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Abstract. Distributed storage systems store some redundant data to keep the de-
gree of availability of the stored data constant and also to increase the system’s
resistance against failures. This type of systems usually use pure replication or
methods based on RAID systems as redundancy schemes. In this paper, we study
the communication cost of a distributed data storage system using Maximum Dis-
tance Separable (MDS) erasure codes. Our focus is reduction of the cost of one-to-
many communication used in data reconstruction/repair initialization and update
operations. We propose the use of two different communication approaches on the
area of distributed storage systems for the above operations; Steiner tree approach
and multi-shortest path approach. We also analyse these two communication ap-
proaches empirically and theoretically. Our theoretical results indicate that Steiner
tree approach has lower message usage, whereas, multi-shortest path approach has
lower time usage for data reconstruction/repair initialization operations. On the
other hand, Steiner tree approach has better message and time metrics for the data
update process. Furthermore, our experimental results support these theoretical
results. Thus, users can choose between the two approaches depending on their
needs and priorities.
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1 INTRODUCTION

According to IDC, the magnitude of digital data is estimated to grow by a factor
of 300 from 2005 to 2020 [1]. Thus, it is crucial to increase the capacity of data
storage, especially for organizations heavily interacting with their users.

There are lots of distributed storage systems such as OceanStore, PAST, CFS,
TotalRecall, FarSite and Ivy [2, 3, 4, 5, 6, 7]. However, storage servers which consti-
tutes these systems have the risk of breakdown by a variety of reasons. Therefore,
distributed storage systems usually store redundant data for better reliability. One
way to provide reliability is the use of erasure codes.

Pure replication scheme is generally used for redundancy. An alternative scheme
is erasure coding. In this scheme, data is expanded using a generator matrix and
then this expanded data is distributed to storage servers. If a failure occurs in any of
these servers, the related parts of data must be gathered from the running servers.

The network topology directly and significantly changes the performance of MDS
based distributed systems by affecting the three processes: data reconstruction,
node repair and data update. The common ground of these three processes is that
all three may need to use the multicast communication model. In this paper, we
analysed how the communication cost of the distributed storage systems for data
reconstruction/repair initialization and update processes is affected by, either the
usage of the multicast tree produced by the approximation algorithm of minimum
Steiner tree [8] or the multi-shortest path.

This paper is an extended version of a proceedings paper that appeared as [9].
The theoretical analyses of the proposed approaches in terms of the time usage and
the message usage are the key additions of this journal version. Furthermore, we
have rerun the simulations improved with more realistic parameters. We have also
included new simulations for data update communication to show the influences of
message size on the approaches.

The remainder of paper is organized as follows. Related work is discussed in
Section 2, definitions and the system model are described in Section 3, the proposed
methods are explained in Section 4. In Section 5, the communication of data recon-
struction and repair initialization due to the two different approaches are analysed
theoretically. Furthermore, in Section 6, the theoretical analysis of the data update
communication is given according to the two proposed approaches. Finally, the
simulation results are given in Section 7.
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2 RELATED WORK

There are lots of algorithms introducing approximation algorithms for minimum
Steiner tree problem [8, 10, 11, 12]. Amongst these algorithms, Dolagh and Moaz-
zami’s algorithm is more practical and comprehensible in comparison to the others
with an experimental approximation ratio of 1.5.

Various studies exist in the literature about reducing the node repair cost. Li
et al. investigate the node repair time and the probability of node repair using a tree
based communication scheme [13]. In that work, (n, k) linear network coding is used
as a coding scheme. Helper nodes forward their coded blocks to the newcomer node
by encoding other helper nodes’ coded blocks through utilizing linear network cod-
ing. The communication cost of the data update process or data reconstruction
operations are not addressed in that paper. Li et al. also proposed a new fast node
repair scheme for distributed storage systems using regenerating codes by taking
network topology into account [14]. They propose a new tree structured regener-
ation topology on a network consisting of all storage nodes. They decreased the
cost of the convergecast communication in node repair in terms of time metric by
providing encoding of some helper nodes’ encoded data by other helper nodes. They
mainly focused on reducing the time used in node repair by utilizing links with high
bandwidth capacity. However, they did not consider the communication cost of
update operation or control messages of data reconstruction or control messages of
node repair as well.

In 2011, Gerami et al. studied the cost of node repair process of a multi-hop
distributed storage system using regenerating codes by taking the impact of the
network topology into consideration [15]. The cooperation of helper nodes through
encoding of other helper nodes’ packets was also proposed in that work. They
showed the results of the proposed methods in tandem, star and grid networks.
They formulate the cost of node repair problem based on some constraints which
are specific to regenerating codes. Data update or data reconstruction operations
are not discussed in that work.

The reduction of the communication cost through host selection in the dis-
tributed context data storage is studied in [16].

There are also some studies about data update process in MDS codes. In 2005,
Aguilera et al. considered linear systematic MDS codes under concurrent updates
and derived tight bounds for the erasure recoverability of an (n, k) MDS code [17].

Anthapadmanaphan et al. considered frequently changing data. In this concept,
they propose a class of random codes with logarithmic complexity [18]. But, the
issue of the affect of the network topology is not discussed in their study.

Plank issued a report about the explanation of how Reed Solomon codes used
to store data safely [19]. He explained how the data is encoded, updated and how
the system is recovered to the stable state if any failures occur. However, the issue
of the affect of the network topology on data update is not discussed in his work.

Although, some previous works consider the minimum Steiner tree approach for
solving multicast communication, they either transform it into a linear programming
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problem or advice avoiding the use of it because it is NP-complete [20]. Most of
the related work focuses on the communication cost of the node repair process
rather than update process. Furthermore, to the best of our knowledge, the cost
of initialization of node repair and data reconstruction processes have not been
considered.

3 DEFINITIONS AND THE SYSTEM MODEL

In this section, minimum Steiner tree problem, erasure codes and the system model
are explained, respectively.

3.1 Minimum Steiner Tree Problem

One of the well-known problems of graph theory is the minimum Steiner tree problem
which is also an NP-complete problem [20]. This problem is as follows: Let G(V,E)
be a connected graph and S be a set of vertices where S ⊆ V and a cost function
c(vi, vj) exists over all edges in E where vi ∈ V and vj ∈ V . The cost of a graph is
defined as the total weights of all edges in E. The minimum Steiner tree problem on
a graph G(V,E) and a given set S ⊆ V is to find a minimum cost tree T (V

′
, E

′
) that

contains all vertices of S and satisfies the conditions S ⊆ V
′ ⊆ V and E

′ ⊆ E [21].

