
Computing and Informatics, Vol. 36, 2017, 1143–1172, doi: 10.4149/cai 2017 5 1143

HYBRID HONEY BEES MATING OPTIMIZATION
ALGORITHM FOR IDENTIFYING
THE NEAR-OPTIMAL SOLUTION
IN WEB SERVICE COMPOSITION

Viorica Rozina Chifu, Cristina Bianca Pop
Ioan Salomie, Emil Stefan Chifu

Department of Computer Science
Technical University of Cluj-Napoca
Baritiu Street, No. 26-28, Cluj-Napoca, Romania
e-mail: {viorica.chifu, cristina.pop, ioan.salomie}@cs.utcluj.ro

Abstract. This paper addresses the problem of optimality in semantic Web service
composition by proposing a hybrid nature-inspired method for selecting the optimal
or near-optimal solution in semantic Web Service Composition. The method hy-
bridizes the Honey-Bees Mating Optimization algorithm with components inspired
from genetic algorithms, reinforcement learning, and tabu search. To prove the
necessity of hybridization, we have analyzed comparatively the experimental re-
sults provided by our hybrid selection algorithm versus the ones obtained with the
classical Honey Bees Mating Optimization algorithm and with the genetic-inspired
algorithm of Canfora et al.

Keywords: Honey Bees Mating Optimization, genetic algorithms, tabu search,
reinforcement learning, web service composition

1 INTRODUCTION

Web services have emerged as a flexible and advantageous technology for exposing
software functionality over the Internet. However, there are many cases in which the
available atomic Web services cannot address complex user requests and this leads to
the necessity of developing methods for composing them. The composition of Web
services is a difficult task if only their standard descriptions provided in the WSDL

1144 V. R. Chifu, C. B. Pop, I. Salomie, E. S. Chifu

documents are considered. The difficulty arises from the lack of semantics which
is a necessity for automatically processing Web services. In this context, Seman-
tic Web technologies seem to provide the necessary resources to develop methods
for automatically composing Web services. The steps required for developing such
composition methods are the following:

1. develop a semantic Web service ontology,

2. semantically annotate Web services using the ontology defined,

3. define a method for matching semantic Web service descriptions,

4. develop a method for composing semantic Web services, and

5. develop a method for selecting the optimal composition solution.

Among these steps, the one for developing a method for selecting the optimal com-
position reduces to identifying the optimal configuration of services that, when com-
posed, would satisfy in a great percent the user requirements.

Because of the large number of available services providing similar functionality
and because of the set of user constraints that must be satisfied by a composi-
tion solution, the problem of identifying the complete configuration of services that
satisfies all the constraints imposed (i.e., maximizes an objective function) can be
considered as a combinatorial optimization problem. Such problems can be solved
through exhaustive or approximate approaches, the latter ones being preferred from
the practical point of view due to their ability to provide the optimal or a near
optimal solution in a short time and without processing the entire search space.
A special type of approximate algorithms are the meta-heuristics which can be eas-
ily adapted to solve various combinatorial optimization problems. Some of these
meta-heuristics, the population-based ones, focus mainly on diversification – the ex-
ploration of new areas of the search space, while others, the trajectory-based ones,
focus mainly on intensification – the exploitation of a region in the neighborhood of
a solution. Recently, a new class of meta-heuristics has emerged, the hybrid meta-
heuristics, which aim to maintain a dynamic balance between diversification and
intensification [1].

Hybrid metaheuristics combine algorithmic components from various optimiza-
tion algorithms aiming to improve the performance of the original metaheuristics in
solving hard optimization problems [2]. Hybridizing metaheuristic for performance
improvement does not necessarily guarantee that it will work well for all optimization
problems, but only for some specific problems [2].

Generally, the approaches that hybridize metaheuristics with components from
other metaheuristics use trajectory-based metaheuristics in population-based meta-
heuristics. This hybridization is motivated by the fact that population-based meta-
heuristics can find promising search space areas (due to their focus on search space
exploration) which can be exploited to find the best solutions quickly using trajec-
tory-based metaheuristics (due to their focus on the search space exploitation) [2].

In this paper we present a method for selecting the optimal composition solu-
tion that hybridizes the Honey-Bees Mating Optimization algorithm [3] with prin-

Hybrid HBMO-Based Algorithm for Web Service Composition 1145

ciples from genetic algorithms, reinforcement learning, and tabu search. The search
space for our hybrid method is represented by an Enhanced Planning Graph (EPG)
which encodes all the possible composition solutions for a given user request. In
our approach, a user request is described in terms of functional and non-functional
requirements. To identify the optimal solution encoded in the EPG, we define a fit-
ness function which uses as evaluation criteria the QoS attributes and the semantic
quality of the services involved in composition. To assess the performance of the
hybrid method proposed, we have designed an evaluation methodology consisting of
the following steps:

1. develop different algorithm variants by gradually hybridizing the Honey Bees
Mating Optimization algorithm with Genetic, Reinforcement Learning and Tabu
Search components,

2. develop a set of test scenarios having different complexities to prove the scala-
bility of the hybrid algorithms proposed,

3. identify the optimal composition solution for each scenario considered, by per-
forming an exhaustive search,

4. identify the configurations of the adjustable parameters which provides the best
results on each scenario, and

5. comparatively analyze the hybrid algorithm variant with other state of the art
bio-inspired algorithms by considering the optimal configurations of the ad-
justable parameters.

We chose to use and hybridize the Honey Bees Mating Optimization (HBMO)
algorithm since the results obtained by HBMO are as good as those obtained with
genetic algorithms [3]. In addition, HBMO has the advantage of quickly converging
towards the optimal solution and having a small probability to get stuck into a local
optimum.

The paper is structured as follows. Section 2 reviews state of the art nature-
inspired selection methods. Section 3 presents the background concepts related to
the problem of selecting the optimal or near-optimal solution in semantic Web service
composition. Section 4 introduces the hybridization components, while Section 5
details the associated hybrid selection algorithms. Section 6 discusses the adjustable
parameters of the selection methods and analyzes the experimental results. Section 7
performs a comparative analysis of our proposed approaches versus other similar
approaches from the research literature. The paper ends with conclusions.

2 RELATED WORK

This section reviews some of the nature-inspired selection methods available in the
research literature for identifying the optimal or near-optimal solution in Web service
composition.

1146 V. R. Chifu, C. B. Pop, I. Salomie, E. S. Chifu

2.1 PSO-Based Approaches

In [4], the authors present a Particle Swarm Optimization-based method for selecting
the optimal Web service composition. The approach proposed models a particle as
a vector of n integers where each component represents the candidate Web service
for performing a certain task. The velocity of a particle is represented as a vector
of n terms, where a term represents the velocity associated to a service and takes
values in the interval [−n/2, n/2]. The acceleration coefficients from the formulae
for updating the velocity of a particle are computed by applying the Clerk and
Kennedy method [5]. The quality of a composition solution is evaluated by a fitness
function which considers as evaluation criteria the QoS attributes (e.g. execution
time, availability, reputation, and successful execution rate) as well as the user
defined constraints.

The authors of [7] propose a Particle Swarm Optimization-based approach for se-
lecting the optimal Web service composition based on QoS attributes. The approach
models the selection problem as a multi-objective composition optimization prob-
lem with QoS constraints which is then turned into a single objective optimization
problem by using the ideal point method. In this approach, the Web service compo-
sition search space is represented as a directed graph where the nodes are groups of
similar Web services (i.e. services having similar functionalities, but different QoS
attributes) and the edges are the connections between services. For applying the
Particle Swarm Optimization algorithm in the context of selecting the optimal Web
service composition, the formulas for updating the position and velocity of a particle
have been redefined.

In [10], the authors propose a new Particle Swarm Optimization-based algo-
rithm, EMOSS, for solving the Web service selection problem. The approach mod-
els the selection problem as a constrained multi-objective optimization problem
and then applies the EMOSS algorithm to solve this problem. The novelty of
the EMOSS algorithm consists in the way in which the updating strategy from
the Particle Swarm Optimization metaheuristic is redefined. More exactly, to se-
lect the global best position of each particle, the authors use an adaptive grid
strategy combined with a shortest distance strategy based on the Euclidian dis-
tance.

