
Computing and Informatics, Vol. 36, 2017, 1173–1206, doi: 10.4149/cai 2017 5 1173

ASSESSING WEB SERVICES INTERFACES
WITH LIGHTWEIGHT SEMANTIC BASIS

Martin Garriga, Alan De Renzis, Andres Flores

GIISCo Research Group, Facultad de Informática
Universidad Nacional del Comahue, Neuquén, Argentina
&
CONICET (National Scientific and Technical Research Council), Argentina
e-mail: martin.garriga@fi.uncoma.edu.ar

Alejandra Cechich

GIISCo Research Group, Facultad de Informática
Universidad Nacional del Comahue, Neuquén, Argentina

Alejandro Zunino

ISISTAN Research Institute, UNICEN, Tandil, Argentina
&
CONICET (National Scientific and Technical Research Council), Argentina
e-mail: azunino@exa.unicen.edu.ar

Abstract. In the last years, Web Services have become the technological choice
to materialize the Service-Oriented Computing paradigm. However, a broad use of
Web Services requires efficient approaches to allow service consumption from within
applications. Currently, developers are compelled to search for suitable services
mainly by manually exploring Web catalogs, which usually show poorly relevant
information, than to provide the adequate “glue-code” for their assembly. This
implies a large effort into discovering, selecting and adapting services. To overcome
these challenges, this paper presents a novel Web Service Selection Method. We have
defined an Interface Compatibility procedure to assess structural-semantic aspects



1174 M. Garriga, A. De Renzis, A. Flores, A. Cechich, A. Zunino

from functional specifications – in the form of WSDL documents – of candidate Web
Services. Two different semantic basis have been used to define and implement the
approach: WordNet, a widely known lexical dictionary of the English language;
and DISCO, a database which indexes co-occurrences of terms in very large text
collections. We performed a set of experiments to evaluate the approach regarding
the underlying semantic basis and against third-party approaches with a data-set of
real-life Web Services. Promising results have been obtained in terms of well-known
metrics of the Information Retrieval field.

Keywords: Web services, service oriented computing, service discovery, service
selection, WordNet, DISCO

1 INTRODUCTION

Service-Oriented Computing (SOC) has seen an ever increasing adoption by provid-
ing support for building distributed applications in heterogeneous environments [1],
by reusing existing third-party components or services that are invoked through spe-
cialized protocols. Nowadays, Web Services are the technological weapon-of-choice
to materialize the SOC paradigm. A Web Service is a program with a well-defined
interface that can be located, published, and invoked by using standard Web proto-
cols [2].

However, a broad use of the SOC paradigm requires efficient approaches to allow
service consumption from within applications [3]. Currently, developers are required
to manually search for suitable services to then provide the adequate “glue-code”
for assembly into the application under development. Even with a wieldy candi-
dates list, a developer must be skillful enough to determine the most appropriate
service for the consumer application. This implies a large effort into discovering
services, analyzing the suitability of retrieved candidates (i.e., selecting services)
and identifying the set of adjustments for the final assembly of a selected candidate
service.

In order to ease the development of Service-Oriented Applications we have pre-
sented in previous work [4, 5, 6] an approach for service selection based in an Inter-
face Compatibility procedure. All available information from interfaces of candidate
services (previously discovered) is gathered to be assessed at structural and seman-
tic levels. The Interface Compatibility procedure leverages as semantic basis an
underlying lightweight ontology – in the form of a concept hierarchy – to compare
terms from interfaces. We have originally used the lexical database WordNet [7] as
a semantic basis, particularly manipulated through the MIT Java library JWI [8]
(Java Wordnet Interface) from which we developed a similarity formula.

The main contributions of this paper are threefold. First, we present three
semantic-based alternatives to analyze functional (WSDL) descriptions of Web Ser-
vices, which use generic, domain-independant concept hierarchies rather than ad-



Assessing Web Services Interfaces with Lightweight Semantic Basis 1175

hoc heavyweight domain ontologies: WordNet, accessed through two java libraries
that provide different similarity metrics, namely JWI and JWNL (Java Word-
Net Library); and DISCO (extracting DIStributionally related words using CO-
occurrences) [9], a lexical database based on co-occurrencies in a large corpus of text.
Second, we implemented these three semantic-based alternatives in the context of
the Interface Compatibility assessment procedure, achieving its independence from
the underlying semantic basis. Finally, we performed a suite of experiments with
a large dataset of real-world Web Services, comparing our approach with well-known
service discovery/evaluation algorithms [10, 11]. The Interface Compatibility proce-
dure performed well with regard to categorization and matching algorithms based in
heavyweight ontologies, in terms of well-known Information Retrieval (IR) metrics –
such as precision and recall.

The rest of the paper is organized as follows. Related work are presented in
Section 2. Section 3 introduces the Interface Compatibility procedure, along with
a motivating example. Section 4 presents a brief description of the Structural as-
sessment. Section 5 describes three versions of the Semantic assessment. Section 6
presents a set of experiments to validate our approach. Finally, Section 7 concludes
the paper.

2 RELATED WORK

This section presents related work according to the two main topics of this paper.
Section 2.1 analyzes approaches in the field of Web Service discovery, selection and
adaptation. Section 2.2 focuses on semantic-based similarity measures and their
classification.

2.1 Web Service Selection

The surveys in [12, 13] provide a comparative analysis of existing approaches to im-
prove Web Services discovery considering the typical scenario where users perform
queries against a service registry. This is closely related to service selection, since an
improved discovery method performs a partial, preliminary selection among candi-
dates in a registry: a service has to be discovered before it can be selected. Several
approaches used IR techniques in an effort to increase precision of Web Service dis-
covery without involving any additional level of semantic markup. Although such
approaches achieve concrete improvements, they seem insufficient for automatic re-
trieval if applied without any complementary technique [13]. A semantic-based
strategy can consist in formal ontology-based methods, which yet involve high costs
in contract and query specification, making service designers being alienated from
their use in practice [12, 14]. Indeed, one of the main differences is what such ap-
proaches consider/require as service descriptions. Semantic approaches depend on
shared ontologies and annotated resources [11], whereas IR-based ones depend on
(exiguous) textual descriptions. Those service discovery systems may be appropriate
in different environments, since they strive to solve the same problem [13].



1176 M. Garriga, A. De Renzis, A. Flores, A. Cechich, A. Zunino

The work in [15] distinguishes two types of service mismatches: interface-level
(operation definition) and protocol-level. The former are closely related to our ap-
proach, and are addressed through a matching component implemented on the top
of COMA++1 [16], a matching tool that uniformly supports schemes and ontolo-
gies – e.g., XML Schema (XSD) and OWL. Thereby, interface-level mismatches are
identified primarily by assessing service’s XML schemes.

Similarity is also addressed in [17] to find relevant substitutes for failing Web
Services. This approach is parameterized by weighted scores and a set of (lexical and
semantic) similarity metrics calculated over service names, operations, input/output
messages, parameters, and documentation. Message structures and complex XML
schema types are compared through schema matching, representing complex types as
labeled directed graphs. However, complex types similarity exploiting a lightweight
semantic basis can be performed without dealing with the complexity of an XML
schema, as in our approach [4].

The Woogle search engine [18] returns similar Web Services for a given query
based on similarity search. Woogle is focused on operation parameters as well as
operations and services descriptions, through a clustering algorithm for grouping
descriptions in a reduced set of terms. After that, similarity between terms is mea-
sured using a classical IR metric such as TF/IDF. The provided solution is limited
to evaluating similarity using semantic relations between clustered terms.

The work in [19] presents UDDI Registry By Example (URBE), a Web Service
retrieval algorithm for substitution purpose, based on WSDL. A substitute Web
Service has to expose an interface functionally equal or richer than the interface of
the failing Web Service. The similarity function is calculated upon operation name
similarity and parameters data type similarity, and a maximization function obtains
the maximum similarity. When available, URBE compares annotations extracted
from semantically annotated WSDL (SA-WSDL) descriptions rather than names
of operations and parameters. This is combined with the analysis of data types
resulting in a hybrid approach. Although having high precision, the weak point of
the approach is that providers do not annotate their services often in practice, since
it is costly, and also relevant and commonly used ontologies in different domains are
not usually available [20, 11, 21, 13].

2.2 Similarity Measures

In general terms, similarity measures quantify how much two entities are alike. In
the context of this paper, entities can be concepts expressed in different ontologies
as in ontology matching [22], or operations in Web Service specifications. The work
in [11] presents a categorization of (WordNet-based) similarity measures. Similarity
measures based on path length either compute the shortest path between concepts,
normalized by the maximum path length of the concepts hierarchy; or find the path
length of common ancestors of two concepts. Relatedness measures are based on

1 http://dbs.uni-leipzig.de/de/Research/coma.html

http://dbs.uni-leipzig.de/de/Research/coma.html


Assessing Web Services Interfaces with Lightweight Semantic Basis 1177

relations between concepts. This can be computed by analyzing either path shapes
(length and direction changes) between concepts, or the overlapping of concept
definitions, or the co-occurrences of certain concepts by a co-occurrence matrix.
Finally, similarity measures based on information content leverage the specificity of
concepts, by analyzing the shared information content between two concepts (i.e.,
the information content of their common ancestor) and the information that each
specific concept adds to such shared information.

Our work can be analyzed according to the aforementioned categorization. Par-
ticularly, the WordNet-based Interface Compatibility procedures are implemented
using similarity measures based in path length. The considered relationships be-
tween terms are synonymy (path lenght = 0), and a single level of hypo/hyperonymy
(path length = 1). The DISCO-based Interface Compatibility procedure is a stra-
ightforward example of a relatedness measure, since the construction of a co-occu-
rence matrix is a key step of this procedure. In particular, DISCO computes co-
occurrences of terms based in a very large corpus of text extracted from Wikipedia.