3.2 Erasure Codes For Distributed Storage Systems

A typical distributed storage system using erasure codes can be explained as follows.
In the classical (n, k) erasure coding based on [22], original data is divided into
k fragments. Then, this data is multiplied by an (n× k) matrix (generator matrix).
Thus, the generated data forms an (n × 1) matrix which means that the original
(k × 1) data is expanded to (n × 1). Next, fragments, each row of the generated
data, are distributed to n different nodes. The distributed system constructed this
way can tolerate up to (n− k) failures.

If the original data needs to be reconstructed, a node should gather data frag-
ments from any k of n nodes. After this node gets k fragments, it decodes them with
the reverse of the generator matrix which has rows only related to the received frag-
ments. After that, the resulting matrix constitutes the original data. When a failure
occurs in this distributed system, the lost data should be repaired to keep system
up. A node aware of the failure should gather any k of the fragments from other
nodes and decode them. After reconstructing the original data, the node encodes it
and sends the lost part of the generated data to a new node.

Update operation is performed in MDS codes as follows: if data needs to be
updated, initially the difference between the new value and the old one is calculated
(∆ value) by applying subtraction over Galois Field, then the result is multicast to
the related nodes (n−k nodes). After receiving ∆, these nodes multiply ∆ with the
related part of the generator matrix and add this value to the old value over Galois
Field.
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3.3 The System Model

A computer network which constitutes a distributed storage system can be repre-
sented as a graph having vertices that symbolize the computers (nodes), edges that
represent the links between computers; link weights indicating the communication
costs between computers. In this graph, some specific nodes are defined as storage
nodes and the remaining nodes are defined as clients which use (load, request, up-
date data) the system. We assume that the system has n storage nodes storing equal
amount of data and any k of these storage nodes are sufficient for data reconstruc-
tion/repair. The graph has N nodes in total which means we have N−n client nodes
(k < n ≤ N). User nodes can request or update the data through related storage
nodes. In addition, we assume that no node failures or abandons occur during the
data reconstruction, node repair or data update operations are employed.

In this system we can repair, reconstruct and update the data using linear MDS
code features.

4 PROPOSED METHODS

We propose the usage of two new communication approaches in the area of dis-
tributed storage systems for data reconstruction/repair initialization and data up-
date operations. To that end, we investigated the communication phases of these
operations and we elaborated the proposed two communication approaches for the
initialization of data reconstruction and node repair in the following two subsections.

4.1 Data Reconstruction and Repair Initialization

We examined two approaches for one-to-many communication of the data recon-
struction and repair initialization processes. The first one uses a minimum Steiner
tree approximation algorithm. The second approach uses Dijkstra’s shortest path
algorithm. The requirements of the data reconstruction initialization and the repair
initialization are the same. So, proposed approaches are equally applicable to both
processes. Legends in the figures are described in Table 1.

4.1.1 Steiner Tree Approach (STA)

Since the computers in the system are divided into two different types (client node,
storage node), reducing the cost of the multicast communication is somehow aligned
with finding the minimum Steiner tree. So, to reduce the communication cost be-
tween storage nodes, the client nodes can be included in the multicast session oc-
curring in data reconstruction process.

When a storage node (called initiator) receives a data reconstruction/repair re-
quest, it should send data reconstruction/repair request message to the sufficient
number of the storage nodes in order to get necessary fragments which would be
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Legends Meaning

Storage Node

Data Requesting Client

Client Node

Message

Storage Node not in selected k nodes

Message between nodes 3 and 17

Message between nodes 3 and 6

Message between nodes 3 and 15

Table 1. Legends in the figures

used in the decoding phase. This kind of communication is appropriate for multi-
casting, since the same message should be transmitted to multiple network nodes.
In addition, the multicast tree required in a multicast session can be generated by
the approximation algorithm for minimum Steiner tree in [8]. We name this method
as Steiner tree approach (STA).

In STA, when a storage node receives data reconstruction/repair request from
any client, firstly, the storage node selects k random storage nodes for multicast ses-
sion, then it constructs a Steiner tree (if there is none) between itself and selected
nodes using the algorithm in [8]. At the next step, the initiator sends data recon-
struction request message to its neighbors in the constructed Steiner tree. When
a node in Steiner tree receives reconstruction/repair request, it forwards this mes-
sage to its neighbors in the tree. If this node is also a storage node, it sends relevant
fragments to the initiator. The Steiner tree construction process should take place
only after requesting data for the first time or any node’s failure in the already
constructed tree. Thus, if the tree is constructed from scratch, relevant tree infor-
mation should be sent to the tree members. Otherwise, the initiator can use the
existing Steiner tree. A sample scenario using this approach is given in Figure 1. In
Figure 1 a) client node 5 sends data reconstruction/repair request to node 3, then
node 3 generates Steiner tree and multicasts this request to the target storage nodes
in the constructed tree b), in c) storage nodes send their relevant fragments to the
initiator node 3, finally in d) node 3 decodes data and sends the requested data to
node 5 (data reconstruction/repair initialization process includes only a) and b)).

4.1.2 Multi-Shortest Path Approach (MPA)

The second way for data reconstruction/repair initialization process is using multi-
unicast model which means sending request messages to targets separately. This
model can be implemented optimally using Dijkstra’s shortest path algorithm for
each path between initiator and targets [23]. We name this approach as multi-
shortest path approach (MPA). Unless there exists a specific multicast model over
the group of nodes which does not belong to the same subnet, multi-unicast commu-
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Figure 1. Data reconstruction/repair operation using STA

nication model is used for one-to-many communication. Thus, if no multicast model
is specified for multicasting, a storage node (the initiator) should send reconstruc-
tion/repair request message one by one. Upon receiving a reconstruction/repair
request, the initiator sends this request message to the randomly selected k storage
nodes through the shortest paths. If a node on the shortest path receives a request,
it simply forwards this message to the next edge in the path. In the case of this
data request’s first arrival to the initiator, initiator node should generate shortest
paths to target storage nodes and should send the path information to nodes in the
shortest paths. A sample scenario using this approach is given in Figure 2: a) client
node 5 wants data reconstruction/repair from node 3, node 3 generates shortest
paths using Dijkstra’s algorithm (if paths have not been generated already) after
receiving the request and then sends this request to storage nodes one-by-one in b),
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storage nodes send their relevant fragments to the initiator node 3 in c), then node 3
decodes data and sends requested data to node 5 in d) (data reconstruction/repair
initialization process includes only a) and b)).