2.2 Ant Colony Optimization-Based Approaches

In [6], the authors present an improved version of the Ant Colony Optimization
algorithm for dynamic Web service composition. In this approach, the Web service
composition is modeled as a graph where a node is a Web service and an edge
connects two Web services. The weight associated to the edge represents the value
of QoS attributes between the two nodes connected by the edge. The novelty of this
approach consists in a new interpretation given to the pheromone value laid on the
edge, which refers to the past learned experience involving the current service and
its predecessor.

Hybrid HBMO-Based Algorithm for Web Service Composition 1147

In [11], the authors propose an Ant Colony Optimization-based method for se-
lecting the most appropriate concrete services for a given workflow, so that the
user’s QoS preferences and transactional constraints are satisfied. The search space
is modeled as a directed acyclic graph whose nodes correspond to candidate services
and whose edges represent connections between these services. The Ant Colony
Optimization-based method is used to select the graph path that best satisfies the
given preferences and constraints. The selection method considers a set of ants which
iteratively explore the graph from the start node towards the end node by proba-
bilistically choosing the next candidate services. The probability takes into account
the QoS and transactional score of the candidate service as well as the pheromone
quantity associated to the corresponding edge. At the end of an algorithm iteration,
after all the ants have built a path (i.e. a composition solution), each path is eval-
uated from the QoS and transaction constraints perspectives, and, based on this
evaluation, a pheromone evaporation takes place. In the end, the algorithm returns
the path that best satisfies the QoS and transaction constraints.

In [23] the authors present an ant-inspired method for selecting the optimal or
a near optimal solution in semantic Web service composition. The proposed method
adapts and enhances the Ant Colony Optimization meta-heuristic and considers as
selection criteria the QoS attributes of the services involved in the composition as
well as the semantic similarity between them. To improve the performance of the
proposed selection method a 1-OPT heuristic is defined which expands the search
space in a controlled way so as to avoid the stagnation on local optimal solutions.
The ant-inspired selection method has been evaluated on a set of scenarios and
comparatively analyzed with a cuckoo-inspired selection method.

2.3 Genetic Approches

In [12], the authors propose a genetic-based approach for selecting the optimal or
near optimal solution in Web service composition based on QoS attributes. The
approach uses an adaptive crossover strategy combined with a population diversity
measurement to improve the convergence of the classical genetic algorithms. The
adaptive crossover strategy consists in probabilistically applying the crossover op-
eration based on the population diversity and the fitness of an individual. When
the population diversity or the fitness value of an individual will decrease then the
crossover probability will increase, otherwise the crossover probability will decrease.

In [21], a genetic individual represents a composition solution encoded as an in-
teger array. The size of the array is equal to the number of abstract tasks in the
composition model, while an array element represents the index of the chosen con-
crete service. The authors propose a static and a dynamic fitness functions to
evaluate a composition solution. Both functions aggregate two components: a QoS
component for evaluating the QoS score and a component for evaluating the level
of QoS constraint satisfaction. Additionally, the dynamic fitness function intro-
duces a penalty which varies from one generation to another. The evaluation of
the aggregate QoS score of a composition solution is based on the control flows like

1148 V. R. Chifu, C. B. Pop, I. Salomie, E. S. Chifu

sequence, switch, flow, and loop. To update a composition solution, the authors use
the crossover, mutation, and selection operators. The crossover operator involves es-
tablishing randomly two crossover points and swapping the corresponding segments
of the parent solutions. The mutation operator selects randomly a service from the
currently processed solution, which is randomly replaced with a similar one from the
available services. The approach considers the elitist and roulette wheel operators
to select the individuals that will be part of the next generation.

2.4 Immune Approches

In [15], the authors use the negative selection algorithm for selecting the optimal
solution in Web service composition. In this approach, a Web service composition
solution is modeled as an integer string. An integer value in the string represents
the identification number of a concrete Web service chosen to implement the func-
tionality of an abstract task. In addition, the concept of gene is mapped to the
identification number of a service, while the gene segments are mapped to the can-
didate services. The algorithm proposed consists in an iterative stage, which includes
the following steps:

gene recombination – aims to generate new composition solutions by probabilis-
tically choosing candidate services,

negative selection – aims to eliminate the composition solutions containing self
patterns, namely patterns of services that are not good, and

gene warehouse management – aims to update the consistence of alleles, i.e.
component tasks.

In [22], the authors propose an immune-inspired method for selecting the optimal
or a near-optimal solution by considering the QoS attributes as evaluation criteria.
A composition solution is represented as a set of binary strings, one string for each
service selected to be part of the composition solution. The string associated to
a service represents the binary encoding of its identification number within the set
of services associated to an abstract task. The fitness function evaluates the quality
of a solution based on the QoS attributes (the quality of a solution is computed
by considering the cost, the response time, the availability and the reliability of the
services involved in the composition solution). Each of QoS attributes was a separate
calculation method, because they have different interpretations: for some of them
a higher value is better, meanwhile for others smaller values are better.

Besides the affinity between the antigen and an antibody, the authors also model
the affinity between two antibodies as a Hamming distance between the associated
composition solutions. The algorithm proposed applies two immune operations. The
first operation aims to generate a diverse population of antibodies (i.e. composition
solutions) based on the affinity between antibodies and the antibodies concentration.
The second operation aims to update the population of antibodies by using a clonal

Hybrid HBMO-Based Algorithm for Web Service Composition 1149

selection inspired approach. This approach relies on a mutation operator which
modifies the elements of a solution that alter the fitness of the solution.

2.5 Hybrid Approches

The authors of [8] present a hybrid method for selecting the optimal Web service
composition based on the QoS attributes, that combines genetic algorithms with
clonal selection principles from the artificial immune system. The clonal selection is
used instead of the tournament selection to avoid the premature convergence of the
classical genetic algorithm. In this approach, an antibody represents a composition
solution, an antigen is a QoS value, and the fitness function for evaluating the
quality of an antibody is defined by considering the QoS attributes as evaluation
criteria.

In [9], the authors propose an approach for selecting the optimal Web service
composition that combines the Particle Swarm Optimization with the Munkres
algorithm. The Munkres algorithm is applied in every iteration of the Particle
Swarm Optimization based algorithm in order to improve the position of a sub-
set of particles from the population of particles. If the Munkres algorithm indeed
improved the position of a particle, then the position of the particle is updated.
For applying the Particle Swarm Optimization metaheuristic to the Web service
selection problem, the concepts of position and velocity of a particle have been
defined as: the position of a particle is defined as a vector having the Web ser-
vices of a composition solution as elements and the size equal to the number of
elements in the composition solution; the velocity of a particle is defined as a list
of changes that can be applied to a particle in order to ensure the movement of
the particle into a new position. Additionally, the subtraction between two par-
ticles, the addition of velocities, and the multiplication of a velocity have been
redefined.

In [13], the authors address the problem of selecting the optimal Web service
composition based on QoS attributes by proposing a hybrid selection method. The
method combines immune principles (namely the clonal selection) with the Parti-
cle Swarm Optimization. In this approach, the position of a particle is mapped to
a Web service composition solution, modeled as an integer vector, where a vector
element indicates the identifier of the service selected for a certain task. A vec-
tor element might also have a value 0, indicating that the associated task is not
part of the solution. The mathematical operators from the Particle Swarm Opti-
mization are redefined. An antigen is mapped to the optimization problem, while
an antibody is mapped to a Web service composition solution. In their method,
the authors introduce the immune concept of crowd distance between two anti-
bodies. This refers to the difference between the QoS values associated to the
services part of each antibody. The immune concept of affinity is mapped to a value
computed based on the fitness value associated to an antibody and based also on
the distance between this antibody and the current global optimal solution. The
authors also consider the immune concepts of clone proliferation and hypermuta-

1150 V. R. Chifu, C. B. Pop, I. Salomie, E. S. Chifu

tion. Clone proliferation refers to creating several copies of the highest affinity
antibodies, whereas hypermutation refers to replacing probabilistically each ser-
vice part of a solution with another one selected randomly. The authors also
introduce two strategies, an improved local best first strategy and a perturbing
global best strategy, used in the process of improving Web service compositions.
The algorithm proposed consists of two phases, an initialization one and an itera-
tive one. The initialization stage aims to create the initial population of particles
(i.e. antibodies), by associating a random composition solution to each particle,
together with an initial velocity. In the iterative stage, the following steps are exe-
cuted:

1. the particles are cloned according to the fitness of their solutions, and then
hypermutated,

2. the perturbing global best strategy is applied,

3. the velocity of each particle is updated,

4. the position of each particle is updated,

5. the personal best of each particle is updated if it is the case, and

6. the global best over all the particles is updated if it is the case.

