the SU terminal is the
Rayleigh channel. Typically, to specify the channel vacancy, a test statistic T'(y)
from the received signal is formed. Then the final decision is made by compar-
ing T'(y) with a predefined threshold e under certain hypothesis which is expressed

as
Hi

T(y) 2 e (3)
Ho

The detection performance can be primarily determined on the basis of two metrics:
probability of false alarm, which denotes the probability of an SU network declaring
that a PU network is present when the spectrum is actually idle, and probability
of correct detection, which denotes the probability of an SU network declaring that
a PU network is present when the spectrum is indeed occupied by the PU network.
Under hypothesis H, the probability of false alarm py = Pr(T(y) > ¢|Hy) and
the probability of correct detection that the channel is idle p; = Pr(T(y) < €|Ho)-
Similarly, under hypothesis H;, the probability of correct detection pg = Pr(T(y) >
€|H1) and the probability of missed detection p,, = Pr(T(y) < €[H1). Obviously,
our intention is to achieve high probability of detection p; and low probability of
false alarm py.

2.1.2 Energy Detection

Energy detection comes under the category of blind spectrum sensing technique and
is used to detect the PU network signal [24]. This detection method calculates the
energy of the received signal and compares it to a threshold € to take the local
decision that the PU network signal is present or absent. Now, let us define 7 as
the sensing time, f, as the sampling frequency and L as number of samples used for
the sensing purposes. There is a mathematical expression to calculate the energy of
any received PU network signal given as

T(y) =+ 3 ly(n)P (4)

il

where T'(y) denotes the energy of the received input signal, which is compared with
threshold e to make the final decision.
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Assuming the hypothesis H, we can characterize the test statistics T'(y) as a ran-
dom variable, which probability density function (PDF) po(z) takes the Chi-Square
distribution with L degrees of freedom. Considering the detection threshold ¢, the
probability of false alarm py can be expressed as

pr(e,7) = Pr(T(y) > e|Ho) = /oopo(:zc) dz. (5)

Now considering large number of samples L and using the background idea of the
central limit theorem [25], the PDF of T(y) under hypothesis Ho can be approxi-
mated by a Gaussian distribution with mean iy and variance of = 1[E|w(n)* — o}].

w

Next, prov1ded w(n) is real-valued Gaussian variable, then E|w(n ) = 3o, thus

op = ZJW where E| - | is the expected value operator. However in our paper we

assume w(n) to be circularly symmetric Complex Gaussian (CSCG) variable, thus
Elw(n)|* = 20 and consequently o2 = . Then, the probability of false alarm is

given by
ol )

n

where Q(-) is the Q-function defined as

o) = \/ﬂ/ exp( >dw. (7

Under hypothesis H1, let us denote p;(z) as the PDF of T(y). For the given thresh-
old ¢, the probability detection is given by

pale.r) = Pr(T(y) > e|Hy) = /mm(.r)dx. (8)

Further, for sufficiently large L, the PDF of T'(y) can be approximated by
a Gaussian distribution with mean p; = (y + 1)o2, where v = Z—; is SNR, and
variance [20]
1
= Z[Bls()[* + Elw(n)]* - (o] = 03)’), (9)
provided s(n) and w(n) are both circularly symmetric and complex valued. If s(n)
is complex PSK modulated and w(n) is CSCG noise, then of = 1(2v + 1)op. For

the case of PSK modulated complex-valued signal and CSCG noise, the probability
of detection can be approximated as [20]

deQ((g}—v—l) 2;—{&1). (10)

Sensing threshold e can be calculated by evaluating (@ or for given target
probabilities p; or pg, respectively. The reason why we introduce the analytical
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formulations of the p; and py probabilities stems from the fact that these quantities
control the decisions of SU network in the agent-based model proposed later in the
paper. In other words, instead of getting statistics using Monte Carlo simulations,
we take advantage of the analytical representations of the sensing statistics.

