
Computing and Informatics, Vol. 36, 2017, 1207–1234, doi: 10.4149/cai 2017 5 1207

ON-LINE LOAD BALANCING WITH TASK BUFFER

Jiayin Wei, Daoyun Xu, Yongbin Qin, Ruizhang Huang

College of Computer Science and Technology
Guizhou University, China
e-mail: weijiayin05@sina.com,

{dyxu, cse.ybqin, cse.rzhuang}@gzu.edu.cn

Abstract. On-line load balancing is one of the most important problems for appli-
cations with resource allocation. It aims to assign tasks to suitable machines and
balance the load among all of the machines, where the tasks need to be assigned to
a machine upon arrival. In practice, tasks are not always required to be assigned
to machines immediately. In this paper, we propose a novel on-line load balanc-
ing model with task buffer, where the buffer can temporarily store tasks as many
as possible. Three algorithms, namely LPTCP1α, LPTCP2α, and LPTCP3β, are
proposed based on the Longest Processing Time (LPT) algorithm and a variety of
planarization algorithms. The planarization algorithms are proposed for reducing
the difference among each element in a set. Experimental results show that our
proposed algorithms can effectively solve the on-line load balancing problem and
have good performance in large scale experiments.

Keywords: On-line schedule, load balancing, task buffer, planarization processing

1 INTRODUCTION

Load balancing is a fundamental problem in distributing and communication sys-
tems. Without proper scheduling and resource allocation, tasks accumulate at each
machine unevenly which resulting in an unbalanced system. In extreme cases, some
machines are overloaded while some are starved. Unbalanced systems can cause
serious problems: System resources cannot be fully utilized. System operates ineffi-
ciently which results in low productivity. Therefore, the study of the load balancing
problem is valuable and significant. In the recent years, researchers have developed
a number of algorithms to solve this problem, among which max-min task schedul-

1208 J. Wei, D. Xu, Y. Qin, R. Huang

ing [1], evolutionary meta-heuristic [2, 3, 4], bio-inspired search algorithm [5], ant
colony algorithm [6, 7], extremal optimization [8], and algorithmic mechanism de-
sign [9, 10] are the most discussed.

In general, load balancing can be classified in two categories: off-line and on-line.
In the off-line setting, the complete knowledge of the entire input is available. The
off-line load balancing problem is NP-hard [11]. In the on-line setting [12, 13], there
are m parallel machines with speeds s1, s2, . . ., sm (if all machines have the same
speed, i.e. s1 = s2 = . . . = sm, they are called identical machines) and n independent
tasks with weight w1, w2, . . ., wn. Machine i needs pi(j) = wj/si time when task j
is processed on it. A task is required to be assigned to exactly one of the machines
and this allocation is not allowed to be changed. All tasks must be assigned with
no admission control. Let Li(t − 1) denote the load of machine i at time t − 1. If
task j is assigned to machine i at time t, the load of machine i is increased by pi(j),
calculated as follows:

Lk (t) =

{
Lk (t− 1) + pi(j) if k = i,

Lk (t− 1) o.w.
(1)

Similarly, if task j departs from machine i at time t, the load on this machine
is decreased by pi(j). Note that for identical machines, ∀i, j : pi(j) = wj. The
common objective for the load balancing problem is to minimize the maximum
load. However, some other objectives have been considered, e.g., the maximum flow
time, the minimum machine completion time, the total completion time, the sum of
weighted tardiness, etc.

The competitive ratio is often used to measure the performance of an on-line
algorithm. Given a set of instances I, for an algorithm A and each instance I ∈ I,
let cA(I) denote the objective function value produced by A and let c∗(I) denote
the optimal value in an off-line version. Then the competitive ratio of A is defined
as the smallest number r ≥ 1 such that for any I, cA(I) ≤ r · c∗(I).

In this paper, we consider a new variant of on-line load balancing problem with
task buffer The remainder of this paper is structured as follows. Section 2 provides
a detailed related work. Section 3 provides the definition of the problem of on-line
load balancing and the existing algorithms for the general version. Section 4 provides
the concept of flatting set. Section 5 explains some algorithms for solving this new
problem of on-line load balancing with task buffer. Section 6 details the experimental
results. Finally, the conclusions of this work are then given in Section 7.

2 RELATED WORK

Many on-line load balancing models have been studied in the literature. Even for the
most basic case of identical machines, there is a gap between the best known lower
and upper bounds of the competitive ratio, in particular, 1.880 [14] and 1.9201 [15],
respectively. Divakaran and Saks [16] considered an on-line variant of scheduling

On-Line Load Balancing with Task Buffer 1209

with setup times and release times. They proposed a O(1)-competitive online al-
gorithm for minimizing the maximum flow time if tasks arrive over time at one
single machine. Liu and Lu [17] presented an online algorithm for two parallel
machines with release dates and delivery times which has a competitive ratio of(
1 +
√

5
)
/2 ≈ 1.618.

Semi-online scheduling, which assumes that some partial additional informa-
tion is known in advance, was first introduced by Liu et al. [18]. They considered
a semi-online problem with ordinal data on parallel machines, where task process-
ing times are not known but the order of task by processing time is known. He
et al. [19] investigated preemptive semi-online scheduling problems on m identi-
cal parallel machines, where the total size of all tasks is known in advance. They
presented an optimal semi-online algorithm with the objective to minimize the max-
imum machine completion time Cmax, i.e., minimize the makespan, which achieves
competitive ratio to 1. For the objective of maximizing the minimum machine com-
pletion time Cmin, they demonstrated that the competitive ratio of any semi-online
algorithm is at least 2m−3

m−1 for any m > 2. Luo and Xu [20] considered the online
hierarchical scheduling problem on two parallel machines with bounded processing
times. The processing times are bounded by an interval [1, α]. For the objective of
minimizing the Cmax, they proved that no algorithm can have a competitive ratio
less than 1 + α.

Adding lookahead is a common practice to improve the performance of algorithm
for on-line problems. However, lookahead alone is not sufficient. The paradigm of
on-line reordering is more powerful than lookahead alone and has received a lot of
attention [21, 22]. Englert et al. [22] presented an algorithm, for online minimum
makespan scheduling, with a buffer of size O(m) which achieves a competitive ratio

of
W−1(−1/e2)

(1+W−1(−1/e2)) ≈ 1.4659. In this model, at each time, the reordering buffer always

contains the first k tasks of the input sequence that have not been assigned so far.

We present an extensive study on the power of online reordering for the on-line
load balancing problem. In our model, each task enters into a buffer when it arrives.
When some machines finish processing all the tasks assigned, appropriate tasks are
selected from the buffer and allocated to those machines. Different from the model
in [22], the size of the buffer is determined by the number of the tasks that have not
been assigned after their arrival. The task buffer needs to be flatted (i.e., reduce
the difference among each task by some technology) before tasks are selected to be
allocated to some machines. The assignment of task only occurs when there are
machines available rather than right after tasks arrive. Three algorithms for the
on-line load balancing, namely LPTCP1α, LPTCP2α, and LPTCP3β, are designed
based on the two new α-planarization algorithms, a β-planarization algorithm in [23],
and the Longest Processing Time (LPT) algorithm in [24]. Experimental results
show that all three algorithms generate good solutions. The proposed algorithms
show the robust performance with large scale experiments.

1210 J. Wei, D. Xu, Y. Qin, R. Huang

3 ON-LINE LOAD BALANCING AND EXISTING ALGORITHMS

In this section, the definition of general on-line load balancing problem and the
problem of on-line load balancing with task buffer are firstly introduced. Algorithms
for the general on-line load balancing problem are then discussed. Note that there
are no related algorithms for the problem of on-line load balancing with task buffer.

3.1 Problem Definition

The general on-line load balancing problem has been extensively studied. It re-
quires a task to be assigned right after it arrives to exactly one of the machines.
However, tasks may not be allocated immediately in real cases. Considering the
case of resources allocation in computer system, each task will be allocated after
corresponding resources are available. The above problem widely exists in the areas
of computing and communications. Therefore, we design an on-line load balancing
model with task buffer, where the buffer can temporarily store tasks as many as
possible. Each task enters into the task buffer when it arrives. Tasks in this buffer
will be allocated according to the status of machines. We name it the problem of
on-line load balancing with task buffer, and describe it in detail in the rest of the
subsection.

