
Computing and Informatics, Vol. 36, 2017, 1415–1446, doi: 10.4149/cai 2017 6 1415

ON THE SATISFIABILITY OF QUASI-CLASSICAL
DESCRIPTION LOGICS

Xiaowang Zhang∗, Zhiyong Feng

School of Computer Science and Technology
Tianjin University, Tianjin 300072, China
&
Tianjin Key Laboratory of Cognitive Computing and Application
Tianjin, China
e-mail: xiaowangzhang@tju.edu.cn

Wenrui Wu

School of Computer Science and Technology
Tianjin University, Tianjin 300072, China

Mokarrom Hossain, Wendy MacCaull

Department of Mathematics, Statistics and Computer Science
St. Francis Xavier University
PO Box 5000, Antigonish, NS, Canada

Abstract. Though quasi-classical description logic (QCDL) can tolerate the incon-
sistency of description logic in reasoning, a knowledge base in QCDL possibly has
no model. In this paper, we investigate the satisfiability of QCDL, namely, QC-
coherency and QC-consistency and develop a tableau calculus, as a formal proof,
to determine whether a knowledge base in QCDL is QC-consistent. To do so, we
repair the standard tableau for DL by introducing several new expansion rules and
defining a new closeness condition. Finally, we prove that this calculus is sound and
complete. Based on this calculus, we implement an OWL paraconsistent reasoner

∗ Corresponding author

1416 X. Zhang, Z. Feng, W. Wu, M. Hossain, W. MacCaull

called QC-OWL. Preliminary experiments show that QC-OWL is highly efficient in
checking QC-consistency.

Keywords: Semantic web, description logics, quasi-classical logic, satisfiability,
tableaux

1 INTRODUCTION

As a family of knowledge representation languages, description logics (DLs) can
be used to represent the knowledge of an application domain in a structured and
formally well-understood way [1]. DLs are the logical foundation of the Web On-
tology Language (OWL) which represents concepts and properties in the Semantic
Web [2], as an extension of the World Wide Web. Due to many reasons, such as
modeling errors, migration from other formalisms, merging ontologies, and ontology
evolution [3, 4], the Semantic Web is rarely perfect and the inconsistency arising
from knowledge becomes unavoidable. However, description logic, as a fragment
of first-order logic, could do nothing about this inconsistent knowledge. As a re-
sult, handling inconsistent knowledge in DLs has received extensive interests in the
community in recent years [5, 3, 6, 7, 8, 4, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18].

There are several approaches to handling inconsistencies in DLs. As a func-
tional type of those approaches, the inconsistency-tolerant (or paraconsistent) ap-
proach is not to simply avoid inconsistencies but to apply non-standard reasoning
methods (e.g., non-standard inference or non-classical semantics) to obtain mean-
ingful answers. Among those approaches, the approach based on four-valued seman-
tics [19] is popular since four-valued semantics is more intuitive and concise than
others [5, 3, 15]. However, the inference power of four-valued semantics is not strong.
For instance, assume that Wade is a student or a staff member in a university and
Wade is not a student. However, we do not conclude that Wade is a staff member
in that university under four-valued semantics.

To strengthen the inference power of four-valued semantics for DLs, based on
quasi-classical propositional logic proposed by [20], [21, 22] present a quasi-classical
description logic (QCDL) where the quasi-classical semantics (QC semantics) of
propositional logic is extended into description logic. In [22], a transformation-based
algorithm is developed to reduce the classical entailment problem of QCDL into the
entailment problem. In QCDL, a new negation called quasi-classical negation (QC
negation) (e.g., Bird, expressing the complement set of those which are known not
to be in Bird) is presented to the complement of interpretations when the (classical)
negation (e.g., ¬Bird, expressing the set of those which are known to be in ¬Bird)
is weakened under the QC semantics. Though {Bird(a),¬Bird(a)} is satisfiable,{

Bird(a),Bird(a)
}

is not satisfiable in QCDL.
For a logic, the satisfiability problem (SAT) is of central importance in various

areas of computer science, including theoretical computer science, complexity theory,

On the Satisfiability of Quasi-Classical Description Logics 1417

and artificial intelligence. It is interesting and important to develop an inherent
proof (system) for a logic to determine whether a set of formulae in that logic is
satisfiable. Indeed, this problem has been a recurring topic of proof theory. Specially,
an inherent proof of a logic (that is, a proof directly works the language of this logic
without translating it into other logics) is very important to this logic since the direct
proof can embody the precise characteristics of this logic in reasoning. For instance,
though the consistency problem of DL can be reduced to the consistency problem of
propositional dynamic logic (PDL), developing some suitable tableau-based proofs
for DLs has always been attracted in the recent years [1]. One may wonder what
the inherent proof of QCDL is like although a transformation-based algorithm is
presented to reduce the entailment problem of QCDL into the entailment problem
of DL in [22]. The main goal of this paper is to answer this question. However, it is
not trivial to develop a proof of QCDL for the satisfiability problem since the QC
negation of conjunction and disjunction of concepts cannot be pushed inwards in
a simple way (i.e., using DeMorgan law) which the negation obeys. Moreover, since
most of standard tableau-based proofs of DLs work for a KB with the empty TBox,
we must find a suitable transformation to reduce a KB into a KB without any TBox
if we aim to build our proof on the standard tableau-based proof.

This paper systematically studies two satisfiability problems of QCDL, namely,
QC-coherency and QC-consistency, as a complement of [22]. Firstly, we reduce the
QC-coherency problem to the QC-consistency problem. Secondly, we prove that
for any ABox A, any TBox T , and, an RBox R, we can construct a new RBox
RU such that the problem determining whether A is QC-consistent w.r.t. T and
R is equivalent to the problem determining whether A is QC-consistent w.r.t. RU .
Finally, we develop a sound and complete tableau calculus for determining the QC-
consistency of an ABox w.r.t. an RBox obtained from the standard tableau calculus
of DL in the following way:

1. dividing the t-rule of the standard tableau calculus of DL into two new rules:
R-rule for resolution and a new t-rule;

2. adding eight new expansion rules for pushing the QC negation inwards; and

3. redefining the closeness condition as
{
A,A

}
or
{
¬A,¬A

}
instead of the closeness

condition as {A,¬A} of the standard tableau calculus.

Additionally, we show that the QC-entailment can be reduced to the QC-consistency
and consequently our tableau calculus can be also taken as an alternative approach
to the QC-entailment. In this paper, we select the DL SHIQ for the following
reasons:

a) SHIQ is one of expressive DLs, which is powerful enough to encode the logic
DLR, and which can thus be used for reasoning on conceptual data models;

b) the standard tableau calculus presented [23] can be taken as a reference to
construct our tableau calculus in an easy-to-understand way; and

c) the qualified number restrictions (Q) is absent in our previous work [22].

1418 X. Zhang, Z. Feng, W. Wu, M. Hossain, W. MacCaull

The rest of this paper is organized as follows: Section 2 reviews the syntax
and semantics of QC-SHIQ. Section 3 discusses two satisfiability problems. Sec-
tion 4 presents a tableau calculus for QC-SHIQ and Section 5 implements the
paraconsistent OWL reasoner QC-OWL. Finally, Section 6 discusses related works
and Section 7 summarizes this paper. All proofs are presented in the Appendix.

2 QUASI-CLASSICAL DESCRIPTION LOGICS

In this section, we introduce the syntax and semantics of an expressive quasi-classical
DL: QC-SHIQ. We omit the introduction of the syntax and semantics of SHIQ.
For more comprehensive background knowledge of DLs and QCDLs, we refer the
reader to [1, 21, 22].

Let NC , NR, and NI be countably infinite sets of concept names, role names, and
individual names. Let R be a set of role names with a subset R+ ⊆ R of transitive
role names. The set of roles is R ∪ {R− | R ∈ R}. The function Inv(·) is defined
on the sets of roles as follows: Inv(R) = R− and Inv(R−) = R, where R is a role
name. The function Trans(R) = true if and only if (iff) R ∈ R+ or Inv(R) ∈ R+.

For roles R1 and R2, a role axiom is a role inclusion, which is of the form R1 v R2

for R1, R2 ∈ R. An RBox or a role hierarchy R is a finite set of role axioms. Let ∗v
be the reflexive-transitive closure of v on R ∪ {Inv(R) v Inv(S) | R v S ∈ R} as
follows: {(R1, R2) | R1 v R2 ∈ R or Inv(R1) v Inv(R2) ∈ R}. A role R is called a
sub-role (respectively, super-role) of a role S if R∗vS (respectively, S ∗vR). A role S
is simple if it is neither transitive nor has any transitive sub-roles.

The set of complex concepts is the smallest set such that

• each concept name A ∈ NC is a concept;

• C,D are concepts, R is a role, S is a simple role, and n is a nonnegative integer,
then C u D, C t D, ¬C, C, ∀R.C, ∃R.C, ≤ nS.C, and, ≥ nS.C are also
concepts.

Note that the syntax of QC-SHIQ is slightly different from the syntax of clas-
sical SHIQ by introducing a new version of the negation called the quasi-classical
negation (QC negation, C) of a concept C when the negation is weakened to tol-
erate inconsistency. The QC negation is inspired from a so-called total negation
which is not a syntax constructor but a semantic “operation” [15]. For instance,
¬Bird(tweety) means that tweety is known to not be a member of ¬Bird, while
tweety is not necessarily known to be a member of Bird under non-classical seman-
tics. Intuitively, the QC negation reverses both the information of being true and
of being false.

In this paper, let A,B (or with Ai, Bi) be concept names, C,D (or with Ci, Di)
(general) concepts, R (or with Ri) a role name, S (or with Si) a simple role, a, b (or
with ai, bi) individual names, unless otherwise stated.

A TBox or a terminology T is a finite set of general concept inclusion axioms
(GCIs) C v D. It is the statement about how concepts are related to each other.

On the Satisfiability of Quasi-Classical Description Logics 1419

In an ABox, one describes a specific state of affairs of an application domain in
terms of concepts and roles. An ABox A is a finite set of assertions of the forms
C(a) (concept assertion), R(a, b) (role assertion), and a 6 .= b (inequality assertion).
In general, axioms are GCIs, role axioms, concept assertions, role assertions, and
inequality assertions. A knowledge base (KB) K is a triple (T ,R,A).

Semantically, we propose to use two types of interpretations: weak interpreta-
tions and strong interpretations. The former is essentially a variant of four-valued
interpretations [15]. Before introducing these two types of interpretations, we define
a notion called base interpretations [22]. A base interpretation I is a pair (∆I , ·I)
where the domain ∆I is a set of individuals and the assignment function ·I assigns
each concept name A to an ordered pair 〈+A,−A〉 where ±A ⊆ ∆I ; each role
R to 〈+R,−R〉 where ±R ⊆ ∆I × ∆I ; each inverse role R− to an ordered pair
〈+R−,−R−〉 where ±R− = {(y, x) | (x, y) ∈ ±R}. Note that +X and −X are not
necessarily disjoint when X ∈ {A,R,R−}. Intuitively, +X is the set of elements
known to be in the extension of X while −X is the set of elements known to be not in
the extent of X. Compared with classical interpretations, each base interpretation
maps an object X to a pair of sets of elements but not to a set of elements.