In [14], the authors hybridize the Particle Swarm Optimization with a chaotic
mutation and a local search strategy to select the optimal Web service composition
in terms of QoS attributes. The position of a particle is mapped on a Web service
composition solution. The hybrid algorithm proposed starts from a randomly gener-
ated set of composition solutions. In every iteration of the algorithm, the positions
of the particles are updated by means of the chaotic mutation which aims to escape
the algorithm from locally optimal solutions.

In [16], the authors hybridize the clonal selection algorithm with the Particle
Swarm Optimization and other heuristic strategies (the local adaptation preemptive
strategy, the elitist perturbation guiding strategy, and the global tournament strat-
egy) in the context of selecting the optimal Web service composition solution. Web
service composition is modeled as a set of abstract tasks, each task having a set
of concrete services associated. In this approach, the antibody and the position
of a particle are both mapped on a Web service composition solution modeled as
an integer vector. An element of the vector represents the identification number
of a concrete service selected for a particular abstract task. An antigen is mapped
on the optimization problem being solved. The velocity of a particle is mapped on
an integer vector containing 0s and 1s. The formulae from the Particle Swarm Opti-
mization are redefined to work with the position and velocity structures proposed in
the context of Web service composition. Hypermutation is mapped to an operation
that is applied probabilistically on each task of a Web service composition solution
to change randomly the current concrete service with another one. The hybrid algo-
rithm proposed consists of two stages, an initialization stage aiming to generate the
initial population of particles and their associated velocities, and an iterative stage
aiming to:

Hybrid HBMO-Based Algorithm for Web Service Composition 1151

1. clone the solutions in the current population, based on their affinity,

2. apply the local adaptation preemptive strategy on the current population, which
ensures that a concrete service having a high QoS score has more chances to be
chosen,

3. apply the elitist perturbation guiding strategy on the current population for
diversification purposes,

4. execute the clonal selection operation or the global tournament selection oper-
ation, and

5. apply the elitist perturbation guiding strategy.

3 BACKGROUND

This section presents some background concepts related to the hybrid selection
method proposed in this paper.

3.1 Enhanced Planning Graph Structure

The selection of the optimal or near-optimal solution in semantic Web service com-
position is considered as an optimization problem since its goal is to find the most
appropriate configuration of Web services out of a very large set of possible config-
urations, given a composition request.

In our approach, the search space of the selection problem is modelled as an En-
hanced Planning Graph (see Figure 1) previously introduced in [17]. The EPG
model is an enhanced version of the classical AI planning graph [18] adapted in the
context of the semantic Web service composition problem. In our EPG model, in
addition to the classical AI planning graph, we introduce two new abstractions: the
service cluster (SC) and parameter cluster (PC).

Figure 1. UML representation of the Enhanced Planning Graph

1152 V. R. Chifu, C. B. Pop, I. Salomie, E. S. Chifu

The construction of an EPG is triggered by a composition request issued by
a user, and is formally defined as follows:

request = (In,Out, wSem, wQoS) (1)

where request.In is a set of ontological concepts semantically describing the user
provided inputs, request.Out is a set of ontological concepts semantically describing
the user requested outputs, request.wSem is the weight of the semantic quality, while
request.wQoS is the weight of the QoS quality.

A service cluster groups together services providing similar functionalities and
having similar input parameters (i.e. services for which there is a degree of match
between their semantic descriptions):

SC = {swsk|∀ swsi, swsk ∈ SC, (swsi.f ⊆ swsk.f ∨ swsi.f ⊇ swsk.f)

∧ (|swsi.In| == |swsk.In|) ∧ (∀swsi.Inj ∈ swsi.In, swsk.Inp ∈ swsk.In,
swsi.Inj ⊆ swsk.Inp ∨ swsi.Inj ⊇ swsk.Inp)}. (2)

In Formula (2), sws is a semantic Web service, formally defined as:

swsk = (f, In,Out,QoS) (3)

where sws.f is an ontology concept that annotates the functionality of the service,
sws.In is a set of ontological concepts annotating the input parameters of the ser-
vice, sws.Out is a set of ontological concepts annotating the output parameters of
the service, while sws.QoS is a set of values for the QoS attributes of the service
considered. For simplicity, we consider that a Web service has only one operation.

The ontological concepts used for describing the user request and for annotating
the semantic Web services belong to a domain ontology Γ.

A parameter cluster groups together similar input and output parameters of
a service:

PC = {pk|∀ pi, pk ∈ PC, pi ⊆ pk ∨ pi ⊇ pk} (4)

where pk is an ontology concept that annotates an input/output parameter of a ser-
vice.

The process of building an EPG operates at the semantic level by considering
the ontological concepts that annotate the functionality of the services and the input
and output parameters of the same services. At each step, a new layer i consisting
of a pair (Ai, Li) is added to the graph, where Ai represents a set of service clusters
and Li is a set of clusters of service input/output parameters. Layer 0 consists of
a pair (A0, L0), where A0 is an empty set of services, and L0 contains the ontological
concepts annotating the input parameters of the user request, which are contained
in the set request.In. For each layer i > 0, Ai consists of a set of clusters of services
for which the input parameters are contained in Li−1. The services which contribute
in each step to the extension of the EPG are provided by a discovery process which
finds the appropriate Web services in a repository of services. The discovery is

Hybrid HBMO-Based Algorithm for Web Service Composition 1153

based on the semantic matching between the inputs of the services and the set of
parameters of the previous graph layer. The set Li is built as a union of the set
Li−1 and the set of ontological concepts annotating the outputs of the services in Ai.
Consequently, an EPG can be formally defined as follows:

EPG = {(Ai, Li)} (5)

where

Ai = {SCij|SCij is the service cluster j from layer i of the EPG}, (6)

Li = Li−1 ∪ {PCij|PCij is a cluster of output parameters of the services from Ai}.
(7)

The construction of an EPG ends either when the user requested outputs are
contained in the current set of parameters or when the graph reaches a fixed point.
Reaching a fixed point means that the sets of service clusters and parameter clusters
are the same for the last two consecutively generated layers.

To illustrate how an EPG is built, we assume a very simple scenario where the
user is interested in making the travel arrangements for attending a conference (i.e.
flight and hotel reservation). Based on the user request (see Table 1) (expressed
as a set of ontological concepts describing the requested inputs and the expected
outputs for the composed service) and the set of available semantic Web services,
an EPG (see Figure 2) is iteratively built. The construction of the EPG starts
from the inputs specified by the user and adds, at each iteration, a new layer in
the graph. This process ends when the expected user outputs are obtained. As
can be seen in Figure 2, a solution obtained is relevant if there is a degree of
semantic matching close to 1 between its semantic description and the semantic
description of the requested composed service as specified by the user. For sim-
plicity, we have illustrated in this example only one solution for the user request
considered.

inputs outputs

Airport, Airport, Date, Name FlightNumber, SeatNumber
Country, City, CreditCardNumber BookingNumber, Hotel

Table 1. User request for making the travel arrangements for attending a conference

3.2 Fitness Function

To evaluate the quality of a composition solution, the following fitness function is
used [17]:

QF(sol) =
wQoS ∗QoS(sol) + wSem ∗ Sem(sol)

(wQoS + wSem) ∗ |sol|
(8)

1154 V. R. Chifu, C. B. Pop, I. Salomie, E. S. Chifu

Figure 2. Example of constructing an EPG for making the travel arrangements for at-
tending a conference

where

• QoS(sol) [17] is the QoS score of the composition solution sol ;

• Sem(sol) [17] is the semantic quality score of the composition solution sol ;

• wQoS and wSem are weights representing the user preferences regarding the rel-
evance of the QoS and semantic quality;

• |sol| represents the number of services involved in a composition solution.