2.1.3 Cooperative Sensing Data Fusion

When binary local decisions are reported to the fusion center, it is convenient to
apply linear fusion rules to obtain the cooperative decision. In our paper, we consider
Logic-AND and Logic-OR rules, as these methods are popular due to their relative
simpleness. Now, let us suppose there are N SU terminals and define p((ik) as the
probability of detection of the k" SU terminal. The local binary decision of the
channel state D, € {0,1} is calculated by each SU terminal individually and sent
to the secondary BTS in each sensing period. The final decision of the channel
availability is made by the secondary BTS by using cooperative decision.

e Logic-OR rule; in this case the final decision says that the channel is occupied
by a primary signal when one of the local decision declares the channel as busy.
Mathematically this relation can be written as A = chvzl D,. If A > 1 then
the channel is busy. The final probability of detection, assuming that all local
decisions are independent, is given by

Qd—l—ﬁ(l—pff)). (11)

e Logic-AND rule; if all local decisions says that the channel is occupied by a pri-
mary signal then the final decision declares the channel as busy. Thus we can
write A = H]kV:1 Dy. If A =1 then the channel is busy. Assuming independent
local decisions, the final probability of detection can be calculated as

N
Qa = Hpgk)~ (12)
k=1

2.2 The Auction Algorithm for the Channel Distribution

There exist several mechanisms used for the spectrum distribution among SU termi-
nals, namely; auction mechanism, direct trading and brokerage mechanism. These
mechanisms are discussed in detail in [27]. As the authors suggested in this work,
the secondary spectrum usage can increase economic welfare, including SU termi-
nal’s payoff and SU operator’s profit. In particular, auctions provide higher profits
for the service providers than the other mechanisms (see explanation in [27]), and
thus we decided to use this mechanism in our model.
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We propose the spectrum trading algorithm based on the sealed-bid first-price
auction [28]E| Thus, the highest bidder gets the chance to acquire the channel. In
our model, secondary BTS has a role of an auctioneer and SU terminals send theirs
bids with aim to get the channel auctioned at the auction.

We define the payoff of the i*® SU terminal in the ' time frame R(i,t) as

V(i,t) = b(i,t), SU terminal wins the auction,
R(i,t) = (13)

0, SU terminal loses the auction,

where V (4,t) is a spectrum valuation of the i bidder in the t™ time frame and b;,
is a bid of the i*" bidder in the ¢ time frame. We define V (i, t) as

C(i, 1)
Cref

V(i,t) =w[l —r(O))(T — 1) (14)

where r(t) is the risk associated with getting the channel in the t*® time frame, T is
the duration of the time frame, 7 is the sensing time, C'(4,t) is the channel capacity
between the i"® SU terminal and secondary BTS in the ¢™ time frame, C,; is the
reference channel capacity and w is a scaling parameter.

The probability that the i*" bidder wins the auction can be expressed as [I]

b(i) — boin )“V‘”

P(i™ bidder winning) = (15)
Vmaz - bm'm

where b,,;, is the minimum bid, V,,,, is the maximum spectrum valuation and N

is the number of bidders (i.e. number of SU terminals participating at the auction).

The expected payoff of the it" bidder can be then expressed as:
E(i) = (V(i) — b(i)) x P(i™ bidder winning). (16)

Optimal bid can be determined by substituting P(i*" bidder winning) from
into and maximizing the resulting F(i) by getting the first derivative of E(7)
to 0. Thus, the optimal bid b(i)* for the i*" bidder can be expressed as:

(n—=1V(E) + bmm.

b(i)" = (17)
Obviously, this is a pure theoretical concept as the minimum bid b,,;, is generally not
known for the SU terminals. Instead the SU terminal needs to approximate optimal
bid b(7)*. As long as we assume bounded rationality of the agents in the model,
the learning algorithms with limited information are of our interest. Reinforcement

1 Although there exist numerous papers dealing with sealed-bid second price auction,

this type of auction is rarely used in practice because of the possibility of cheating by the
seller [29]. With the fear of cheating, a second price auction may become less profitable
than a first price auction for non-cheating and fair seller (operator).
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comparison, which belongs to the broad group of the reinforcement learning based
algorithms [30], seems to be the suitable candidate to be used in our model. In order
to determine the SU terminal decision about their bids in each auction round, we
have employed the reinforcement comparison algorithm. When creating secondary
spectrum market, we decided to look for the inspiration in the smart grid electric-
ity systems. The authors in [3I] used reinforcement learning allowing the service
providers to learn the behavior of the electricity network and the change of retail
price to make an optimal pricing decision in the retail market. However it should
be noted when dealing with the secondary spectrum market model there are certain
differences that should be emphasized:

1. spectrum goods have a non-storable character;

2. postponing its consumption is impossible (consumption runs in real time).