A weak interpretation I is a base interpretation (∆I , ·I) such that the assignment
function ·I satisfies the conditions as follows:

1. (C uD)I = 〈+C ∩+D,−C ∪ −D〉;
2. (C tD)I = 〈+C ∪+D,−C ∩ −D〉;
3. (¬C)I = 〈−C,+C〉;
4. (C)I = 〈∆I \+C,∆I \ −C〉;
5. (∃R.C)I = 〈{x | ∃y, (x, y) ∈ +R and y ∈ +C}, {x | ∀y, (x, y) ∈ +R implies y ∈
−C}〉;

6. (∀R.C)I = 〈{x | ∀y, (x, y) ∈ +R implies y ∈ +C}, {x | ∃y, (x, y) ∈ +R and y ∈
−C}〉;

7. (≥ nS.C)I = 〈{x |]({y.(x, y) ∈ +R} ∩ +C) ≥ n}, {x |]({y.(x, y) ∈ +R} ∩
(∆I \ −C)) < n}〉;

8. (≤ nS.C)I = 〈{x |]({y.(x, y) ∈ +R} ∩ (∆I \ −C)) ≤ n}, {x |]({y.(x, y) ∈
+R} ∩ +C) > n}〉. We use +C to denote ∆I \ +C and we use −C to denote
∆I \ −C, then, (C)I =

〈
+C,−C

〉
, where CI = 〈+C,−C〉.

Let I be a weak interpretation. A weak satisfaction relation (|=w) is determined by
weak interpretation as follows: let XI = 〈+X,−X〉 where X ∈ {C,D,R,R1, R2},

1. I |=w R1 v R2 if +R1 ⊆ +R2;

2. I |=w C v D if +C ⊆ +D;

3. I |=w C(a) if aI ∈ +C;

4. I |=w R(a, b) if (aI , bI) ∈ +R; and

5. I |=w a 6
.
= b if aI 6= bI .

1420 X. Zhang, Z. Feng, W. Wu, M. Hossain, W. MacCaull

A strong interpretation I is a base interpretation (∆I , ·I) such that the as-
signment function ·I satisfies the conditions in weak interpretations except that
the conjunction and the disjunction of concepts are interpreted as follows: let
CI = 〈+C,−C〉 and DI = 〈+D,−D〉, we define

(C uD)I =
〈
+C ∩+D, (−C ∪ −D) ∩

(
−C ∪+D

)
∩
(
+C ∪ −D

)〉
;

(C tD)I =
〈
(+C ∪+D) ∩

(
−C ∪+D

)
∩
(
+C ∪ −D

)
,−C ∩ −D

〉
.

Compared with the weak interpretation, the strong interpretation of disjunction
of concepts tightens the condition that an individual is known to belong to a concept.
Similarly, we can define the strong satisfaction relation, denoted by |=s, in terms of
strong interpretations.

The definition of |=s is the same as the definition of |=w except for GCIs.
Formally, let I be a strong interpretation and C,D be two concepts. We define
I |=s C v D if −C ⊆ +D and +C ⊆ +D and −D ⊆ −C where CI = 〈+C,−C〉
and DI = 〈+D,−D〉.

Let K be a KB and φ be an axiom. We say K quasi-classically entails (QC
entails) φ, denoted K |=Q φ, if for each base interpretation I, for each axiom ϕ in
K, I |=s ϕ implies I |=w φ. In this case, |=Q is called QC-entailment. The QC-
entailment can bring more reasonable conclusions than other existing paraconsistent
methods [22]. For instance, recalling the example in the Introduction, let A =
{¬Student(Wade), StudenttStaff(Wade)}, we can conclude thatA |=Q Staff(Wade).
It is reasonable to expect that Wade is a staff member which can be inferred from
two facts that Wade is a student or staff member in a university and we know
that Wade is not a student. However, this conclusion cannot be inferred under
four-valued DLs [15].

3 THE SATISFIABILITY PROBLEM OF QCDLS

In this section, we discuss two satisfiability problems in QCDLs, namely, coherency
and consistency. To distinguish notions in QCDLs from similar notions in DLs, we
will put the words “QC” in front of each notion.

To describe two such problems, we first define the notion of QC-model of a KB
in QCDLs.

Let K be a KB and I be a base interpretation. I is a QC-model of K if for all
axioms ϕ in K, I |=s ϕ. We use ModQ(K) to denote the collection of all models
of K.

Now, we can define two satisfiability problems as follows:

• Let T be a TBox and R be an RBox. A concept C is QC-satisfiable w.r.t. T
and R if there exists some QC-model I of T and R such that +C 6= ∅ where
CI = 〈+C,−C〉; QC-unsatisfiable w.r.t. T and R otherwise. A KB is QC-
coherent if there exists some QC-satisfiable concept names w.r.t. its TBox and
its RBox and QC-incoherent otherwise.

On the Satisfiability of Quasi-Classical Description Logics 1421

• Let K be a KB. K is QC-consistent if there exists some QC-model I of K, that
is, ModQ(K) 6= ∅; it is QC-inconsistent otherwise.

Additionally, we can define that an ABox is QC-consistent (or QC-inconsistent)
w.r.t. a TBox and an RBox if the KB consisting of the three of them is QC-consistent
(or QC-inconsistent).

For instance, A′ =
{
¬Student(Wade), Student t Staff(Wade),¬Staff(Wade)

}
is

QC-consistent while A′′ =
{
¬Student(Wade), Student t Staff(Wade), Staff(Wade)

}
is QC-inconsistent.

The QC-coherency problem can be reduced into the QC-consistency problem.

Proposition 3.1. Let T be a TBox and R an RBox. For any concept C, C is
QC-unsatisfiable w.r.t. T and R iff the KB

(
T ,R,

{
C(τ)

})
is QC-consistent where

τ is a fresh individual name.

The QC-entailment problem discussed in [22] determines whether a KB can
quasi-classically entail an axiom. The following result shows that two basic QC-
entailment problems can be reduced into the QC-inconsistency problem.

Proposition 3.2. Let T be a TBox, R an RBox, A an ABox, and, C, D concepts.
The followings hold.

• (T ,R,A) |=Q C v D iff C uD is QC-unsatisfiable w.r.t. T and R.

• (T ,R,A) |=Q C(a) iff
(
T ,R,A ∪

{
C(a)

})
is QC-inconsistent.

For instance, consider the ABox A = {¬Student(Wade), StudenttStaff(Wade)}.
Let Staff(Wade) be an axiom. We can conclude that A |=Q Staff(Wade) since
(A′′ =) A∪

{
Staff(Wade)

}
is QC-inconsistent. However, A 6|=Q ¬Staff(Wade) since

(A′′′ =) A ∪
{
¬Staff(Wade)

}
is QC-consistent.

Two satisfiability problems of a KB can be reduced into two satisfiability prob-
lems of a KB with the empty TBox.

Let U be a transitive super-role of all roles occurring in T and their respective
inverses called the universal role [23]. We define the base interpretation of U as
follows: UI = 〈∆I ×∆I , ∅〉 for any base interpretation I.

Proposition 3.3. Let T be a TBox, R an RBox, and A an ABox. We define
CT :=

d
CivDi∈T ¬Ci t Di. Let RU := R ∪ {R v U, Inv(R) v U | R occurs in

T , C,D,A, or R}. Then the followings hold.

• C is QC-satisfiable w.r.t. T and R iff C u CT u ∀U.CT is QC-satisfiable w.r.t.
RU .

• (T ,R,A) |=Q C v D iff C uD u CT u ∀U.CT is QC-unsatisfiable w.r.t. RU .

• A is QC consistent w.r.t. R and T iff A ∪ {CT u ∀U.CT (a) | a occurs in A} is
QC-consistent w.r.t. RU .

1422 X. Zhang, Z. Feng, W. Wu, M. Hossain, W. MacCaull

In a short, the problem of determining the QC-coherency and the QC-consisten-
cy of a KB (even the QC-entailment between a KB and an axiom) can be equivalent
to the problem of determining the QC-consistency of an ABox w.r.t. an RBox,
which is in ExpTime-complete since this problem can be reduced into the problem
of determining of the consistency of an ABox w.r.t. an RBox [22].

At the end of this section, we use an example in to illustrate that classical
inconsistency can be tolerated in QCDL.

Example 3.1. Let Kt = (Tt,At) be a KB where the TBox Tt = {Fish v ∃hasOrgan.
Gill,∃ eat.Fish v Piscivore} and the ABox At = {eat(ursidae, salmon),
Fish(salmon),¬Piscivore(ursidae)}. Here Fish, Gill, and Piscivore are concepts;
hasOrgan and eat are roles; and ursidae and salmon are individuals. The KB Kt

tells us: a fish has an organ named gill; a piscivore is an animal which eats primarily
fish; a ursidae eats some salmon; and salmon is a fish.

We can infer Piscivore(ursidae) from Eat(ursidae, salmon) and Fish(salmon)
while Piscivore(ursidae) is an axiom of Kt. As a result, Kt is (classical) inconsistent.

Let ∆ = {ursidae, salmon, g, f, gf , . . .} be a domain where g, f, gf , . . . are fresh
individuals and It be a base interpretation on ∆ such that the followings hold.

1. FishIt =
〈{

salmonIt , fIt
}
,∆It \

{
fIt
}〉

;

2. GillIt =
〈{
gIt , gItf

}
,∆It \

{
gIt , gItf

}〉
;

3. PiscivoreIt =
〈
∆It ,

{
ursidaeIt

}〉
;

4. hasOrganIt =
〈{

(salmonIt , gIt),
(
fIt , gItf

)}
, ∅
〉
; and

5. eatIt =
〈{(

ursidaeIt , x
)
| x ∈ ∆It \

{
fIt
}}

, ∅
〉
.

Then we can conclude:

1. (∃ eat.Fish)It =
〈{

ursidaeIt
}
,∆It \

{
fIt
}〉

and

2. (∃ hasOrgan.Gill)It =
〈{

salmonIt , fIt
}
, ∅
〉
.

It is not difficult to show that It is a QC-model of Kt. Therefore, Kt is QC-
consistent.

Let us consider some reasoning tasks:

• Kt |=Q ¬Piscivore(ursidae) since the KB K1
t =

(
Tt,At ∪

{
¬Piscivore(ursidae)

})
is QC-inconsistent.

• Kt |=Q ∃ eat.Fish(ursidae) since the KB K2
t =

(
Tt,At ∪

{
∃ eat.Fish(ursidae)

})
is QC-inconsistent.

• Kt |=Q ∃ eat.Fish v Piscivore since for some fresh individual τ , the KB K3
t =(

Tt,At ∪
{(
∃ eat.Fish u Piscivore

)
(τ)
})

is QC-inconsistent.