Figure 2. Data reconstruction/repair operation using MPA

4.2 Data Update Process

Let D = {D1, D2, . . . , Dk} be the original data vector and C = {C1, C2, . . . , Cn−k}
be the vector containing encoded version of D (each element of D and C is stored
at different node). We want to update Di to D

′
i. The value of Cj (j ∈ {1, . . . , n −

k}) containing encoded version of Di, is affected by Di’s change (i ∈ {1, . . . , k}).
Suppose ∆ = D

′
i − Di; the new value for Cj, C

′
j, is calculated as C

′
j = Cj − Gji∆

where Gji is the element in generator matrix’s jth row ith column and all arithmetic
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operations performed over Galois Field. In other words, to update, initially ∆ value
is calculated, then this ∆ value is sent to the nodes storing Cj for all j. Then each
node j calculates its affected value with Gji∆. Since ∆ value should be sent to the
affected storage nodes, this scheme involves one-to-many communication. A detailed
explanation of update process in MDS codes can be found in [19]. A client can
update data by sending a request to a storage node which is referred as the source
node.

4.2.1 Steiner Tree Approach (STA)

We create a Steiner tree on the graph including affected storage nodes ((n−k) nodes)
and some other nodes as the pathway nodes using the algorithm proposed in [8].
Suppose that the updated value is in ith element of D. The source node calculates
∆ value by subtracting data’s current value from desired new value using Galois
Field arithmetic. The source node sends ∆ value to all target storage nodes by
multicasting ∆ over the constructed Steiner tree. This means only nodes in the tree
receive the value. If ∆ value’s size is larger than the MTU (Maximum Transmission
Unit), this value is fragmented and then each packet is multicast to all target nodes
separately. Since the target storage node j receiving ∆ also stores the relevant rows
of the generator matrix (Gj), node j updates its fragments by subtracting Gji∆
from its fragments.

4.2.2 Multi-Shortest Path Approach (MPA)

When a storage node receives an update request for Di, it calculates ∆ by ∆ =
D

′
i −Di . If ∆ value is larger than MTU, it should be fragmented in packets. Then

the source node sends these packets to all target storage nodes one by one using
the shortest paths (if these paths are not generated before, source node generates
them using Dijkstra’s shortest path algorithm). Since each node j calculates its
affected value using Gji, received ∆ is same for all target nodes. In MPA, there is
no network overlay constructed for multicast, this ∆ is sent to all target nodes one
by one whereas in STA a tree is constructed for multicast operations. After receiving
all packets, a target storage node j calculates the new value as: C

′
j = Cj − Gji∆.

After all target nodes perform this process, the update operation is completed.

5 THEORETICAL ANALYSIS OF DATA RECONSTRUCTION
AND REPAIR INITIALIZATION

We show the theoretical complexity analyses of Steiner tree and multi-shortest path
approaches in data reconstruction and repair initialization processes. In Table 2, we
define some legends that we use in the analyses (also for Section 6). The required
communication schemes are the same for both of the data reconstruction initializa-
tion and repair initialization processes. Therefore, the analyses in this section are
for both of them.
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Variable Meaning

d The propagation delay time of each link

t
The transmission time for one packet
(one packet size is smaller than or equal to the MTU size)

N Total node count in the graph

k
Target storage node count which is sufficient
for data reconstruction/repair

n The number of storage nodes

δ The average node degree in the graph

Lk The number of links (edges) in a multicast tree having k target nodes

Table 2. Legends in the theoretical analyses

5.1 Steiner Tree Approach

The message complexity and the time complexity analyses of data reconstruction
and repair initialization processes using Steiner tree approach are explained below.

5.1.1 Average Case Message Complexity

The message complexity of the proposed scheme depends on the structure of Steiner
tree produced by algorithm in [8].

Lemma 1. In the graph having N nodes, the mean distance between any two nodes
in terms of link count (also mean unicast distance between any two nodes), E(Lu),
is almost of order Θ(log(N)/ log(d̃)). Here d̃ is the weighted average of the sum of
squares of the expected degrees [24]. (For simplicity, we assume that this condition
is true in the following analyses.)

Lemma 2. The expected link count of a multicast tree having one source node
and m target nodes, E(Lm) is upper bounded by O(E(Lu)m

0.8) according to the
Chuang-Sirbu law [25] where E(Lu) denotes the mean number of links in a unicast
path.

Theorem 1. The average message count required in Steiner tree approach in the
initialization of data reconstruction and node repair processes for one multicast

session is upper bounded by O
(
k0.8 log(N)

log(d̃)

)
.

Proof. In this case, the total message count is equal to the number of links of Steiner
tree constructed by the algorithm in [8]. The approximation algorithms for solving
minimum Steiner tree problem are designed to find a tree having approximately
the minimum cost. Therefore, the trees constructed by these algorithms generally
have less cost than that of the randomly generated multicast trees. Since, the mean
distance between two nodes is order of log(N)

log(d̃)
by Lemma 1 and the average ratio of

E(Lm=k) over E(Lu) is order of k0.8 by Lemma 2, the mean message count required

in Steiner tree approach is upper bounded by O
(
k0.8 log(N)

log(d̃)

)
. �
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5.1.2 Average Case Time Complexity

The elapsed time for a multicast session is determined by the time interval that
begins when the source (initiator) node sends the initialization message and ends at
the latest arrival time of the message. The mean value of the multicast tree’s height
should be found to calculate the expected elapsed time for Steiner tree approach.

Lemma 3. The expected height of Steiner tree constructed by the algorithm in [8]
(containing k target nodes on a graph containing N nodes in total) is upper bounded

by O
(

k log(N)

log(d̃)f(k)

)
where f(k) is a monotonically increasing function of k.

See proof of Lemma 3 in the Appendix A.

Theorem 2. The expected elapsed time for Steiner tree approach is upper bounded

by O
(
k log(N)

log(d̃)f(k)
(t+ d)

)
where f(k) is a monotonically increasing function of k.