Suppose there are m identical machines, n independent tasks and an unlimited
sized task buffer (in fact, the size of this task buffer is not more than n), a task j
arrives at time rj with processing time pj. The processing time pj is the time task j
takes to reach its completion. Because the primary role of the task buffer is to
temporarily store tasks for later access, we name it Cache. Each task enters into
the Cache, rather than be assigned immediately, when it arrives. Different from
the traditional model, the load of a machine i is estimated as the completion time
of the last task on the machine i, denoted as Li. When machines finish processing
all tasks assigned, appropriate tasks are selected from the Cache and allocated to
them. The allocation is not allowed to be changed. The objective function is to
find a schedule to minimize the maximum load (makespan), which is defined as
Cmax = maxi∈m {Li}.

3.2 Approaches for the General On-Line Load Balancing Problem

Extensive work has been done on the general on-line load balancing problem. The
Greedy algorithm, the Semi-Greedy algorithm, and the LPT algorithm are the most
classical algorithms.

R. L. Graham [25] presented a Greedy algorithm for solving the problem of on-
line load balancing. The idea is to allocate each task to the machine with the current
minimum load. The Greedy algorithm leads to a (2 − 1

m
)-competitive solution in

O(mn) time. Good solution can be obtained in the early stage of the algorithm.
However the quality of the solution decreases in later stage, because of the lack
of knowledge about future incoming tasks. Therefore, Hart and Shogan proposed

On-Line Load Balancing with Task Buffer 1211

a Semi-Greedy algorithm in [26]. At each iteration, the choice of to which machine
an arriving task can be allocated is determined by a semi-greedy strategy. All
candidate machines in a candidate list CL are ordered based on a greedy function.
A sublist of the candidate machines, which includes the first r machines, in the
ordered candidate list CL, is selected. This sublist is denoted as the Restricted
Candidate List (RCL). The Semi-Greedy algorithm then randomly selects a machine
from the RCL. It is easy to verify that if r = 1, the Semi-Greedy algorithm behaves
like a Greedy algorithm. If r = |CL|, the Semi-Greedy algorithm becomes a random
algorithm. The basic idea of the LPT algorithm, proposed by R. L. Graham in [24],
is to firstly sort the processing times of tasks by descending order, and assign tasks
in turns to the machine with the lowest load. The LPT algorithm is a

(
4
3
− 1

3m

)
-

approximation algorithm with running time O(n log n).

Example 1. Consider an instance of on-line load balancing problem with 4 ma-
chines and 9 tasks (i.e. m = 4, n = 9). The release time rj and processing time pj
of each task j are shown in Table 1.

Task j 1 2 3 4 5 6 7 8 9

rj 0 1 1 3 4 4 7 7 8

pj 8 4 5 6 6 7 3 2 4

Table 1. The release time and processing time of each task

The solution of the on-line load balancing problem is composed by an allocation
scheme X and the corresponding makespan Cmax. The element of X is (Tj,mi, t),
it means that task Tj is processed on machine mi at time t.

With the Greedy algorithm on Example 1, we can get a solution XGreedy =

{(1, 1, 0), (2, 2, 1), (3, 3, 1), (4, 4, 3), (5, 2, 5), (6, 3, 6), (7, 1, 8), (8, 4, 9), (9, 1, 11)},
Cmax = 15. The solution produced by the Semi-Greedy algorithm with r = 2 may
be XSemi-Greedy = {(1, 1, 0), (2, 2, 1), (3, 3, 1), (4, 4, 3), (5, 2, 5), (6, 3, 6), (7, 4, 9),

(8, 1, 8), (9, 1, 10)}, C ′max = 14. The solution obtained by the LPT algorithm is
XLPT = {(1, 1, 0), (2, 3, 1), (3, 2, 1), (4, 4, 3), (5, 2, 6), (6, 3, 5), (7, 1, 8), (8, 4, 9),
(9, 1, 11)}, C ′′max = 15. The results are shown in Figure 1.

It is obvious that there are big differences among the maximum loads obtained
by the Greedy, the Semi-Greedy, and the LPT algorithms. The reason is that the
machine allocation decision of task is made without the consideration of two key
factors. The first factor is the release and the process time of future arriving tasks.
The second factor is the busy or idle status of machines. The above algorithms all
allocate each task by finding the current local minimum makespan, which may not
result in good solutions.

In this paper, we propose a new model of the on-line load balancing problem with
task buffer, the task buffer is denoted as Cache. In our model, each task enters into
the Cache when it arrives. When some machines finish processing all tasks assigned,
appropriate tasks are selected from the Cache and allocated to them. This allocation

1212 J. Wei, D. Xu, Y. Qin, R. Huang

1

2

3

4

6

97

5

8

0 4 8 12 16 t

M1
M2
M3
M4

a) Greedy

1

2

3

4

6

9

7

5

8

0 4 8 12 16 t

M1
M2
M3
M4

b) Semi-Greedy

1

3

2

4

6

97

5

8

0 4 8 12 t

M1
M2
M3
M4

16

c) LPT

Figure 1. The results of Example 1 obtained by the Greedy, the Semi-Greedy, and the
LPT algorithms

is not allowed to be changed. As suggested by [23, 27], when the difference between
the processing times of each task is small enough, the assignment of each task will be
simpler and better scheduling results will be achieved. We design three planarization
algorithms on the Cache, for properly assigning a task in the Cache to a machine.
In the following sections, we will firstly introduce the concept of the flatting set
and three planarization algorithms in Section 4. Three algorithms for the on-line
load balancing problem with task buffer based on the planarization techniques and
the basic idea of the LPT algorithm are then presented in Section 5. In Section 6,
experimental results are described.

4 FLATTING SET AND PLANARIZATION ALGORITHM

4.1 The Concept of Flatting Set

In order to formalize the level of distinctness among each elements in a positive
real number set, the concepts of α-flatting set and β-flatting set have been pro-
posed respectively in [27] and [23]. The specific formalized definitions are shown in
Definition 1 and 2.

Definition 1 (α-flatting set). A set A = {ai|ai ∈ R+, i ∈ [n]} is a α-flatting set, if
there exists a factor α ∈ [0, 1) such that for every i 6= j ∈ [n],

|ai − aj| ≤ α · amin

where amin = min{a1, a2, . . . , an}.

On-Line Load Balancing with Task Buffer 1213

For example, if α = 0.5, A = {21, 20, 18, 24, 26} is a α0.5-flatting set, while
A′ = {3, 5, 9, 6} is not a α0.5-flatting set. Particularly, |A| = 1 is a α0-flatting set
(i.e. α = 0). We do not need to do any special operations. In the following section,
we assume that |A| = n ≥ 2.

Definition 2 (β-flatting set). A set A = {ai|ai ∈ R+, i ∈ [n]} is a β-flatting set, if
there exists a factor β ≥ 1 such that for every i 6= j ∈ [n],

1

β
≤ ai
aj
≤ β.

For example, if β = 4, A = {12, 9, 15, 24, 30} is a β4-flatting set, while A′ =
{4, 5, 17, 11} is not a β4-flatting set. Similarly, |A| = 1 is a β1-flatting set (i.e.
β = 1). We do not need to do any special operations. In the following section, we
assume that |A| = n ≥ 2.

Given a set A = {ai|ai > 0, i ∈ [n]}, let amin = min{A}, amax = max{A}.
Whether A is an α(or β)-flatting set can be determined by the Theorem 1 (or 2).

Theorem 1. A set A = {ai|ai ∈ R+, i ∈ [n]} is an α-flatting set iff amax ≤ (1 +α) ·
amin.

Proof. Without loss of generality, assume that a1 ≥ a2 ≥ . . . ≥ an, then amin = an,
amax = a1.

If amax ≤ (1 + α) · amin, then for every ai, aj, i 6= j ∈ [n] satisfies,

|ai − aj| ≤ a1 − an ≤ (1 + α) · an − an ≤ α · an.

By Definition 1, A is an α-flatting set.
Conversely, let A be an α-flatting set. By the Definition 1, for every i 6= j ∈ [n],

there is a factor α ∈ [0, 1) such that |ai − aj| ≤ α · amin = α · an, thus amax− amin =
a1 − an ≤ α · an, i.e. amax ≤ (1 + α) · amin. �

Corollary 1. A set A = {ai|ai ∈ R+, i ∈ [n]} is an α-flatting set, then 1 ≤ amax
amin

<
2.