• Kt 6|=Q Fish(ursidae) since the KB K4
t =

(
Tt,At ∪

{
Fish(ursidae)

})
is QC-

consistent.

On the Satisfiability of Quasi-Classical Description Logics 1423

As Example 3.1 shows, in QCDL, all axioms in the KB can be inferred while
other axioms are restricted in inferring new conclusions so that we can get more
conclusions without the problem of explosive inference [22].

4 TABLEAU FOR THE QC-CONSISTENCY PROBLEM

In this section, we will develop a decidable, sound and complete tableau calculus for
determining whether an ABox is QC-consistent w.r.t. an RBox.

The standard tableau calculus [23] generally consists of four modules as follows:

1. negation normal form (NNF, that is, the negation only occurs in the front of
concept name) of concepts to be input;

2. blocking technique ensuring termination;

3. expansion rules as trigger mechanisms; and

4. closedness conditions as determining soundness.

To build a proof system for checking the QC-consistency based on tableau cal-
culus, we need to do the followings:

1. select suitable NNF for concepts;

2. develop new expansion rules; and

3. define new closeness condition.

Firstly, we show that each QCDL concept is equivalent to its NNF. Let C,D
be two concepts. We say C is equivalent to D, denoted by C ≡s D, if for any
strong interpretation I, CI = DI . That is, +C = +D and −C = −D where
CI = 〈+C,−C〉 and DI = 〈+D,−D〉.

Proposition 4.1. The followings hold.

1. ¬C ≡s ¬C;

2. ¬¬C ≡s C;

3. ¬(C tD) ≡s ¬C u ¬D;

4. ¬(C uD) ≡s ¬C t ¬D;

5. ¬∃R.C ≡s ∀R.¬C;

6. ¬∀R.C ≡s ∃R.¬C;

7. ¬(≤ nS.C) ≡s≥ n+1S.C; and

8. ¬(≥ n+1S.C) ≡s≤ nS.C.

It is not difficult to conclude that a concept can be translated into its NNF in
a polynomial time [23]. However, it is difficult to push QC negation inward like
negation since De Morgan’s law is no longer true. Neither C uD ≡s C t D nor
C tD ≡s CuD always holds. For instance, let ∆ = {a, b, c} be a domain and CI =

1424 X. Zhang, Z. Feng, W. Wu, M. Hossain, W. MacCaull

〈{a, b}, {a}〉 and DI = 〈{b}, {c}〉. Thus C
I

= 〈{c}, {b, c}〉 and D
I

= 〈{a, c}, {a, b}〉.
C uDI = 〈{c}, {a, b}〉 while (C t D)I = 〈{c}, {b}〉. C tDI = 〈{a, c}, {a, b, c}〉
while (C uD)I = 〈{c}, {b}〉.

Fortunately, the QC negation can be pushed inward concepts except for con-
junctions and disjunctions.

Proposition 4.2. The followings hold.

1. C ≡s C;

2. ∃R.C ≡s ∀R.C;

3. ∀R.C ≡s ∃R.C;

4. ≤ nS.C ≡s≥ (n+1)S.¬C; and

5. (≥ n+1)S.C ≡s≤ nS.¬C.

Given a concept C, we denote the NNF of ¬C by ∼ C. Let clos(C) denote the
smallest set that contains C and it is closed under sub-concepts and ∼. Let A be
an ABox and R an RBox. We denote clos(A) :=

⋃
a:C∈A clos(C).

Note that the size of clos(A) is polynomial in the size of A. We denote by RA
the set of roles occurring in A and R together with their inverse, and by IA the set
of individuals occurring in A.

Secondly, we define a new tableau called quasi-classical tableau (or QC-tableau)
by modifying the standard tableau.

Definition 4.1. Let R be an RBox and A be an ABox whose concepts are all in
NNF. A quadruple T = (S,L, E ,J) is a QC-tableau for A w.r.t. R if the following
conditions hold.

• S: a non-empty set of individuals;

• L : S → 2clos(A) maps each element in S to a set of concepts which is a subset
of clos(A);

• E : RA → 2S×S maps each role in RA to a set of pairs of elements in S;

• J : IA → S maps individuals occurring in A to elements in S.

Let ST(s, C) := {t ∈ S | 〈s, t〉 ∈ E(S) and t ∈ C}.
Moreover, for all s, t ∈ S, C, C1, C2 ∈ clos(A), R, S ∈ RA, T satisfies:

P1 if C ∈ L(s) then C 6∈ L(s);

P2 if C1 u C2 ∈ L(s) then {C1, C2} ⊆ L(s);

P3 if C1 t C2 ∈ L(s) then if ∼ Ci ∈ L(s) for some (i ∈ {1, 2}), then C3−i ∈ L(s);
otherwise C1 ∈ L(s) or C2 ∈ L(s);

P4 if ∀R.C ∈ L(s) and 〈s, t〉 ∈ E(R), then C ∈ L(t);

P5 if ∃R.C ∈ L(s) then there is some t ∈ S such that 〈s, t〉 ∈ E(R) and C ∈ L(t);

On the Satisfiability of Quasi-Classical Description Logics 1425

P6 if ∀R.C ∈ L(s) and 〈s, t〉 ∈ E(R) for some R∗vS with Trans(R), then ∀R.C ∈
L(t);

P7 〈s, t〉 ∈ E(R) iff 〈t, s〉 ∈ E(Inv(R));

P8 if 〈s, t〉 ∈ E(R) and R∗vS then 〈t, s〉 ∈ E(S);

P9 if ≤ nS.C ∈ L(s) then]ST(s, C) ≤ n;

P10 if ≥ nS.C ∈ L(s) then]ST(s, C) ≥ n;

P11 if (./ nS.C) ∈ L(s) and 〈s, t〉 ∈ E(S) then C ∈ L(s) or C ∈ L(s);

P12 if a : C ∈ A then C ∈ L(J (a));

P13 if (a, b) : R ∈ A then 〈J (a),J (b)〉 ∈ E(R);

P14 if a 6 .= b ∈ A, then J (a) 66= J (b);

P15 if C ∈ L(s) then C ∈ L(s);

P16 if C1 u C2 ∈ L(s) then C1 ∈ L(s) or C2 ∈ L(s);

P17 if C1 t C2 ∈ L(s) then
{
C1, C2

}
⊆ L(s),

{
¬C1, C2

}
⊆ L(s), or,

{
C1,¬C2

}
⊆

L(s)

P18 if ∀R.C ∈ L(s) then there is some t ∈ S such that 〈s, t〉 ∈ E(R) and C ∈ L(t);

P19 if ∃R.C ∈ L(s) and 〈s, t〉 ∈ E(R), then C ∈ L(t);

P20 if ≤ nS.C ∈ L(s), then]ST
(
s,¬C

)
≥ n+ 1;

P21 if ≥ nS.C ∈ L(s), then]ST
(
s,¬C

)
≤ n− 1;

P22 if (./ nS.C) ∈ L(s) then 〈s, t〉 ∈ E(S) then ¬C ∈ L(s) or ¬C ∈ L(s).

Here ./ is a place-holder for both ≤ and ≥.

Intuitively, the mapping J is used to construct a finite model. P1 ensures
that both a concept and its QC negation do not occur in the same set together.
It is not hard to show that P2 and P3 are introduced to characterize disjunction
and conjunction concepts, P4 and P5 for exists restriction and value restriction
concepts, P7 for inverse roles, P6 and P8 for transitive roles, P9–P11 for number
restriction concepts, P12 for concept assertions, P13 for role assertions, P14 for
individual inequality assertions, and P15–P22 for the QC negation of concepts,
respectively. Compared with the standard tableau, we revise P1, P3 and P11 and
add nine new expansion rules for QC negation of concepts P15–P22.

We can show that each QC-consistent ABox w.r.t. an RBox has at least one
QC-tableau.

Theorem 4.1. Let R be an RBox and A an ABox. A is QC consistent w.r.t. R iff
there is a QC-tableau for A w.r.t. R.

Let R be an Rbox and A an ABox. Without loss of generality, we assume
that all concepts occurring A and R are in QC-NNF. In the following, we develop
a tableau calculus to decide whether the QC tableau of A w.r.t. R exists, called the
QC-tableau calculus.

1426 X. Zhang, Z. Feng, W. Wu, M. Hossain, W. MacCaull

Following the standard tableau calculus, we first introduce a basic data structure
so-called forest to support our QC-tableau calculus. A completion forest F for A
w.r.t.R is a collection of trees whose distinguished root nodes are possibly connected
by edges in an arbitrary way. F is constructed as follows:

1. each node x is labeled with a set L(x) ⊆ clos(A);

2. each edge 〈x, y〉 is labeled with a set L(〈x, y〉) ∈ R of (possibly inverse) roles
occurring in A; and

3. an explicit inequality relation 6 .= on nodes is employed to capture the inequality
between nodes while an explicit equality relation

.
= is implicitly assumed to be

symmetric.

A node y is called an R-successor of x if for some R′ with R′ ∗vR, either y is
a successor of x or R′ ∈ L(〈x, y〉). In this sense, x is called an Inv(R)-predecessor
of y. R-neighbors and R-ancestors are defined in the usual way. For a role R,
a concept C and a node x in F , we let SF(x,C) := {y | y is S-successor of x
and C ∈ L(y)}. Note that a so-called blocking technique is developed to ensure
termination and correctness. Because of the presence of transitive roles and inverse
roles, we need to employ the technique of dynamic blocking presented by [23].

Next, we briefly recall the blocking technique. A node is blocked iff it is not
a root node and it is either directly or indirectly blocked. A node x is directly
blocked iff none of its ancestors is blocked, and it has ancestors x′, y and y′ such that

1. y is not a root node;

2. x is a successor of x′ and y is a successor of y′;

3. L(x) = L(y) and L(x′) = L(y′); and

4. L(〈x′, x〉) = L(〈y′, y〉).

A node y is indirectly blocked iff one of its ancestors is blocked, or it is a successor
of a node x and L(〈x, y〉) = ∅. Now, we refine the conditions of clash which is a key
notion of tableau calculus. A node L(x) contains a clash if:

1. for some concept name A ∈ NC , {A,A} ⊆ L(x) or {¬A,¬A} ⊆ L(x);

2. for some role S, ≤ nS.C ∈ L(x) and x has n+1 S-neighbours y0, . . . , yn with
C ∈ L(yi) such that yi 6

.
= yj) for all 0 ≤ i < j ≤ n.

Note that the first condition of clash {A,¬A} ⊆ L(x) for the standard tableau
calculus is replaced with {A,A} ⊆ L(x) or {¬A,¬A} ⊆ L(x).

A completion forest is clash-free if none of its nodes contains a clash, and it is
complete if no QC expansion rules from Table 2 (see below) can be applied to it.