With regard to information content measures, the work in [23] proposes a Simi-
larity Metric that calculates the msca (Most Specific Common Abstraction) between
two terms t1 and t2, considering the intersection of their features. The metric re-
lies in the meaningful and structured organization of WordNet as the underlying
lightweight ontology, where concepts with many hyponyms convey less information
than leaf concepts. We are working to adapt such similarity metric as an alternative
to implement the Interface Compatibility procedure. However, the execution time
of the algorithm that calculates the metric is prohibitive in the context of our work,
thus it still needs some adjustments.

3 INTERFACE COMPATIBILITY PROCEDURE

The Interface Compatibility procedure (Figure 1) assesses structural and semantic
aspects from the interface (IS) of a candidate service S against a simple specification
of an interface (IR) from a required functionality [4, 5].

Structural aspects involve data types equivalence (mainly subtyping), while se-
mantic aspects relate to concepts in identifiers. The procedure characterizes different
similarity cases through a set of constraints for pairs of operations (opR ∈ IR, opS ∈
IS). Constraints involve structural and/or semantic conditions for each element
(identifier/data type) of an operation signature: return type, exceptions, operation
names and parameters (both type and name).

The outcome of these evaluations is an Interface Matching list where each op-
eration from IR may have a correspondence with one or more operations from IS.
In addition, an appraisal value named adaptability value is calculated upon the sig-
nature constraints – which reflects the integrability factor of the selected service.
The impact on the precision achieved during the Interface Compatibility analysis
is essential to reduce the subsequent adaptation effort when integrating a candi-
date service into a Service-oriented Application. This is the main reason for the



1178 M. Garriga, A. De Renzis, A. Flores, A. Cechich, A. Zunino

Figure 1. Interface compatibility procedure

definition of the whole procedure, in which different semantic heuristics have been
applied, mostly from a practical and domain-independant perspective.

3.1 Motivating Example

Let us consider the Car Rental domain, where the main features required by a hy-
pothetical client application are represented as a required interface IR, namely
CarRentalBrokerService. Such interface defines three operations and three com-
plex data types. The operations and data types were not defined from scratch, but
adapted (simplified) with illustrative purposes from an existing Web Service2 from
the Car Rental domain.

The required functionality will be fulfilled by engaging a third-party Web Ser-
vice3 – whose simplified interface IS is called RentaCar. This interface defines a sub-
set of the original operations from the Web Service comprised of four operations and
three complex data types. Figure 2 depicts the structure of interfaces IR and IS,
which were defined under the Java platform. Thus, the goal of this example is to
compare similarity between these two interfaces IR and IS and determine if the can-
didate Web Service RentaCar is suitable to implement the required functionality
CarRentalBrokerService.

4 STRUCTURAL ASSESSMENT

Let be IR the interface of certain required functionality, and IS the interface of a can-
didate Web Service S. For each pair of operations (opR, opS), a likely equivalence is

2 rpc.test.sunnycars.com/CarRentalAgentService121/CarRentalBrokerService.

asmx?WSDL
3 www.icelandcarrental.is/RentacarServices.asmx?WSDL

rpc.test.sunnycars.com/CarRentalAgentService121/CarRentalBrokerService.asmx?WSDL
rpc.test.sunnycars.com/CarRentalAgentService121/CarRentalBrokerService.asmx?WSDL
www.icelandcarrental.is/RentacarServices.asmx?WSDL


Assessing Web Services Interfaces with Lightweight Semantic Basis 1179

Figure 2. Required interface and candidate service interface for the Car Rental example

foremost based in structural conditions for some signature elements – namely, return
type, parameter types and exceptions. Notice that elements are named according to
Java terminology, rather than using WSDL conventions for Web Service interfaces.
The reason is that structural assessment is performed upon Java interfaces previ-
ously derived from WSDL specifications. The main aspects of structural assessment
are presented below. For details of the structural assessment, interested readers
could refer to [4].

4.1 Return Type

Conditions for return type equivalence involves the subsumes relationship or sub-
typing, which implies a direct subtyping in case of built-in types in the Java lan-
guage [24], as shown in Table 1. It is expected that types on operations from
a required interface have at least as much precision as types on operations from
a candidate service. For example, if opR ∈ IR includes an int type, a corresponding
operation opS ∈ IS should not have a smaller type (among numerical types) such
as short or byte. However, the String type is a special case, which is considered
as a wildcard type – it is generally used in practice by programmers to allocate
different kinds of data [25]. Thus, we consider String as a supertype of any other
built-in type.

Complex data types imply a special treatment in which the comprised fields
must be equivalent one-to-one with fields from a counterpart complex type. This
means, each field of a complex type from an operation opR ∈ IR must match a field
from the complex type in opS ∈ IS – though extra fields from the latter may be
initially left out of any correspondence. This means, if all fields from the required
complex type in opR ∈ IR are fulfilled, then extra fields in opS ∈ IS do not necessarily



1180 M. Garriga, A. De Renzis, A. Flores, A. Cechich, A. Zunino

opR type opS type

char string

byte short, int, long, float, double, string

short int, long, float, double, string

int long, float, double, string

long float, double, string

float double, string

double string

Table 1. Subtype equivalence

cause incompatibility. However, the input data to fulfill those extra fields should be
adequately defined to allow the proper execution of the service [26, 27].

The return type similarity value is calculated according to the following cases:

• Ret = 1: Equal Return Type.

• Ret = 0.66: Equivalent Return Type (Subtyping, String or Complex types).

• Ret = 0.33: Non-equivalent complex types or precision loss.

• Ret = 0: Not compatible.

Example 1. Figure 3 shows the field-to-field equivalence (considering only data
types) for two complex types of the Car Rental example, which contains information
about booking cancellation rates. The three fields of the CancelInformation type
have a one-to-one correspondence with three fields of the CancellationCoverRate.
The dotted arrows indicate a likely correspondence between the String types. For
this example the return type similarity value is Ret = 1. Notice that the extra field
in CancellationCoverRate does not cause an incompatibility since all the required
fields in CancelInformation were properly matched.

Figure 3. Equivalence of complex data types for the CarRental example

4.2 Exceptions

Any operation opR may define default exceptions – i.e., using the Exception type –
or ad-hoc exceptions. Likewise, an operation opS from a candidate service may



Assessing Web Services Interfaces with Lightweight Semantic Basis 1181

define a fault (the WSDL name for non-standard outputs of operations) as a message
including a specific attribute. The exceptions similarity value is calculated according
to the following cases:

• Exc = 1: opR and opS have equal amount, type and order for exceptions.

• Exc = 0.66: opR and opS have equal amount and type for exceptions into the
list.

• Exc = 0.33: If opR defines exceptions, then opS defines at least one exception.

• Exc = 0: Not compatible, since opR defines exceptions and opS does not define
exceptions.

Interestingly, in the context of Web Services, faults definitions have not become
a common practice [28, 29]. Even so, exceptions are evaluated in the order that they
are specified into an operation signature, being desirable that compatible exceptions
appear in the same position of exceptions lists (Exc = 1).

Example 2. Let us consider the following operations for obtaining rates for Car
Rental, according to different vehicles and conditions:

getCarFee(requiredCarSupplements: CarSupplements): Fee

throws unavailableSupplementsException;

getRate(currencyCode: String, vehicleTypeId: long,

AutomaticGearPreference: boolean): Rate

throws vehicleNotFoundException, rateNotFoundException;

Being getCarFee as opR ∈ IR and getRate as opS ∈ IS, respectively, the re-
quired operation throws an exception that may have two likely exceptions (from dif-
ferent types) in the IR operation. Then the exceptions similarity value is Exc = 0.33.

5 SEMANTIC ASSESSMENT

We developed three alternatives for the semantic similarity basis and criteria: two
of them based on WordNet and the third one based on DISCO. WordNet is a widely
used lexical database for the English language that is structured as a lexical tree.
WordNet groups terms in synsets (synonym sets) that represent the same lexical
concept. Several relations connect different synsets, such as hyperonymy/hyponymy,
holonymy/meronymy and antonymy. We make use of two Java libraries to manip-
ulate the WordNet database: JWI4 and JWNL5. These libraries provide different
criteria for analyzing semantic equivalence of terms. They also provide the most
complete and easy Java-based access to the WordNet lexical tree, according to a re-
cent comparative work [8]. JWI is more focused on performance, usability and

4 Java WordNet Interface: http://projects.csail.mit.edu/jwi/
5 Java WordNet Library: http://sourceforge.net/projects/jwordnet/

http://projects.csail.mit.edu/jwi/
 http://sourceforge.net/projects/jwordnet/


1182 M. Garriga, A. De Renzis, A. Flores, A. Cechich, A. Zunino

flexibility; whilst JWNL is more focused on offering a wide variety of similarity
metrics implementation.

DISCO [9] is a pre-computed database of collocations and distributionally similar
words over very large text collections (e.g., Wikipedia). DISCO’s Java library6 allows
retrieving the semantic similarity between arbitrary words. For each word, DISCO
stores the first and second order vectors of related words using a Lucene7 index. To
analyze the similarity between two words, DISCO retrieves the corresponding word
vectors from the index and computes the similarity according to a similarity formula
based in co-occurrence functions.

In the following sections we describe the Identifiers Evaluation Algorithm imple-
mented using WordNet and DISCO as semantic basis. First, two identifiers under
evaluation are given as input for three different pre-processing steps, namely term
separation, stop words removal and stemming [5].

Term Separation. Identifiers are normally restricted to a sequence of one or
more letters in ASCII code, numeric characters and underscores (“ ”) or hyphens
(“-”). The algorithm supports the usual programming naming conventions, such
as text casing or hyphenation [30]. Additionally, a semantic level is applied to
recognize identifiers that do not follow those conventions, recognizing potential terms
(uppercase sequences and lowercase sequences) using WordNet. Term Separation
step is crucial to consider the correct terms as input to the semantic analysis.

Example 3. Let us consider the identifier GDSCode from the Car Rental domain.
This identifier does not strictly follow the Java Beans notation. An initial analysis
identifies an uppercase sequence (GDSC), and a lowercase sequence (ode). Then, the
sequence C + ode = Code is also given as input to WordNet. As it is an existing
word in the WordNet dictionary, Code is considered as a term and GDS as an acronym
(an abbreviation of Global Distribution System) that is also considered as a term.