Proof. The average height of a Steiner tree is upper bounded by ρ(k) = O
(

k log(N)

log(d̃)f(k)

)
by Lemma 3. Until the packet reaches the destination, in each level of the tree, time
for transmission of the packet (t) and propagation delay (d) is required. Thus, the
expected elapsed time in Steiner tree approach in the data reconstruction and repair
initialization is bounded by O(ρ(k)(t+ d)). �

5.2 Multi-Shortest Path Approach

The message complexity and the time complexity analyses of the data reconstruc-
tion/repair initialization processes in multi-shortest path approach are described
below.

5.2.1 Average Case Message Complexity

The message complexity of the proposed scheme depends on the total link counts
of the shortest paths between the source node and the target nodes.

Theorem 3. The average number of messages used in multi-shortest path approach
for one multi-unicast session for data reconstruction and repair initialization pro-

cesses is upper bounded by O
(
k log(N)

log(d̃)

)
.

Proof. The mean link count between two arbitrary nodes is Θ
(

log(N)

log(d̃)

)
from

Lemma 1. In multi-shortest path approach, there are k target nodes. So, the

average message count is upper bounded by O
(
k log(N)

log(d̃)

)
. �
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5.2.2 Average Case Time Complexity

The time complexity of the proposed scheme depends on the common edges, which
are adjacent to the source node, of the shortest paths. The time complexity in this
scheme also depends on the size of the longest shortest path which is between the
source node and the furthest target node.

Lemma 4. The diameter of a power law random graph having an exponent β > 3
and average degree δ which is strictly greater than 1 is Θ(log(N)) (β is a parameter
related with node degrees) [24].

Theorem 4. The mean elapsed time of the multi-unicast session for the data recon-
struction/repair initialization process is upper bounded by O

(
k
δ
t+ log(N)(t+ d)

)
.

Proof. Since the source node sends packets to its outgoing links in parallel, each of
the outgoing links of the source node carries k

δ
messages in average. Since the

source node has the average degree of δ and each link adjacent to the source
node transmits packets to k

δ
storage nodes in average, before sending the last

message on one link,
(
k
δ
− 1
)
t time is elapsed. By Lemma 4, the average diam-

eter is bounded by Θ(log(N)). So, the average elapsed time is upper bounded by
O
(
k
δ
t+ log(N)(t+ d)

)
. �

Steiner tree approach is generally more efficient than multi-shortest path ap-
proach in terms of number of messages. Furthermore, multi-shortest path approach
is more efficient than Steiner tree approach in terms of time metric. These re-
sults can be derived from the theoretical analyses as well as from the experimental
results. The summary of the analyses of data reconstruction/repair initialization
communication is shown in Table 3.

Approaches Average Case Complexities

Msg. Complexity Time Complexity

Steiner Tree O
(
k0.8 logN

log(d̃)

)
O(ρ(k)(t+ d))

Multi-Shortest Path O
(
k logN

log(d̃)

)
O(kδ t+ logN(t+ d))

Table 3. The complexity analyses of the two approaches in the data reconstruction and
repair initialization communication

For the average case, multi-shortest path approach uses O
(
k
δ
t+ logN(t+ d)

)
time for one multicast session, whereas Steiner approach uses O (ρ(k)(t+ d)) time
for one multicast session. Generally, t value is very small with respect to k and
log(N) values for small packets. As a result, in multi-shortest path approach

(
k
δ
t
)

value is neutralized by t, even for high k values. On the other hand, in Steiner tree
approach, average height of a tree is generally greater than link count of the longest
path in multi-shortest path. (Note that we omitted the processing time which occurs
before transmission and overlay construction time in Steiner tree and multi-shortest
path approaches.)
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6 THEORETICAL ANALYSIS OF THE DATA
UPDATE COMMUNICATION

When the data update operation is required, storage nodes having the related en-
coded data should also update their encoded data. Therefore, in this section, there
are n− k target nodes instead of k.

6.1 Steiner Tree Approach

Steiner tree approach for the data update process is described in Section 4.2.1. Here,
we derived theoretical results about the message complexity and the time complexity
of this approach.

6.1.1 Average Case Message Complexity

The number of messages used in the data update operation is proportional to the
number of the links in the constructed Steiner tree and the size of data to be updated.
Due to MTU, “maximum amount of data that a link layer frame can carry [26]”,
large amounts of data cannot be sent in one go. In the analyses, we denote the
amount of data to be updated as ∆size and the size of MTU as MTU .

Theorem 5. The average number of messages used in Steiner tree approach for the

data update operation is upper bounded by O
(

(n− k)0.8 log(N)

log(d̃)
∆size
MTU

)
.

Proof. The number of messages used in the data update process is equal to ∆size
MTU

times of the number of links in the Steiner tree constructed by the algorithm in [8].

Since the mean distance between two nodes is Θ
(

logN

log(d̃)

)
from Lemma 1 and the ratio

of Lm=n−k over Lu is O
(
(n− k)0.8) from Lemma 2, the mean message complexity

is upper bounded by O
(

(n− k)0.8 logN

log(d̃)
∆size
MTU

)
for the data update process. �

6.1.2 Average Case Time Complexity

The time complexity of this approach for the data update process is affected by the
height of the constructed Steiner tree and the amount of data to be updated.

Theorem 6. The average elapsed time used in this approach for the data update
communication is upper bounded by O

(
t∆size
MTU

+ ρ(k)(t+ d)
)
.

Proof. The order of the mean height of a tree with k target nodes is denoted as ρ(k)
by the proof of Lemma 3. The required time for the transmission of entire ∆ message
and the height of the constructed tree determine the elapsed time. Therefore, this
time is upper bounded by O

(
t∆size
MTU

+ ρ(k)(t+ d)
)
. �
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6.2 Multi-Shortest Path Approach

The message complexity and the time complexity analyses of the data update com-
munication using multi-shortest path approach are described below.

6.2.1 Average Case Message Complexity

The message complexity of the proposed approach depends on the size of the data
to be updated and the number of links of the shortest paths between the source
node and the target nodes.

Theorem 7. The average number of messages used in multi-shortest path approach

for data update is upper bounded by O
(

(n− k)∆size
MTU

log(N)

log(d̃)

)
.

Proof. We know that the mean link count between two arbitrary nodes is bounded

by Θ
(

log(N)

log(d̃)

)
from Lemma 1. The source node has to send ∆ message to (n − k)

target nodes in ∆size
MTU

rounds. Eventually, the average number of messages used for

data update in this approach is upper bounded by O
(

(n− k)∆size
MTU

log(N)

log(d̃)

)
. �

6.2.2 Average Case Time Complexity

The time complexity of the data update communication in this approach depends
on the size of the data to be updated and the link count of the longest shortest
path (between the source node and the furthest target node). The time complexity
in this approach also depends on the the shortest paths’ common links which are
adjacent to the source node.