The QoS score of a composition solution is computed using the following for-
mula:

QoS(sol) =

∑n
i=1wi ∗ qosi(sol)∑n

i=1wi

(9)

where

• qosi(sol) represents the value of a QoS attribute computed for the composition
solution sol. The formulas for computing the values for each QoS attribute (i.e.
availability, reliability, cost, and running time) have been previously introduced
in [17].

• wi is the weight representing the relevance of the qosi attribute;

• n is the total number of QoS attributes considered.

The semantic quality score of a composition solution sol is computed as follows:

Sem(sol) =

∑nLinks
i=1 simS

(
sjkl.out, spqr.in

)
nLinks

(10)

where

Hybrid HBMO-Based Algorithm for Web Service Composition 1155

• sjkl is the service l in cluster k of layer j;

• spqr is the service r in cluster q of layer p;

• sjkl, spqr are part of the solution sol, j < p;

• simS is the degree of semantic matching [17] computed between a subset of
outputs of a service sjkl and a subset of inputs of a service srpq (we compute
the degree of semantic matching between the ontology concepts describing the
input/output subsets of the two services). The formula used for computing the
semantic similarity score is based on FMeasure, a metric from the information
retrieval domain, and it takes into consideration the hierarchy of concepts as
well as the hierarchy of properties in the ontology.

• nLinks is the total number of semantic similarity links in the composition solu-
tion sol.

3.3 Honey Bees Mating Optimization Algorithm

The Honey Bees Mating Optimization (HBMO) algorithm [3] is inspired by the
mating behaviour of queen bees in nature. In the HBMO algorithm, the queen and
the set of drones it mates represent solutions of the optimization problem being
solved, while the workers represent heuristic strategies used to update the solutions.
The HBMO algorithm consists of two stages, an initialization one and an iterative
one. In the initialization stage, a set of initial solutions are randomly generated and
then ranked according to their fitness values. The best solution is nominated as the
queen, while the other solutions are nominated as drones that will participate in the
mating process. Then, in the iterative stage, the following steps are performed [3]:

• A simulated annealing-based strategy is used to select the drone solutions that
will mate with the queen solution.

• A new set of solutions are generated by applying different modification strategies
between the queen solution and each selected drone solution.

• The solutions obtained in the previous step are further improved using different
modification strategies.

• The queen solution is updated if there is another solution with a higher fitness
in the newly generated solutions.

• The set of drone solutions that will be submitted to the next iteration is updated.

4 THE HYBRID NATURE-INSPIRED MODEL

This section presents the hybrid nature-inspired model which will be used in the de-
velopment of our hybrid nature-inspired selection algorithm. The model is composed
of one core constituent and multiple hybridization components.

1156 V. R. Chifu, C. B. Pop, I. Salomie, E. S. Chifu

4.1 Core Component

The Honey Bees Mating inspired core component is defined by mapping
the concepts from the Honey Bees Mating Optimization metaheuristic [3] onto the
concepts specific to selecting the optimal or near-optimal Web service composition
solution (see Table 2).

Honey Bees Mating
Optimization Concepts

Concepts from Web Service
Composition Selection

Drone Web service composition solution

Queen Web service composition solution having the high-
est score in the population at the current moment

Process of generating new
solutions for drones and queens

Perturbation of Web service composition solutions
by replacing some of the solutions’ services with
other services from the same cluster, according to
specific criteria

Objective function Fitness function evaluating the semantic and QoS
quality of a Web service composition solution

Table 2. Mapping the concepts from the HBMO metaheuristic onto the concepts of se-
lecting the optimal or near-optimal Web service composition solution

The fitness function [17] used by the core component to evaluate a Web service
composition solution considers the QoS attributes of the services part of a solu-
tion as well as the semantic quality of the connections between these services (see
Formula (8)).

4.2 Hybridization Components

Our hybrid nature-inspired model includes two hybridization components that have
been previously introduced in [10]. In what follows we briefly describe these hy-
bridization components.

The Tabu Search and Reinforcement Learning Component. The Tabu
Search meta-heuristic [20] relies on the principles of forbidding a set of elements
for a period of time and turning them as allowable elements under certain circum-
stances. This is achieved by using two memory structures, namely a short-term
memory and a long-term memory. The short-term memory stores information
about the elements that are tabu for a predefined number of iterations, while
the long-term memory stores information regarding the solutions identified so
far, this latter information being used to improve the quality of the solutions
generated in the future.

In the context of selecting the optimal Web service composition solution it is
important to constantly improve the current locally optimal solution. This can
be efficiently achieved by taking into account the results of previous decisions.

Hybrid HBMO-Based Algorithm for Web Service Composition 1157

For example, if once we have replaced a service sws1 with another service sws2
and we have thus obtained a better solution, then it is obvious that by using the
same replacement in the future, better solutions will also be obtained. This is the
motivation that led us to choose the tabu short-term and long-term memories
as important components of our nature-inspired hybrid model. Consequently,
we have defined two special data structures, called the short-term and long-term
memory structures. The short-term memory structure, MS, is defined as follows:

MS = {ms|ms = ((swsi, swsj), iterations)} (11)

where swsi is the service that was replaced by swsj, and iterations specifies the
number of iterations in which swsi cannot be replaced by swsj.

The long-term memory structure, ML, is defined as:

ML = {ml|ml = ((swsi, swsj), rlscore)} (12)

where swsi is the service that will be replaced by swsj and rlscore is a numeric
value used for recording rewards and penalties for the pair (swsi, swsj). The
concepts of reward and penalty are borrowed from the reinforcement learning
technique to provide feedback information assessing the correctness of the de-
cisions taken by the selection algorithm in the past and to take thus better
decisions in the future.

The Genetic Component. The genetic component uses a memory-based muta-
tion operator to improve the quality of a Web service composition solution. This
operator is similar to the classical genetic mutation operator. In addition to the
latter, it adds some strategies for choosing the mutation points and for select-
ing the service that will replace the one as found in the mutation point chosen.
To identify the mutation points, the currently processed solution is compared
with the current locally optimal solution service by service, and the indices of
the services that are different in the two solutions will represent the mutation
points. To replace the services corresponding to the mutation points in the cur-
rently processed solution, the two memory structures part of the Tabu Search
and Reinforcement Learning Component will be consulted. Figure 3 shows how
the memory-based mutation operator is used.

When applying the memory-based mutation operator, the following steps are
executed for each service si which belongs to the current solution solcurrent and
which is not part of the locally optimal solution solopt:

• The long-term memory is searched for a triple (si, sj, rlScore) having the highest
rlScore. If such a triple is found (i.e., si has been replaced with sj in the past),
then si is replaced with service sj in solcurrent; otherwise si is replaced with
a service sk randomly chosen from the same cluster.

• The updated solcurrent is evaluated using the fitness function in Formula (8).
If the quality of the solution is improved (as compared with solcurrent before

1158 V. R. Chifu, C. B. Pop, I. Salomie, E. S. Chifu

Figure 3. Example of applying the memory-based mutation operator

mutation) then rewards are granted to the pair (si, sj) (if sj was the substiute in
the first step) or (si, sk) (if a random sk was the substitute); otherwise penalties
are granted to the same pair.