Stop Words Removal. Stop words are meaningless words that are filtered out
when processing natural language data (text) [31]. By removing symbols and stop
words our approach attempts to “clean” service interface descriptions, as a sim-
ple but useful technique for filtering non-relevant terms. We defined a stop words
list containing articles, pronouns, prepositions, each letter of the alphabet, and
words from other stop words lists8, 9, commonly used in natural language processing
tools [10].

Example 4. Let us consider the identifier AgencyHandledBy which corresponds
to a field in the data type AgencyData of the Car Rental example. According to
the Term Separation step, the identifier is decomposed in three terms: [Agency,

6 http://www.linguatools.de/disco/disco-download_en.html
7 https://lucene.apache.org/core/
8 http://www.csee.umbc.edu/courses/691p/code/wf/stop_words.txt
9 http://algs4.cs.princeton.edu/35applications/stopwords.txt

http://www.linguatools.de/disco/disco-download_en.html
https://lucene.apache.org/core/
http://www.csee.umbc.edu/courses/691p/code/wf/stop_words.txt
http://algs4.cs.princeton.edu/35applications/stopwords.txt


Assessing Web Services Interfaces with Lightweight Semantic Basis 1183

Handled, By]. As ’By’ belongs to the stop words list, it is removed, obtaining:
[Agency, Handled].

Stemming is the process for reducing inflected or derived words to their stem or
root form [32]. As standard stemmers (e.g., Porter’s algorithm) usually generate
incorrect data (incurring in understemming or overstemming [33]), we decided to
leverage the semantic stemming facilities provided by WordNet. For each term, the
Stemming algorithm verifies if it belongs to the WordNet dictionary. If it does so,
their corresponding stems are added to the result list. Otherwise, the original term
is added to the result list, considering that it can be an acronym or abbreviation.

These techniques are well-known and widely adopted in the field of IR, partic-
ularly in text mining [34]; and also in recent work in natural language processing
in the context of Web Services [35], improving the precision of any text/document
analysis approach [36, 31]. In the context of this work, the preprocessing techniques
are combined with other semantic techniques and the structural assessment of data
types. Thus, their final impact is not directly observable in a quantitative validation
comprising hundreds of services.

5.1 WordNet-Based Identifiers Evaluation with JWI

After the preprocessing steps described above, the information to calculate the com-
patibility value of two terms lists must be extracted using the JWI library. This
information includes:

• terms = #({termsOpR} ∪ {termsOpS}): total terms between both terms lists
(counting only once duplicated terms).

• exact : Number of identical terms.

• syn: Number of synonyms (words with the same meaning) of the opR terms
belonging to the opS terms list.

• hyper : Number of hyperonyms of the opR terms belonging to the opS terms list.

• hypo: Number of hyponyms of the opR terms belonging to the opS terms list.

To evaluate synonyms, hyperonyms and hyponyms we considered the following as-
pects:

1. A single level of hypo/hyperonymy; i.e., direct hypo/hyperonymy, since the most
distant hypo/hyperonyms have less to do with the meaning of original terms.

2. Total synonymy, where two terms are synonyms if they are interchangeable in
the same context without affecting the semantics. In the context of WordNet,
this implies that two terms are synonyms if they are grouped in the same synset.

Example 5. Let us consider the identifiers GetReservation and GetCurrentBook-

ing extracted from the Car Rental example. According to the semantic comparison,
these identifiers present four distinct terms (Get, Reservation, Current, Booking),
one identical term (Get) and one synonym (Reservation, Booking).



1184 M. Garriga, A. De Renzis, A. Flores, A. Cechich, A. Zunino

Using the semantic information extracted from identifiers in the previous step,
identifiers compatibility is calculated according to Formula (1), as the weighed aver-
age of the compatibility among all terms in the two term lists under analysis. This
is calculated according to the notions of semantic relatedness of terms described
above (exact or identical terms, synonyms and hypo/hyperonyms). Notice that the
formula assigns for hypo/hyperonyms half the weight assigned for exact terms and
synonyms, because the former convey a meaning that is similar but not exactly the
same, while the latter convey an identical meaning. This notion of weighting the
terms according to their relative importance has been widely used in the field of
IR [31], and particularly in the context of Web Services similarity [10, 37].

identComp =
exact + syn + 0.5 ∗ (hypo + hyper)

terms− syn
. (1)

Example 6. Let us consider the identifiers GetReservation and GetCurrentBook-

ing extracted from the Car Rental example. By replacing the values in Formula (1),
we obtain:

identComp =
1 + 1 + 0.5 ∗ (0 + 0)

4− 1
=

2

3
= 0.66.

Considering that the maximum value for identComp is 1, the obtained value of
0.66 between identifiers GetReservation and GetCurrentBooking indicates a mod-
erate to strong compatibility.

5.2 WordNet-Based Identifiers Evaluation with JWNL

First, a matrix named Normalized Depth matrix (ND matrix) is generated. This
matrix contains the normalized depth between each term from both terms lists.
Thus, the cell ndij from the ND matrix contains the normalized depth between the
ith term of an identifier in opR and the jth term of an identifier in opS – according to
the WordNet hierarchy. The depth is defined as the shortest path between two terms
in the WordNet hierarchy. These values are normalized according to the maximum
depth of the WordNet tree D (which currently is 16).

Formally, the normalized depth is calculated according to Formula (2), where
length(ti, tj) is the shortest path between ti and tj in the WordNet hierarchy, and
D is the maximum tree depth (16). NormalizedDepth(t1, t2) ranges from 0 (when ti
and tj are completely unrelated) to 1 (when ti and tj are identical or synonyms).

NormalizedDepth(ti, tj) = 1− length(ti, tj)

2D
. (2)

Example 7. Accounting this notion of length, let us consider the two identifiers
GetReservation and GetCurrentBooking (analyzed in Section 5.1). The ND ma-
trix will be a 2× 3 matrix containing the length between each pair of terms in the
identifiers, as shown in Table 2. Notice that ND(Reservation,Booking) = 1 since
these terms are synonyms in the WordNet hierarchy (their path length is zero).



Assessing Web Services Interfaces with Lightweight Semantic Basis 1185

opR ↓ opS −→ Get Current Booking

Get 1.00 0.56 0.72

Reservation 0.72 0.72 1.00

Table 2. Normalized Depth matrix for a pair of identifiers

After calculating the ND matrix, the best term matching (among all possible
pair-wise combinations) must be selected – i.e., the combination of terms from both
terms lists that maximizes their compatibility. Each possible term matching consists
of taking each row of the ND matrix (i.e., a term of the first list) and choosing a col-
umn (i.e., a term of the second list), without repeating columns (i.e., matching each
term only once). Thus, it is ensured that each term from the first list corresponds to
one and only one term for the second list. The similarity values are obtained from
the corresponding cells of the ND matrix.

The total value of each possible term matching is the sum of all pair-wise as-
signments that compose it (assignSum). The matching with the highest value is
obtained through the Hungarian method [38], which models the allocation problem
as a cost matrix n×m – in this case n and m are the number of terms of both terms
lists.

Finally, the identifiers compatibility value identComp is calculated through For-
mula (3), which is the average of the pair-wise assignments of terms assignSum, ac-
cording to the maximum number of terms in the identifiers under analysis max(n,m)
where n and m are the number of terms in both term lists. The denominator de-
termines the number of simultaneous assignments; i.e., if the maximum number of
terms from both lists is 3, the assignSum will consist of three pairs of terms and will
be averaged accordingly. Formula (3) is the alternative to Formula (1) to calculate
identifiers compatibility (identComp) when using JWNL instead of JWI.

identComp =
assignSum

max(n,m)
. (3)

Example 8. Considering the ND matrix shown in Table 2, the term matching that
maximizes the compatibility between the identifiers consists of the following pair-
wise assignments:

• [Get,Get], stored in the cell nd1,1 = 1.00

• [Reservation, Booking], stored in the cell nd2,3 = 1.00

Then, replacing the corresponding values in Formula (3), the compatibility value
between identifiers GetReservation and GetCurrentBooking is calculated as:

identComp =
1 + 1

max(2, 3)
=

2

3
= 0.66.



1186 M. Garriga, A. De Renzis, A. Flores, A. Cechich, A. Zunino

Considering that the maximum value for identComp is 1, the obtained value of
0.66 between identifiers GetReservation and GetCurrentBooking indicates a mod-
erate to strong compatibility. This ratifies the compatibility value obtained in Sec-
tion 5.1 when using WordNet through JWI.

5.3 DISCO-Based Identifiers Evaluation

First, a matrix named Co-occurrences matrix (Co matrix) is generated. This matrix
contains the similarity values between each term from both terms lists. Thus, the
cell Coij from the Co matrix contains the similarity value between the ith term of
an identifier in opR and the jth term of an identifier in opS – according to their
co-occurrences in the indexed text collections. The similarity notion of DISCO was
introduced in Section 5.

Example 9. Let us consider the pair of identifiers of the previous section – namely
GetReservation and GetCurrentBooking. The Co matrix will be a 2 × 3 matrix
containing the co-occurrence values between each pair of terms in the identifiers, as
shown in Table 3. Notice that, when using DISCO rather than WordNet, synonyms
do not present a co-occurrence value of 1 – as can be seen for the pair (Reservation,
Booking).

opR ↓opS −→ Get Current Booking

Get 1.00 0.006 0.02

Reservation 0.01 0.01 0.1

Table 3. Co-occurrences matrix for a pair of identifiers

After calculating the Co matrix, the best term matching (among all possible
pair-wise combinations) must be selected – i.e., the combination of terms from both
terms lists that maximizes their compatibility. Similarly to the JWNL-based im-
plementation, for each possible pair-wise term assignment between both lists, the
similarity value is obtained from the corresponding cell of the Co matrix. The value
of each possible term matching is the sum of all pair-wise assignments that compose
it. The matching with the highest value will be the most compatible. Such match-
ing is also obtained through the Hungarian method – introduced in Section 5.2.
Finally, the identifiers compatibility value using DISCO is also calculated according
to Formula (3).