Theorem 8. The average elapsed time used for the data update communication
using this approach is bounded by O

(
n−k
δ

∆size
MTU

t+ log(N)(t+ d)
)

where (n − k) is
the number of target nodes.

Proof. The average degree of the source node is δ and each of these δ links is the
first edge of the n−k

δ
different shortest paths in average. The diameter of a graph is

bounded by Θ(log(N)) from Lemma 4. In each link, before sending the last packet,(
n−k
δ
− 1
)

∆size
MTU

t time is elapsed in average. Consequently, the average elapsed time

is bounded by O
(
n−k
δ

∆size
MTU

t+ log(N)(t+ d)
)
. �

In Table 4, the overview of the analyses for the data update communication is given.
According to the theoretical and the experimental results, Steiner tree approach is
advantageous in the most of the cases for the data update communication.

The order of message count in Steiner tree approach is lower than that of multi-
shortest path approach for the data update operation. We can ignore the second
terms of the average time complexities of both approaches, since these values are
substantially smaller than the first terms in the real experiments. Thus, Steiner tree
approach requires less time than multi-shortest path approach.
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Approaches The Average Case Complexities

Msg. Complexity Time Complexity

Steiner Tree O
(

(n− k)0.8 log(N)

log(d̃)
∆size
MTU

)
O
(

∆size
MTU t+ ρ(k)(t+ d)

)
Multi-Shortest Path O

(
(n− k)∆size

MTU
log(N)

log(d̃)

)
O
(
n−k
δ

∆size
MTU t+ log(N)(t+ d)

)
Table 4. The complexity analyses of the two approaches in the data update communica-
tion

7 SIMULATION RESULTS

The data reconstruction/repair initialization and update processes based on STA
and MPA are both implemented in ns-3 and tested on topologies containing 500
nodes. BRITE [27] is used for generating network topologies. Available bandwidth
values are selected uniformly between 10Mbps-100Mbps. Each link has the same
propagation delay of 50 milliseconds. We have used Waxman topology model. More-
over, Reed-Solomon [22] scheme is used as an MDS code. We measured two metrics:
the message count and the elapsed time used in the communication of initializa-
tion of data reconstruction/repair and data update processes. Message count is the
number of packets that are passed through any link along the path. If the message
size is higher than MTU, for example update size ∆, this message can be sent in
∆size/MTU different packets.

The values of n and k in erasure codes change due to on which platform the
distributed storage system runs. For instance, in Peer-to-Peer (P2P) systems, which
can also be used for storage systems [28], the node failures occur frequently due to
the temporary disconnections or abandons, etc. [29]. In such systems, n and k values
should be higher than that of dedicated data centers. Therefore, we have simulated
different n, k values for collapsing the general view.

7.1 Data Reconstruction/Repair Initialization

Message count used in data reconstruction/repair initialization processes due to
different target storage node counts (k), in networks which contain 500 nodes (N),
is shown in Figure 3. Accordingly, after target storage node count exceeds some
ratio of the total nodes (N), STA uses fewer messages than that of MPA. When
the target storage node count increases in a fixed network size, STA’s advantage
increases.

MPA achieves better efficiency on message count in the network having 500 nodes
when the target node count is less than 28. However, STA achieves better perfor-
mance on message count in all tested target node counts in the networks having
500 nodes where target node count is higher than 28. The link counts of multi-
shortest path trees generated with target node count less than 28, are less than the
link count of the Steiner Tree generated with the same target node counts by the
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approximation algorithm. So, the reason of the results of message counts shown in
Figure 3 depends on the communication trees’ link counts.
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Figure 3. Experimental results of message count used in MPA and STA for data recon-
struction/repair initialization

While STA optimizes the message count in most cases, it degrades the time value.
In Figure 4, elapsed time in data reconstruction/repair initialization processes due
to different target storage node counts, in the networks consisting of 500 nodes, is
shown. While in MPA the elapsed time stays almost constant with the target nodes’
increase, STA shows a decrease but it still requires more time. Since, the chance
to find a shorter path increases when target node count increases in the algorithm
in [8], the constructed tree’s height tends to have a smaller value while target node
count increases. But the tree’s height is saturated for higher values of the target
node counts. The reason of STA’s bad performance in time value is the fact that the
constructed Steiner trees’ heights (hop count of the path between furthest node and
the initiator node) are higher than that of the longest shortest paths constructed in
MPA in average. So the required time for reaching the furthest node is higher in
STA.

7.2 Data Update

In the simulations, initially, we examine the update of a data file of size 1MB. Every
target node stored the encoded data, should receive (∆) in 1MB size for the update.
Message count used in both approaches with varying target node counts on the
networks having 500 nodes is shown in Figure 5. After the target storage node
count exceeds a specific value, STA uses fewer messages than MPA for data update.
When the target storage nodes increase in a fixed network size, STA’s advantage in
message count increases.

Elapsed time for data update process with varying target node counts on the
networks having 500 nodes is shown in Figure 6. MPA uses more time than STA
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Figure 4. Experimental results of elapsed time in MPA and STA for data reconstruc-
tion/repair initialization
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Figure 5. Experimental results of message count used in MPA and STA for data update

on every target node count for data update process. The target nodes on the same
path receive the same packet in STA and different packets are sent (transmission
time overhead) for each target nodes in the same path in MPA. So, when the target
node count increases in a fixed network size, the advantage of STA in elapsed time
increases.

Furthermore, message count and the elapsed time used in data update pro-
cesses with respect to different update sizes are shown in Figure 7 and Figure 8,
respectively. Since, Steiner trees have more links than multi-shortest path trees for
20 target nodes, message count used in STA is higher than MPA for every update
sizes in that target node count. In Figure 8, it can be seen that the elapsed time in
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Figure 6. Experimental results of elapsed time in MPA and STA for data update

STA is proportional to the update size. In addition, the elapsed times in STA for
20 and 40 target nodes are almost identical.
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Figure 7. Experimental results for used message count in MPA and STA for data update
on different update sizes for 20 and 40 target nodes

We searched for the proper constant values for the orders to check the consistency
between the theoretical analyses and the experimental results that we obtained in
Section 5 and Section 6. For example, we searched for the proper c1 and c2 values

for the order in Theorem 3 to find the appropriate
(
c1

(
k log(N)

log(d̃)

)
+ c2

)
.