5 THE HONEY BEES MATING INSPIRED ALGORITHM

Our hybrid honey bees mating inspired algorithm (see Algorithm 1) adapts, en-
hances, and hybridizes a version of the Honey Bees Mating Optimization algo-
rithm [3], which was proposed for optimization problems. To do this, we injected
the Tabu Search and Reinforcement Learning component as well as the Genetic
component in the honey bees mating inspired core component (see Section 4). The
algorithm takes as inputs the following parameters:

1. An enhanced planning graph structure, EPG ;

2. The number of bees (i.e. composition solutions) used in the search process,
noBees ;

3. The queen’s capacity to combine and to generate new solutions, qCap;

4. The number of crossover points, noC ;

5. The number of mutation points, noM ;

Hybrid HBMO-Based Algorithm for Web Service Composition 1159

6. The percentage of the worst solutions that will be replaced, wProc; and

7. The maximum number of iterations, noIt.

The hybrid honey bees mating inspired algorithm consists of an initialization stage
and an iterative stage. In the initialization stage, the set of bees is initialized with
randomly generated Web service composition solutions, and the solution having the
highest score is nominated as the queen.

The initialization phase continues by refactoring the number of mutation points
and the number of crossover points provided as input arguments to the algorithm.
The two arguments are adjusted according to the structure of the given EPG, by
using the formulas below:

noM =

{
noM′, if noM′ > |sol |/2,
noM′ ∗ 2− 1, otherwise

(13)

where noM′ is computed as

noM′ = noM mod |sol |, (14)

noC = noC mod noL (15)

where noL is the number of EPG layers.
Formulas (13) and (15) for computing the number of mutation points and the

number of crossover points were introduced in order to adjust the values introduced
by the user for the number of mutation/crossover points. The number of mutation
points must be lower than or equal to the number of services involved in the com-
position solution. So, the mathematical operator modulo (i.e. mod) helps assign to
the number of mutation points a value close to the one introduced by the user. We
have also taken into account in the definition of Formula (13) that mutation must be
applied on more than half the number of services involved in a solution (we reached
this conclusion based on the experimental results).

In the case of crossover points, the number of crossover points must be lower
than the numbers of layers in the EPG. This is because crossover is performed by
interchanging services from the same layer in two different solutions.

In the iterative stage, the following main steps are repeated until the maximum
number of iterations noIt is reached:

• For every bee, a probabilistic decision is made on whether the bee will be submit-
ted to a crossover operation with the queen or not. The probability is computed
as (adapted from [3]):

Mating Probability = e
QF(queen)−QF(bee)

qCap (16)

where qCap is the queen capacity, computed with the following formula:

qCap = qCap ∗ α. (17)

1160 V. R. Chifu, C. B. Pop, I. Salomie, E. S. Chifu

Algorithm 1: Hybrid Honey Bees Mating Optimization

1 Inputs: EPG, noBees, qCap, noC, noM, wProc, noIt
2 Output: solopt
3 Comments: ML – long term memory, MS – short term memory itc – current

iteration number, Broods – the set of broods.
4 begin
5 Bees = Init Sol Set(EPG,noBees)
6 solopt = Get Queen(Bees)
7 noC = Refactor Crossover(EPG,noC)
8 noM = Refactor Mutation(EPG,noM)
9 MS = ∅, ML = ∅, itc = 1, Broods = ∅

10 while(itc ≤ noIt) do
11 foreach bee in Bees do
12 r = Random(0, 1)
13 if (Mating(qCap) > r) then
14 TBroods = Crossover(solopt, bee,noC)
15 Broods = Broods

⋃
TBroods

16 qCap = Update QCap(qCap)
17 end if
18 end for
19 foreach brood in Broods do
20 for i = 1 to noM do
21 ind = Get Mutation Index(brood)
22 broodn = Mutation(MS ,ML, brood, ind)
23 MS = UpdateMS(MS , broodn)
24 if ((broodn 6= brood) &&
25 (Fitness(broodn) > Fitness(brood)) &&
26 (broodn /∈ Broods) &&
27 (broodn /∈ Bees)) then
28 ML = Reward(broodn, brood, ind)
29 brood = broodn
30 else ML = Penalize(broodn, brood, ind)
31 end if
32 if (broodn /∈ Bees) then
33 Bees = Replace(Bees, broodn)
34 end if
35 if (Fitness(broodn) > Fitness(solopt)) then
36 solopt = broodn
37 end if
38 end for
39 end for
40 Bees = Replace Old(Bees,wProc)
41 itc = itc + 1
42 end while
43 return solopt
44 end

Hybrid HBMO-Based Algorithm for Web Service Composition 1161

In Formula (17), the new value for the queen capacity is computed by considering
its old value and a parameter α which takes values in the interval (0, 1). If the
new value is higher than a predefined threshold, then the bee will be involved
in the mating process, otherwise not. The initial value for the queen capacity is
determined experimentally.

The crossover operation (procedure Crossover in Algorithm 1) between two so-
lutions is performed by interchanging services from the same layer in the two so-
lutions. The crossover points are selected randomly and the number of crossover
points is computed by using formula (15).

As a result of crossover, two brood solutions are obtained that will be added to
the set of broods.

• The set of brood solutions are submitted to a mutation process, where the
memory-based mutation operator is applied upon each brood solution. For each
brood, the following steps are used (these steps are applied a number of times
noM, where noM is computed with formula (13)):

– Randomly select a point where the mutation is to be applied (procedure
Get Mutation Index in Algorithm 1).

– Apply mutation (procedure Mutation in Algorithm 1) on the brood, as
follows: in the brood, the service corresponding to the mutation point is
replaced with another service by applying the memory-based mutation op-
erator (see the Genetic Component in section 4.2).

– Update the short term memory.

– If the mutated brood, broodn, is different from the old brood, brood, and the
fitness of broodn is better than the fitness of brood, and broodn is not identical
with any bee in the Brood set nor in the Bees set, then the old brood brood
becomes (i.e. is replaced with) the mutated brood, broodn. The long-term
memory structure is updated by giving rewards (computed using procedure
Reward in Algorithm 1) to the pair of services that were interchanged.
Otherwise penalties (computed using procedure Penalize in Algorithm 1)
are given to the pair of services that were interchanged.

– If the mutated brood, broodn, is not identical with any bee in the set of bees,
then it will replace the worst solution from the set of bees. Additionally,
if the mutated brood broodn is better than the queen, (i.e. solopt), then the
queen will be updated.

– Finally, the new mutated brood is submitted to a new mutation process
by selecting randomly another mutation point. This process is repeated for
a number of times noM.

• A percentage of the worst bees are replaced with randomly generated solutions.

1162 V. R. Chifu, C. B. Pop, I. Salomie, E. S. Chifu

6 SETTING THE OPTIMAL VALUES
FOR THE ADJUSTABLE PARAMETERS

In order to establish the optimal values for the adjustable parameters, we have per-
formed experiments on four different scenarios involving EPG structures of various
complexities. Two of the scenarios are inspired from the trip planning domain,
whereas the remaining two are inspired from the medical care domain. Table 3
presents information about the Enhanced Planning Graphs involved in the four sce-
narios as well as the processing done on these graphs when using an exhaustive
search method. For each of the scenarios considered, the following information is
illustrated:

1. Code of scenario;

2. The configuration of the EPG, illustrating its layers, the clusters on each layer
(the number of clusters on a layer is given by the cardinality of the set associated
to the layer), and the services per cluster (the number of services in a cluster is
given by the value of each element in the set associated to a layer);

3. The complexity of the search space, in terms of total number of possible solutions
encoded in the EPG structure;

4. The optimal fitness value for the scenario considered;

5. The execution time in which the optimal solution has been found when using
exhaustive search (it is the time required to go through all the possible solutions
in order to identify the optimal one).