Proof. The proof is immediate since α ∈ [0, 1) and amin ≤ amax ≤ (1 +α) · amin. �

Theorem 2. A set A = {ai|ai ∈ R+, i ∈ [n]} is a β-flatting set iff amax ≤ β · amin.

Proof. Assuming that, w.l.o.g., a1 ≥ a2 ≥ . . . ≥ an, then amin = an, amax = a1.
If amax ≤ β · amin, then for every ai, aj, i 6= j ∈ [n] satisfies,

ai
aj
≤ a1
an

=
amax

amin

≤ β.

By Definition 2, A is a β-flatting set.
Conversely, if A is a β-flatting set, by the Definition 2 we have amax = a1 ≤

β · an = β · amin. �

1214 J. Wei, D. Xu, Y. Qin, R. Huang

By Theorem 1 and 2, we know that α-flat and β-flat are consistent when β ∈
[1, 2).

4.2 Planarization Algorithm and Its Efficiency

A none-α (or β)-flatting set A can be converted to a corresponding α (or β)-flatting
set by using planarization techniques. According to the α-planarization algorithm
in [27] and the β-planarization algorithm in [23], the general framework of a pla-
narization Algorithm (PA) is depicted in Algorithm 1.

Algorithm 1: Planarization Algorithm, PA

Input: A = {a1, a2, . . . , an}, P .
Output: A flat sequence B.

1 n← |A| ;
2 for i← 1 to n do
3 c(i).Index← i, c(i).v ← ai, b(i)← {c(i)}, b(i).v ← ai;
4 B← {b(1), b(2), . . . , b(n)};
5 Sorting: B ← {b(π(1)), b(π(2)), . . . , b(π(n))} where b(π(i)) ∈ B and
∀1 ≤ i < j ≤ n, b(π(i)).v ≥ b(π(j)).v ;

6 while b(π(1)).v/b(π(n)).v > P do
7 Flatting B by a planarization procedure and the result is B′ = {b′i} ;
8 n← |B′| ;
9 Sorting: B ← {b(π(1)), b(π(2)), . . . , b(π(n))} where b(π(i)) ∈ B′ and

∀1 ≤ i < j ≤ n, b(π(i)).v ≥ b(π(j)).v ;

10 return B;

The input parameter P in Algorithm 1 is the target degree of flatness. The
step 1 is used to get the size of A. The steps 2 to 4 are used to construct a set
B = {b(1), b(2), . . . , b(n)}, where b(i) is a set of c(i), c(i).Index is the index of ai
in A, c(i).v is the value of ai, b(i).v is the sum of all element in it. The step 5 is
used to sort B in descending order by b(i).v, the result is B. The step 6 is a while
loop, it will run until B is a flatting set. The step 7 is flatting B by a planarization
procedure and the result is B′. The step 9 is used to sort B′ in descending order by
b(i).v and the result is B. It is worth noting that the purpose of steps 5 and 9 is to
ensure that the set B, which is the input of a planarization procedure or the result
of Algorithm 1, is ordered.

Of all the processing steps of Algorithm 1, the step 7 is the most critical. In
step 7, some elements in the set are combined into a new element by a planarization
procedure. The performance of the Algorithm 1 is closely related to the planarization
procedure adopted. In [27], the PAα was proposed which combines the smallest and
the second smallest elements into a new element. This procedure is straightforward
but it is not efficient.

On-Line Load Balancing with Task Buffer 1215

Taking the PAβ proposed in [23] as a reference, we design two new α-planariza-
tion procedures. The first one, namely APBM, is designed taking the mean value of
all elements into consideration. The efficiency of the APBM is improved by making
the new element generated in each loop as close as possible to the mean value of all
the elements. The reason is that the purpose of flatting is to reduce the gap among
the elements of the set. A detail description of the APBM is shown in Procedure
APBM.

Procedure 1: APBM(B)

1 B′ ← {b(π(1))}, i← 2, l← n, bavg ← (
∑n

i=1 b(π(i)).v) /n ;
2 while l ≥ i do
3 if l = i then return B′ ← B′ ∪ {b(π(i))} ;
4 if b(π(i)) ≥ bavg then
5 B′ ← B′ ∪ {b(π(i))}, i = i+ 1 ;
6 else
7 Let b′(π(i))← {b(π(i)), b(π(i′)), . . . , b(π(l))} and

b′(π(i)).v ← b(π(i)).v +
∑l

k=i′ b(π(k)).v, where

i′ ← arg maxj>i

{(
b(π(i)).v +

∑l
k=j b(π(k)).v

)
≥ bavg

}
(if there is

no such i′ then let i′ ← i+ 1) ;
8 Let i← i+ 1, l← i′ − 1, B′ ← B′ ∪ {b′(π(i))} ;

9 return B′ ;

In Procedure APBM, the APBM(B) means that the input parameter of the
Procedure APBM is B. bavg is the mean value of all elements in B. The variable i (l)
is a forward (backward) scanning variable. The while loop, from step 2 to 8, will
always be executed until l < i.

The second α-planarization procedure, namely APBT, is designed based on the
Theorem 1. It is easy to see that an α-flatting set A satisfies amax ≤ (1 + α) · amin.
The efficiency of the APBT is improved by making the new element generated in
each loop satisfying amax ≤ (1 + α) · amin. A detail description of the APBT is
shown in Procedure APBT.

The APBT(B, P) in Procedure APBT means that the input parameters of the
Procedure APBT are B and P . P is the target degree of flatness. bmax is the large
value of all elements in B, i.e. b(π(1)).v. Similarly to the Procedure APBM, the
variable i (l) is a forward (backward) scanning variable. The while loop, from step 2
to 9, will always be executed until l < i. The condition b(π(i)) ≥ bmax

1+P , in the step 5,
is designed based on the Theorem 1.

The time complexity of both the Procedure APBM and APBT is O(n), because
only one element in the set is processed at a time. The sort operation of the Algo-
rithm 1 is in O(n log n) time complexity when heap sort is used. Algorithm 1 needs
to be conducted in O(log n) iteration at most. Therefore the time complexity of the

1216 J. Wei, D. Xu, Y. Qin, R. Huang

Procedure 2: APBT(B, P)

1 B′ ← {b(π(1))}, i← 2, l← n, bmax ← b(π(1)).v ;
2 while l ≥ i do
3 if l = i then return B′ ← B′ ∪ {b(π(i))} ;
4 ;

5 if b(π(i)) ≥ bmax

1+P then

6 B′ ← B′ ∪ {b(π(i))}, i = i+ 1 ;

7 else
8 Let b′(π(i))← {b(π(i)), b(π(i′)), . . . , b(π(l))} and

b′(π(i)).v ← b(π(i)).v +
∑l

k=i′ b(π(k)).v, where

i′ ← arg maxj>i

{(
b(π(i)).v +

∑l
k=j b(π(k)).v

)
≥ bmax

1+α

}
(if there is

no such i′ then let i′ ← i+ 1) ;
9 Let i← i+ 1, l← i′ − 1, B′ ← B′ ∪ {b′(π(i))} ;

10 return B′ ;

Algorithm 1 is O(n(log n)2). When Algorithm 1 use the Procedure APBM (APBT)
as the planarization procedure, it is denoted as PA1α (PA2α).

For the β-Flatting, we use the PAβ proposed in [23], namely BPA in this paper.
The main idea is to repeat the process of generating a new set A′ by merging ai
and an+1−i into a′i until A′ is a β-flatting set. The time complexity of the BPA is
O(n(log n)2) [23].

5 ALGORITHMS FOR THE ON-LINE LOAD BALANCING
WITH TASK BUFFER

On-line load balancing with task buffer is a new problem. All existing algorithms
for the general on-line load balancing problem cannot be used directly. In this
section, we modify the Greedy, Semi-Greedy, and LPT algorithms for solving this
new problem. Three algorithms are then designed based on the LPT algorithm and
the planarization algorithms PA1α, PA2α, and PAβ.