In Figure 9 a), the experimental results and theoretical analyses with appropri-
ate constants for the number of messages used in data reconstruction/repair ini-
tialization process are presented. As it can be seen, the theoretical results and the
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Figure 8. Experimental results for elapsed time in MPA and STA for data update on
different update sizes for 20 and target nodes

experimental results overlap. In Figure 9 b) the experimental results and theoretical
analyses with appropriate constants for the elapsed time used in data reconstruc-
tion/repair initialization process are given.

In Figure 9 c), the experimental results and theoretical analyses with proper
constants for the number of messages required in data update are given. These
experimental results correspond substantially to the theoretical results with proper
constants in data update. In Figure 9 d), the experimental results and theoretical
analyses with proper constants for the elapsed time in data update are given. Here,
the results overlap substantially.

8 CONCLUSIONS

In this work, analysis of the communication cost of a distributed data storage system
using MDS codes has been studied. To that end, two approaches, STA and MPA,
were tested for data reconstruction/repair initialization and update operations for
different networks. Furthermore, we derived theoretical bounds of the complexity
of message and time usage in these approaches. Simulation results indicate that,
while MPA brings an advantage in terms of time usage, STA has better efficiency
in terms of message count for data reconstruction/repair operation. Also, STA is
more efficient in both parameters than MPA for the data update operation (except
some target node count values). These experimental results are supported by the
theoretical results.

These results can shed light to the designers of distributed storage systems to
choose between different communication approaches taking their needs and priorities
into account. For instance, for a system where time is abundant but bandwidth is
scarce, STA can be chosen for all operations. On the other hand, for an application
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Figure 9. Comparison of the theoretical analysis and experimental results of MPA and
STA in data reconstruction/repair initialization (a), b)) and data update (c), d))

where communication costs are relatively low but time is limited, MPA can be chosen
for data reconstruction/repair initialization operations. A new approximation algo-
rithm for minimum Steiner tree construction which is capable of keeping the trees
height under some lower order can be conceived for the future research. Further-
more, analyzing the approaches in different settings, in which multiple operations
occur concurrently, could be considered as a future work.
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A PROOF OF LEMMA 3

Proof. Steiner tree approximation algorithm in [8] initially eliminates the paths
which may increase the cost (link count) of the tree. Afterwards, it divides nodes
into two distinct sets. The first set contains only one storage node and the other set
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contains remaining k − 1 storage nodes. Then, in the first iteration, the algorithm
searches for a node (from the second set) which is the closest (in terms of link count)
to the node in the first set. After finding the closest node, it is removed from the
second set and the nodes in the path between the selected node (including) and
the node in the first set are added to the first set. Then, in the second iteration,
the algorithm searches for a node from the second set which is the closest to the
first set. In other words, it searches the closest pair of nodes one from each set.
Then, the closest node is removed from the second set and it together with the
nodes in the path between the closest pair are added to the first set. The algorithm
continues until there is no node left in the second set. After the (k − 1)th iteration
is completed, the algorithm is finished. Finally, each path between the closest nodes
constitutes Steiner tree’s branches.

The average distance between two nodes is O
(

log(N)/ log(d̃)
)

from Lemma 1.

Assume that we consider k nodes which are randomly selected from the graph (the
case in the first iteration). The mean value of the path length between the source
node and the closest one to the source (initiator) node (one of the k − 1 nodes)

should be smaller than O
(

log(N)/ log(d̃)
)

. In this case, the closest pair is one of

the (k−1) pairs, one is target and the other one is any of the k−1 nodes, and these

pairs have the mean O
(

log(N)/ log(d̃)
)

for the distance.1 Since the distances are

not uniformly distributed, the closest pair in the set of k − 1 pairs has the mean

distance which is smaller than O
(

log(N)/ log(d̃)
)

. Furthermore, the mean distance

of the closest pair of k − 1 pairs is inversely proportional to f(k) where f(k) is
a monotonically increasing function of k.2 In other words, the mean value of the
shortest path in a set of nodes is inversely proportional to a function of the number
of pairs. The same holds for the next iterations, the closest path length is inversely
proportional to a function of the number of pairs in the iteration i.

The average height of a Steiner tree constructed by algorithm in [8] can be
calculated as follows. When the first closest node is selected, the tree has one source

node and one target node. In this case, the tree’s mean height is O
(

log(N)

log(d̃)f(k)

)
. In

the remaining closest pair selections, the tree’s height can be increased at most as
the next shortest paths’ lengths. The link count of a tree having i target nodes

is bounded by O
(
i0.8 log(N)

log(d̃)

)
by Lemma 1 and Lemma 2. This means that the

constructed tree has O
(

(i)0.8 log(N)

log(d̃)

)
nodes when the ith iteration begins where i > 1.

Accordingly, when the ith iteration begins, there are O
(

(i)0.8 log(N)

log(d̃)
× (k − i)

)
pairs,

and the algorithm searches for the closest one of the O
(

(i)0.8 log(N)

log(d̃)
× (k − i)

)
pairs.

1 We know from the sample mean, the mean distance of a subset of a distribution is
the same as the mean distance of the all distribution.

2 Consider the case of k = 2, then the mean distance is bounded by O
(

logN/ log(d̃)
)

and if k = 500 = N , then the mean distance of the closest pair is O(1).
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Thus, when the ith iteration begins, the order of the number of pairs, in which the
closest one is searched, is given below:

P (i) =

O
(

(i)0.8 log(N)

log(d̃)
× (k − i)

)
, where i > 1, i < k, i ∈ N+,

k − 1, where i = 1.
(1)

When i > 1, P (i) function is a concave function, since its second derivative is
negative. Since P (i) is evaluated with the integers in the interval [2, k − 1], the

minimum of P (i) is observed in P (2) or P (k − 1). P (2) is bounded by O
(
k log(N)

log (d̃)

)
whereas P (k − 1) is bounded by O

(
k0.8 log(N)

log(d̃)

)
. Thus for high values of N , the

minimum order is provided in P (1) which is O(k) (when the order of N is greater
than d̃k

0.2
).

The height of a tree constructed in the ith iteration is denoted as H(i). In the
(i+ 1)th closest pair selection, the node, that a new selected path (between the
closest pair) will be connected to, can be at any level in the tree constructed in
the ith iteration. If the new selected path is connected to the tree through a node

which is furthest to the root, it can increase the height by O
(

log(N)

log(d̃)f(P (i+1))

)
. But if

the next path is connected to the tree through a node whose level is one less than

the height’s level, it can increase the height by O
(

log(N)

log(d̃)f(P (i+1))
− 1
)

, and so on.