Scenario EPG Search Space Optimal Time
Code Configuration Complexity Fitness (min:sec)

Layer 1: {4 5 6}
S Layer 2: {6 4 6} 2 073 600 6.456 3:08

Layer 3: {4 6 5}

Layer 1: {3 5 4 6}
M Layer 2: {6 4 6 5} 6 220 800 7.482 15:47

Layer 3: {4 6}

Layer 1: {6 5 3 3}
L Layer 2: {4 6 4 3} 13 996 800 8.024 56:18

Layer 3: {6 5 6}

Layer 1: {4 4 5 4}
XL Layer 2: {5 4 5 4} 19 200 000 7.577 63:23

Layer 3: {6 5 5}

Table 3. Configuration of EPGs and other associated information

The methodology for establishing the optimal configuration of values for the
adjustable parameters consists of three steps. The first step performs an exhaustive

Hybrid HBMO-Based Algorithm for Web Service Composition 1163

search in the EPG in order to identify the score of the optimal composition solution
(see Table 3). This score is further used for identifying the most appropriate con-
figuration for the adjustable parameters, one which would ensure that the optimal
or a near-optimal composition solution is obtained without processing the entire
search space. The second step identifies correlations between the adjustable param-
eters and the complexity of the search space. This is done by performing a set of
try-error experiments and analyzing the impact of the values of the adjustable pa-
rameters on the performance of the algorithm in terms of fitness and execution time.
The try-error experiments consist of two phases: first fixing different values for the
adjustable parameters before the execution of the meta-heuristic; then determin-
ing empirically, based on the experimental results, the intervals for the adjustable
parameters in relation to the search space complexity.

The third step in establishing the optimal parameters consists in fine-tuning
iteratively the values of the adjustable parameters with the aim to identify their
optimal configuration. For each of the scenarios considered, we have performed
100 runs of the selection algorithm for each configuration (we have considered about
100 configurations for the adjustable parameters). We analyzed the fitness value,
the execution time, and the standard deviation which were obtained when using the
different settings of the parameters.

The adjustable parameters of the Hybrid Honey Bees Mating Optimization al-
gorithm are the following: noB – the number of bees, qCap – the queen capacity,
qS – the queen speed which in our approach corresponds to the number of crossover
points, qE – the queen energy which corresponds to the number of mutation roc-
points, and wPo – the percentage of the worst solutions that will be replaced with
randomly generated ones.

In Tables 4–7 we illustrate the top fifteen experimental results (the best exper-
imental results in terms of fitness values) obtained while tuning the values of the
adjustable parameters for scenarios S, M, L, and XL, respectively. The experiments
have been performed by applying the third step of the methodology for setting the
values of the adjustable parameters. The results were achieved with our Hybrid
Honey Bees Mating Optimization algorithm. In Tables 4–7, qS′ and qE′ are the
adjusted values for speed (i.e. number of crossover points) and energy (i.e. number
of mutation points), computed with Equations (13) and (15) as starting from the
values introduced by the user for qS and qE.

For all the four scenarios, we have considered the same stopping condition
(namely a predefined number of iterations of 100).

By analyzing the experimental results presented in Tables 4–7, we noticed that,
for all the scenarios considered, our Hybrid Honey Bees Mating Optimization algo-
rithm is able to identify a good solution (i.e. a solution whose standard deviation
from the optimal solution is lower than or equal to 0.065) in a short execution time
(the longest execution time for all the scenarios is 1.85 seconds).

However, in order to identify which are the adjustable parameters that affect the
performance of our algorithm, we needed to perform a statistical analysis [24] on the
experimental results. More exactly, from all the parameter configurations considered

1164 V. R. Chifu, C. B. Pop, I. Salomie, E. S. Chifu

noB qC qE qS wProc (%) tavg (s) fitavg qE′ qS′ stDavg

35 4 7 5 0.9 0.435 6.456 7 2 0

50 2 3 6 0.5 0.665 6.456 5 0 0

40 2 3 6 0.5 0.512 6.456 5 0 0

38 8 3 8 0.9 0.63 6.456 5 2 0

25 8 3 8 0.9 0.42 6.456 5 2 0

20 2 3 6 0.5 0.293 6.456 6 2 0

29 4 3 8 0.95 0.425 6.451 5 2 0.0035

28 2 3 8 0.96 0.304 6.445 5 2 0.0077

28 2 7 5 0.96 0.363 6.44 7 2 0.0113

20 3 3 5 0.9 0.292 6.435 5 2 0.0148

5 8 4 4 0.95 0.142 6.435 7 1 0.0148

30 6 4 3 0.8 0.552 6.431 7 3 0.0176

30 5 4 3 0.96 0.545 6.431 7 3 0.0176

80 1 2 2 0.1 0.573 6.429 3 2 0.019

5 20 4 4 0.95 0.144 6.429 7 1 0.019

Table 4. Top fifteen experimental results for scenario S when running the Hybrid HBMO
algorithm

in the experiments, we have selected 40 configurations, namely the configurations
of parameters for which the standard deviation from the optimal solution is lower
than or equal to 0.4. For the configurations selected, we have analyzed, by using
a regression model [25], which are the critical parameters that affect the execution
time of our Hybrid Honey Bees Mating Optimization algorithm.

noB qC qE qS wProc (%) tavg (s) fitavg qE′ qS’ stDavg

23 8 10 6 0.9 1.111 7.477 10 0 0.0035

35 4 7 5 0.9 0.866 7.474 7 2 0.0056

50 2 3 6 0.5 0.907 7.463 5 0 0.0134

38 8 3 8 0.9 0.85 7.463 5 2 0.0134

28 4 4 3 0.95 0.666 7.463 7 3 0.0134

40 2 3 6 0.5 0.864 7.462 5 0 0.0141

28 2 7 5 0.96 0.487 7.459 7 2 0.0162

28 2 3 8 0.96 0.386 7.45 5 2 0.0226

5 8 5 3 0.95 0.209 7.444 9 3 0.0268

30 5 4 3 0.96 0.761 7.444 7 3 0.0268

30 5 4 3 0.8 0.792 7.44 7 3 0.0296

30 5 4 3 0.8 1.38 7.439 7 3 0.0304

29 4 3 8 0.95 0.583 7.434 5 2 0.0339

25 8 3 8 0.9 0.617 7.433 5 2 0.0346

30 6 4 3 0.8 0.796 7.433 7 3 0.0346

Table 5. Top fifteen experimental results for scenario M when running the Hybrid HBMO
algorithm

Hybrid HBMO-Based Algorithm for Web Service Composition 1165

noB qC qE qS wProc (%) tavg (s) fitavg qE′ qS′ stDavg

28 2 11 5 0.96 1.85 8.023 11 2 0.0007

30 4 11 5 0.95 1.557 8.023 11 2 0.0007

23 8 10 6 0.9 1.386 8.023 10 0 0.0007

30 4 11 6 0.95 1.652 8.022 11 0 0.0014

35 4 7 5 0.9 1.25 8.021 7 2 0.0021

50 2 3 6 0.5 1.394 8.016 5 0 0.0056

40 2 3 6 0.5 1.262 8.015 5 0 0.0063

29 4 3 8 0.95 0.832 8.014 5 2 0.0070

38 8 3 8 0.9 1.33 8.013 5 2 0.0077

25 8 3 8 0.9 0.841 8.013 5 2 0.0077

28 2 7 5 0.96 0.767 8.006 7 2 0.0127

28 2 3 8 0.96 0.563 8.002 5 2 0.0155

30 6 4 3 0.8 1.86 8 7 3 0.0169

5 8 5 3 0.95 0.342 7.999 9 3 0.0176

80 1 2 2 0.1 1.382 7.998 3 2 0.0183

Table 6. Top fifteen experimental results for scenario L when running the Hybrid HBMO
algorithm

In what follows we present, for the case of scenario L, the interpretation of the
experimental results with the help of the statistical analysis.