5.1 General Approaches

Note that, by definition of the on-line load balancing with task buffer, an unlimited
task buffer is employed for task allocation. Tasks in the buffer are assigned only
when there are available machines. In order to modify the Greedy, the Semi-Greedy,
and the LPT algorithm for solving this problem, a task buffer denoted by Cache
and a list of currently available machines denoted by AM are employed. Each task
enters into the Cache when it arrives at the system. The operation of task allocation
is conducted when the Cache and AM are both nonempty.

On-Line Load Balancing with Task Buffer 1217

We design an algorithm, namely the Greedy with Cache (GreedyC), to solve the
problem of on-line load balancing with task buffer based on the Greedy algorithm.
In each iteration, set k = min {|Cache| , |AM |} as the number of tasks which need to
be allocated in this time. Assign the first k tasks in the Cache to the corresponding
available machines with the minimum load and update the loads of these machines
by

Li = t+ pj (2)

where t is the current time, pj is the processing time of the task j. Li is the load
of machine i which is allocated to the task j. The detail description of the GreedyC
algorithm is shown in Algorithm 2.

Algorithm 2: Greedy with Cache, GreedyC

Input: Task set T = {(rj, pj) |j ∈ [n]}, machine count m.
Output: Maskspan Cmax, task list TL where TL(i) is the task list

assigned to machine i.
1 ∀i ∈ [m], L(i)← 0, TL(i)← ∅ ;
2 t← 0, Cache← ∅, U ← sort T in ascending order of rj ;
3 while Cache 6= ∅ or U 6= ∅ do
4 Cache← Cache ∪ {(rj, pj) | (rj, pj) ∈ U ∧ rj = t},

AM ← {i|L(i) ≤ t ∧ i ∈ [m]} ;
5 k ← min {|Cache| , |AM |} ;
6 for l← 1 to k do
7 mid← arg mini∈AM {L(i)} ;
8 TL(mid)← TL(mid) ∪ Cache(l), L(mid)← t+ Cache(l, 2) ;
9 Cache← Cache\ {Cache(l)} ;

10 t← t+ 1 ;

11 return TL and Cmax = maxi∈[m] {L(i)};

Remark 1. The notation Cache(l, 2) in the step 8 of Algorithm 2 refers to the
second element of Cache(l), i.e., the processing time of the task Cache(l). The
structure of Cache is shown in Figure 2.

Similarly to the GreedyC algorithm, we modify the Semi-Greedy algorithm for
solving the problem of on-line load balancing with task buffer, named as the Semi-
Greedy with Cache (Semi-GreedyC) algorithm. In each iteration, for each task j of
the first k tasks in the Cache, assign it to a machine i which is randomly selected
from the sublist of machines formed by the first r available machines. Update the
load of machine i by Equation (2). The detail description of the Semi-GreedyC
algorithm is shown in Algorithm 3.

Remark 2. The operation rand (1,min {r, |AM |}) in the step 7 of Algorithm 3
refers to choosing a number in the integer interval [1,min {r, |AM |}] at random.

1218 J. Wei, D. Xu, Y. Qin, R. Huang

Cache(1,1) Cache(1,2)

Cache(2,1) Cache(2,2)

Cache(l,1) Cache(l,2)

Cache(n,1) Cache(n,1)

1

2

l

n

r p

Cache
Cache(l)

Figure 2. The structure of Cache

Algorithm 3: Semi-Greedy with Cache, Semi-GreedyC

Input: Task set T = {(rj, pj) |j ∈ [n]}, machine count m, the parameter
of restricted candidate list r(1 ≤ r ≤ m).

Output: Maskspan Cmax, task list TL where TL(i) is the task list
assigned to machine i.

1 ∀i ∈ [m], L(i)← 0, TL(i)← ∅ ;
2 t← 0, Cache← ∅, U ← sort T in ascending order of rj ;
3 while Cache 6= ∅ or U 6= ∅ do
4 Cache← Cache ∪ {(rj, pj) | (rj, pj) ∈ U ∧ rj = t},

AM ← {i|L(i) ≤ t ∧ i ∈ [m]} ;
5 k ← min {|Cache| , |AM |} ;
6 for l← 1 to k do
7 mid← rand (1,min {r, |AM |}) ;
8 TL(AM(mid))← TL(AM(mid)) ∪ Cache(l),

L(AM(mid))← t+ Cache(l, 2) ;
9 Cache← Cache\ {Cache(l)}, AM ← AM\ {mid} ;

10 t← t+ 1 ;

11 return TL and Cmax = maxi∈[m] {L(i)};

Similarly, we modify the LPT algorithm to solve the problem of on-line load
balancing with task buffer, named as the LPT with Cache (LPTC) algorithm. In
each iteration, sort the processing times of tasks in the Cache by descending order.
The result is named as CacheTmp. Assign the first k tasks in the CacheTmp to
the corresponding available machines with the minimum load. Update the loads of
these machines by Equation (2). The detail description of the LPTC algorithm is
shown in Algorithm 4.

On-Line Load Balancing with Task Buffer 1219

Algorithm 4: LPT with Cache, LPTC

Input: Task set T = {(rj, pj) |j ∈ [n]}, machine count m.
Output: Maskspan Cmax, task list TL where TL(i) is the task list

assigned to machine i.
1 ∀i ∈ [m], L(i)← 0, TL(i)← ∅ ;
2 t← 0, Cache← ∅, U ← sort T in ascending order of rj ;
3 while Cache 6= ∅ or U 6= ∅ do
4 Cache← Cache ∪ {(rj, pj) | (rj, pj) ∈ U ∧ rj = t},

AM ← {i|L(i) ≤ t ∧ i ∈ [m]} ;
5 k ← min {|Cache| , |AM |} ;
6 if k > 0 then
7 CacheTmp← sort Cache in descending order of pj ;
8 for l← 1 to k do
9 mid← arg mini∈AM {L(i)} ;

10 TL(mid)← TL(mid) ∪ CacheTmp(l),
L(mid)← t+ CacheTmp(l, 2) ;

11 Cache← Cache\ {CacheTmp(l)} ;

12 t← t+ 1 ;

13 return TL and Cmax = maxi∈[m] {L(i)};

5.2 Three More Efficient Algorithms

One problem of the GreedyC, Semi-GreedyC, and LPTC algorithms is that all these
algorithms do not take the full usage of the task information in the Cache in to
consideration. Three algorithms, namely LPTCP1α, LPTCP2α, and LPTCP3β,
are designed based on the LPTC algorithm. A varity of planarization algorithms
are employed to increase the usage of the task information in the Cache, which
improve the algorithm efficiency in return.

We improve the LPTC algorithm by using the planarization algorithms pro-
posed in the Section 4.2, named as the LPT with Cache based on PA (LPTCP).
When the number of tasks in the Cache is not more than the number of available
machines |AM |, back to the LPTC algorithm. Otherwise, use the Algorithm 1
with a parameter of |AM | on the Cache to get a quasi-flatting set CacheP with
the size no less than |AM |. Assign the first task of each element in the CacheP to
the corresponding available machines. The LPTCP algorithm is depicted in Algo-
rithm 5.

CacheP in Algorithm 5 in the step 13 of Algorithm 5 is a task sequence obtained
by the PA. The element of CacheP is a virtual task which is composed by one or
more tasks of Cache. The processing time of CacheP(l) is the sum of the processing
times of all tasks in it. CacheP(l, 1) is the first task with the longest processing time
of CacheP(l), and CacheP(l, 1).p is the processing time of CacheP(l, 1).

1220 J. Wei, D. Xu, Y. Qin, R. Huang

Algorithm 5: LPT with Cache based on PA, LPTCP

Input: Task set T = {(rj, pj) |j ∈ [n]}, machine count m, flat parameter
P .

Output: Maskspan Cmax, task list TL where TL(i) is the task list
assigned to machine i.