The QC-tableau calculus initializes a completion forest FA consisting only of
root nodes. More precisely, FA contains a root node xi0 for each individual ai ∈ IA,
and an edge 〈xi0, x

j
0〉 if A contains an assertion (ai, aj) : R for some R. The labels

of these nodes and edges and the relations 6 .= and
.
= are initialized as follows:

On the Satisfiability of Quasi-Classical Description Logics 1427

1. L(x0i) := {C | ai : C ∈ A};
2. L(〈xi0, x

j
0〉) := {R | (ai, aj) : R ∈ RA}; and

3. xi0 6
.
= xj0 ⇔ ai 6

.
= aj ∈ A.

Here the
.
=-relation is initialized to be the empty set. FA is then expanded by

repeatedly applying the QC expansion rules.
Comparing with that of the standard tableau calculus, there are three changes:

• The t-rule in the standard tableau calculus is replaced with two new rules,
namely, the t-rule and the R-rule, which are applied to treat two cases with
disjunction concepts shown in Table 2. When a node in a branch contains
a disjunction concept C1 t C2 without any negation of C1 and C2, two new
branches which contain C1 and C2, respectively, are added by using the t-rule.
On the other hand, when a node in a branch contains a disjunction concept
C1 t C2 and some negation of sub-concept C1 or C2, the sub-concept whose
negation does not occur in the node will be added in the node by using the R-rule.
For example, if {C1tC2,¬C2} ⊆ L(x), then {C1tC2,¬C2, C1} ⊆ L(x) by using
the R-rule. In this sense, the R-rule could capture resolution of disjunction
concepts.

• The choose-rule is revised by replacing {C,∼ C} by {C,C} shown in Table 2.
Though {A,¬A} is a clash in the standard tableau calculus, it is no longer a clash
in the QC-tableau calculus where {A,A} or {A,¬A} is a clash. Moreover, we
add the c-choose-rule to analogously capture ./ nS.C.

• Seven new rules (double, u-rule, t-rule, ∃-rule, ∀-rule, ≤-rule, and ≥-rule) are
introduced to push the QC negation inwards.

Additionally, though other expansion rules are not changed formally, they can
handle concepts with the QC negation technically.

Now, we are ready to present the QC-tableau calculus as follows: it starts with
the completion forest FA and it then exhaustively applies the expansion rules till it
terminates in the situation that no rule can be applied or a clash occurs, it answers
“there is a QC-tableau of A w.r.t. R” iff the expansion rules can be applied in such
a way that they yield a complete and clash-free completion forest; and it answers
“there is not any QC-tableau of A w.r.t. R” otherwise.

The QC-tableau calculus always terminates.

Theorem 4.2. Let R be an RBox and A an ABox. The QC-tableau calculus
terminates when started for A and R.

The following theorem states that the QC-tableau calculus is sound and com-
plete.

Theorem 4.3. Let R be an RBox and A an ABox. A has a QC-tableau w.r.t. R
iff the QC-tableau calculus applied to A w.r.t. R yields a complete and clash-free
completion forest.

1428 X. Zhang, Z. Feng, W. Wu, M. Hossain, W. MacCaull

u-rule If 1. C1 u C2 ∈ L(x), x is not blocked, and
2. {C1, C2} 6⊆ L(x).

Then L(x) := L(x) ∪ {C1, C2}.
∃-rule If 1. ∃R.C ∈ L(x), x is not blocked, and

2. x has no R-neighbor y with C ∈ L(y).
Then create a new node y with L(〈x, y〉) := {R} and

L(y) := {C}.
∀-rule If 1. ∀R.C ∈ L(x), x is not indirectly blocked, and

2. there is some R-neighbor y of x with C 6∈ L(y)
Then L(y) := L(y) ∪ {C}

∀+-rule If 1. ∀R.C ∈ L(x), x is not indirectly blocked, and
2. there is some R with Trans(R) and R∗vS, and
3. there is an R-neighbor y of x with ∀R.C 6∈ L(y).

Then L(y) := L(y) ∪ {∀R.C}.
≥-rule If 1. ≥ nS.C ∈ L(x), x is not blocked, and;

2. there is no n S-neighbors y1, . . . , yn such that
C ∈ L(yi) and yi 6

.
= yj for 1 ≤ i < j ≤ n.

Then create n new nodes y1, . . . , yn with L(〈x, yi〉) := {S}
L(yi) := {C}, and yi 6

.
= yj for 1 ≤ i < j ≤ n.

≤-rule If (1) ≤ nS.C ∈ L(x), x is not indirectly blocked, and
2.]SF (x,C) > n, there are S-neighbors y, z of x
with not y 6 .= z, y is neither a root node
nor an ancestor of z and C ∈ L(y) ∩ L(z).

Then 1. L(z) := L(z) ∪ L(y); and
2. if z is an ancestor of x

then L(〈z, x〉) := L(〈z, x〉) ∪ Inv(L(〈x, y〉))
else L(〈x, z〉) := L(〈x, z〉) ∪ L(〈x, y〉);

3. L(〈x, y〉) := ∅;
4. set u 6 .= z for all u with u 6 .= y.

≤r-rule If 1. ≤ nS.C ∈ L(x), and
2.]SF (x,C) > n;
3. there are S-neighbors y, z of x which are both
root nodes, C ∈ L(y) ∩ L(z) with not y 6 .= z.

Then 1. L(z) := L(z) ∪ L(y); and
2. for all edge 〈y, w〉:

(i) if the edge 〈z, w〉 does not exist, create it
with L(〈z, w〉) := ∅;

(ii) L(〈z, w〉) := L(〈z, w〉) ∪ L(〈y, w〉);
3. for all edge 〈w, y〉:

(i) if the edge 〈w, z〉 does not exist, create it
with L(〈w, z〉) := ∅;

(ii) L(〈w, z〉) := L(〈w, z〉) ∪ L(〈w, y〉);
4. set L(y) := ∅ and remove all edges to/front y;
5. set u 6 .= z for all u with u 6 .= y;
6. set y

.
= z.

Table 1. QC Expansion Rules

On the Satisfiability of Quasi-Classical Description Logics 1429

choose If 1. ./ nS.C ∈ L(x), x is not indirectly blocked,
2. there is some S-neighbor y of x with
{C,≈ C} ∩ L(y) = ∅.

Then L(y) := L(y) ∪ {E} for some E ∈
{
C,C

}
.

R-rule If 1. C1 t C2 ∈ L(x), x is not blocked, and
2. ∼ Ci ∈ L(x) for some i ∈ {1, 2}).

Then L(x) := L(x) ∪ {C3−i}.
t-rule If 1. C1 t C2 ∈ L(x), x is not blocked, and

2. {C1, C2,∼ C1,∼ C2} ∩ L(x) = ∅.
Then L(x) := L(x) ∪ {E} for some E ∈ {C1, C2}.

double If 1. C ∈ L(x), x is not blocked, and
Then L(x) := L(x) ∪ {C}.

u-rule If 1. C1 u C2 ∈ L(x), x is not blocked, and

2.
{
C1, C2

}
6⊆ L(x) = ∅.

Then L(x) := L(x) ∪
{
E
}

for some E ∈ {C1, C2}.
t-rule If 1. C1 t C2 ∈ L(x), x is not blocked, and

Then L(x) := L(x) ∪W

for some W ∈
{{

C1, C2

}
,
{
∼ C1, C2

}
,
{
C1,∼ C2

}}
.

∃-rule If 1. ∃R.C ∈ L(x), x is not indirectly blocked, and

2. there is some R-neighbor y of x with C 6∈ L(y).

Then L(y) := L(y) ∪
{
C
}

.

∀-rule If 1. ∀R.C ∈ L(x), x is not blocked, and

2. x has no R-neighbor y with C ∈ L(y).
Then create a new node y with L(〈x, y〉) := {R} and

L(y) :=
{
C
}

.

≥-rule If 1. ≥ nS.C ∈ L(x), x is not indirectly blocked, and

2.]SF
(
x,∼ C

)
> n, there are S-neighbors y, z of x

with not y 6 .= z, y is neither a root node

nor an ancestor of z and ∼ C ∈ L(y) ∩ L(z).
Then 1. L(z) := L(z) ∪ L(y); and

2. if z is an ancestor of x
then L(〈z, x〉) := L(〈z, x〉) ∪ Inv(L(〈x, y〉))
else L(〈x, z〉) := L(〈x, z〉) ∪ L(〈x, y〉);

3. L(〈x, y〉) := ∅;
4. set u 6 .= z for all u with u 6 .= y.

≤-rule If 1. ≤ nS.C ∈ L(x), x is not blocked, and;
2. there is no n S-neighbors y1, . . . , yn such that

∼ C ∈ L(yi) and yi 6
.
= yj for 1 ≤ i < j ≤ n.

Then create n new nodes y1, . . . , yn with L(〈x, yi〉) := {S}
L(yi) :=

{
∼ C

}
, and yi 6

.
= yj for 1 ≤ i < j ≤ n.

c-choose If 1. ./ nS.C ∈ L(x), x is not indirectly blocked,
2. there is some S-neighbor y of x with{
∼ C,∼ C

}
∩ L(y) = ∅.

Then L(y) := L(y) ∪ {E} for some E ∈
{
∼ C,∼ C

}
.

Table 2. QC Expansion Rules (cont’d)

1430 X. Zhang, Z. Feng, W. Wu, M. Hossain, W. MacCaull

As a result, the QC-tableau calculus can determine whether an ABox is QC-
consistent w.r.t. an RBox in the following way: Given an RBox R and an ABox A,
A is QC-consistent w.r.t. R if the QC-tableau calculus applied to A w.r.t. R yields
a complete and clash-free completion forest; and A is QC-inconsistent w.r.t. R
otherwise.

At the end of this section, we use an example to illustrate how the QC-tableau
calculus works in checking if a KB is QC-consistent.

Example 4.1. Let us consider an ABox A∗t by revising slightly the KB K1
t in Exam-

ple 3.1 as follows: A∗t = {(¬Fish t ∃hasOrgan.Gill)(salmon), (∃ eat.Fish t Piscivore)
(ursidae), eat(ursidae, salmon), Fish(salmon), ¬Piscivore(ursidae), ¬Piscivore
(ursidae)}.

Now, we apply the QC-tableau calculus to check whether A∗t is QC-consistent
using the following procedures:

• By initializing the ABox A∗t , we have

– L(salmon) = {(¬Fish t ∃hasOrgan.Gill),Fish};
– L(ursidae) =

{
(∃ eat.Fish t Piscivore),¬Piscivore,¬Piscivore

}
;

– L(〈ursidae, salmon〉) = {eat}.

• By applying the R-rule in Table 2, we have

– L(salmon) = {(∃hasOrgan.Gill),Fish};
– L(ursidae) =

{
(∃ eat.Fish,¬Piscivore,¬Piscivore

}
;

– L(〈ursidae, salmon〉) = {eat}.