In the first step, we have defined a factorial design, by selecting the input factors
that we wanted to analyze. In our case, we wanted to analyze the impact all the
adjustable parameters will have on the execution time of the the algorithm, namely

noB qC qE qS wProc (%) tavg (s) fitavg qE′ qS′ stDavg

30 4 11 5 0.95 1.205 7.564 11 2 0.0091

23 8 10 6 0.9 1.17 7.563 10 0 0.0098

30 4 11 6 0.95 1.102 7.562 11 0 0.0106

50 2 3 6 0.5 1.27 7.553 6 0 0.0169

35 4 7 5 0.9 0.914 7.55 7 2 0.0190

28 2 11 5 0.96 0.719 7.544 11 2 0.0233

40 2 3 6 0.5 0.88 7.542 5 0 0.0247

30 5 4 3 0.8 1.72 7.528 7 3 0.0346

38 8 3 8 0.9 0.902 7.524 5 2 0.0374

25 8 3 8 0.9 0.528 7.518 5 2 0.0417

28 2 7 5 0.96 0.516 7.517 7 2 0.0424

28 4 4 3 0.95 0.642 7.511 7 3 0.0466

30 6 4 3 0.8 0.79 7.509 7 3 0.0480

30 5 4 3 0.96 0.72 7.492 7 3 0.0601

29 4 3 8 0.95 0.537 7.49 5 2 0.0615

Table 7. Top fifteen experimental results for scenario XL when running the Hybrid HBMO
algorithm

1166 V. R. Chifu, C. B. Pop, I. Salomie, E. S. Chifu

the number of bees, the queen capacity, the queen speed, the queen energy, and
the percentage of the worst solutions that will be replaced with randomly generated
ones. For each of the input factors, we specified the low and high values, based on
the experimental results.

In the second step, after having defined the factorial design, we performed a first
analysis of the factorial design. We done this by selecting the Normal Plots and
Residuals versus fits graph to be generated. When generating the graph, we have
also set the maximum order for the factors in the model as 2. This means that the
graphs will display the main effects of the adjustable parameters as well as 2-way
interactions between them.

The normal plot of the standardized effects for scenario L (see Figure 4) shows
that the factors that have a significant effect on the execution time of our Hybrid
Honey Bees Mating Optimization algorithm are: the number of bees A, the queen
capacity B, the queen energy D, and the combination of the number of bees and
the queen energy AD.

Figure 4. Normal plot of the standardized effects for our Hybrid Honey Bees Mating
Optimization algorithm in the case of scenario L

Since the other terms or 2-way interactions of terms were insignificant, we
dropped these terms from the model and re-analyzed the design by following steps 1
and 2 again. This time we only kept the significant factors (A, B, D, AD) in the
model.

By analyzing the new model, we found that the normality and constant variance
assumptions were met. Also, from the ANOVA table (see Figure 5) we notice that

Hybrid HBMO-Based Algorithm for Web Service Composition 1167

three factors and two interactions have statistically significant effect on the execution
time of the algorithm. The three main factors and two interactions are the ones for
which P-Value is lower than 0.05.

Figure 5. ANOVA table for our Hybrid Honey Bees Mating Optimization Algorithm in
the case of scenario L

The ANOVA table (Figure 5) shows that all the three factors (the number of
bees, the queen capacity, and the queen energy) are significant and there are sig-
nificant interactions between number of bees (noBees) and queen capacity (qCap),
between number of bees (noBees) and queen energy (qEnerg), as well as between
queen capacity (qCap) and queen energy (qEnerg). Thus, Figures 6 and 7 show
the interaction plot and the surface plot of number of bees and queen capac-
ity, number of bees and queen energy, as well as queen capacity and queen en-
ergy.

7 PERFORMANCE EVALUATION

We have also assessed our Hybrid Honey Bees Mating Optimization algorithm by
comparison with the state-of-the-art genetic-inspired algorithm for identifying the
optimal solution in the composition of Web services, as proposed in [21], as well as
with the classical Honey Bees Mating Optimization applied in the case of semantic
Web service composition. For our algorithm, we have considered the configura-
tions of the parameters that provide the results in the shortest execution time,
for each of the four scenarios. The comparative analysis has been made on the
same set of scenarios (S, M, L, and XL), as described in Table 3. Moreover, we
have used the same stopping condition (namely 100 iterations) for the three algo-
rithms under study. Table 8 presents the experimental results achieved with the
three algorithms. In this table, fitavg is the average optimal fitness value, stDevavg

1168 V. R. Chifu, C. B. Pop, I. Salomie, E. S. Chifu

Figure 6. Interaction plots in the case of scenario L

Figure 7. Surface plots in the case of scenario L

Hybrid HBMO-Based Algorithm for Web Service Composition 1169

is the average standard deviation, and tavg is the average execution time. All
these values have been computed by running each algorithm version 100 times for
each considered scenario for the optimal configuration of the adjustable parame-
ters.

Algorithm fitavg stDavg tavg (s)

Canfora 6.056 0.2828 0.241
HBMO 6.227 0.1619 0.84
HBMOMG 6.373 0.0586 0.102

Algorithm fitavg stDavg tavg (s)

Canfora 7.275 0.1463 0.340
HBMO 7.094 0.2743 0.98
HBMOMG 7.322 0.1131 0.1

a) b)

Algorithm fitavg stDavg tavg (s)

Canfora 7.36 0.4695 0.344
HBMO 7.896 0.0905 0.254
HBMOMG 7.921 0.0728 0.0309

Algorithm fitavg stDavg tavg (s)

Canfora 7.332 0.1732 0.198
HBMO 7.219 0.2531 0.189
HBMOMG 7.403 0.123 0.148

c) d)

Table 8. Experimental results achieved for scenarios a) S, b) M, c) L, and d) XL

By analyzing the experimental results shown in Table 8, it can be noticed that
for all the scenarios (S, M, L, and XL), our Hybrid Honey Bees Mating Optimization
algorithm provides better results in terms of fitness values than both the genetic-
inspired algorithm of Canfora et al. and the classical Honey Bees Mating Optimiza-
tion. Also, the execution time of our algorithm in the case of scenarios S, M and L
is shorter than the execution time of both the genetic-inspired algorithm of Canfora
et al. and the classical Honey Bees Mating Optimization. In the case of scenario
XL, even if the the execution time in the case of our algorithm is better than the
execution time of the other two algorithms, the difference is insignificant. In con-
clusion, we can say that, in the case of scenario XL, the performance of the three
algorithms is the same.

8 CONCLUSIONS

In this paper we have introduced a Hybrid Honey Bees Mating Optimization al-
gorithm for selecting the optimal solution in semantic Web service composition.
The algorithm proposed combines principles from population-based meta-heuristics
with principles from trajectory-based meta-heuristics in order to improve the fit-
ness value and to avoid the stagnation in locally optimal solutions. The hybrid
selection algorithm has been evaluated on four scenarios of different complexities.
We have also comparatively analyzed the experimental results provided by our hy-
brid selection algorithm versus the results obtained with the classical Honey Bees
Mating Optimization algorithm and with the genetic-inspired algorithm of Canfora
et al.

1170 V. R. Chifu, C. B. Pop, I. Salomie, E. S. Chifu

REFERENCES

[1] Blum, C.—Roli, A.: Metaheuristics in Combinatorial Optimization: Overview and
Conceptual Comparison. ACM Computing Surveys Journal. Vol. 35, 2003, No. 3,
pp. 268–308, doi: 10.1145/937503.937505.

[2] Blum, C.—Puchinger, J.—Raidl, G. R.—Roli, A.: Hybrid Metaheuristics in
Combinatorial Optimization: A Survey. Applied Soft Computing, Vol. 11, 2011, No. 6,
pp. 4135–415, doi: 10.1016/j.asoc.2011.02.032.

[3] Afshar, A.—Bozorg Haddad, O.—Mariño, M. A.—Adams, B. J.: Honey-Bee
Mating Optimization (HBMO) Algorithm for Optimal Reservoir Operation. Journal
of the Franklin Institute, Vol. 344, 2007, No. 5, pp. 452–462.

[4] Amiri, M. A.—Serajzadeh, H.: Effective Web Service Composition Using Particle
Swarm Optimization Algorithm. Proceedings of the Sixth International Symposium
on Telecommunications (IST 2012), Tehran, November 2012, pp. 1190–1194, doi:
10.1109/ISTEL.2012.6483169.

[5] Clerk, M.—Kennedy, J.: The Particle Swarm – Explosion, Stability, and Con-
vergence in a Multidimensional Complex Space. IEEE Transactions on Evolutionary
Computation, Vol. 6, 2002, No. 1, pp. 58–73, doi: 10.1109/4235.985692.

[6] Zhao, S.—Wang, L.—Ma, L.—Wen, Z.: An Improved Ant Colony Optimization
Algorithm for QoS-Aware Dynamic Web Service Composition. Proceedings of the
International Conference on Industrial Control and Electronics Engineering (ICICEE
2012), Xi’an, August 2012, pp. 1998–2001.