1 ∀i ∈ [m], L(i)← 0, TL(i)← ∅ ;
2 t← 0, Cache← ∅, U ← sort T in ascending order of rj ;
3 while Cache 6= ∅ or U 6= ∅ do
4 Cache← Cache ∪ {(rj, pj) | (rj, pj) ∈ U ∧ rj = t},

AM ← {i|L(i) ≤ t ∧ i ∈ [m]} ;
5 k ← min {|Cache| , |AM |} ;
6 if |Cache| > 0 and |AM | > 0 then
7 if |Cache| ≤ |AM | then
8 CacheTmp← sort Cache in descending order of pj ;
9 for l← 1 to |CacheTmp| do

10 TL(AM(l))← TL(AM(l)) ∪ CacheTmp(l),
L(AM(l))← t+ CacheTmp(l, 2) ;

11 Cache← ∅ ;

12 else
13 CacheP← PA (Cache,P , |AM |) ;
14 for l← 1 to |AM | do
15 TL(AM(l))← TL(AM(l)) ∪ CacheP(l, 1),

L(AM(l))← t+ CacheP(l, 1).p ;
16 Cache← Cache\ {CacheP(l, 1)} ;

17 t← t+ 1 ;

18 return TL and Cmax = maxi∈[m] {L(i)};

By replacing the general PA in the step 13 of Algorithm 5 by the PA1α, PA2α,
and PAβ in Section 4.2, we can get three algorithms respectively namely LPTCP1α,
LPTCP2α and LPTCP3β.

Example 2. Consider an instance of on-line load balancing problem with task
buffer, the data is the same as Example 1.

With the LPTC algorithm on Example 2, we can get a solution XLPTC =
{(1, 1, 0), (2, 3, 1), (3, 2, 1), (4, 4, 3), (5, 2, 6), (6, 3, 5), (7, 4, 9), (8, 1, 12), (9, 1, 8)},
Cmax = 14. While by the LPTCP1α=0.4 algorithm, we can get a solution
XLPTCP1α=0.4 = {(1, 1, 0), (2, 3, 1), (3, 2, 1), (4, 4, 3), (5, 2, 6), (6, 3, 5), (7, 1, 8),
(8, 1, 11), (9, 4, 9)}, C ′max = 13. The results of this example are shown in Figure 3.

From Figure 3, we can see that the difference between the load of each machine
is smaller than the traditional Greedy, Semi-Greedy, and LPT algorithms depicted

On-Line Load Balancing with Task Buffer 1221

1

3

2

4

6

7

9

5

8

0 4 8 12 16 t

M1
M2
M3
M4

a) LPTC

1

3

2

4

6

9

7

5

8

0 4 8 12 16 t

M1
M2
M3
M4

b) LPTCP1α=0.4

Figure 3. The results obtained by LPTC and LPTCP1α=0.4

in Figure 1. Furthermore, the LPTCP1α=0.4 algorithm performs best of all the
algorithms.

6 EXPERIMENTAL RESULTS

To show the correctness and effectiveness of the above proposed algorithms, following
simulations are performed.

As we have mentioned in Section 5, all existing algorithms for the general on-line
load balancing problem cannot be used directly to solve the problem of on-line load
balancing with task buffer. So in the following simulations, we have not compare
with them. We implement the Greedy, GreedyC, Semi-Greedyr, Semi-GreedyC r,
LPT, LPTC, LPTCP1α, LPTCP2α, and LPTCP3β algorithms in Matlab R2014a
and run them on a PC with 3.2 GHz Intel CPU and 2 GB RAM. Because there is no
standard test experimental dataset for the problem of on-line load balancing with
task buffer, we use 100 randomly generated instances as the testing dataset. The
method of generating instances is similar to [13], specifically as follows:

• 10 instances were generated for each pair of task and machine size of 20 × 5,
50 × 5, 100 × 5, 20 × 10, 50 × 10, 100 × 10, 200 × 10, 100 × 20, 200 × 20 and
500× 20, respectively,

• processing time pj ∈ {1, . . . , 99} is randomly assigned to each task j ∈ [100],

• release time rj ∈
[
1,
⌈
(
∑n

j=1 pj)/(2.5×m)
⌉]

is randomly assigned to each task

j ∈ [100].

In order to determine the parameter values for the Semi-Greedyr,
Semi-GreedyC r, LPTCP1α, LPTCP2α, and LPTCP3β algorithms, we run these
algorithms respectively with different parameter settings on the above 10 instances
with the size of 100 × 20, and compare the average makespan on each parameter
value to find the appropriate parameter setting.

Take the LPTCP2α algorithm for example, in Figure 4 the trend of the makespan
values and running time values are depicted by varying the value of α. From Figure 4,
we can see that when α = 0.06, 0.16, 0.22, and 0.57, the average makespans are 254.7,

1222 J. Wei, D. Xu, Y. Qin, R. Huang

254.8, 254.8, and 256.2, the running times are 0.007088, 0.006875, 0.006617, and
0.004629, respectively. The parameter selection criteria is the makespan efficiency
privileged over the running time, because the objective of the problem of on-line
load balancing with task buffer is make-span. Therefore, the appropriate value of α
is set to 0.22 for the LPTCP2α algorithm.

Similarly, r is set to 0.3n for the Semi-Greedyr and Semi-GreedyC r algorithms.
α is set to 0.44 for the LPTCP1α algorithm. β is set to 1.21 for the LPTCP3β
algorithm.

Remark 3. The method used to determine the parameter values may not be good,
because it only uses the 10 middle scale instances in the generated testing dataset
with the size of 100× 20. If the parameter can be adaptively selected according to
the information of each instance, the result may be better.

For each pair of instances, we compare each algorithm according to the average
relative percent deviation (ARPD) of the makespans, the number of instances with
minimum load, and the average running time. The ARPD for the k ∈ [10] pair
instances is calculated as follows:

ARPDk =
k×10∑

j=(k−1)×10+1

((
Lj,i − L∗j

)
× 100

L∗j

)
/10 (3)

where Lj,i is the makespan of instance j obtained by algorithm i ∈ S, S = {Greedy,
GreedyC, Semi-Greedyr=0.3n, Semi-GreedyCr=0.3n, LPT , LPTC , LPTCP1α,
LPTCP2α,LPTCP3β}, L∗j = min{Lj,i}. Experimental results are shown in Tables 2
to 4. From the experimental results, the following conclusions can be drawn.

Algorithms
Scale of instances

20× 5 50× 5 100× 5 20× 10 50× 10 100× 10 200× 10 100× 20 200× 20 500× 20 Average

Greedy 10.9699 5.9238 2.8575 15.5002 13.8477 7.5810 4.2491 16.6895 8.3355 3.4412 8.9395
GreedyC 10.9699 5.9238 2.8575 15.5002 13.8477 7.5810 4.2491 16.6895 8.3355 3.4412 8.9395
Semi-Greedyr=0.3n 13.7129 8.2237 3.1356 22.7205 14.3397 8.3331 4.8502 20.4622 9.9668 4.2616 11.0006
Semi-GreedyC r=0.3n 10.9699 5.9238 2.8575 15.5002 13.8477 7.5810 4.2491 16.6895 8.3355 3.4412 8.9395
LPT 10.3302 5.7193 2.9720 14.2901 14.0386 7.3798 4.1546 16.5322 8.0858 3.2805 8.6783
LPTC 0.0000 0.2430 0.1037 0.0000 0.8864 0.2921 0.0607 0.7135 0.2123 0.0237 0.2535
LPTCP1α=0.44 0.0000 0.1540 0.0960 1.8182 0.5333 0.2135 0.0306 0.6684 0.1755 0.0314 0.3721
LPTCP2α=0.22 0.0000 0.2992 0.0655 0.1695 0.5560 0.1726 0.0407 0.2816 0.0992 0.0155 0.1700
LPTCP3β=1.21 0.0000 0.1429 0.0397 0.1695 0.5916 0.2604 0.0091 0.6323 0.1736 0.0000 0.2019

Table 2. The average relative percent deviation (ARPD)

1. In terms of experimental results of the average relative percent deviation
(ARPD), our proposed algorithms, namely LPTCP1α=0.44, LPTCP2α=0.22, and
LPTCP3β=1.21, generally achieve better performances than all other algorithms.
The trend of the ARPD on the number of tasks equal to 100 is shown in the
Figure 5. From Figure 5, we can see that when the amount of task is a fixed
number, the more number of machines, the larger value of ARPD. However,
the impacts on the LPTC, LPTCP1α=0.44, LPTCP2α=0.22, and LPTCP3β=1.21

algorithms are relatively tiny.