Therefore, the order of the expected increment of tree’s height in (i+ 1)th iteration
is given below:

O(E(H(i+ 1)−H(i))) = O


log(N)

log(d̃)f(P (i+1))∑
l=1

1

H(i)
l

 , (2)

O(E(H(i+ 1)−H(i))) = O

(
1

H(i)

log(N)

log(d̃)f(P (i+ 1))

(
log(N)

log(d̃)f(P (i+ 1))
+ 1

)
/2

)
.

(3)

Consequently, the order of the mean height of a tree, H(i + 1), in the (i+ 1)th

iteration is as follows:

O(H(i+ 1)) = O(H(i)) +O


log(N)

log(d̃)f(P (i+1))∑
l=1

1

H(i)
l

 (4)

where O(H(0)) = 0, O(H(1)) = O
(

log(N)

log(d̃)f(P (1))

)
. Since, we consider the upper

bound of the expected height, we can use P (1) instead of P (i) when i > 1. (Since
P (1) has minimum order among all P (i)s, i > 1, i < k,) In other words, if we
use P (1) for other iterations (i.e. i > 1), the upper bound is preserved, since it
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increases the order of the lengths of the shortest paths between the closest pairs for
the iteration i where i > 1 and i < k. Thus, the order of the expected height of the
tree constructed in the (i+ 1)th iteration can be calculated as below:

O(H(i+ 1)) = O(H(i)) +O


log(N)

log(d̃)f(P (1))∑
l=1

1

H(i)
l

 , (5)

O(H(i+ 1)) = O(H(i)) +O


log(N)

log(d̃)f(k)∑
l=1

1

H(i)
l

 , (6)

O(H(i+ 1)) = O(H(i)) +O

(
1

H(i)

(
log(N)

log(d̃)f(k)

)(
log(N)

log(d̃)f(k)
+ 1

)
/2

)
(7)

where O(H(0)) = 0, O(H(1)) = O
(

log(N)

log(d̃)f(k)

)
.

Assume that a is equal to log(N)

log(d̃)f(k)
and c is equal to

(∑ log(N)

log(d̃)f(k)

l=1 l

)
. Thus, the

order of the mean height of a tree after the (k − 1)th iteration can be calculated as
below:

H(k − 1) = a+
c

a
+

c

a+ c
a

+
c

a+ c
a

+ c
a+ c

a

+ . . .︸ ︷︷ ︸
(k−3) terms

(8)

Note that, ith term is always greater than the (i+ 1)th term in Equation (8)
where i > 0. The order of the height of a tree having k target nodes, ρ(k), is the
order of the height of the tree after (k − 1)th iteration is completed. Therefore, the
order of H(k − 1), ρ(k), can be upper bounded by:

ρ(k) = a+
c

a
+ (k − 3)

c

a+ c
a

, (9)

ρ(k) = O

(
log(N)

log(d̃)f(k)
+

log(N)

log(d̃)f(k)
+

(k − 3) log(N)

log (d̃)f(k)

)
, (10)

ρ(k) = O

(
log(N)k

log(d̃)f(k)

)
. (11)

�



1258 E. Haytaoglu, M.E. Dalkilic

REFERENCES

[1] Gantz, J.—Reinsel, D.: The Digital Universe in 2020: Big Data, Bigger Digital
Shadows, and Biggest Growth in the Far East. IDC iView: IDC Analyze, Future,
2012.

[2] Kubiatowicz, J.—Bindel, D.—Chen, Y.—Czerwinski, S.—Eaton, P.—
Geels, D.—Gummadi, R.—Rhea, S.—Weatherspoon, H.—Weimer, W.—
Wells, C.—Zhao, B.: OceanStore: An Architecture for Global-Scale Persis-
tent Storage. ACM SIGPLAN Notices, Vol. 35, 2000, No. 11, pp. 190–201, doi:
10.1145/378993.379239.

[3] Druschel, P.—Rowstron, A.: PAST: A Large-Scale, Persistent Peer-to-Peer
Storage Utility. Proceedings of the 8th Workshop on Hot Topics in Operating Systems,
May 2001, pp. 75–80, doi: 10.1109/HOTOS.2001.990064.

[4] Dabek, F.—Kaashoek, M.F.—Karger, D.—Morris, R.—Stoica, I.: Wide-
Area Cooperative Storage with CFS. Proceedings of the 18th ACM Symposium on
Operating System Principles, 2001, pp. 202–215, doi: 10.1145/502034.502054.

[5] Bhagwan, R.—Tati, K.—Cheng, Y.—Savage, S.—Voelker, G.M.: Total
Recall: System Support for Automated Availability Management. Proceedings of the
1st Conference on Symposium on Networked Systems Design and Implementation
(NSDI ’04), 2004, pp. 25–25.

[6] Adya, A.—Bolosky, W. J.—Castro, M.—Cermak, G.—Chaiken, R.—
Douceur, J. R.—Howell, J.—Lorch, J. R.—Theimer, M.—Wattenho-
fer, R. P.: FARSITE: Federated, Available, and Reliable Storage for an Incom-
pletely Trusted Environment. Proceedings of the 5th Symposium on Operation Sys-
tems Design and Implementation, 2002, pp. 1–14, doi: 10.1145/1060289.1060291.

[7] Muthitacharoen, A.—Morris, R.—Gil, T.M.—Chen, B.: Ivy: A Read/Write
Peer to Peer File System. Proceedings of the 5th Symposium Operating System Design
and Implementation (OSDI 02), 2002, pp. 31–44, doi: 10.1145/1060289.1060293.

[8] Dolagh, S.V.—Moazzami, D.: New Approximation Algorithm for Minimum
Steiner Tree Problem. International Mathematical Forum, Vol. 6, 2011, No. 53,
pp. 2625–2636.

[9] Haytaoglu, E.—Dalkilic, M.E.: On the Communication Cost of Distributed
Storage Systems Using MDS Erasure Codes. Proceedings of the 3rd International
Symposium on Computing in Science & Engineering, 2013, pp. 102–107.

[10] Berman, P.—Ramaiyer, V.: Improved Approximations for the Steiner Tree
Problem. Journal of Algorithms, Vol. 17, 1994, No. 3, pp. 381–408, doi:
10.1006/jagm.1994.1041.