[7] Kang, G.—Liu, J.—Tang, M.—Xu, Y.: An Effective Dynamic Web Service Se-
lection Strategy with Global Optimal QoS Based on Particle Swarm Optimization
Algorithm. Proceedings of the 26th International Parallel and Distributed Process-
ing Symposium Workshop (IPDPS 2012), Shanghai, May 2012, pp. 2280–2285, doi:
10.1109/IPDPSW.2012.281.

[8] Ludwig, S. A.: Clonal Selection Based Genetic Algorithm for Workflow Service
Selection. Proceedings of the IEEE World Congress on Computational Intelligence
(WCCI 2012), Brisbane, June 2012, pp. 1–7, doi: 10.1109/CEC.2012.6256465.

[9] Ludwig, S. A.: Applying Particle Swarm Optimization to Quality-of-Service-Driven
Web Service Composition. Proceedings of the 26th International Conference on Ad-
vanced Information Networking and Applications (AINA 2012), Fukuoka, March
2012, pp. 613–620, doi: 10.1109/AINA.2012.46.

[10] Cao, J.—Sun, X.—Zheng, X.—Liu, B.—Mao, B.: Efficient Multi-Objective
Services Selection Algorithm Based on Particle Swarm Optimization. Proceedings
of the IEEE Asia-Pacific on Services Computing Conference (APSCC 2010), 2010,
pp. 603–608.

[11] Wu, Q.—Zhu, Q.: Transactional and QoS-Aware Dynamic Service Composition
Based on Ant Colony Optimization. Future Generation Computer Systems Journal,
Vol. 29, 2013, No. 5, pp. 1112–1119.

[12] Zhang, C.: Adaptive Genetic Algorithm for QoS-Aware Service Selection.
Workshops of International Conference on Advanced Information Networking

https://doi.org/10.1145/937503.937505
https://doi.org/10.1016/j.asoc.2011.02.032
https://doi.org/10.1109/ISTEL.2012.6483169
https://doi.org/10.1109/4235.985692
https://doi.org/10.1109/IPDPSW.2012.281
https://doi.org/10.1109/CEC.2012.6256465
https://doi.org/10.1109/AINA.2012.46

Hybrid HBMO-Based Algorithm for Web Service Composition 1171

and Applications (AINA-2011), Singapore, March 2011, pp. 273–278, doi:
10.1109/WAINA.2011.43.

[13] Zhao, X.—Song, B.—Huang, P.—Wen, Z.—Weng, J.—Fan, Y.: An Im-
proved Discrete Immune Optimization Algorithm Based on PSO for QoS-Driven
Web Service Composition. Applied Soft Computing Journal, Vol. 12, 2012, No. 8,
pp. 2208–2216.

[14] Zheng, K.—Xiong, H.: A Particle Swarm-Based Web Service Dynamic Selection
Algorithm with QoS Global Optimal. Journal of Information and Computational
Science, Vol. 9, 2012, No. 8, pp. 2271–2278.

[15] Zhao, X.—Wen, Z.—Li, X.: QoS-Aware Web Service Selection with Negative Se-
lection Algorithm. Knowledge Information System, Vol. 40, 2013, No. 2, pp. 349–373.

[16] Zhao, X.—Huang, P.—Liu, T.—Li, X.: A Hybrid Clonal Selection Algorithm
for Quality of Service-Aware Web Service Selection Problem. International Journal of
Innovative Computing, Information and Control, Vol. 8, 2012, No. 12, pp. 8527–8544.

[17] Pop, C. B.—Chifu, V. R.—Salomie, I.—Dinsoreanu, M.: Immune-Inspired
Method for Selecting the Optimal Solution in Web Service Composition. Resource
Discovery, Lecture Notes in Computer Science, Vol. 6162, 2010, pp. 1–17.

[18] Russell, S.—Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice
Hall/Pearson Education, Upper Saddle River, NJ, 2003. ISBN 0137903952.

[19] Salomie, I.—Chifu, V. R.—Pop, C. B.: Hybridization of Cuckoo Search and Fire-
fly Algorithms for Selecting the Optimal Solution in Semantic Web Service Compo-
sition. In: Yang, X. S. (Ed.): Book Chapter in Cuckoo Search and Firefly Algorithm:
Theory and Applications, Vol. 516, 2014, pp. 217–243.

[20] Glover, F.—Laguna, M.: Tabu Search. Kluwer Academic Publishers, Norwell,
MA, 1997, doi: 10.1007/978-1-4615-6089-0.

[21] Canfora, F.—di Penta, M.—Esposito, R.—Villani, M. L.: An Approach for
QoS-Aware Service Composition Based on Genetic Algorithms. Proceedings of the
2005 Conference on Genetic and Evolutionary Computation (GECO ’05), Washing-
ton, June 2005, pp. 1069–1075, doi: 10.1145/1068009.1068189.

[22] Xu, J.—Reiff-Marganiec, S.: Towards Heuristic Web Services Composition Us-
ing Immune Algorithm. Proceedings of the IEEE International Conference on Web
Services (SCC ’08), Honolulu, July 2008, pp. 238–245, doi: 10.1109/ICWS.2008.16.

[23] Chifu, V. R.—Salomie, I.—Pop, C. B.—Niculici, A.—Suia, S.: Exploring the
Selection of the Optimal Web Service Composition Through Ant Colony Optimiza-
tion. Computing and Informatics, Vol. 33, 2014, No. 5, pp. 1047–1064.

[24] Derrac, J.—Garćıa, S.—Molina, D.—Herrera, F.: A Practical Tutorial on
the Use of Nonparametric Statistical Tests as a Methodology for Comparing Evolu-
tionary and Swarm Intelligence Algorithms. Swarm and Evolutionary Computation
Journal, Vol. 1, 2011, No. 1, pp. 3–18, doi: 10.1016/j.swevo.2011.02.002.

[25] https://www.minitab.com/en-us/products/minitab/.

https://doi.org/10.1109/WAINA.2011.43
https://doi.org/10.1007/978-1-4615-6089-0
https://doi.org/10.1145/1068009.1068189
https://doi.org/10.1109/ICWS.2008.16
https://doi.org/10.1016/j.swevo.2011.02.002
https://www.minitab.com/en-us/products/minitab/

1172 V. R. Chifu, C. B. Pop, I. Salomie, E. S. Chifu

Viorica Rozina Chifu received her Ph.D. in computer science
from the Technical University of Cluj-Napoca in 2010. Cur-
rently, she is Associate Professor at the Technical University of
Cluj-Napoca, Romania. Her research interests include parallel
and distributed systems, big data techniques, computational in-
telligence, machine learning and data mining, Web service com-
position. She has published 69 research papers in refereed inter-
national journals or conference proceedings. The recognition of
her professional merits by scientific community derives from the
large number of citations in journals indexed in ISI or in other

international databases and in the proceedings of international conferences.

Cristina Bianca Pop received her Ph.D. degree in computer
science from the Technical University of Cluj-Napoca in 2013.
Currently, she is Senior Lecturer at the Technical University
of Cluj-Napoca, Romania. Her research interests include bio-
logically-inspired distributed systems, ontologies and semantic
Web, automatic Web service composition.

Ioan Salomie is currently Professor of computer science at the
Technical University of Cluj-Napoca, Romania, being in the past
years Invited Professor at Loyola College in Maryland (1996) and
University of Limerick (2000–2004). His research interests focus
on service oriented distributed computing, context awareness
and autonomic computing, bio-inspired computing and intelli-
gent systems. He is the Head of Distributed Systems Research
Laboratory, which is an active partner in relevant national and
EU projects.

Emil Stefan Chifu received his Ph.D. in computer science from
the Technical University of Cluj-Napoca in 2010. Currently, he is
Associate Professor at the Technical University of Cluj-Napoca,
Romania. His research interests include opinion mining from
text, AI planning, web mining with self-organizing maps, and
text-based ontology learning.