Example 10. Considering the Co matrix shown in Table 3, the term matching
that maximizes the compatibility between the identifiers consists of the following
pair-wise assignments:

• [Get,Get], stored in the cell co1,1 = 1.00

• [Reservation, Booking], stored in the cell co2,3 = 0.1



Assessing Web Services Interfaces with Lightweight Semantic Basis 1187

Then, replacing the corresponding values in Formula (3), the compatibility value
between identifiers GetReservation and GetCurrentBooking is calculated as fol-
lows:

identComp =
1 + 0.1

max(2, 3)
=

1.1

3
= 0.36.

A potential issue that may arise when using DISCO is the generation of appar-
ently inconsistent results, since words with very different meaning will appear closely
related. For example, Casino and Vegas clearly are words with different meaning.
However, these words are closely related according to DISCO, since they co-occur
in many indexed documents. This is mitigated by the supplementary structural
evaluation.

5.4 Parameters Evaluation

The algorithm for Parameters Evaluation consists of calculating three matrices:
Type matrix (T ), Name matrix (N) and Compatibility matrix (C). For the three
matrices, the cell mij represents the compatibility value between the ith parameter
of opR ∈ IR and the jth parameter of opS ∈ IS.

The T matrix contains the structural compatibility value among parameter types
from opR and opS. The notions of structural data type equivalence and subtyping are
used to assess parameter types. A cell tij contains the compatibility value between
the ith parameter’s type of opR and the jth parameter’s type of opS, according to
Formula (4), where two identical types have a compatibility value of 1; a subtyping
relationship (represented as < : ) of parameters results in a compatibility value of
0.75 and two different parameter types are given a compatibility value of 0.5. The
ranges were empirically determined according to previous experience and related
work in structural assessment of service interfaces, as detailed in [4].

The last value tij = 0.5 is intended to represent a low structural compatibility,
but it does not determine an incompatibility (given by tij = 0) since it has to be
weighted with the semantic analysis, as described below.

tij =


1 Type(Pi) = Type(Pj),

0.75 Type(Pi) < : Type(Pj),

0.5 otherwise.

(4)

The N matrix contains the compatibility values between the name of each pa-
rameter from opR and the name of each parameter from opS. The underlying ratio-
nale is similar to the T matrix. The cell nij contains the compatibility value between
the ith parameter’s name of opR and the jth parameter’s name of opS. This value
is the result of applying the Identifiers Evaluation Algorithm – thus depends on the
chosen implementation for the Semantic Assessment.

Then, the C matrix is generated from the T and N matrices. The goal of
the C matrix is to store the compatibility value between all parameter pairs from
operations opR and opS, considering structural and semantic aspects – collected in



1188 M. Garriga, A. De Renzis, A. Flores, A. Cechich, A. Zunino

the T matrix and the N matrix respectively. Each cell cij stores the product between
corresponding cells tij and nij. Thus: cij = tij ∗ nij.

After calculating the C matrix, the best parameter matching (among all possible
pair-wise combinations) must be selected – i.e., the combination of parameters from
opR and opS that maximizes their compatibility. This step applies the Hungarian
method to calculate the best pair-wise parameters assignments – similarly to the
term matching maximization in JWNL-based Identifiers Evaluation (Section 5.2).

5.5 Outcomes

The final outcome of the Interface Compatibility procedure is an Interface Matching
list, where each correspondence is characterized according to the compatibility values
obtained from the structural and semantic analysis of signature elements. For each
operation opR ∈ IR, a list of compatible operations from IS is obtained, ordered
by their compatibility degree. For example, let IR be with three operations opRi,
1 ≤ i ≤ 3, and IS with five operations opSj, 1 ≤ j ≤ 5. After the procedure, the
Interface Matching list might result as follows:

[(opR1, {opS1, opS5}), (opR2, {opS2, opS4}), (opR3, {opS3})].

An additional aspect can be highlighted from the Interface Compatibility proce-
dure. Considering the structural and semantic assessments presented in the previous
sections, an appraisal value can reflect the required adaptation effort to integrate
a candidate service into a Service-oriented Application under development. For this,
we defined the Formula (5) adaptability value, which represents the achieved com-
patibility between assessed interfaces, as the average of the best adaptability values
obtained for all required operations. Only the strongest equivalences (higher values)
from the Interface Matching list are considered for each operation in IR. In the for-
mula, N is the interface’s size of IR, and max(AdapOp) is the best value for opRi ∈ IR
from the list of equivalence values adapOpValue(opRi, opSj) with opSj ∈ IS.

adapVal(IR, IS) =

∑N
i=1(Max(AdapOp(opRi, IS)))

N
. (5)

The operation adaptability value (adapOpValue) between an operation opR and
a potentially compatible operation opS is calculated according to Formula (6).

The identComp value is used in adapOpValue to calculate the compatibility
between identifiers in service descriptions, according to the alternative semantic
basis discussed in previous sections (Formulas (1) and (3)). The identComp value is
used as-is to calculate operation names compatibility (nameComp) and parameters
compatibility (paramComp), which also considers structural aspects (described in
Section 5.4). Meanwhile, Ret and Exc are the structural equivalence values for return
type and exceptions respectively.

adapOpValue(opR, opS) = Ret + Exc + nameComp + paramComp. (6)



Assessing Web Services Interfaces with Lightweight Semantic Basis 1189

The highest (better) adaptability value is 4, since the highest value for Ret, Exc,
nameComp, paramComp is 1. The adaptability value synthesizes the structural and
semantic information gathered from interfaces in a single numeric value. Although
all operations in the Interface Matching list presenting an exact or identical equiv-
alence may resemble to a perfect interface match, this initially means that IR is
included into IS. The size of interface IS of the candidate service may be larger, in-
cluding additional operations. The alternatives for semantic assessment are weighted
with the structural analysis, which prevents spurious compatibilities between terms
in operations by also considering the structure of data types, parameters and return
types. Finally, the precision achieved during the Interface Compatibility procedure
is essential to reduce the subsequent adaptation effort when integrating a candidate
service into a Service-oriented Application.

Example 11. Let us consider the full interfaces of the Car Rental example, pre-
sented in Section 3.1. Table 4 shows, for each operation in the required interface
CarRentalBrokerService, the operation with higher compatibility (according to
their adapOpValue) in the interface of the candidate RentaCar. Calculations were
done using the semantic basis accessed through the JWI, JWNL and DISCO, re-
spectively.

Notice that operations getCarFee and getRate obtained the lower (worse)
adapOpValue. This indicates a low compatibility between those operations in terms
of adaptability, due to the complexity of their signatures (see Figure 2) featuring
complex return types, multiple parameters and ad-hoc exceptions, which may hinder
their seamless integration.

As the better adaptability value is 4, the obtained adaptabilityValue (2.78,
2.69 and 2.48) with the three implementations can be considered as moderate to
high – as shown in Table 4. This suggests an easy adaptation of the RentaCar

service to be integrated into the client application, considering the required inter-
face CarRentalBrokerService. However, we should notice that this example was
designed only to illustrate our approach and the compatibility was straightforward.
Real-world scenarios are usually more complex in terms of number of candidate ser-
vices and potentially compatible operations, complex data types and parameters.
Therefore, experiments with large datasets of real-world Web Services are presented
in the following section.

CarRentalBrokerService (IR) RentaCar (IS)

Compatible Operation
AdapOpValue

JWI JWNL DISCO

getReservation getCurrentBooking 2.97 3.08 2.76

getCarFee getRate 2.41 1.83 1.79

cancelReservation cancelBooking 2.96 3.17 2.89

Adaptability Value: 2.78 2.69 2.48

Table 4. Operations matching for the Car Rental example



1190 M. Garriga, A. De Renzis, A. Flores, A. Cechich, A. Zunino

6 EXPERIMENTAL EVALUATION

In the first experiment (Section 6.1), we executed the Interface Compatibility proce-
dure with the two different underlying concept hierarchies over a data-set of approx-
imately 500 services extracted from the literature. Then we compared the results
of the executions against the original discovery results for the same dataset, and
a foundational algorithm for structural-semantic Web Services discovery, the Strou-
lia and Wang algorithm [10]. The goal of the first experiment is to compare the
visibility of suitable candidate services when using the Interface Compatibility pro-
cedure with the different underlying concept hierarchies, and w.r.t. a well-known
algorithm for Web Service discovery and selection. We then performed a second
experiment with a similar goal (Section 6.2) but a different experimental config-
uration and dataset, consisting of approximately 1 000 services crawled from the
Mashape.com Web repository.

In the third experiment (Section 6.3), we executed the Interface Compatibility
procedure based on WordNet (through JWI) replicating the experimental settings of
Bouchiha et al. [11], which tested two algorithms for categorization and matching of
Web Services based in domain ontologies and WordNet. The goal of this experiment
was to compare the performance of the Interface Compatibility procedure in a third-
party designed experiment, w.r.t. ontology-based algorithms for categorization and
matching of Web Service specifications.

6.1 Experiment 1 – Interface Compatibility and the Stroulia Algorithm

We used a data-set that comprised 479 services extracted from the literature [39, 40,
4], from which we randomly selected 65 services as target services, and the rest as
noise services. The only condition for the target services is that their Java interface
could be generated automatically using the library WSDL2Java10. The remaining
services were used as ‘noise’ to increase the size of the experiment in terms of the
amount of WSDL specifications in the registry.

A set of 531 queries was automatically generated from the operations of the
65 target services of the data-set. Notice that noise services could also include
these operations (or very similar ones) as well. Then we applied interface mutation
techniques [41] (Section 6.1.1) to the operations in the queries, to generate different
structural information by combining signature elements (return types, parameters).
Mutation operators were applied in a random and probabilistic way.