These facts make the situation with the secondary spectrum trading more simplified
compared to the traditional wholesale electricity market. The traditional Markov
decision problem (MDP) could be successfully reduced to one state (under the as-
sumption that the spectrum consumption cannot be postponed), which resembles
typical multi-armed bandit problem. In our model the particular arms of the bandit
are represented by the possible choices of SU terminals’ bids. Thus, the algorithm
governs the SU terminals to choose those bids, which would maximize their long-term
payoffs. Therefore, we propose an algorithm based on the reinforcement compar-
ison algorithm in order to determine the optimal bid locally for each bidder (SU
terminal).

2.2.1 Reinforcement Comparison Learning

Let us define a vector of the available bids for the i bidder in the ¢ time frame
b(i,t) with elements b;(i,t), which can be expressed as
bi(i,t) = V (i, )= (18)
g\t ) Nb
where j = 1,2,..., N, and N, is the number of the possible bid options, i.e., the set
of available bids B is defined as

. 1 . 2 Ny —1
= . 1
5= {0Vl Vg Vi | (19)

Each bid has its corresponding selection probability p;(i,t). To increase the read-
ability of the text, we ignore the index ¢ in the following expressions, however note
that the probability vector is unique for each bidder. Bid valuation adaptation for
the 5 bid choice can be expressed as

mi(t+1) = m;(0) + alp(t) — = (1)) (20)
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where 7;(t) is a valuation of the 5™ bid choice in the current time frame, m;(t+1) is
a valuation of the j*" bid choice in the next time frame, p(t) is the reference payoff
and « is an adaptation parameter. Adaptation of the p(t) can be expressed as

p(t+1) = p(t) + S(R(t) = p(t)) (21)

where p(t) is the reference payoff in the current time frame, p(¢ + 1) is the reference
payoff in the next time frame and S is the adaptation parameter. Normalized
probability of the 5™ bid selection in the (¢ 4+ 1)™ time frame is calculated as follows:

exp <7r](g+1)>

ZZN:bl exp (71'1(1;+1))

pi(t+1) = (22)

where § is the cooling parameter that controls the convergence speed of the algo-
rithm. Eventually, the bid b;(¢t 4+ 1) is computed according to the bid probabilities
vector p(t).

3 AGENT-BASED IMPLEMENTATION OF THE MODEL

The application of the principles of techno-economic analysis (technological in terms
of the spectrum sensing and learning, and economic in terms of the spectrum auc-
tion) opens up the possibility of using a wide variety of research approaches. In
general, several simulation models that describe techno-economic analysis have been
introduced lately, such as game theory [16], evolutionary game theory [32, B3] and
bargaining theory [34]. In general, most of these models impose unrealistic assump-
tions regarding the interactions of agents. For example, the interacting agents in the
game theory based models have perfect knowledge of the payoffs of the opponents,
i.e., full rationality is considered. However, we claim that this information is private
and thus, the agents with limited knowledge are of more interest in these scenar-
ios. Thus, the agents should be uncertain about the spectrum demand (bounded
rationality) and may act opportunistically. Provided the bounded rationality of the
market participants is assumed, an agent-based modeling & simulation (ABMS) ap-
proach seems to be very effective tool for analyzing the interactions of the market
agents [35), [36].

Thus, in order to analyze an impact of the risk caused by imperfect spectrum
sensing on the spectrum trading, we propose an agent-based model consisting of
three types of agents; PU network, secondary operators’ BTS and multiple SU ter-
minals. Our fundamental goal is to analyze the revenue of the secondary operator’s
BTS and the payoff of the SU terminals in the relation with the risk due to the
imperfect spectrum sensing.
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3.1 Primary-User Network

PU network is represented by a simple agent entity in our model. It takes on the role
of the two states, which are directly related to its activity: ACTIVE or IDLE. The
role of this agent is to simulate the PU network traffic, which, in turn, is detected
by SU network.