• By applying the ∃-rule in Table 2, we have

– L(salmon) = {(∃hasOrgan.Gill),Fish};
– L(g) = {Gill};
– L(〈salmon, g〉) = {hasOrgan}
– L(ursidae) =

{
(∃ eat.Fish,¬Piscivore,¬Piscivore

}
;

– L(〈ursidae, salmon〉) = {eat}.

• The QC-tableau calculu terminates, we obtain the completion forest FA.

• FA is closed since it contains a clash
{
¬Piscivore,¬Piscivore

}
.

• We can conclude that A∗t is QC-inconsistent by Theorem 4.3. Indeed, we also
conclude that A∗t is QC-inconsistent from K∗t is QC-inconsistent by Proposi-
tion 3.3.

5 EXPERIMENTS

In this section, we implement the QC-tableau calculus in the OWL inconsistency-
tolerant reasoner and analyze the test results.

On the Satisfiability of Quasi-Classical Description Logics 1431

Implementation. Based on the QC-tableau algorithm described in the previous
section, we have developed an inconsistency-tolerant reasoner named QC-OWL.
QC-OWL can perform reasoning over both consistent and inconsistent ontolo-
gies with acceptable to very good performance for SHIQ. It is designed and
developed by following the Strategy Pattern, a behavioral design pattern, and
it is based on the core framework of Pellet [26].

Figure 1. Different completion strategies in QC-OWL

Pellet, a widely used complete OWL-DL reasoner, is a tableau-based reasoner. It
has a core reasoning engine which is suitable for extension. The core functional-
ity of any tableau-based reasoner is checking the consistency of a KB. In order to
check the consistency, the tableaux reasoner searches for a model through a pro-
cess of completion. The completion algorithm in the Pellet reasoning engine
is built on an extensible architecture where different completion strategies can
be plugged in. Since we have a new tableau algorithm for the QC-consistency
problem, we have implemented a new completion strategy called the QC-SHIQ
Strategy and incorporated this strategy into Pellet’s generic completion strategy.
All the QC-tableau expansion rules have been implemented inside the QC-SHIQ
Strategy. Figure 1 depicts how the QC-SHIQ Strategy has been incorporated
with Pellet. QC-OWL is implemented in Java 7 with the aforementioned design
and is built on Pellet 2.3.1. It supports OWL-APIs (versions 3 to 3.4.3) [25],
Java APIs for creating, manipulating and serializing OWL Ontologies. In the
current version of QC-OWL, only one functionality has been provided, checking
the QC-consistency of an ontology.

Evaluation. In this section, we evaluate the performance of QC-OWL for the task
of consistency checking and compare it with that of PROSE [22, 27]. PROSE is
a transformation based prototype system which is designed using the Decorator
Pattern, a structural design pattern, in order to perform paraconsistent reason-
ing on inconsistent KBs. In PROSE, the input KB K, and the input query ϕ,

1432 X. Zhang, Z. Feng, W. Wu, M. Hossain, W. MacCaull

KB Name DL Expressivity Concept Count Axiom Count

heart.owl SHI 75 448

tambis-patched.owl SHIN 395 1 090

bad-food.owl ALCO (D) 18 52

amino-acid.owl ALCF (D) 46 563

buggyPolicy.owl ALCHO 15 41

uma-025-arctan.owl ALCRIF (D) 366 14 816

uma-random-0.01-arctan.owl ALCRF (D) 366 14 816

uma-random-0.03-arctan.owl ALCRIF (D) 366 26 421

uma-random-0.01-arctan-inc.owl ALCRF (D) 366 14 829

uma-random-0.03-arctan-inc.owl ALCRIF (D) 366 26 421

uma-random-0.04-arctan-inc.owl ALCRF (D) 366 32 231

uma-random-0.07-arctan-inc.owl ALCRIF (D) 366 49 592

Table 3. Characteristics of the Benchmark KBs

KB Name Con PROSE PROSE (NoOpi) QC-OWL

amino-acid.owl Y 615 70 333 33

uma-random-0.01-arctan.owl Y 733 904 36

uma-random-0.03-arctan.owl Y 1 248 111 776 39

heart.owl Y time-out time-out 27

tambis-patched.owl Y time-out time-out 39

uma-025-arctan.owl Y time-out time-out 30

Table 4. QC-consistency test results for consistent ontologies

are transformed into a new KB S(K), and a new query W(ϕ), respectively,
then a classical reasoner, e.g. Pellet, is used to do reasoning. Since a classical
reasoner is used in PROSE, all optimization techniques provided in that rea-
soner also work in PROSE. In this experiment, the inner classical reasoner of
PROSE was Pellet. Pellet implements most of the state-of-the-art optimiza-
tion techniques, e.g., Optimized Blocking, Dependency-directed Backjumping
etc. On the other hand, these optimization techniques have not been investi-
gated yet for QCDL. Therefore, most state-of-the-art optimization techniques
are absent in QC-OWL. So, in order to make a proper comparison, we have
also observed PROSE’s performance by turning off those optimizations; here
we denote this by PROSE(NoOpi). Since the core system of a tableau-based
reasoner is checking the consistency of a KB, we have observed the time of
QC-consistency checking only in this experiment. We have conducted our ex-
periment for both consistent and inconsistent ontologies (see Table 3). Three
of these have been collected from TONES Ontology Repository [28] while the
others were from various sources. Some of the inconsistent ontologies have been
generated by taking existing ontologies and inserting inconsistencies into them.
Table 4 and Table 5 show the preliminary results for consistent and inconsistent
ontologies, respectively. In Tables 4 and 5, the column Con is for the consistency

On the Satisfiability of Quasi-Classical Description Logics 1433

and NoOpi stands for no optimization in Pellet. Displayed time was measured in
milliseconds and time-out indicates that the program was manually terminated
after 30 minutes.

KB Name Con PROSE PROSE(NoOpi) QC-OWL

bad-food.owl N 31 127 34

buggyPolicy.owl N 16 78 22

uma-random-0.01-arctan-inc.owl N 3 328 59 510 14 761

uma-random-0.03-arctan-inc.owl N 1 404 152 080 10 342

uma-random-0.04-arctan-inc.owl N 4 836 88 322 20 044

uma-random-0.07-arctan-inc.owl N time-out time-out 185 803

Table 5. QC-consistency test results for inconsistent ontologies

5.1 Results Analysis

As it is observed from Table 4, QC-OWL significantly outperforms PROSE for
consistent ontologies even both without and with the state-of-the-art optimizations
in Pellet. The reason is that when a KB is transformed into a new KB in PROSE, lots
of negations and disjunctions incur in the KB which complicates the overall reasoning
process. Moreover, each inclusion is transformed into three inclusions at every step
which increases the size of KB. It is also interesting to note that the performance of
QC-OWL is relatively consistent for different ontologies contrary to the performance
of PROSE(NoOpi). For example, in case of the heart ontology, PROSE cannot
give any answer within 30 minutes whereas QC-OWL takes only 27 milliseconds to
answer. Figure 2 displays a bar graph that illustrates the time required to check
QC-consistency for consistent ontologies in QC-OWL, PROSE(NoOpi) and PROSE,
with a logarithmic scale on the vertical axis.

uma-025-arctantambis-patchedheart 0.03-arctanamino-acid 0.01-arctan
100

101

102

103

104

105

106

T
im

e
in

m
il
li
se

co
n
d
s

QCOWL PROSE PROSE(NoOpi)

Figure 2. QC-OWL, PROSE, PROSE(NoOpi) testing for results for consistent ontologies

1434 X. Zhang, Z. Feng, W. Wu, M. Hossain, W. MacCaull

In Table 5, the results show that QC-OWL is more effcient than PROSE(NoOpi)
for inconsistent ontologies. As an example, for the bad-food ontology PROSE
(NoOpi) takes 127 milliseconds whereas QC-OWL takes only 34 milliseconds. One
might have noticed that QC-OWL is not as effcient as PROSE. This is expected
because PROSE inherits most of the state-of-the-art optimization techniques from
Pellet whereas QC-OWL has not implemented any optimization yet. In QC-OWL,
reasoning w.r.t. any general TBox has been reduced to reasoning w.r.t. an empty
TBox with the internalization technique [1] that introduces many disjunctions, hence
the reasoning process is somewhat slower. However, if we implement these Pellet
optimizations in QC-OWL, then we expect it to outperform PROSE analogous with
the behavior for consistent ontologies. Implementing state-of-the-art optimization
techniques in QC-OWL is an interesting topic for the future work. It is motivat-
ing to note in Figure 3 that for the 0.07-arctan-inc ontology, both PROSE and
PROSE(NoOpi) get time out whereas QC-OWL gets results approximately in three
minutes.

bad-food
0.01-arctan-inc

0.03-arctan-inc
0.04-arctan-inc

0.07-arctan-inc
buggyPolicy

100

101

102

103

104

105

106

T
im

e
in

m
il
li
se

co
n
d
s

QCOWL PROSE PROSE(NoOpi)

Figure 3. QC-OWL, PROSE, PROSE(NoOpi) testing for results for inconsistent ontolo-
gies

5.2 Summary

While the classical reasoner fails to perform reasoning over inconsistent ontologies,
both PROSE and QC-OWL can give some meaningful results under non-classical se-
mantics. Though both of them are intended for paraconsistent reasoning, QC-OWL
significantly differs from PROSE. PROSE uses a classical reasoner to perform reason-
ing on the transformed ontology while QC-OWL directly applies tableau expansion
rules on the loaded ontology. Moreover, QC-OWL has couple of key advantages over
PROSE:

On the Satisfiability of Quasi-Classical Description Logics 1435

1. PROSE is a transformation based prototype system whereas QC-OWL is based
on QC-tableau that can handle inconsistency directly; transformation adds some
overhead.

2. Not counting the transformation time, PROSE is still slower than QC-OWL.

This is due to two reasons:

1. The transformation introduces many negations and disjunctions which compli-
cates the reasoning process;

2. During transformation, each inclusion is replaced by three inclusions which in-
creases the size of the ontology.

It was noted in [26] that a classical reasoner takes more time to work on a trans-
formed ontology.

Our initial motivation was to develop a truly paraconsistent reasoner that can
handle inconsistency directly with acceptable speed and reasonable inference power.
The preliminary results suggest that QC-OWL could be a new benchmark in para-
consistent reasoning. If most of the state-of-the-art optimization techniques are im-
plemented in QC-OWL, then it could perform as optimally as a classical reasoner;
we leave this for future work.

6 RELATED WORKS

In this section, we compare this work with the existing works about QCDL [21, 22].

[21] introduces primarily quasi-classical semantics for ALC, a simple member of
description logics, and presents some properties of it and the relationship with the
method by using Belnap’s four-valued logic. However, as investigated in [22], there
exist three insufficiencies as follows:

• The approach presented in [21] is not enough to characterize all features of
DLs. As is well known, DL is used in artificial intelligence for formal reasoning
on the concepts of an application domain [1]. However, [21] did not really
introduce a new logic with the QC negation, but rather viewed negation as
a transformation on formulas (axioms). This makes it impossible to directly
represent the “opposite” concept of a given concept, because the negation of
a concept ¬C is not taken as the “opposite” concept but rather as a concept
unrelated to C. In the current QCDL, we can directly introduce the QC negation
of a concept as the “opposite” concept. Moreover, this approach cannot capture
the natural relationship between “t” and “v”.