Methodologically, the execution of the first experiment consisted in the following
steps. First, the data-set of 479 WSDL specifications was used to populate the
EasySOC service discovery registry [37]. EasySOC provides a simple support for
service discovery based in document matching techniques, leveraging only syntactic
aspects of queries and service specifications. Thus, their results provide a baseline
to compare other comprehensive service selection approaches. Thereby, we queried

10 http://axis.apache.org/axis2/java/core/tools/CodegenToolReference.html

http://axis.apache.org/axis2/java/core/tools/CodegenToolReference.html


Assessing Web Services Interfaces with Lightweight Semantic Basis 1191

that registry with the 531 queries. Then, the registry returned the 10 most relevant
services for each query (potentially containing the target service for the query),
according to a simple syntactical evaluation.

Then, upon discovery results, the Interface Compatibility procedure presented
in Section 3 was executed using the three different lightweight semantic basis to
compare the Java interfaces of services retrieved by the discovery registry against
the mutated queries as required interfaces. We also implemented the WordNet-based
Stroulia algorithm [10] that, given a query, identifies and ranks the most relevant
WSDL specifications for that query, by recursively analyzing data types, messages
and operations through a structural IR-based method. This set of candidates can
be further refined by a semantic matching step based on a Vector Space Model
(VSM) [42] and WordNet to expand queries, obtaining the overall matching score
between a WSDL service specification and a query as a weighted mean from both
steps (interested readers could refer to [10]).

Finally, we compared the results in terms of visibility of target services (Sec-
tion 6.1.3) according to a suite of metrics from the IR field – Precision-at-n, Recall,
F-Measure and NDCG (Normalized Discounted Cumulative Gain). Details of the
experimental procedure are given in the following sections.

6.1.1 Query Set Generation

The original set of queries consisted in the operations extracted from target ser-
vices. Then, we implemented an interface mutator11 to generate different structural
information according to four different mutation operators. Interface Mutation is
a technique to evaluate how well the interactions between various units have been
tested [43]. When applying Interface Mutation, unlike traditional mutation, the
changes are made only at the interface related points or connections between units.
In this experiment, such points are the parameters and the return types from the
queries. Four different mutation operators were probabilistically applied to process
the queries prior to the execution of the service selection algorithms, generating
different data types and parameters for each query.

Encapsulation. A random number of parameters are encapsulated as fields of
a new complex data type. The name of the complex data type is the concatenation
of the name of the operation and the word “Request”. The name of the complex
parameter is a concatenation of the encapsulated parameters.

Example 12. Let us consider the operation AddUser(String userName, String

password, int sessionId), the first two parameters can be encapsulated as
AddUser(AddUserRequest userName password, int sessionId), where the com-
plex type AddUserRequest is composed of two String fields – namely userName and
password.

11 http://code.google.com/p/querymutator/

http://code.google.com/p/querymutator/


1192 M. Garriga, A. De Renzis, A. Flores, A. Cechich, A. Zunino

Flatten. A random number of complex type parameters are flattened, generating
as many parameters as fields in the complex type. The resulting parameters can be
primitive or complex, according to the types of the fields in the original data type.

Example 13. Let us consider the operation AddUser(UserData userData, int

sessionId) with the complex type UserData containing two String fields (user
and password) the mutated interface after applying the flatten operator could be:
AddUser (String user, String password, int sessionId).

Upcasting. The return type and/or a random number of parameters of numeric
types are upcast to a direct numeric supertype in the Java language, according to
Table 5.

Type Direct Supertype

byte short

short int

int long

long float

float double

Table 5. Built-in direct supertyping for Java

Wildcard Supertype. The return type and/or a random number of parameters
are cast to the wildcard supertype String, including void return types. As stated
earlier, the String type is generally used as a wildcard in practice to allocate dif-
ferent kinds of data.

Example 14. Let us consider the operation void AddUser(String userName,

String password, int sessionId), the Wildcard Supertype operator could gener-
ate String Add User (String userName, String password, String

sessionId), where both the return type and the parameter sessionId have been
cast to String.

In a previous work [4], we manually expanded the syntactic queries to include
structural information. For the present experiment, the interface mutator enables
an automatized and probabilistic application of the mutation operators, generating
queries with unique structural characteristics. Also, mutated queries are similar in
a greater or lesser extent to operations defined by the services in the dataset – since
they are based on original operations of such services. This emulates the (potentially
partial) specification of the desired functionality that developers may define when
looking for suitable services. After applying the mutation operators, each mutated
query can be encapsulated as a Java (required) interface with only one operation,
which acts as the required interface (IR).



Assessing Web Services Interfaces with Lightweight Semantic Basis 1193

6.1.2 Experiment Execution

We queried the EasySOC registry with the syntactic queries. Then, obtained re-
sults were post-processed by executing the WordNet and DISCO-based Interface
Compatibility procedures, and the Stroulia-based algorithm. We considered an ini-
tial ranked list of the first 10 services retrieved by the EasySOC discovery registry
per query. When the target service is not retrieved by the discovery registry, it is
given in the 11th position as input for the other algorithms. Thus, the goal of this
experiment is to analyze how the Interface Compatibility procedure could improve
the visibility of a suitable candidate service in a result list, to be selected for its
integration into a Service-oriented application.

Example 15. Let us consider the query getUser extracted from service Account-

ingService. Thus, AccountingService is the target service for that query, and is
expected to be retrieved in the topmost positions. Then, the results list (ordered by
position) retrieved by the EasySOC service discovery registry could be:

{(1, VomsAdminService), (2, VomsTrustedAdminService), (3,

Service6.Accounts), (4, Service7.Accounts), (5, AccountingService),...}.

As can be seen, the target service was retrieved in the fifth position. The first
four services also provide an operation named getUser, which satisfies the syntac-
tic query. Through the different service selection methods, this list is rearranged
considering structural and semantic information both from the mutated query and
the services in the list. Thus, the target service is ranked in a better position of
the list – e.g., among the first three positions. In this case, the re-ordered list for
a certain service selection method could allow the target service to be retrieved in
the second position, as follows:

{(1, VomsAdminService), (2, AccountingService), (3,

VomsTrustedAdminService), (4, Service6.Accounts), (5,

Service7.Accounts), ...}.

6.1.3 Results

We compared results according to four well-known IR metrics: Precision-at-n, Re-
call, F-Measure and NDCG (Normalized Discounted Cumulative Gain). These met-
rics have been broadly used in the context of Web Service discovery, selection and
semantic matching [44, 11, 4, 10]. Considering the results for the 531 queries, an
average of each metric was generated. Figure 4 depicts the cumulative average
precision-at-n values corresponding to the original discovery registry EasySOC, the
Interface Compatibility procedures and the Stroulia-based algorithm. Results show
that:

• The WordNet-based (JWI) Interface Compatibility procedure increases the pre-
cision-at-n value between 19 % and 34 % for the first three positions of the list
(with n ∈ [1, 3]) w.r.t. original results from the discovery registry.



1194 M. Garriga, A. De Renzis, A. Flores, A. Cechich, A. Zunino

• The WordNet-based (JWNL) Interface Compatibility procedure increases the
precision-at-n value between 24 % and 38 % for the first three positions of the
list (with n ∈ [1, 3]) w.r.t. original results.

• The DISCO-based Interface Compatibility procedure increases the precision-
at-n value between 25 % and 40 % for the first three positions of the list (with
n ∈ [1, 3]) w.r.t. original results.

• The Stroulia-based algorithm increases the precision-at-n value between 2 % and
4 % for the first three positions of the list (with n ∈ [1, 3]) w.r.t. original results.

Figure 4. Precision-at-n for original discovery registry, Interface Compatibility, and the
Stroulia algorithm

Figure 5 a) shows the Recall result, where the Interface Compatibility proce-
dures outperformed original results by 3 % to 8 %, and the Stroulia-based algorithm
outperformed original results by 7 %. All algorithms presented high recall, over
90 %.

Figure 5 b) shows the F-Measure results, where the Interface Compatibility pro-
cedures outperformed original results by 23 % to 29 %, and the Stroulia-based algo-
rithm also outperformed original results by 3 %, being the only selection algorithm
under 85 % for F-Measure.

Figure 5 c) shows the NDCG result, where the Interface Compatibility proce-
dures outperformed original results by 14 % to 19 %, and the Stroulia-based algo-
rithm outperformed original results by 4 %. All algorithms presented competitive
values for DCG, over 80 %. The discussion of these results is presented after the
next experiment.



Assessing Web Services Interfaces with Lightweight Semantic Basis 1195

a) Recall b) F-Measure c) NDCG

Figure 5. Results for original discovery registry, Interface Compatibility, and the Stroulia
algorithm

6.2 Experiment 2 – Interface Compatibility with the Mashape Dataset

In the second experiment, we used another data-set comprised of 1 146 services
crawled from the Mashape12 service repository. Unlike the previous experimental
scenario, queries were not automatically generated by mutation, but rather were
constructed by expert software engineers. The WSDL specifications were given to
two groups of engineers. Each group randomly selected 15 services as target services
to generate the queries. Then, these experts exchanged their services and completely
rewrote the signature of the operations in the selected services. They were asked to
preserve the intended semantics of the operations while altering the identifiers (i.e.,
names from operations, parameters and fields of complex types, among others) and
data types (in parameters, return and fields). Then, they splitted these operations
in groups of one, two or three operations, to generate the queries. Thus, each query
consisted of up to three related operations, in contrast to the single operation queries
in the previous experiment. For example, if a target service consisted of 7 operations,
the experts might have generated three queries with 3, 3 and 1 operations; or 3, 2
and 2 operations. From this process of manual query generation we obtained a total
of 42 fully described, multi-operation queries. Each query was associated with the
original service from which it was generated as its target service (thus having a gold-
standard for evaluation).

We used two versions of the EasySOC service discovery registry as baseline: the
VSM-based original version [45] and an enhanced version featuring query expan-
sion [46, 37]. Both registries were populated with the 1 146 services in the dataset.
From the 42 multi-operation queries from experts, a corresponding set of syntactic
queries was generated as input to the service discovery registries, by concatenat-
ing operation names. Finally, the Interface Compatibility procedure used for this
experiment was the WordNet (JWI) based implementation.