On-Line Load Balancing with Task Buffer 1223

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

α values

254.5

255

255.5

256

256.5

257

257.5

M
a

k
e

s
p

a
n

 v
a

lu
e

X: 0.06

Y: 254.7

X: 0.16

Y: 254.8

X: 0.22

Y: 254.8

X: 0.57

Y: 256.2

a) The trend of the makespan

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

α values

4.5

5

5.5

6

6.5

7

7.5

R
u

n
n

in
g

 t
im

e

×10-3

X: 0.57

Y: 0.004629

X: 0.22

Y: 0.006617

X: 0.16

Y: 0.006875

X: 0.06

Y: 0.007088

b) The trend of the running time

Figure 4. The trends of the makespan and running time of the LPTCP2α algorithm

1224 J. Wei, D. Xu, Y. Qin, R. Huang

Algorithms
Scale of instances

20× 5 50× 5 100× 5 20× 10 50× 10 100× 10 200× 10 100× 20 200× 20 500× 20 Total

Greedy 0 0 0 0 0 0 0 0 0 0 0
GreedyC 0 0 0 0 0 0 0 0 0 0 0
Semi-Greedyr=0.3n 0 0 0 0 0 0 0 0 0 0 0
Semi-GreedyC r=0.3n 0 0 0 0 0 0 0 0 0 0 0
LPT 0 0 0 1 0 0 0 0 0 0 1
LPTC 10 5 4 10 1 3 5 2 4 7 51
LPTCP1α=0.44 10 6 2 9 4 3 7 3 5 6 55
LPTCP2α=0.22 10 4 5 9 6 5 6 5 7 8 65
LPTCP3β=1.21 10 7 7 9 3 3 9 5 4 10 67

Table 3. The amount of instances equal to the minimum load obtained by each algorithm

Algorithms
Scale of instances

20× 5 50× 5 100× 5 20× 10 50× 10 100× 10 200× 10 100× 20 200× 20 500× 20 Average

Greedy 0.0014 0.0028 0.0063 0.0012 0.0028 0.0053 0.0104 0.0050 0.0135 0.0250 0.0074
GreedyC 0.0015 0.0031 0.0064 0.0011 0.0029 0.0058 0.0116 0.0050 0.0103 0.0270 0.0075
Semi-Greedyr=0.3n 0.0014 0.0028 0.0054 0.0012 0.0027 0.0052 0.0104 0.0051 0.0100 0.0252 0.0069
Semi-GreedyC r=0.3n 0.0021 0.0049 0.0101 0.0013 0.0034 0.0070 0.0142 0.0054 0.0111 0.0289 0.0088
LPT 0.0022 0.0055 0.0096 0.0015 0.0042 0.0083 0.0163 0.0070 0.0143 0.0471 0.0116
LPTC 0.0030 0.0068 0.0135 0.0017 0.0048 0.0095 0.0187 0.0070 0.0146 0.0375 0.0117
LPTCP1α=0.44 0.0017 0.0057 0.0160 0.0013 0.0052 0.0154 0.0539 0.0173 0.0569 0.3788 0.0552
LPTCP2α=0.22 0.0017 0.0048 0.0123 0.0012 0.0046 0.0116 0.0390 0.0129 0.0377 0.2092 0.0335
LPTCP3β=1.21 0.0016 0.0044 0.0105 0.0012 0.0042 0.0102 0.0277 0.0104 0.0271 0.1251 0.0222

Table 4. The average running time of each algorithm (Unit: second)

The trends of the ARPD on different number of machines is shown in the Fig-
ure 6. From Figure 6, we can see that when the amount of machine is a fixed number,
the more number of tasks, the smaller value of ARPD. Comprehensive analysis of
Figures 5 and 6 shows that along with the increasing ratio of the number of tasks
and the number of machines, the better ARPD can be obtained by these algorithms.

LPTCP3
β=1.21

0

LPTCP2
α=0.22

5

10

LPTCP1
α=0.445

15

 A
R

P
D

LPTC

Algorithms

20

LPT

25

Number of machines

10
Semi-GreedyC

Semi-Greedy

20 GreedyC

Greedy

Figure 5. The trend of the ARPD on the number of tasks equal to 100

On-Line Load Balancing with Task Buffer 1225

LPTCP30

LPTCP2

5

LPTCP1
α=0.4420

 A
R

P
D

10

LPTC

Algorithms

LPT

15

Number of tasks

50
Semi-GreedyC

Semi-Greedy

100 GreedyC

Greedy

a) The number of machines is 5

0

5

LPTCP3
β=1.21

10

LPTCP2
α=0.2220

15

 A
R

P
D

LPTCP1
α=0.44

20

50 LPTC

AlgorithmsNumber of tasks

25

LPT
100

Semi-GreedyC

Semi-Greedy
200

GreedyC

Greedy

b) The number of machines is 10

LPTCP3
β=1.21

0

LPTCP2
α=0.22

5

10

LPTCP1
α=0.44100

15

 A
R

P
D

LPTC

Algorithms

20

LPT

25

Number of tasks

200
Semi-GreedyC

Semi-Greedy

500 GreedyC

Greedy

c) The number of machines is 20

Figure 6. The trends of the ARPD on different number of machines

1226 J. Wei, D. Xu, Y. Qin, R. Huang

Note that the performance of the Greedy and GreedyC are the same. Even
though the GreedyC algorithm has a buffer, it allocates each task according to
its release time and does not change the assignment relationship between tasks
and machines. Comparing the experimental performances of Semi-GreedyC r=0.3n to
Semi-Greedyr=0.3n and LPTC to LPT, it is obvious that adding a buffer is useful. Es-
pecially, the LPTC algorithm is significantly better than the LPT algorithm in any
case. Furthermore, the ARPDs obtained by LPTC, LPTCP1α=0.44, LPTCP2α=0.22,
and LPTCP3β=1.21 have little differences between each other, and the LPTCP2α=0.22

algorithm achieves the best performance. Experimental performances of the LPTC,
LPTCP1α=0.44, LPTCP2α=0.22, and LPTCP3β=1.21 algorithms measured by ARPD
are shown in the Figure 7.

500/20=25
200/10=200

100/5=20

0.2

0.4

200/20=10

Scale of instances (number of tasks / number of machines)

LPTCP3
β=1.21

0.6

100/10=10

0.8

50/5=10

1

LPTCP2
α=0.22

1.2

Algorithms

 A
R

P
D

100/20=5

1.4

50/10=5LPTCP1
α=0.44

1.6

1.8

20/5=4

2

LPTC 20/10=2

Figure 7. Experimental performances of the LPTC, LPTCP1α=0.44, LPTCP2α=0.22, and
LPTCP3β=1.21 algorithms measured by ARPD

2. In terms of the number of instances with the minimum load, our proposed algo-
rithms generally achieve better performance compared with all other algorithms.
About 50 % of instances are with minimum load for the LPTC, LPTCP1α=0.44,
LPTCP2α=0.22, and LPTCP3β=1.21 algorithms. The LPTCP3β=1.21 algorithm
beats the others, producing the minimum load results that is up to 67 %. Ex-
perimental results on the number of instances with minimum load of all algo-
rithms are depicted in Figure 8. From Figure 8, we can see that along with the
increasing ratio of the number of tasks and the number of machines, the number
of instances with minimum load obtained by the LPTCP3β=1.21 algorithm is
higher than by the LPTC algorithm.

3. In terms of the average running time, our proposed algorithms generally require
longer running time compared with all other algorithms. The trend of the av-

On-Line Load Balancing with Task Buffer 1227

Greedy GreedyC Semi-Greedy Semi-GreedyC LPT LPTC LPTCP1 LPTCP2 LPTCP3

Algorithms

0

10

20

30

40

50

60

70

A
m

o
u

n
t

o
f

in
s
ta

n
c
e
s

a) All above algorithms

20/10=2 20/5=4 50/10=5 100/20=5 50/5=10 100/10=10 200/20=10 100/5=20 200/10=20 500/20=25

Scale of instances (number of tasks / number of machines)

0

1

2

3

4

5

6

7

8

9

10

A
m

o
u

n
t

o
f

in
s
ta

n
c
e
s

LPTC

LPTCP3
β=1.21

b) The LPTC and LPTCP3β=1.21 algorithms

Figure 8. Experimental performances of different algorithms measured by the number of
instances with minimum load

1228 J. Wei, D. Xu, Y. Qin, R. Huang

erage running time on the number of tasks equal to 100 is shown in Figure 9.
From Figure 9, we can see that when the amount of task is a fixed number,
except for the LPTCP1α=0.44, LPTCP2α=0.22, and LPTCP3β=1.21 algorithms,
the more number of machines, the less running time needed for processing. At
the same time, the average running time of our proposed algorithms has not
changed much.