• The basic approach of [21] cannot be generalized to more expressive descrip-
tion logics such as SHIQ which can be obtained by generalizing [22]. One
of important reasons is the complement of axioms ≈ φ presented in [21] can-
not capture expressive DL axioms. For instance, ≈ ((≥ nS.C)(a)) cannot

1436 X. Zhang, Z. Feng, W. Wu, M. Hossain, W. MacCaull

be represented by both (≤ (n-1)S)(a) and ≈ (C(b)). Instead, the QC nega-
tion of concept C introduced in [22] can capture expressive DL axioms, e.g.,
(≥ nS.C)(a) ≡ (≤ (n-1)S.C)(a).

• The complement of inclusions ≈ (C v D) can be no longer translated into
a corresponding DL concept inclusions. Because of this, it is impossible to
transform this logic into classical DL. On the contrary, our proposed QCDL can
be exactly transformed into DL [22].

• In [22], a transformation-based approach is proposed to reduce the entailment
problem in QCDL into the entailment problem in DL. Comparing with the ap-
proach by applying some transformation in [22], this paper proposed an inherent
proof for the QC-consistency without translating it into other logics. Moreover,
the technique in this paper is totally different from the technique adopted in [22]
in principle. In some sense, this paper can be taken as a complement of [22]
in the insight of QCDL. Additionally, we found that the transformation pro-
cess is not always efficient since each inclusion will be transformed into three
inclusions at every step. Our experimental results indicate that our QC-OWL
based on QC-tableau calculus is indeed more efficient than PROSE based on
QC-transformation even in handling consistent ontologies.

Recently, [24] presents a quasi-classical semantics for DL where each quasi-
classical model is a subset of Herbrand base, which is obtained by grounding all
concepts and roles in a Herbrand Universe (a set of constants). In this sense, we
think that the semantics could be taken as some kind of restricted version of the
semantics as discussed in [21, 22].

7 CONCLUSIONS

This paper presented a theoretical research of the satisfiability problem of QCDL and
developed a tableau calculus called QC-tableau for satisfiability problems. Based
on this tableau calculus, we implemented an OWL paraconsistent reasoner named
QC-OWL. We show that QC-OWL has higher efficiency than PROSE in checking
QC-consistency. In the future work, we will attempt to implement most optimization
techniques used for classical tableau reasoning to make QC-OWL more efficient and
employ a high performance computing enviroment [29]. As another direction, we
will provide more QC expansion rules so more expressive OWL ontologies can be
handled with QC-OWL.

Acknowledgments

We would like to thank to anonymous referees for their critical comments which
helped us to improve the paper. Xiaowang Zhang would like to thank Zuoquan Lin,
Yue Ma, Guilin Qi, Kewen Wang, and Guohui Xiao for their helpful and constructive
discussions and also thanks Ulrike Sattler for a helpful e-mail communication. This

On the Satisfiability of Quasi-Classical Description Logics 1437

work is partly funded by the program of the National Key Research and Development
Program of China (2016YFB1000603), the National Natural Science Foundation of
China (61502336), and the Key Technology Research and Development Program of
Tianjin (16YFZCGX00210). Wendy MacCaull is funded by the Natural Sciences
and Engineering Research Council of Canada. Mokarrom Hossain is partly funded
by the St. Francis Xavier University Graduate Research Assistantship.

A APPENDIX: PROOFS

Proof of Proposition 3.1. Let ∆ be a domain. By the definition, C is QC-
unsatisfiable w.r.t. T and R iff for any QC-model I of T and R such that +C = ∅
where CI = 〈+C,−C〉 iff for any QC-model I of T andR such that +C = +C = ∆I

where C
I

= 〈+C,−C〉 iff I for any QC-model I of T and R, I is a QC-model of
C(τ) where τ is a fresh individual name, that is, the KB (T ,R, {C(τ)}) is QC-
consistent where τ is a fresh individual name.

Proof of Proposition 3.2.

• (T ,R,A) |=Q C v D iff, by definition, for any QC-model I of (T ,R,A) (that is,
for any QC-model I of T and R), I |=w C v D iff, by the property stated in [22]
that for each base interpretation I on ∆, I |=w C v D iff I |=w CtD(a) for any
a ∈ ∆, we can conclude that for any QC-model I of T and R, I |=w C tD(a)
for any a ∈ ∆ iff for any QC-model I of T and R, +C ∪ +D = ∆I where
CI = 〈+C,−C〉 and DI = 〈+D,−D〉 iff for any QC-model I of T and R,
+C ∩+D = ∅ since +D = +D where CI = 〈+C,−C〉 and DI = 〈+D,−D〉 iff
C uD is QC-unsatisfiable w.r.t. T and R.

• (T ,R,A) |=Q C(a) iff, by definition, for any QC-model I of (T ,R,A), I |=w

C(a) iff, by definition, for any QC-model I of (T ,R,A), aI ∈ +C where CI =
〈+C,−C〉 iff for any QC-model I of (T ,R,A), aI 6∈ +C since +C = +C where
CI = 〈+C,−C〉 iff (T ,R,A ∪ {C(a)}) is QC-inconsistent.

Proof of Proposition 3.3. To prove Proposition 3.3, we need two lemmas.

Lemma A.1. [22] Let ∆ be a domain. For each base interpretation I on ∆, I |=s

C v D iff I |=s ¬C tD(a) for any a ∈ ∆.

Lemma A.2. Let T be a TBox and R an RBox. We can conclude that the KB
(T ,R, ∅) is QC-consistent iff {CT u∀U.CT (τ)} is QC-consistent w.r.t. RU where τ is
a fresh individual.

Proof. Let ∆ be a domain with containing τ . It is not hard to prove the only-if
direction. Now, we prove the if direction. That is, if {CT u ∀U.CT (τ)} is QC-
consistent w.r.t. RU where τ is a fresh individual then (T ,R, ∅) is QC-consistent.
Assume that I be a QC-model of RU and I |=s CT u ∀U.CT (τ) where τ is a fresh

1438 X. Zhang, Z. Feng, W. Wu, M. Hossain, W. MacCaull

individual and the domain of I only contains those instances connected from/to τ
(Because the inverse of role exists, we must consider whose instances connect to τ .),
that is, there exists a path from/to τ to connect those instances [23]. Since R ⊆ RU ,
I is a QC-model of R. Now, we prove that I is a QC-model of T . We have
I |=s CT (τ). Because I |=s R v U for any R ∈ RU , for any τ ′ ∈ ∆, I |=s R(τ, τ ′)
implies I |=s U(τ, τ ′). Because I |=s ∀U.CT (τ), I |=s ∀U.CT (τ ′). For each instance
b occurring in the domain of I, I |=s CT (b) since b is connected from/to τ . By
Lemma A.1, I is a QC model of T . �

Now, we are ready to prove Proposition 3.3.

1. This directly follows from the definition of strong interpretation of conjunction
and Lemma A.2.

2. This directly follows from the first item of Proposition 3.2 and Lemma A.2.

3. This is analogous to the proof of Lemma A.2 where we select a QC model whose
domain are those instances connected from/to some individual occurring in A.

Proof of Proposition 4.1. This directly follows from the definition of strong
interpretation since ¬ only exchanges two parts of strong interpretations of all con-
cepts.

Proof of Proposition 4.2. We only prove that ≤ nS.C ≡s≥ (n+1)S.¬C and
(≥ n+1)S.C ≡s≤ nS.¬C since others directly follow the definition of strong inter-
pretations.

Let I be a strong interpretation. Assume that CI = 〈+C,−C〉 and RI =

〈+R,−R〉. Let ¬CI =
〈
+¬C,−¬C

〉
. Thus +¬C = −C and −¬C = +C.(

≥ nS.C
)I

= 〈{x |]({y.(x, y) ∈ +R}∩+C) ≤ n−1}, {x |]
(
{y.(x, y) ∈ +R} ∩ −C

)
≥ n}〉 = 〈{x |]

(
{y.(x, y) ∈ +R} ∩ −¬C

)
≤ n−1}, {x |]

(
{y.(x, y) ∈ +R} ∩+¬C

)
≥ n}〉 =

(
≤ (n− 1)S.¬C

)I
and

(
≤ nS.C

)I
= 〈{x |]

(
{y.(x, y) ∈ +R} ∩ −C

)
≤

n}, {x |] ({y.(x, y) ∈ +R} ∩+C) > n}〉 = 〈{x |]
(
{y.(x, y) ∈ +R} ∩+¬C

)
≥

n+ 1}, {x |]
(
{y.(x, y) ∈ +R} ∩ −¬C

)
≥ n}〉 =

(
≥ (n+ 1)S.¬C

)I
.

In the following proofs, we apply similar proof techniques developed in [23].

Proof of Theorem 4.1. (The if direction) If T = (S,L, E , I) is a QC-tableau for
A w.r.t. R, then we can define a QC-model I = (∆I , ·I) of A and R as follows:

1. ∆I := S;

2. AI := 〈{s | A ∈ L(s)}, {s | ¬A ∈ L(s)}〉 for concept name A ∈ clos(A);

3. aI := J (a) for any individual a ∈ NI ;

4. RI :=

{
〈E(R)+, (S× S)\E(R)+〉, if Trans(R),

〈E(R) ∪
⋃

P ∗vR,P 6=R +P, (S× S)\(E(R) ∪
⋃

P ∗vR,P 6=R +P)〉, otherwise.

On the Satisfiability of Quasi-Classical Description Logics 1439

Here let E(R)+ denote the transitive closure of E(R) and P I = 〈+P,−P 〉. By the
definition of RI and P8, we can conclude that if 〈s, t〉 ∈ SI then either 〈s, t〉 ∈ E(S)
or there exists some path 〈s, s1〉, 〈s1, s2〉, . . . , 〈sn, t〉 ∈ E(S) for some R with Trans(R)
and R∗vS. By P8, it follows that I is a QC-model of R.

To prove that I is also a QC-model of A, we need to show that C ∈ L(s)
implies s ∈ +C where CI = 〈+C,= C〉 for any s ∈ S. By P12 and P13, and the
interpretation of individuals and roles, we can prove that I satisfies each assertion
in A by induction on the length ‖C‖ of a concept C in NNF, where we count neither
negation nor integers in number restrictions.

An important case is C = ∀S.E; let t ∈ S with 〈s, t〉 ∈ SI . There are two
possibilities:

1. 〈s, t〉 ∈ E(S). Then P4 implies E ∈ L(t).

2. 〈s, t〉 6∈ E(S).