Figure 6 depicts the cumulative average precision-at-n values corresponding
to both versions of EasySOC, and the Interface Compatibility procedure. The

12 http://www.mashape.com

http://www.mashape.com


1196 M. Garriga, A. De Renzis, A. Flores, A. Cechich, A. Zunino

WordNet-based (JWI) Interface Compatibility procedure increases the precision-
at-n value between 19 % and 34 % for the first three positions of the list (with
n ∈ [1, 3]) w.r.t. original results from the discovery registries. With regard to re-
call, Interface Compatibility obtained a 93 % while original and enhanced EasySOC
versions presented 82 % and 84 %, respectively.

Figure 6. Precision-at-n for the discovery registry (original and enhanced) and Interface
Compatibility

Discussion. The results show that the proposed Interface Compatibility proce-
dures increase the visibility of the most suitable candidate services, independently
of the adopted underlying semantic basis. The higher values for precision, recall,
F-Measure and NDCG support such improvement. The comparison with the classic
Stroulia-based algorithm shows encouraging results as well. The Stroulia-based al-
gorithm did not present significant improvements over original results. The reason
for this is twofold. First, EasySOC already uses some concepts of the vector space
model to represent Web Service descriptions and queries, making the EasySOC
registry more efficient with respect to traditional discovery methods. Thus, the ad-
vantages of using VSM in the Stroulia-based algorithm are overlapped in the service
discovery step of the experiment. Second, as stated by the original authors of the
Stroulia algorithm, the similarity assessment methods developed are neither precise



Assessing Web Services Interfaces with Lightweight Semantic Basis 1197

nor robust enough to discover the desired service without a developer’s interven-
tion [10].

For the first experiment, the DISCO-based Interface Compatibility procedure
outperformed other approaches. In fact, the three implementations of Interface
Compatibility performed competitively. Particularly, precision-at-n greatly impro-
ves for the most relevant results – i.e., 1st to 3rd position of results lists. Although
precision tends to converge when n approaches to 10, the first positions are the most
significant since users tend to select higher ranked search results, regardless of their
actual relevance [47].

For the second experiment, we used a different dataset consisting of more than
1 000 services crawled from the Mashape repository. Also, the query generation
approach introduced two groups of software engineers to manually generate multi-
operation queries. Results with this configuration confirmed previous insights, show-
ing an improvement both in precision and recall in the first positions of results
lists.

It is important to notice that the experiments are empirical, thus the obtained
results can be specific for the data-set and queries used, and cannot be merely
generalized “as-is” to other experimental configurations. However, the empirical
validation is a common practice for the knowledge area of Web Service discovery
and selection. Similar experimental configurations and datasets were used not only
in foundational papers [10, 39, 45] but also in recent papers in the field [4, 48, 46, 17].

6.3 Experiment 3 – Interface Compatibility and Ontology-Based
Categorization and Matching

In the third experiment, we compared the WordNet-based (JWI) Interface Com-
patibility procedure against the experimental results obtained by Bouchiha et al.
in [11] for categorization and matching of Web Services.

Categorization and matching algorithms are based in domain ontologies. On-
tologies represent the semantic resources with which WSDL descriptions can be
annotated. The annotation process relates WSDL descriptions with concepts in on-
tologies. Annotation poses several problems, e.g., finding the relevant ontology or
ontologies, and matching large Web Service descriptions to the ontology vocabu-
lary. Because of these factors, it is necessary to have a semi-automatic and scalable
way for recognizing the functional category (domain) of a given Web Service de-
scription and then annotating such description with real world ontologies – namely,
categorization and matching algorithms.

Categorization algorithms aim to classify WSDL service descriptions according
to their corresponding domain – represented by an ontology. To do this, the fun-
damental WSDL elements are identified (XSD data types, interface, operations and
messages) and then compared with concepts in different domain ontologies. The re-
sult of the categorization algorithm is a likely ontology that is used as input for the
following matching algorithm. Matching algorithms aim to map WSDL elements
to concepts in a pre-selected domain ontology. Categorization and Matching algo-



1198 M. Garriga, A. De Renzis, A. Flores, A. Cechich, A. Zunino

rithms not only rely on ontology matching techniques but also use WordNet-based
similarity measures [49]. For further details interested readers could refer to [11].

Although the goal of the Interface Compatibility procedure differs from the cate-
gorization and matching algorithms, we find that they are comparable in the context
of this experiment. Particularly, the notions of semantic and structural assessment
described along this work have been used in previous work for classification and
categorization. On the one hand, to categorize software components according to
a given taxonomy [50]; on the other hand, to classify cases in a Case-based Reasoning
approach for service selection [51].

For this experiment, we used the data-set of 424 Web Services from [39]. Bouch-
iha et al. evaluated categorization and matching algorithms using only Web Services
of the business domain from such data-set, due to the lack of relevant and descrip-
tive ontologies for other domains. Hence, 13 services from the business domain are
considered as the target services, and the remaining 411 services are noise for this
experiment. Using the experimental steps described in Section 6.1.1 we extracted
operations’ signatures from the 13 business (target) services, which contained 71
operations. Then the mutation operators were randomly applied to these operation
signatures, generating 71 mutated queries with different structural information. We
defined two different experimental scenarios for the dataset and queries, whose de-
tails and results are described below.

6.3.1 Scenario 1 – Interface Compatibility vs. Categorization Algorithm

For each query, we associated the 13 services from the business domain as target ser-
vices. Then, we analyzed the first 10 results retrieved by the interface compatibility
procedure. If at least 5 out of the first 10 retrieved services are target services for
a query, then such query is categorized under the business category; i.e., it is a hit
(according to categorization notions). Otherwise, the query is considered as a miss.

Table 6 summarizes the precision, recall and f-measure values for the categoriza-
tion algorithm and Interface Compatibility procedure applied with categorization
purposes. Results show that the Interface Compatibility procedure outperformed
the categorization algorithm in precision (5 %) but underperformed in recall (24 %)
and F-measure (8 %). This means that the overall accuracy (considering both pre-
cision and recall) of Interface Compatibility used for categorization is slightly worse
than the ontology-based categorization algorithm. Nevertheless, the former is widely
applicable, while the latter is restricted to domains with descriptive ontologies avail-
able.

Categorization Algorithm Interface Compatibility

Precision 0.61 0.66

Recall 0.85 0.61

F-Measure 0.71 0.63

Table 6. Interface Compatibility vs. Categorization Algorithm experimental results



Assessing Web Services Interfaces with Lightweight Semantic Basis 1199

6.3.2 Scenario 2 – Interface Compatibility
vs. Categorization and Matching

We used the aforementioned dataset of 424 services, with 71 queries extracted and
mutated from the 13 business services. For each query, a group of experts selected
one service from the business domain as target service. Then, we analyzed the first
10 results retrieved by the interface compatibility procedure according to the IR
metrics precision, recall and F-Measure. Finally, we compared the results with the
ontology-based categorization and matching algorithms.

Figure 7 a) depicts the Precision-at-1 values, where the Interface Compatibility
procedure outperformed categorization and matching algorithms by 17 % and 2 %,
respectively. This means, Interface Compatibility was more precise for this dataset.
Figure 7 b) depicts the Recall values, where the Interface Compatibility procedure
underperformed categorization and matching by 7 % and 22 %, respectively. Fig-
ure 7 c) depicts the F-Measure values, where the Interface Compatibility procedure
performed in between of categorization and matching, with a difference of 7 % and
9 %, respectively. This means that the overall accuracy (considering both precision
and recall) of Interface Compatibility is better than the categorization algorithm
and worse than the matching algorithm in average.

Discussion. From this experiment we can highlight that Interface Compatibility
performs as well as ontology-based algorithms. Furthermore, the former is widely
applicable, as the latter are restricted to domains with descriptive ontologies avail-
able. When such domain ontologies are available, the matching algorithm performs
better than Interface Compatibility, in terms of precision, recall and F-Measure.
But, according to different works in the field [20, 11, 21, 13], most domains lack
relevant specific ontologies, whose availability is mandatory for the matching algo-
rithm. Even more, the ontologies (when available) sometimes are not comprehensive
enough to express all the relevant concepts in a domain [11, 52, 53].

The goal of matching algorithms is different from the Interface Compatibility
procedures. Nevertheless, the notions of the Interface Compatibility procedures can
be used with categorization purposes [51, 50], performing as well as ontology-based
categorization algorithms while being widely applicable. However, the analysis in
the Interface Compatibility procedure is restricted to concepts in operations, as the
procedure ignores potentially meaningful concepts in comments, documentation and
other parts of service descriptions. As we stated earlier, it is important to notice that
the experiments are empirical, thus the obtained results confirm our hypothesis but
cannot be merely generalized “as-is” to other experimental configurations, although
similar practices are widely used in the field [4, 48, 46].

7 CONCLUSIONS AND FUTURE WORK

In this paper we presented details of the Interface Compatibility procedure, which
allows evaluating a candidate Web Service for its likely integration into a client



1200 M. Garriga, A. De Renzis, A. Flores, A. Cechich, A. Zunino

a) Precision-at-1 b) Recall

c) F-Measure

Figure 7. Precision, Recall and F-Measure for Interface Compatibility, Categorization and
Matching algorithms

application. This is performed through gathering and assessing structural and se-
mantic information of service interfaces. The former is done through structural
analysis of data types in operation parameters and return. The latter is done by
leveraging an underlying lightweight ontology, namely WordNet or DISCO. Several
experiments evaluated the performance of the three implementations between each
other and against third-party algorithms. Results have been measured in terms of
IR metrics: precision-at-n, recall, NDCG and F-measure.