1 P P
Y

cactive

1 “Pu

Figure 2. Traffic model of the PU network. The probability p, is related to the transition
probabilities between the PU network states.

3.2 Secondary-User BTS

Secondary BTS agent makes the global sensing decision based on the local decisions
from the SU terminals, it calculates the risk r, which is associated with purchasing
the spectrum band and it determines the winner of the auction. The global proba-
bility of correct detection @y is calculated using or based on which decision
fusion scheme is applied. If the channel is identified as idle, auction is being held,
and risk r is calculated as follows:

r=1-— Qd~ (23)

Risk r is sent to each SU terminal over a dedicated channel. SU terminal computes
the corresponding valuation of the channel and sends the corresponding bid to the
secondary BTS. When all bids are collected, the winning SU terminal is determined
and all SU terminals are notified about the auction results.

3.3 Secondary-User Terminal

The agent carries out four typologically different actions contributing the overall
DSA functionality. Here we introduce them in the order in which they are initialized
in the agent based model:

1. spectrum sensing,
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2. auction participation,
3. reinforcement comparison learning for choosing the optimum bid,

4. data transmission.

Each SU terminal regularly triggers the spectrum sensing based on the energy
detection of the signal. The local sensing results are then processed in the fusion
center and global decision is reached. Provided the channel is identified as idle,
SU terminal chooses bid b; with the probability p; and sends it to the secondary
operator’s BTS. Based on the auction results, SU terminal calculates its payoff from
the current auction round according to and . Then it adapts its bidding
choices and their corresponding probabilities using the reinforcement comparison
algorithm.

4 NUMERICAL RESULTS
4.1 Simulation Setup

The network model considered throughout the simulation scope consists of the PU
network, one secondary operator’s BTS and 10 SU terminals. The area under in-
vestigation has a square shape of size 1km x 1km. The SU terminals follow the
random walk with constant speed in the model. We assume the Rayleigh channel,
i.e., no line of sight is considered in the model, which fits the investigated scenario
mainly to the urban area. The model parameters used throughout the simulation
runs are depicted in Table [I We analyze both the single-unit and multi-unit spec-
trum auctions. In multi-unit, multiple frequency channels are auctioned at the same
time, in order to increase its network throughput. We use three figures of merits de-
termining the mutual impact of the cooperative spectrum sensing mechanisms and
spectrum auction, namely — development of the risk over time, normalized revenue
of SU operator and normalized payoff of SU terminal.

4.2 Results

In Figure [ we illustrate risk r in terms of the sensing time. Here we can see
monotonic dependence of the risk on the sensing time. Obviously, the larger the
sensing time is, the less risk is present in the system. On the other hand, the
average risk is significantly higher for LOGIC-OR fusion rule for both investigated
cases of the spectrum auction. That observation can be explained in such way that
the risk of purchasing the spectrum in the scenario with the LOGIC-OR fusion rule
is lower, than in the case of the LOGIC-AND fusion rule and therefore the SU
terminals are willing to pay more for the same spectrum resource.

Figure [] shows the normalized revenue of secondary operator’s BTS in terms
of sensing time 7 for both LOGIC-OR and LOGIC-AND fusion rules. Normalized
revenue is the crucial parameter for the secondary BTS as if it does not excess
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Parameter Value
Number of iterations 10000

Number of time frames per iterations 100000

Time frame length T = 80ms
Sampling frequency fs =400kHz
Carrier frequency fc=800MHz
Transmit power of the PU BTS P, py =60dB

Transmit power of the SU BTS

Py, prs = 80dB

Velocity of the SU terminals

vsy = 3m/s

PU network; probability of transmission | py = 0.5
Variance of the noise on the SU terminal | o2 = 1
Target probability of false alarm py=0.1
Parameter of the learning algorithm a a=0.1
Parameter of the learning algorithm /3 B =0.1
Parameter of the learning algorithm 6=10
Number of bid choices M =10

Reference channel capacity

Crep = 660 kbps

Table 1. Simulation parameters

Single-unit auction

—6— OR fusion rule
09 —— AND fusion rule | 0.9

Multi-unit auction

—+— OR fusion rule
—— AND fusion rule

Average risk
Average risk
s
[

60 10 20 30 40 50 60 70 80
Sensing time (ms)

a) b)