Then there exists a path 〈s, s1〉, 〈s1, s2〉, . . . , 〈sn, t〉 ∈ E(S) for some R with Trans(R)
and R∗vS. Then P6 implies ∀R.E ∈ L(si) for all 1 ≤ i ≤ n, and P4 implies
E ∈ L(t). In both cases, t ∈ EI by induction and hence s ∈ CI .

(The only-if direction) Let I = (∆I , ·I) be a QC-model of A, we define a QC-
tableau T = (S,L, E ,J) for A and R as follows: S := ∆I , E(R) := +R,L(s) :=
{C ∈ clos(A) | s ∈ +C}, and J (a) := aI . It concludes that T is a QC-tableau for
A and R.

Proof of Theorem 4.2. Assume that |clos(A)| = m, |RA| = n, max{≥ nS.C ∈
clos(A)} = nmax. The QC-tableau calculus satisfies the following three properties:

• No node is removed in the calculus. Moreover, the only rules that remove
elements from the labels of edges or nodes are the ≤-rule and ≤r-rule, which
sets them to ∅. If the ≤r-rule sets an edge label to ∅, the node below the edge
is blocked forever. If the ≤r-rule sets a root x label to ∅, then after this, x′s
label is never changed again. Because no root node is generated, this removal
might only happen a finite number of times, and the new edges generated by
the ≤r-rule guarantee that the resulting structure is still a completion forest.

• Because there are at most 2mn different possible labelings for a pair of nodes
and an edge, the pair-wise blocking condition implies the existence of two nodes
on P such that one directly blocks the other if P is a path of length at least
22mn. Paths are of length at most 22mn since a path on which nodes are blocked
cannot become longer.

• Only four rules: the ∃-rule, the ≥-rule, the ∀-rule, and, the ≤-rule generate
new nodes, and each generation is triggered by a concept of the form ∃R.C,
≥ nS.C, ∀R.C (by the ∀-rule, it turns to ∃R.C), or ≤ nS.C (by the ∀-rule, it
turns to ≥ nS.¬C) in clos(A). Each of those concepts trigger the generation of
at most nmax successors yi: x will have some S-neighbor z with L(z) ⊆ L(y) if
the ≤-rule or the ≤r-rule subsequently causes L(〈x, yi〉) to be set to ∅. By the

1440 X. Zhang, Z. Feng, W. Wu, M. Hossain, W. MacCaull

definition of clashes, the rule application leading to the generation of yi will not
be repeated. The out-degree of the forest is bounded by mnnmax since clos(A)
contains a total of at most m ∃R.C.

Based on three properties above, we conclude that the QC-tableau calculus termi-
nates.

Proof of Theorem 4.3. (The if direction) Let F be a complete and clash-free
completion forest. The definition of a QC-tableau T = (S,L, E ,J) from F works

as follows: A path is a sequence of pairs of nodes of F of the form p =
[
x0

x′
0
, . . . , xn

x′
n

]
.

We also define Tail(p) := xn and Tail ′(p) := x′n. With
[
p | xn+1

x′
n+1

]
, we denote the

path
[
x0

x′
0
, . . . , xn

x′
n
, xn+1

x′
n+1

]
. We define a set Paths(F) in an inductive way:

1. For each root node xi0 of F ,
[
xi
0

xi
0

]
∈ Paths(F), and

2. for each path p ∈ Paths(F) and each node z in F :

(a) if z is a successor of Tail(p) and z is neither blocked nor a root node, then[
p | z

z

]
∈ Paths(F), or

(b) if, for some node y in F , y is a successor of Tail(p) and z blocks y, then[
p | z

y

]
∈ Paths(F).

Because root nodes neither are blocked nor are they blocking other nodes, they only
occur in the first place of a path. Moreover, if p ∈ Paths(F), then Tail(p) is not
blocked, Tail(p) = Tail ′(p) iff Tail ′(p) is not blocked, and L(Tail(p)) = L(Tail(p)).

Now, we define a QC-tableau T = (S,L, E ,J) as follows:

1. S = Paths(F);

2. L(p) = L(Tail(p));

3. E(R) = {〈p,
[
p| x

x′

]
〉 ∈ S × S | x′ is an R-successor of Tail(p)} ∪{〈

[
q| x

x′

]
, qi〉 ∈

S × S | x′ is an R-predecessor of Tail(q)} ∪{〈
[
x
x

]
,
[
y
y

]
〉 ∈ S × S | x, y are root

nodes, and y is an R-neighbor of x}; and

4. J (ai) =


[
xi
0

xi
0

]
, if xi0 is a root node in F with L(xi0) 6= 0;[

xj
0

xj
0

]
, if L(xi0) = ∅, xj0 a root node in F with L(xj0) 6= ∅ and xi0

.
= xj0.

If L(x) = ∅ then x is a root node and that there is another root node y with L(y) 6= ∅
and x = y. Now we prove that T is a QC-tableau for A and R.

• T satisfies P1 because F is clash-free. P2 and P3 are satisfied by T because
F is complete. P4 follows the definition of R-neighbors and R-successor.

On the Satisfiability of Quasi-Classical Description Logics 1441

• For P4, let p, q ∈ S with ∀R.C ∈ L(p), 〈p, q〉 ∈ E(R). If q =
[
p | x

x′

]
, then

x′ is an R-successor of Tail(p) and, due to completeness of F , C ∈ L(x′) =
L(x) = L(q). If p =

[
q| x

x′

]
, then x′ is an R-predecessor of Tail(q) and, due to

completeness of F , C ∈ L(Tail(q)) = L(q). If p =
[
x
x

]
and q =

[
y
y

]
for two

root nodes x and x′, then y is an R-neighbor of x, and completeness of F yields
C ∈ L(y) = L(q). P6, P11, P19, and P22 hold for similar reasons. For P5,
let ∃R.C ∈ L(p) and Tail(p) = x. Since x is not blocked and F is complete,
x has some R-neighbor y with C ∈ L(y). If y is a successor of x, then y can
either be a root node or not ∅.

1. If y is not a root node: if y is not blocked, then q :=
[
p|y

y

]
∈ S; if y is blocked

by some node z, then q :=
[
p| z

y

]
∈ S.

2. If y is a root node: since y is a successor of x, x is also a root node. This

implies p =
[
x
x

]
and q =

[
y
y

]
∈ S.

So 〈p, q〉 ∈ E(R) and C ∈ L(q). P18 holds for similar reasons. P7 holds because
of the symmetric definition of the mapping E . P8 follows from the transitivity
of E .

• Suppose, for the sake of contradiction, that P9 is not satisfied. Hence there is
some p ∈ S with (≤ nS.C) ∈ L(p) and](ST (p, C)) > n. We will show that this
implies]SF(Tail(p), C) > n, contradicting either clash-freeness or completeness
of F . Let x := Tail(p) and P := ST (p, C). We distinguish two cases:

1. P contains only paths of the form
[
p | y

y′

]
and

[
xi
0

xi
0

]
. Then](P) > n is

impossible since the function Tail ′ is injective on P : if we assume that there
are two distinct paths q1, q2 ∈ P and Tail ′(q1) = Tail ′(q2) = y′, then this

implies that each qi is of the form qi =
[
p | yi

y′

]
or qi =

[
y′

y′

]
. From q1 6= q2,

we have that qi =
[
p | yi

y′

]
holds for some i ∈ {1, 2}. Since root nodes occur

only in the beginning of paths and q1 6= q2, we have q1 = [p | (y1, y′)] and
q2 = [p | (y2, y′)]. If y′ is not blocked, then y1 = y′ = y2, contradicting
q1 6= q2. If y′ is blocked in F , then both y1 and y2 block y′, which implies
y1 = y2, again a contradiction. Hence Tail ′ is injective on P and thus
]P =](Tail ′(P)). Moreover, for each y′ ∈ Tail ′(P), y′ is an R-successor of x
and C ∈ L(y′). This implies](SF(x,C)) > n.

2. P contains a path q where p =
[
q | x

x′

]
. Obviously, P may only contain one

such path. As in the previous case, Tail ′ is an injective function on the set
P ′ := P\{q}, each y′ ∈ Tail ′(P ′) is an S-successor of x, and C ∈ L(y′) for
each y′ ∈ Tail ′(P ′).

Let z := Tail(q). We distinguish two cases:

1442 X. Zhang, Z. Feng, W. Wu, M. Hossain, W. MacCaull

1. x = x′. Hence x is not blocked, and thus x is an S-predecessor of z. Since
Tail ′(P ′) contains only successors of x we have that z 6∈ Tail ′(P ′) and, by
construction, z is an R-neighbor of x with C ∈ L(z).

2. x 6= x′. This implies that x′ is blocked by x and that x′ is an R-predecessor
of z. Due to the definition of pairwise-blocking this implies that x is an S-suc-
cessor of some node u with L(u) = L(z).

Again, u 6∈ Tail ′(P ′) and, by construction, u is an S-neighbor of x and C ∈ L(u).
P21 holds for similar reasons.

• For P10, let (≥ nS.C) ∈ L(p). Hence there are n S-neighbors y1, . . . , yn of
x = Tail(p) in F with C ∈ L(yi). For each yi there are two possibilities:

1. yi is an S-successor of x and yi is not blocked in F . Then qi := [p | yi
yi

] or yi
is a root node and qi := [yi

yi
] is in S; and

2. yi is an S-successor of x and yi is blocked in F by some node z. Then
qi = [p | z

yi
] is in S.

Since the same z may block several of the yjs, it is indeed necessary to include
yi explicitly into the path to make them distinct.

Hence for each yi there is a different path qi in S with S ∈ L(〈p, qi〉) and
C ∈ L(qi), and thus](ST (p, C)) > n. P20 holds for similar reasons.

• P12 is due to the fact that, when the completion calculus is started for an
ABox A, the initial completion forest FA contains, for each individual name ai
occurring in A, a root node xi0 with L(xi0) = {C ∈ clos(A) | ai : C ∈ A}. The
calculus never blocks root individuals, and, for each root node xi0 whose label
and edges are removed by the ≤r-rule, there is another root node xj0 with xi0 = xj0
and {C ∈ clos(A) | ai : C ∈ A} ⊆ L(xj0). Together with the definition of I,
this yields P12. P13 is satisfied for similar reasons. P14 is satisfied because
the ≤r-rule does not identify two root nodes xi0, y

i
0 when xi0 6= yi0 holds. Finally,

P15, P16, and 17 directly follow from the definition of strong interpretations
and the expansion rules: double, u-rule, and t-rule in Table 2, respectively.

(The only-if direction) We use T to trigger the application of the expansion rules
such that they yield a completion forest F that is both complete and clash-free. For
this purpose, a function π is used to map the nodes of F to elements of S. The
mapping π is defined as follows:

1. For individuals ai in A, we define π(xi0) := J (ai).

2. If π(x) = s is already defined, and a successor y of x was generated for ∃R.C ∈
L(x), then π(y) = t for some t ∈ S with C ∈ L(t) and 〈s, t〉 ∈ E(R).