According to the experiments, the Interface Compatibility procedure signifi-
cantly improved ranking results obtained from the EasySOC service discovery reg-
istry, independently of the underlying lightweight ontology. This is initially demon-
strated by the precision-at-n increase, ranging between 19 % and 42 % for the first
positions of the results lists, w.r.t. the service discovery registry results. Although
the DISCO-based implementation performed slightly better for the conducted exper-
iments, the different implementations may be suitable in different contexts: WordNet
is a generic dictionary of the English language, and could be suitable for a general-
purpose application. In turn, DISCO is based on occurrences of words in large cor-



Assessing Web Services Interfaces with Lightweight Semantic Basis 1201

pus of text; thus, in a corpus with highly-specific terms (e.g., a database of medical
bibliography), the DISCO-based approach could outperform others. Furthermore,
DISCO and WordNet could be used in conjunction to perform a two-step semantic
assessment of terms.

Also, the Interface Compatibility performs as well as ontology-based categoriza-
tion algorithms and can be used for similar purposes [50, 51]. Furthermore, the
former is widely applicable, as the latter are restricted to domains with descriptive
ontologies available, or may force developers to construct their own ad-hoc ontolo-
gies [54, 20] – which is costly in terms of time and effort. As future work in this
direction, we are planning to semi-automatically annotate more services according
to well-defined domain ontologies13. This would allow validation with a larger and
more representative set of semantically annotated services.

Currently, we are working on extending the semantic evaluation considering
other semantic relationships (e.g., siblings, or second-level hypo/hyperonymy) and
extending the structural-semantic Interface Compatibility procedure to Exceptions,
Return and complex types. Also, we are planning to use Named Entity Recognition
(NER) techniques [55]. By doing this, concept definitions could be closer to a certain
application domain (improving semantic precision) [8].

Acknowledgments

We would like to thank the anonymous reviewers for their helpful comments to
improve the quality of this paper. We also thank Dr. Cristian Mateos for his
valuable collaboration. This work is supported by projects: ANPCyT PICT 2012-
0045 and UNCo-SPU Reuse (04-F001).

REFERENCES

[1] Erickson, J.—Siau, K.: Web Service, Service-Oriented Computing, and Service-
Oriented Architecture: Separating Hype from Reality. Journal of Database Manage-
ment, Vol. 19, 2008, No. 3, pp. 42–54, doi: 10.4018/jdm.2008070103.

[2] Bichler, M.—Lin, K.: Service-Oriented Computing. Computer, Vol. 39, 2006,
No. 3, pp. 99–101, doi: 10.1109/MC.2006.102.

[3] McCool, R.: Rethinking the Semantic Web. IEEE Internet Computing, Vol. 9,
2005, No. 6, pp. 86–87.

[4] Garriga, M.—Flores, A.—Mateos, C.—Zunino, A.—Cechich, A.: Service
Selection Based on a Practical Interface Assessment Scheme. International Journal of
Web and Grid Services, Vol. 9, 2013, pp. 369–393, doi: 10.1504/IJWGS.2013.057469.

[5] De Renzis, A.—Garriga, M.—Flores, A.—Zunino, A.—Cechich, A.:
Semantic-Structural Assessment Scheme for Integrability in Service-Oriented Ap-
plications. Latin-American Symposium of Enterprise Computing, Montevideo,

13 https://www.w3.org/wiki/Good_Ontologies

https://doi.org/10.4018/jdm.2008070103
https://doi.org/10.1109/MC.2006.102
https://doi.org/10.1504/IJWGS.2013.057469
https://www.w3.org/wiki/Good_Ontologies


1202 M. Garriga, A. De Renzis, A. Flores, A. Cechich, A. Zunino

Uruguay, Latin-American Conference on Informatics (CLEI), September 2014, doi:
10.1109/CLEI.2014.6965175.

[6] Garriga, M.—De Renzis, A.—Lizarralde, I.—Flores, A.—Mateos, C.—
Cechich, A.—Zunino, A.: A Structural-Semantic Web Service Selection Approach
to Improve Retrievability of Web Services. Information Systems Frontiers, 2016,
pp. 1–26, doi: 10.1007/s10796-016-9731-1.

[7] Miller, G.—Beckwith, R.—Fellbaum, C.—Gross, D.—Miller, K.: Intro-
duction to WordNet: An On-line Lexical Database. International Journal of Lexicog-
raphy, Vol. 3, 1990, No. 4, pp. 235–244, doi: 10.1093/ijl/3.4.235.

[8] Finlayson, M.: Java Libraries for Accessing the Princeton WordNet: Comparison
and Evaluation. Proceedings of the 7th Global Wordnet Conference, Tartu, Estonia,
January 2014, pp. 78–85.

[9] Kolb, P.: Experiments on the Difference Between Semantic Similarity and Re-
latedness. Proceedings of the 17th Nordic Conference on Computational Linguistics
(NODALIDA ’09), Odense, Denmark, May 2009.

[10] Stroulia, E.—Wang, Y.: Structural and Semantic Matching for Assessing
Web Services Similarity. International Journal of Cooperative Information Systems,
Vol. 14, 2005, pp. 407–437, doi: 10.1142/S0218843005001213.

[11] Bouchiha, D.—Malki, M.—Alghamdi, A.—Alnafjan, K.: Semantic Web Ser-
vice Engineering: Annotation Based Approach. Computing and Informatics, Vol. 31,
2012, No. 6, pp. 1575–1595.

[12] Kokash, N.: A Comparison of Web Service Interface Similarity Measures. Starting
AI Researchers Symposium, Amsterdam, Netherlands, IOS Press, 2006.

[13] Crasso, M.—Zunino, A.—Campo, M.: A Survey of Approaches to Web Ser-
vice Discovery in Service-Oriented Architectures. Journal of Database Management,
Vol. 22, 2011, No. 1, pp. 102–132, doi: 10.4018/jdm.2011010105.

[14] Bartalos, P.—Bielikova, M.: Automatic Dynamic Web Service Composition:
A Survey and Problem Formalization. Computing and Informatics, Vol. 30, 2012,
No. 4, pp. 793–827.

[15] Motahari Nezhad, H. R.—Benatallah, B.—Xuyuan, G.: Protocol-Aware
Matching of Web Service Interfaces for Adapter Development. International
Conference on World Wide Web, Raleigh, North Carolina, USA, 2010, doi:
10.1145/1772690.1772765.

[16] Aumueller, D.—Do, H.—Massmann, S.—Rahm, E.: Schema and On-
tology Matching with COMA++. Proceedings of the ACM SIGMOD Interna-
tional Conference on Management of Data, ACM Press, 2005, pp. 906–908, doi:
10.1145/1066157.1066283.

[17] Tibermacine, O.—Tibermacine, C.—Cherif, F.: WSSim: A Tool for the Mea-
surement of Web Service Interface Similarity. Proceedings of the French-Speaking
Conference on Software Architectures, Toulouse, France, May 2013.

[18] Dong, X.—Halevy, A.—Madhavan, J.—Nemes, E.—Zhang, J.: Similarity
Search for Web Services. Proceedings of the International Conference on Very Large
Data Bases (VLDB), 2004, pp. 372–383, doi: 10.1016/B978-012088469-8.50035-8.

https://doi.org/10.1109/CLEI.2014.6965175
https://doi.org/10.1007/s10796-016-9731-1
https://doi.org/10.1093/ijl/3.4.235
https://doi.org/10.1142/S0218843005001213
https://doi.org/10.4018/jdm.2011010105
https://doi.org/10.1145/1772690.1772765
https://doi.org/10.1145/1066157.1066283
https://doi.org/10.1016/B978-012088469-8.50035-8


Assessing Web Services Interfaces with Lightweight Semantic Basis 1203

[19] Plebani, P.—Pernici, B.: URBE: Web Service Retrieval Based on Similarity Eval-
uation. IEEE Transactions on Knowledge and Data Engineering, Vol. 21, 2009, No. 11,
pp. 1629–1642, doi: 10.1109/TKDE.2009.35.

[20] Garriga, M.—Flores, A.—Mateos, C.—Cechich, A.—Zunino, A.: REST-
ful Service Composition at a Glance: A Survey. Journal of Network and Computer
Applications, Vol. 60, 2016, pp. 32–53, doi: 10.1016/j.jnca.2015.11.020.

[21] Garriga, M.—Flores, A.—Cechich, A.—Zunino, A.: Web Services Com-
position Mechanisms: A Review. IETE Technical Review, Vol. 32, 2015, No. 5,
pp. 376–383, doi: 10.1080/02564602.2015.1019942.

[22] Shvaiko, P.—Euzenat, J.: Ontology Matching: State of the Art and Future Chal-
lenges. IEEE Transactions on Knowledge and Data Engineering, Vol. 25, 2013, No. 1,
pp. 158–176, doi: 10.1109/TKDE.2011.253.

[23] Pirró, G.: A Semantic Similarity Metric Combining Features and Intrinsic Informa-
tion Content. Data and Knowledge Engineering, Vol. 68, 2009, No. 11, pp. 1289–1308.

[24] Gosling, J.—Joy, B.—Steele, G.—Bracha, G.: Java Language Specification.
3rd Ed. Addison-Wesley, Sun Microsystems, Inc., 2005.

[25] Pasley, J.: Avoid XML Schema Wildcards for Web Service Interfaces. IEEE Internet
Computing, Vol. 10, 2006, No. 3, pp. 72–79, doi: 10.1109/MIC.2006.45.

[26] Anabalon, D.—Garriga, M.—Flores, A.—Cechich, A.—Zunino, A.:
Adaptability-Based Service Behavioral Assessment. Journal of Computer Science and
Technology, Vol. 15, 2015, pp. 75–80.

[27] Anabalon, D.—Garriga, M.—Flores, A.—Cechich, A.—Zunino, A.: Test
Reduction for Web Service Integration. Proceedings of the Argentinean Symposium
of Software Engineering (ASSE 2015), September 2015, pp. 115–129.

[28] Crasso, M.—Rodriguez, J. M.—Zunino, A.—Campo, M.: Revising WSDL
Documents: Why and How. IEEE Internet Computing, Vol. 14, 2010, No. 5,
pp. 48–56, doi: 10.1109/MIC.2010.81.

[29] Mateos, C.—Crasso, M.—Zunino, A.—Coscia, J. M.: Revising WSDL Docu-
ments: Why and How, Part 2. IEEE Internet Computing, Vol. 17, 2013, pp. 46–53,
doi: 10.1109/MIC.2013.4.