0

0.005

LPTCP3
β=1.21

0.01

R
u

n
n

in
g

 t
im

e
 (

U
n

it
:

s
e

c
o

n
d

)

0.015

LPTCP2
α=0.22

0.02

LPTCP1
α=0.44

LPTC

Algorithms

LPT

Semi-GreedyC 20

Semi-Greedy

Number of machines

10

GreedyC

5
Greedy

Figure 9. The trend of the average running time on the number of tasks equal to 100

In Figure 10, the trends of the average running time on different number of
machines are depicted. From Figure 10, we can see that when the amount of machine
is a fixed number, the more number of tasks, the longer running time needed for
processing.

Note that the times required for the Greedy, GreedyC, Semi-Greedyr=0.3n, and
Semi-GreedyC r=0.3n are similar to each other. Their total average running times are
all smaller than 0.01 s. The total average running times of the LPT and LPTC are
slightly larger than 0.01 s. The LPTCP1α=0.44, LPTCP2α=0.22 and LPTCP3β=1.21

algorithms take slightly longer time for processing. Their total average running times
are 0.0552 s, 0.0335 s and 0.0222 s, respectively. However, our proposed algorithms
are still practical, even for the largest scale experiment instances with 500 tasks and
20 machines, their running times are less than 0.4 second.

Experimental result on the average running time of the LPTC, LPTCP1α=0.44,
LPTCP2α=0.22, and LPTCP3β=1.21 algorithms is depicted in Figure 11. The over-
all trend is the longer running time required along with the increasing ratio of
the number of tasks and the number of machines. The average running times of
the LPTCP1α=0.44, LPTCP2α=0.22, and LPTCP3β=1.21 algorithms are longer than
those of the LPTC algorithm, because they are all designed based on the LPTC

On-Line Load Balancing with Task Buffer 1229

0

0.005

0.01

LPTCP3
β=1.21

R
u

n
n

in
g

 t
im

e
 (

U
n

it
:

s
e

c
o

n
d

)

0.015

0.02

LPTCP2
α=0.22

LPTCP1
α=0.44

LPTC

Algorithms

LPT

Semi-GreedyC

Semi-Greedy

100

GreedyC

Number of tasks

50

Greedy 20

a) The number of machines is 5

0

0.01

0.02

LPTCP3
β=1.21

0.03

0.04

R
u

n
n

in
g

 t
im

e
 (

U
n

it
:

s
e

c
o

n
d

)

0.05

0.06

LPTCP2
α=0.22

LPTCP1
α=0.44

LPTC

Algorithms

LPT

Semi-GreedyC

200Semi-Greedy

100

Number of tasks

GreedyC
50

Greedy 20

b) The number of machines is 10

0

0.1

0.2

LPTCP3
β=1.21

R
u

n
n

in
g

 t
im

e
 (

U
n

it
:

s
e

c
o

n
d

)

0.3

0.4

LPTCP2
α=0.22

LPTCP1
α=0.44

LPTC

Algorithms

LPT

Semi-GreedyC

Semi-Greedy

500

GreedyC

Number of tasks

200

Greedy 100

c) The number of machines is 20

Figure 10. The trends of the average running time on different number of machines

1230 J. Wei, D. Xu, Y. Qin, R. Huang

algorithm. The main difference between our proposed algorithms is in the planariza-
tion algorithm they adopted. Although our proposed algorithms have the same time
complexity, the LPTCP3β=1.21 algorithm using PAβ as the planarization algorithm
requires the shortest running time. It means that PAβ is more efficient than PA1α
and PA1α.

500/20=25
200/10=200

100/5=20

0.05

200/20=10

Scale of instances (number of tasks / number of machines)

0.1

LPTCP3
β=1.21 100/10=10

0.15

50/5=10

0.2

LPTCP2
α=0.22

Algorithms

0.25

R
u

n
n

in
g

 t
im

e
 (

U
n

it
:

s
e

c
o

n
d

)

100/20=5

0.3

50/10=5LPTCP1
α=0.44

0.35

20/5=4

0.4

LPTC 20/10=2

Figure 11. Experimental performances of the LPTC, LPTCP1α=0.44, LPTCP2α=0.22, and
LPTCP3β=1.21 algorithms measured by the average running time

From the above analysis, the on-line load balancing with task buffer is superior
to the general one. The main reason is that the buffer can defer making the decision
of the task allocation until an idle machine occurs rather than the task arrives. The
allocation decision can be made more reasonable with more information available.
From experimental results, the LPTCP1α=0.44, LPTCP2α=0.22, and LPTCP3β=1.21

algorithms obviously outperform other algorithms.

7 CONCLUSIONS

In this paper, we have proposed a new model of on-line load balancing problem
which has an unlimited sized task buffer, named as on-line load balancing with task
buffer. We present the concepts of α-flatting set and β-flatting set, the corresponding
decision methods, and planarization techniques. Three algorithms are designed,
namely LPTCP1α, LPTCP2α, and LPTCP3β, for solving this problem based on
the two new α-planarization techniques, a β-planarization algorithm in [23], and
the LPT algorithm. Related simulation experiments are conducted to compare
our proposed algorithms with the Greedy, Semi-Greedy, LPT, and their variants
algorithms, namely GreedyC, Semi-GreedyC, and LPTC. Experimental results show

On-Line Load Balancing with Task Buffer 1231

that the LPTCP1α=0.44, LPTCP2α=0.22, and LPTCP3β=1.21 perform the best for
the 100 instances.

An important issue for the further research topics is how to adaptively select the
parameters of α and β. Parameter selection method used in this paper is based on
solving a set of instances with the size of 100×20. This method has a strong limita-
tion. Theoretically speaking, if it can adaptively select the appropriate parameters
based on the information of each instance, it is possible to generate a better solution.
In addition, the proposed model is built upon the assumption with unlimited sized
task buffer, because the maximum size of the task buffer is equal to the number of
tasks. Nevertheless, if we can estimate the size of the task buffer more accurately,
it will make the model more realistic.

On the other hand, we paid more attention to the comparison and analysis of
the numerical results, because it is very difficult to analyze the competitive ratios
of our proposed algorithms. However, if the competitive ratios of our proposed
algorithms are evaluated, it will contribute to the theoretical analysis of the proposed
algorithms. This will be an important future research direction.

Acknowledgement

This work was supported by the National Nature Science Foundation of China
(No. 61262006, No. 61540050, No. 61202089, No. 61462011), the National Research
Foundation for Doctoral Program of Higher Education of China Project (No. 2012-
5201120006), the Major Applied Basic Research Program of Guizhou Province
(No. JZ20142001) and the Science and Technology Foundation of Guizhou Province
(No. LH20147636).

REFERENCES

[1] Mao, Y.—Chen, X.—Li, X.: Max-Min Task Scheduling Algorithm for Load Bal-
ance in Cloud Computing. Proceedings of International Conference on Computer
Science and Information Technology, 2014, pp. 457–465, doi: 10.1007/978-81-322-
1759-6 53.

[2] Ripoll, A.—Senar, M. A.—Cortés, A.—Luque, E.: Mapping and Dynamic
Load-Balancing Strategies for Parallel Programming. Computers and Artificial Intel-
ligence, Vol. 17, 1998, No. 5, pp. 481–491.

[3] Garćıa-Dopico, A.—Pérez, A.—Rodŕıguez, S.—Garćıa, M. I.: CYCLIC:
A Locality-Preserving Load-Balancing Algorithm for PDES on Shared Memory Mul-
tiprocessors. Computing and Informatics, Vol. 31, 2012, No. 6, pp. 1255–1278.

[4] Cho, K.-M.—Tsai, P.-W.—Tsai, C.-W.—Yang, C.-S.: A Hybrid Meta-
Heuristic Algorithm for VM Scheduling with Load Balancing in Cloud Comput-
ing. Neural Computing and Applications, Vol. 26, 2015, No. 6, pp. 1297–1309, doi:
10.1007/s00521-014-1804-9.

https://doi.org/10.1007/978-81-322-1759-6_53
https://doi.org/10.1007/978-81-322-1759-6_53
https://doi.org/10.1007/s00521-014-1804-9

1232 J. Wei, D. Xu, Y. Qin, R. Huang

[5] Dasgupta, K.—Mandal, B.—Dutta, P.—Mandal, J. K.—Dam, S.: A Ge-
netic Algorithm (GA) Based Load Balancing Strategy for Cloud Computing. Procedia
Technology, Vol. 10, 2013, No. 2, pp. 340–347, doi: 10.1016/j.protcy.2013.12.369.