3. If π(x) = s is already defined, and successors yi of x were generated for ≥ nR ∈
L(x), then π(yi) = ti for n distinct ti ∈ S with 〈s, ti〉 ∈ E(R).

On the Satisfiability of Quasi-Classical Description Logics 1443

Clearly, the mapping for the initial completion forest for A satisfies the following
condition: L(x) ∈ L(π(x)) if y is an S-neighbor of x then 〈π(x), π(y)〉 ∈ E(R) and
x 6 .= y implies π(x) 6= π(y).

It can be shown that the following claim holds:

Claim: Let F be generated by the completion calculus for A and let π satisfy (1).
If an expansion rule is applicable to F , then this rule can be applied such that
it yields a completion forest F ′ and a (possibly extended) π that satisfies the
condition above.

As a consequence of this claim, (P1), and (P9), if A has a QC-tableau, then the
expansion rules can be applied to A such that they yield a complete and clash-free
completion forest.

REFERENCES

[1] Baader, F.—Calvanese, D.—McGuinness, D. L.—Nardi, D.—Patel-
Schneider, P. F. (Eds.): The Description Logic Handbook: Theory, Implemen-
tation, and Applications. Cambridge University Press, 2003.

[2] Berners-Lee, T.—Hendler, J.—Lassila, O.: The Semantic Web. Scientific
American, 2001, doi: 10.1038/scientificamerican0501-34.

[3] Straccia, U.: A Sequent Calculus for Reasoning in Four-Valued Description Logics.
Automated Reasoning with Analytic Tableaux and Related Methods (TABLEAUX
1997). Lecture Notes in Computer Science, Vol. 1227, 1997, pp. 343–357, doi:
10.1007/BFb0027425.

[4] Flouris, G.—Huang, Z.—Pan, J. Z.—Plexousakis, D.—Wache, H.: Incon-
sistencies, Negations and Changes in Ontologies. Proceeding of the 21st National
Conference on Artificial Intelligence, AAAI, 2006.

[5] Patel-Schneider, P. F.: A Four-Valued Semantics for Terminological Logics.
Artificial Intelligence, Vol. 38, 1989, No. 3, pp. 319–351, doi: 10.1016/0004-
3702(89)90036-2.

[6] Schlobach, S.—Cornet, R.: Non-Standard Reasoning Services for the Debug-
ging of Description Logic Terminologies. Proceeding of the 18th International Joint
Conference on Artificial Intelligence (IJCAI ’03), AAAI, 2003, pp. 355–360.

[7] Parsia, B.—Sirin, E.—Kalyanpur, A.: Debugging OWL Ontologies. Proceed-
ing of the 14th International Conference on World Wide Web (WWW ’05), 2005,
pp. 633–640, doi: 10.1145/1060745.1060837.

[8] Huang, Z.—van Harmelen, F.—ten Teije, A.: Reasoning with Inconsistent
Ontologies. Proceeding of the 19th International Joint Conference on Artificial Intel-
ligence (IJCAI ’05), 2005, pp. 454–459.

[9] Kalyanpur, A.—Parsia, B.—Horridge, M.—Sirin, E.: Finding All Justifi-
cations of OWL DL Entailments. The Semantic Web (ISWC 2007 + ASWC 2007).
Lecture Notes in Computer Science, Vol. 4825, 2007, pp. 267–280, doi: 10.1007/978-
3-540-76298-0 20.

https://doi.org/10.1038/scientificamerican0501-34
https://doi.org/10.1007/BFb0027425
https://doi.org/10.1016/0004-3702(89)90036-2
https://doi.org/10.1016/0004-3702(89)90036-2
https://doi.org/10.1145/1060745.1060837
https://doi.org/10.1007/978-3-540-76298-0_20
https://doi.org/10.1007/978-3-540-76298-0_20

1444 X. Zhang, Z. Feng, W. Wu, M. Hossain, W. MacCaull

[10] Qi, G.—Du, J.: Model-Based Revision Operators for Terminologies in Description
Logics. Proceedings of the 21st International Joint Conference on Artificial Intelligence
(IJCAI ’09), 2009, pp. 891–897.

[11] Nguyen, L. A.—Sza las, A.: Three-Valued Paraconsistent Reasoning for Semantic
Web Agents. Agent and Multi-Agent Systems: Technologies and Applications (KES
AMSTA 2010). Lecture Notes in Computer Science, Vol. 6070, 2010, pp. 152–162,
doi: 10.1007/978-3-642-13480-7 17.

[12] Lembo, D.—Lenzerini, M.—Rosati, R.—Ruzzi, M.—Savo, D. F.: Query
Rewriting for Inconsistent DL-Lite Ontologies. Web Reasoning and Rule Systems
(RR 2011). Lecture Notes in Computer Science, Vol. 6902, 2011, pp. 155–169, doi:
10.1007/978-3-642-23580-1 12.

[13] Borgwardt, S.—Peñaloza, R.: Description Logics over Lattices with Multi-
Valued Ontologies. Proceedings of the 22nd International Joint Conference on Ar-
tificial Intelligence (IJCAI ’11), 2011, pp. 768–773.

[14] Kamide, N.: Embedding-Based Approaches to Paraconsistent and Temporal
Description Logics. Journal of Logic and Computation, Vol. 22, 2012, No. 5,
pp. 1097–1124, doi: 10.1093/logcom/exr016.

[15] Maier, F.—Ma, Y.—Hitzler, P.: Paraconsistent OWL and Related Logics. Se-
mantic Web, Vol. 4, 2013, No. 4, pp. 395–427.

[16] Huang, S.—Li, Q.—Hitzler, P.: Reasoning with Inconsistencies in Hybrid
MKNF Knowledge Bases. Logic Journal of the IGPL, Vol. 21, 2013, No. 2,
pp. 263–290.

[17] Zhang, X.—Lin, Z.: An Approach to Generating Arguments over DL-Lite Ontolo-
gies. Computing and Informatics, Vol. 32, 2013, No. 5, pp. 924–948.

[18] Cocos, C.—Imam, F.—MacCaull, W.: Ontology Merging and Reasoning Us-
ing Paraconsistent Logics. International Journal of Knowledge-Based Organizations
(IJKBO), Vol. 2, 2012, No. 4, pp. 35–53.

[19] Belnap, N. D.: A Useful Four-Valued Logic. In: Dunn, J. M., Epstein, G. (Eds.):
Modern Uses of Multiple-Valued Logics. Springer, Dordrecht, 1977, pp. 7–73, doi:
10.1007/978-94-010-1161-7 2.

[20] Hunter, A.: Reasoning with Contradictory Information Using Quasi-Classical
Logic. Journal of Logic and Computation, Vol. 10, 2000, No. 5, pp. 677–703, doi:
10.1093/logcom/10.5.677.

[21] Zhang, X.—Lin, Z.: Quasi-Classical Description Logic. Multiple-Valued Logic and
Soft Computing, Vol. 18, 2012, No. 3-4, pp. 291–327.

[22] Zhang, X.—Xiao, G.—Lin, Z.—Van den Bussche, J.: Inconsistency-Tolerant
Reasoning with OWL DL. International Journal of Approximate Reasoning, Vol. 55,
2014, No. 2, pp. 557–584.

[23] Horrocks, I.—Sattler, U.—Tobies, S.: Reasoning with Individuals for the De-
scription Logic SHIQ. Automated Deduction – CADE-17. Lecture Notes in Computer
Science, Vol. 1831, 2000, pp. 482–496, doi: 10.1007/10721959 39.

[24] Hou, H.—Wu, J.: Quasi-Classical Semantics and Tableau Calculus of Description
Logics for Paraconsistent Reasoning in the Semantic Web. Proceeding of the Inter-

https://doi.org/10.1007/978-3-642-13480-7_17
https://doi.org/10.1007/978-3-642-23580-1_12
https://doi.org/10.1093/logcom/exr016
https://doi.org/10.1007/978-94-010-1161-7_2
https://doi.org/10.1093/logcom/10.5.677
https://doi.org/10.1007/10721959_39

On the Satisfiability of Quasi-Classical Description Logics 1445

national Conference on Computational Science and Engineering (CSE ’09), Canada,
2009, pp. 703–708, doi: 10.1109/CSE.2009.311.

[25] Horridge, M.—Bechhofer, S.: The OWL API: A Java API for OWL Ontologies.
Semantic Web, Vol. 2, 2011, No. 1, pp. 11–21.

[26] Sirin, E.—Parsia, B.—Cuenca Grau, B.—Kalyanpur, A.—Katz, Y.: Pellet:
A Practical OWL-DL Reasoner. Web Semantics: Science, Services and Agents on the
World Wide Web, Vol. 5, 2007, No. 2, pp. 51–53.

[27] PROSE: A Paraconsistent OWL-DL Reasoner. http://prose-web.appspot.com/,
2014.

[28] TONES: Ontology Repository. University of Manchester, http://owl.cs.

manchester.ac.uk/repository/, 2008.

[29] Hossain, M.: Parallelization of Inconsistent-Tolerant DL-Reasoning. M.Sc. Thesis,
Saint Francis Xavier University, Canada, 2016.

Xiaowang Zhang is Associate Professor at School of Computer
Science and Technology in Tianjin University. He received his
Ph.D. degree from Peking University in 2011. His research in-
terests include artificial intelligence, databases and knowledge
graph, etc.

Zhiyong Feng is Professor at School of Computer Software in
Tianjin University. He received his Ph.D. degree from Tianjin
University in 1996. His main research interests include know-
ledge engineering, service technology and security software engi-
neering.

Wenrui Wu received his M.Sc. degree from the School of Com-
puter Science and Technology in Tianjin University in 2017. His
main research interests include parallel processing and RDF data
management. He is currently working as an engineer in the Stan-
dard Chartered Bank.

https://doi.org/10.1109/CSE.2009.311
http://prose-web.appspot.com/
http://owl.cs.manchester.ac.uk/repository/
http://owl.cs.manchester.ac.uk/repository/

1446 X. Zhang, Z. Feng, W. Wu, M. Hossain, W. MacCaull

Mokarrom Hossain received his B.Sc. degree in computer
science and engineering from Shahjalal University of Science and
Technology, Sylhet, Bangladesh, in 2012 and the M.Sc. degree in
computer science from St. Francis Xavier University, Antigonish,
NS, Canada, in 2016. His research interests include description
logic, parallel reasoning, inconsistency-tolerant reasoning, and
high-performance computing. He is currently working as a Soft-
ware Engineer in the R & D team of a reputed company.

Wendy MacCaull is Professor and Chair of the Mathemat-
ics, Statistics and Computer Science Department of St. Francis
Xavier University, Antigonish, Canada. She received her M.Sc.
(1980) and Ph.D. (1984) in pure mathematics from McGill Uni-
versity, and joined the faculty at StFX in 1984. Her research in-
terests include nonclassical logics, including paraconsistent and
substructural logics, automated theorem proving, model check-
ing, model driven software engineering and OWL ontologies.