[30] Elish, M. O.—Offutt, J.: The Adherence of Open Source Java Programmers to
Standard Coding Practices. International Conference on Software Engineering and
Applications (IASTED), 2002, pp. 374.200–374.207.

[31] Casamayor, A.—Godoy, D.—Campo, M.: Mining Architectural Responsibilities
and Components from Textual Specifications Written in Natural Language. SADIO
Electronic Journal of Informatics and Operations Research, Vol. 10, 2011, No. 1,
pp. 4–19.

[32] Willett, P.: The Porter Stemming Algorithm: Then and Now. Program: Electronic
Library and Information Systems, Vol. 40, 2006, No. 3, pp. 219–223.

[33] Paice, C.: An Evaluation Method for Stemming Algorithms. Proceedings of the
International ACM SIGIR Conference on Research and Development in Information
Retrieval, Springer-Verlag New York, Inc., 1994, pp. 42–50, doi: 10.1007/978-1-4471-
2099-5 5.

https://doi.org/10.1109/TKDE.2009.35
https://doi.org/10.1016/j.jnca.2015.11.020
https://doi.org/10.1080/02564602.2015.1019942
https://doi.org/10.1109/TKDE.2011.253
https://doi.org/10.1109/MIC.2006.45
https://doi.org/10.1109/MIC.2010.81
https://doi.org/10.1109/MIC.2013.4
https://doi.org/10.1007/978-1-4471-2099-5_5
https://doi.org/10.1007/978-1-4471-2099-5_5


1204 M. Garriga, A. De Renzis, A. Flores, A. Cechich, A. Zunino

[34] Meyer, D.—Hornik, K.—Feinerer, I.: Text Mining Infrastructure in R. Journal
of Statistical Software, Vol. 25, 2008, No. 5, pp. 1–54.

[35] Bano, M.—Ferrari, A.—Zowghi, D.—Gervasi, V.—Gnesi, S.: Automated
Service Selection Using Natural Language Processing. Requirements Engineering in
the Big Data Era, Springer, 2015, pp. 3–17, doi: 10.1007/978-3-662-48634-4 1.

[36] Godoy, D.—Schiaffino, S.—Amandi, A.: Interface Agents Personalizing Web-
based Tasks. Cognitive Systems Research, Vol. 5, 2004, No. 3, pp. 207–222.

[37] Crasso, M.—Zunino, A.—Campo, M.: Combining Query-by-Example and Query
Expansion for Simplifying Web Service Discovery. Information Systems Frontiers,
Vol. 13, 2011, No. 3, pp. 407–428, doi: 10.1007/s10796-009-9221-9.

[38] Kuhn, H.: The Hungarian Method for the Assignment Problem. Naval Research
Logistic Quarterly, Vol. 2, 1955, pp. 83–97, doi: 10.1002/nav.3800020109.

[39] Heß, A.—Johnston, E.—Kushmerick, N.: ASSAM: A Tool for Semi-
Automatically Annotating Semantic Web Services. Proceedings of the International
Semantic Web Conference (ISWC), Springer, 2004, pp. 320–334.

[40] Mateos, C.—Crasso, M.—Zunino, A.— Ordiales Coscia, J. M.: Detecting
WSDL Bad Practices in Code-First Web Services. International Journal of Web and
Grid Services, Vol. 7, 2011, No. 4, pp. 357–387, doi: 10.1504/IJWGS.2011.044710.

[41] Gosh, S.—Mathur, A. P.: Interface Mutation. Software Testing, Verification and
Reliability, Vol. 11, 2001, pp. 227–247, doi: 10.1002/stvr.239.

[42] Salton, G.—Wong, A.—Yang, C. S.: A Vector Space Model for Automatic
Indexing. Communications of the ACM, Vol. 18, 1975, No. 11, pp. 613–620, doi:
10.1145/361219.361220.

[43] Delamaro, M.—Maldonado, J.—Mathur, A.: Interface Mutation: An Ap-
proach for Integration Testing. IEEE Transactions on Software Engineering, Vol. 27,
2001, No. 3, pp. 228–247, doi: 10.1109/32.910859.

[44] Rodriguez, J. M.—Crasso, M.—Zunino, A.—Campo, M.: Improving Web Ser-
vice Descriptions for Effective Service Discovery. Science of Computer Programming,
Vol. 75, 2010, No. 11, pp. 1001–1021, doi: 10.1016/j.scico.2010.01.002.

[45] Crasso, M.—Zunino, A.—Campo, M.: Easy Web Service Discovery: A Query-
by-Example Approach. Science of Computer Programming, Vol. 71, pp. 144–164,
2008, doi: 10.1016/j.scico.2008.02.002.

[46] Crasso, M.—Mateos, C.—Zunino, A.—Campo, M.: EasySOC: Making Web
Service Outsourcing Easier. Information Sciences, Vol. 259, 2014, pp. 452–473, doi:
10.1016/j.ins.2010.01.013.

[47] Agichtein, E.—Brill, E.—Dumais, S.—Ragno, R.: Learning User Interaction
Models for Predicting Web Search Result Preferences. 29th Annual ACM SIGIR In-
ternational Conference on Research and Development in Information Retrieval, ACM
Press, 2006, pp. 3–10, doi: 10.1145/1148170.1148175.

[48] Mateos, C.—Rodriguez, J. M.—Zunino, A.: A Tool to Improve Code-First
Web Services Discoverability Through Text Mining Techniques. Software: Practice
and Experience, Vol. 45, 2015, No. 7, pp. 925–948.

[49] Pedersen, T.—Patwardhan, S.—Michelizzi, J.: WordNet::Similarity –
Measuring the Relatedness of Concepts. Demonstration Papers at HLT-

https://doi.org/10.1007/978-3-662-48634-4_1
https://doi.org/10.1007/s10796-009-9221-9
https://doi.org/10.1002/nav.3800020109
https://doi.org/10.1504/IJWGS.2011.044710
https://doi.org/10.1002/stvr.239
https://doi.org/10.1145/361219.361220
https://doi.org/10.1109/32.910859
https://doi.org/10.1016/j.scico.2010.01.002
https://doi.org/10.1016/j.scico.2008.02.002
https://doi.org/10.1016/j.ins.2010.01.013
https://doi.org/10.1145/1148170.1148175


Assessing Web Services Interfaces with Lightweight Semantic Basis 1205

NAACL 2004, Association for Computational Linguistics, 2004, pp. 38–41, doi:
10.3115/1614025.1614037.

[50] Arias, M.—De Renzis, A.—Buccella, A.—Flores, A.—Cechich, A.:
Classification-Based Mining of Reusable Components on Software Product Lines.
IEEE Latin America Transactions, Vol. 14, 2016, No. 2, pp. 870–876.

[51] De Renzis, A.—Garriga, M.—Flores, A.—Cechich, A.—Zunino, A.:
Case-Based Reasoning for Web Service Discovery and Selection. Electronic
Notes in Theoretical Computer Science, Vol. 321, 2016, pp. 89–112, doi:
10.1016/j.entcs.2016.02.006.

[52] Guizzardi, G.: Ontological Foundations for Structural Conceptual Models. 1st Ed.
Universal Press, The Netherlands, 2005. ISBN 90-75176-81-3.

[53] Lanthaler, M.—Gutl, C.: A Semantic Description Language for RESTful Data
Services to Combat Semaphobia. Proceedings of the 5th International Conference on
Digital Ecosystems and Technologies Conference (DEST), IEEE, 2011, pp. 47–53,
doi: 10.1109/DEST.2011.5936597.

[54] Funika, W.—Godowski, P.—Pȩgiel, P.—Król, D.: Semantic-Oriented Perfor-
mance Monitoring of Distributed Applications. Computing and Informatics, Vol. 31,
2012, No. 2, pp. 427–446.

[55] Nadeau, D.—Sekine, S.: A Survey of Named Entity Recognition and Classifica-
tion. Lingvisticae Investigationes, Vol. 30, 2007, No. 1, pp. 3–26.

Martin Garriga received his Ph.D. degree in computer sci-
ences in 2016 at Faculty of Exact Sciences, UNICEN. He is
a posdoctoral fellow at Politecnico de Milano (Italy) since 2016,
and Lecturer Assisstant at Informatics Faculty, UNComa since
2011. His research interests are service-oriented architectures,
web service selection and composition, RESTful Services and
microservices architectures.

Alan De Renzis received his B.Sc. degree in computer sciences
in 2013 at the Faculty of Informatics, UNComa (Neuquen, Ar-
gentina). Since then he is a Ph.D. candidate at Faculty of Exact
Sciences, UNICEN (Tandil, Argentina). His research interests
are service-oriented architectures, web service discovery and se-
lection and service metamodels.

https://doi.org/10.3115/1614025.1614037
https://doi.org/10.1016/j.entcs.2016.02.006
https://doi.org/10.1109/DEST.2011.5936597


1206 M. Garriga, A. De Renzis, A. Flores, A. Cechich, A. Zunino

Andres Flores received his Ph.D. degree in informatics from
University of Castilla-La Mancha, Spain in 2009. He is Ad-
junct Professsor at Informatics Faculty, UNComa since 2010,
and Researcher at the Argentinean National Scientific and Tech-
nical Research Council (CONICET) since 2012. His research
interests are software engineering, service-oriented computing,
component-based systems, software testing.

Alejandra Cechich received her Ph.D. degree in informatics
from University of Castilla-La Mancha, Spain (2005). She is
Fulltime Professor at Informatics Faculty, UNComa since 1996.
Her research interests are software engineering, software reuse,
software quality and architectures.

Alejandro Zunino received his Ph.D. degree in computer scien-
ces at the Faculty of Exact Sciences, UNICEN university, in
2003. He is Fulltime Professor at Faculty of Exact Sciences, UNI-
CEN since 2006, and Researcher at CONICET since 2005. His
research interests are software engineering, mobile computing,
service-oriented architectures, and grid and cloud computing.