[6] Yildiz, M.: An Autonomous Load Balancing Framework for UCN. User-Centric
Networking. Springer, 2014. pp. 241–265, doi: 10.1007/978-3-319-05218-2 12.

[7] Dam, S.—Mandal, G.—Dasgupta, K.—Dutta, P.: An Ant Colony Based
Load Balancing Strategy in Cloud Computing. Advanced Computing, Networking
and Informatics-Volume 2. Springer, Smart Innovation, Systems and Technologies,
Vol. 28, 2014, pp. 403–413, doi: 10.1007/978-3-319-07350-7 45.

[8] De Falco, I.—Laskowski, E.—Olejnik, R.—Scafuri, U.—Tarantino, E.—
Tudruj, M.: Load Balancing in Distributed Applications Based on Extremal
Optimization. Applications of Evolutionary Computation (EvoApplications 2013).
Springer, Berlin, Heidelberg, Lecture Notes in Computer Science, Vol. 7835, 2013,
pp. 52–61, doi: 10.1007/978-3-642-37192-9 6.

[9] Bezek, A.—Gams, M.: Comparing a Traditional and a Multi-Agent Load-
Balancing System. Computing and Informatics, Vol. 25, 2006, No. 1, pp. 17–42.

[10] Christodoulou, G.—Kovács, A.: A Deterministic Truthful PTAS for Scheduling
Related Machines. SIAM Journal on Computing, Vol. 42, 2013, No. 4, pp. 1572–1595,
doi: 10.1137/120866038.

[11] Garey, M. R.—Johnson, D. S.: Computers and Intractability: A Guide to the
Theory of NP-Completeness. San Francisco, LA, Freeman, 1979.

[12] Azar, Y.: On-Line Load Balancing. Online Algorithms. Springer, 1998, pp. 178–195,
doi: 10.1007/BFb0029569.

[13] Caramia, M.—Dell’Olmo, P.: On-Line Load Balancing. Effective Resource Man-
agement in Manufacturing Systems: Optimization Algorithms for Production Plan-
ning. Springer, 2006, pp. 35–64.

[14] Rudin III, J. F.—Chandrasekaran, R.: Improved Bounds for the Online Schedul-
ing Problem. SIAM Journal on Computing, Vol. 32, 2003, No. 3, pp. 717–735.

[15] Fleischer, R.—Wahl, M.: Online Scheduling Revisited. Algorithms-ESA 2000.
Springer, 2000, pp. 202–210, doi: 10.1007/3-540-45253-2 19.

[16] Divakaran, S.—Saks, M.: An Online Algorithm for a Problem in Scheduling with
Set-Ups and Release Times. Algorithmica, Vol. 60, 2011, No. 2, pp. 301–315, doi:
10.1007/s00453-009-9337-9.

[17] Liu, P.—Lu, X.: Online Scheduling on Two Parallel Machines with Release Dates
and Delivery Times. Journal of Combinatorial Optimization, Vol. 30, 2015, No. 2,
pp. 347–359.

[18] Liu, W.-P.—Sidney, J. B.—Van Vliet, A.: Ordinal Algorithms for Parallel Ma-
chine Scheduling. Operations Research Letters, Vol. 18, 1996, No. 5, pp. 223–232.

[19] He, Y.—Zhou, H.—Jiang, Y. W.: Preemptive Semi-Online Algorithms for Par-
allel Machine Scheduling with Known Total Size. Acta Mathematica Sinica, Vol. 22,
2006, No. 2, pp. 587–594.

[20] Luo, T.—Xu, Y.: Semi-Online Hierarchical Load Balancing Problem with Bounded
Processing Times. In: Gu, Q., Hell, P., Yang, B. (Eds.): Algorithmic Aspects in Infor-

https://doi.org/10.1016/j.protcy.2013.12.369
https://doi.org/10.1007/978-3-319-05218-2_12
https://doi.org/10.1007/978-3-319-07350-7_45
https://doi.org/10.1007/978-3-642-37192-9_6
https://doi.org/10.1137/120866038
https://doi.org/10.1007/BFb0029569
https://doi.org/10.1007/3-540-45253-2_19
https://doi.org/10.1007/s00453-009-9337-9

On-Line Load Balancing with Task Buffer 1233

mation and Management (AAIM 2014). Springer International Publishing, Lecture
Notes in Computer Science, Vol. 8546, 2014, pp. 231–240.

[21] Albers, S.: New Results on Web Caching with Request Reordering. Algorithmica,
Vol. 58, 2010, No. 2, pp. 461–477, doi: 10.1007/s00453-008-9276-x.

[22] Englert, M.—Özmen, D.—Westermann, M.: The Power of Reordering for
Online Minimum Makespan Scheduling. SIAM Journal on Computing, Vol. 43, 2014,
No. 3, pp. 1220–1237, doi: 10.1137/130919738.

[23] Wei, J.—Xu, D.—Qin, Y.—Zhou, J.: A Heuristic Algorithm for Solving the
Problem of Load Balancing. 7th International Conference on Advanced Computa-
tional Intelligence, 2015, pp. 89–96.

[24] Graham, R. L.: Bounds for Certain Multiprocessing Anomalies. Bell System
Technical Journal, Vol. 45, 1966, No. 9, pp. 1563–1581, doi: 10.1002/j.1538-
7305.1966.tb01709.x.

[25] Graham, R. L.: Bounds on Multiprocessing Timing Anomalies. SIAM Journal on
Applied Mathematics, Vol. 17, 1969, No. 2, pp. 416–429, doi: 10.1137/0117039.

[26] Hart, J. P.—Shogan, A. W.: Semi-Greedy Heuristics: An Empirical Study. Op-
erations Research Letters, Vol. 6, 1987, No. 3, pp. 107–114.

[27] Wei, J.—Qin, Y.—Xu, D.: A Scheduling Algorithm of α Planarization for Solving
the Problem of Multiprocessor Scheduling. Computer Science, Vol. 39, 2012, No. 1,
pp. 178–181.

JiayinWei received his B.Sc. degree in information and compu-
tational science from the Anhui University of Technology, China,
in 2009 and the Ph.D. degree in the computer software and the-
ory from the Guizhou University, China, in 2015. His research in-
terests include algorithmic mechanism design, algorithm design
and analysis, online algorithms and approximate algorithms.

Daoyun Xu is Professor of computer science and technology at
the Guizhou University. He teaches several courses in computer
sciences at graduate and postgraduate level at the Faculty of
Computer Science and Technology. His research interests include
computability and complexity of computing, algorithm design
and analysis, etc.

https://doi.org/10.1007/s00453-008-9276-x
https://doi.org/10.1137/130919738
https://doi.org/10.1002/j.1538-7305.1966.tb01709.x
https://doi.org/10.1002/j.1538-7305.1966.tb01709.x
https://doi.org/10.1137/0117039

1234 J. Wei, D. Xu, Y. Qin, R. Huang

Yongbin Qin received his B.Sc. degree in computer science
from the Jinan University, China, in 2003 and the Mphil. and
Ph.D. degrees in the computer science and technology from the
Guizhou University, China, in 2007 and 2011. In 2007, he joined
the Guizhou University, China as Lecturer. Since 2011, he has
been Associate Professor at the Guizhou University. His re-
search interests include intelligent computing, machine learning,
and algorithm design.

Ruizhang Huang received her B.Sc. degree in computer scien-
ce from the Nankai University, China, in 2001 and the Mphil.
and Ph.D. degrees in the systems engineering and engineering
management from the Chinese University of Hong Kong, Hong
Kong, in 2003 and 2008. In 2007, she joined the Hong Kong
Polytechnic University, Hong Kong, as Lecturer. Since 2011,
she has been with the Guizhou University as Associate Profes-
sor. She is an active researcher in the area of data mining, text
mining, machine learning, and information retrieval. She has
published a number of papers including prestigious journals and
conferences.