[11] Karpinski, M.—Zelikovsky, A.: New Approximation Algorithms for the Steiner
Tree Problems. Journal of Combinatorial Optimization, Vol. 1, 1995, pp. 47–65, doi:
10.1023/A:1009758919736.

[12] Hougardy, S.—Prömel, H. J.: A 1.598 Approximation Algorithm for the Steiner
Problem in Graphs. Proceedings of the Tenth Annual ACM-SIAM SODA, 1999,
pp. 448–453.

https://doi.org/10.1145/378993.379239
https://doi.org/10.1109/HOTOS.2001.990064
https://doi.org/10.1145/502034.502054
https://doi.org/10.1145/1060289.1060291
https://doi.org/10.1145/1060289.1060293
https://doi.org/10.1006/jagm.1994.1041
https://doi.org/10.1023/A:1009758919736


On the Communication Cost of MDS Erasure Codes in Distributed Storage Systems1259

[13] Li, J.—Yang, S.—Wang, X.—Xue, X.—Li, B.: Tree-Structured Data Regener-
ation with Network Coding in Distributed Storage Systems. 17th International Work-
shop on Quality of Service (IWQoS 2009), 2009, pp. 1–9.

[14] Li, J.—Yang, S.—Wang, X.—Li, B.: Tree-Structured Data Regeneration in Dis-
tributed Storage Systems with Regenerating Codes. Proceedings of the 29th Con-
ference on Information Communications (INFOCOM ’10), 2010, pp. 2892–2900, doi:
10.1109/INFCOM.2010.5462122.

[15] Gerami, M.—Xiao, M.—Skoglund, M.: Optimal-Cost Repair in Multi-Hop Dis-
tributed Storage Systems. 2011 IEEE International Symposium on Information The-
ory Proceedings (ISIT), 2011, pp. 1437–1441, doi: 10.1109/ISIT.2011.6033777.

[16] Qian, Z.—You, I.—Lu, Y.—Lu, S.: A Tree-Based Hierarchy Data Storage
Framework in a Pervasive Space. Computing and Informatics, Vol. 30, 2011, No. 6,
pp. 1181–1199.

[17] Aguilera, M.—Janakiraman, R.—Xu, L.: On the Erasure Recoverability of
MDS Codes under Concurrent Updates. Proceedings of Symposium on IEEE Infor-
mation Theory, 2005, pp. 1358–1362, doi: 10.1109/ISIT.2005.1523564.

[18] Anthapadmanabhan, N. P.—Soljanin, E.—Vishwanath, S.: Update-Efficient
Codes for Erasure Correction. 48th Annual Allerton Conference on Commu-
nication, Control, and Computing, 2010, pp. 376–382, doi: 10.1109/ALLER-
TON.2010.5706931.

[19] Plank, J. S.: A Tutorial on Reed-Solomon Coding for Fault-Tolerance in RAID-Like
Systems. Software: Practice and Experience, Vol. 27, 1997, No. 9, pp. 995–1012.

[20] Karp, R.M.: Reducibility Among Combinatorial Problems. Complexity of Com-
puter Computations, 1972, pp. 85–103, doi: 10.1007/978-1-4684-2001-2 9.

[21] Takahashi, H.—Matsuyama, A.: An Approximate Solution for the Steiner Prob-
lem in Graphs. Mathematics Japonica, Vol. 24, 1980, pp. 573–577.

[22] Reed, I. S.—Solomon, G.: Polynomial Codes over Certain Finite Fields. Journal
of the Society for Industrial and Applied Mathematics, SIAM, Vol. 8, 1960, No. 2,
pp. 300–304.

[23] Dijkstra, E.W.: A Note on Two Problems in Connexion with Graphs. Numerische
Mathematik, Vol. 1, 1959, No. 1, pp. 269–271, doi: 10.1007/BF01386390.

[24] Chung, F.—Lu, L.: The Average Distance in a Random Graph with Given Ex-
pected Degrees. Internet Mathematics, Vol. 1, 2003, No. 1, pp. 91–114.

[25] Chuang, J.—Sirbu, M.: Pricing Multicast Communication: A Cost-Based Ap-
proach. Telecommunication Systems, Vol. 17, 2001, No. 3, pp. 281–297.

[26] Kurose, J. F.—Ross, K.W.: Computer Networking: A Top Down Approach.
3rd ed. Addison Wesley, 2005.

[27] Medina, A.—Matta, I.—Byers, J.: BRITE: A Flexible Generator of Internet
Topologies. Technical Report, Boston University, 2000.

[28] Gupta, A.—Awasthi, L.K.: Peer-to-Peer Networks and Computation: Current
Trends and Future Perspectives. Computing and Informatics, Vol. 30, 2011, No. 3,
pp. 559–594.

https://doi.org/10.1109/INFCOM.2010.5462122
https://doi.org/10.1109/ISIT.2011.6033777
https://doi.org/10.1109/ISIT.2005.1523564
https://doi.org/10.1109/ALLERTON.2010.5706931
https://doi.org/10.1109/ALLERTON.2010.5706931
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/BF01386390


1260 E. Haytaoglu, M.E. Dalkilic

[29] Duminuco, A.—Biersack, E.: Hierarchical Codes: How to Make Erasure Codes
Attractive for Peer-to-Peer Storage Systems. Eighth International Conference on
Peer-to-Peer Computing (P2P ’08), 2008, pp. 89–98, doi: 10.1109/P2P.2008.9.

Elif Haytaoglu received her Ph.D. degree in information tech-
nologies in 2015 from International Computer Institute Ege Uni-
versity, Turkey. Currently, she is Assistant Professor at Depart-
ment of Computer Engineering, Pamukkale University, Deni-
zli, Turkey. Her research interests include distributed systems,
distributed storage systems, regenerating codes, computer net-
works, linear algebra and parallel programming.

Mehmet Emin Dalkilic received his B.Sc. degree in electrical
and electronics engineering in 1985 from Hacettepe University,
Turkey. He received his M.Sc. and Ph.D. degrees in Electrical
and Computer Engineering Department at Syracuse University,
USA, in 1989 and 1994, respectively. Currently he is Professor
International Computer Institute, Ege University, Turkey. His
research interests include algorithms, computer networks, net-
work security, and parallel and distributed computing.

https://doi.org/10.1109/P2P.2008.9