30 50
Sensing time (ms)

Figure 3. Development of the risk vs. sensing time

the critical level, the secondary operator’s BTS becomes unprofitable (considering
the fixed and variable cost) and its deployment becomes not feasible. In general,
we can see that the normalized revenue (normalized to the one auction round) is
higher for the LOGIC-OR fusion rule. This observation is more remarkable for the
scenario when multi-unit auction is applied. On the other hand, the dependence
of the revenue is not monotonic and we can see the global optimum ensuring the
highest revenue for both LOGIC-AND and LOGIC-OR rules. In general we can
claim that the LOGIC-AND rule needs higher sensing time in order to achieve its
optimum performance in term of revenue.
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Figure [f] illustrates the average payoff of the SU terminal in terms of sensing
time 7. Here we depict only the scenario with single-unit spectrum auction. Based
on our extensive simulations we can claim that the results are overlapping with
those representing multi-unit spectrum auction. In general, the aim of SU is to get
the highest normalized average payoff (e.g. the lowest price entering the spectrum
auction paid for the highest utility when it succeeds in the spectrum auction round).
Here the results are again in accordance with previous results and LOGIC-OR fusion
rule significantly outperforms the LOGIC-AND fusion rule for the relatively short
sensing time. However, the longer the sensing time is, the more the differences among
the investigated fusion rules diminish. Again, we observe the global optimum which
ensures the highest payoff for the SU terminal (i.e. 7 = 20 ms for LOGIC-AND rule
and 7 = 10ms for LOGIC-OR rule).

Single-unit auction Multi-unit auction

—=o&— OR fusion rule —— OR fusion rule
—*— AND fusion rule 4 —+— AND fusion rule

w

— g
n © n

Normalized revenue of the secondary BTS
a

Normalized revenue of the secondary BTS

<

10 20 30 40 50 60 70 80 ]b 2‘0 36 4‘0 5‘0 66 7‘0 8‘0
Sensing time (ms) Sensing time (ms)

a) b)

Figure 4. Total revenue of the secondary BTS with respect to the sensing time

—&— OR fusion rule
0.091 —*%— AND fusion rule [{

Average payoff of the ST normalized per auction round

10 20 30 40 50 60 70 80
Sensing time (ms)

Figure 5. Average payoff of the SU terminal with respect to the sensing time
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5 CONCLUSION

The aim of this paper was to propose the techno-economic model of the secondary
spectrum sharing, whereby the focus is paid on the mutual impact of the technolog-
ical and economical aspects of the spectrum sharing. Spectrum sensing is a crucial
component of the spectrum sharing and thus we decided to take it under our in-
vestigation. The economical aspects in our model are represented by the dynamic
spectrum auction. Reinforcement comparison algorithm is considered in the model
in order to introduce the intelligence to the autonomous agents which take on the
role of the SU terminals. Initially, we proved the relevance of the model as we
showed that the probability of the risk existence decreases with the spectrum sens-
ing, as expected. Then we analyzed the average revenue of the secondary operator’s
BTS. As the simulation results suggested the LOGIC-OR fusion rule outperforms
the LOGIC-AND fusion rule over the entire spectrum sensing time parameter space.
Obviously there is the clear trade-off between the probability of the risk in the system
and the revenue of the secondary BTS. While in the former scenario, risk existence
is higher when LOGIC-OR fusion rule is applied, the latter shows clear dominance
of the LOGIC-OR fusion rule compared to the LOGIC-AND fusion rule. When
discussing the average payoff of the SU terminal, we have got an agreement with
the previous results as the LOGIC-OR fusion rule again provides better results that
LOGIC-AND fusion rule.

In our follow up research, we aim to apply more sophisticated spectrum sensing
mechanisms (e.g. cyclostacionary detection), which should be capable to provide
a higher revenue for the secondary BTS at the expense of increased cost of the
SU terminals (e.g. battery life). As these aspects are somehow contradictory, there
should be some agreement among the SU terminals and secondary BTS, allowing to
be beneficial for both sides. A good example would be for instance a reduced price
for the wireless services offered towards potential SU terminals.
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