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Abstract. The main objective of this paper is to present a possibility of high
quality a posteriori error evaluation based on reference solutions obtained by means
of the new multipoint meshless finite difference method. Due to its higher order
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1 INTRODUCTION

The error estimation of numerical solution of the boundary value problems con-
stitutes an important part of computational analysis. In general, the analytical
solutions of partial differential equations which describe the mathematical model of
an engineering problem hardly exist. Therefore, numerical methods, including the
meshless ones, are employed to evaluate the solution accuracy.



1448 I. Jaworska, J. Orkisz

Basically, two types of error estimation procedures are available. A priori error
estimates the asymptotic behavior of the discretization errors. It is usually applied
after discretization process, before the whole solution process starts. It estimates
the solution convergence rate by using only mesh modulus h and approximation
order p, as well as the basic mathematical foundations. A priori error might be very
effective, if it is applied to regular meshes and to simple linear differential operators.

A posteriori error estimators [1], instead, may be evaluated only after the prob-
lem is solved, and are designed to provide good approximation of the solution errors
for a given discretization. This type of errors is often used in adaptive schemes ap-
plication where the mesh is locally or globally refined. Nowadays a posteriori error
analysis and effective error estimation still are one of the most important problems
in the discrete analysis, especially in real engineering tasks.

Many strategies have been developed to estimate the a posteriori errors in the
most accurate manner. For this purpose, in order to evaluate the error of the
calculated numerical results, an improved reference solution is used instead of the
true analytical one. Two mechanisms may be applied in order to obtain an improved
solution. The first one is based on the mesh density increase, preferably using
an adaptive (h-type) solution approach. The second mechanism is provided by
rising the approximation order (p-type). A mixture of these both ways may be also
applied.

Among various high order (HO) approximation approaches, the multipoint
meshless finite difference method (MFDM) [8, 9] may be used, as shown below.

The main objective of this paper is to present a possibility of high quality a pos-
teriori error evaluation based on reference solutions obtained by means of the mul-
tipoint MFDM.

The concept of the HO multipoint approach is based on raising the approxima-
tion order of searched function by using a combination of its values together with
a combination of additional degrees of freedom at all FD star (stencil) nodes. The
known values of right hand side of the considered differential equation or the other
chosen operators may be used as the additional d.o.f. This improves approximation
order and consequently the solution without increasing the number of nodes in the
mesh. Moreover, the higher order FD operator is generated using the same set of
nodes in FD star as in the standard meshless FDM case. This fact is an advantage
when compared with the other HO methods (e.g. so called defect/deferred correc-
tion approach [4], based on increasing the number of nodes included into the stencil)
because of less calculations needed.

Due to its higher order approximation quality (Figure 1), the multipoint MFD
results may be applied for two purposes [1, 9, 12, 14]: to examine the solution
quality, and based on it generating a series of adaptive meshes.

In this paper we review the basic concepts applied to evaluation of a posteriori
error estimates using the high quality HO reference solutions calculated by the
multipoint MFDM.

The outline of this paper is as follows: next chapter shortly presents the concept
of the multipoint meshless method and its two main approaches for various formu-
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lations of the boundary value problems. The basic ideas to establish local error
estimate as well as the global ones are given in the following chapter. Several types
of a posteriori error estimators which can be used to evaluate the calculation error,
and some error indicators useful for the adaptive solution approach are introduced
next. Furthermore, the results of selected numerical benchmarks are considered,
eventually short summary and some final remarks are given.

Figure 1. Solution convergence results for both the higher order multipoint approach and
the standard FDM; the simple test of Poissons b.v. problem [7]

2 MULTIPOINT APPROACH AS THE REFERENCE SOLUTION

The idea of the multipoint technique was developed long time ago by Collatz [3]. It
is based on introducing additional degrees of freedom (e.g. known right hand side
values of the considered differential equation) at all FD star nodes in order to obtain
the higher order FD operator.

The original multipoint Collatz concept has been recently modified and extended
by the authors to the new fully automatic multipoint meshless FDM [8]. For this pur-
pose, the multipoint method is based on the moving weighted least squares (MWLS)
approximation technique [13] instead of the polynomial interpolation, as proposed
by Collatz. Moreover, unstructured, arbitrarily distributed clouds of nodes [11, 13]
may be applied here rather than regular meshes only. Besides development of the
multipoint MFDM for the analysis of b.v. problems given in the local (strong) for-
mulation, the method was also extended to the global and global-local formulations
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including the minimum of the total potential energy, the variational Galerkin and
the meshless local Petrov-Galerkin (MLPG) ones.

In the multipoint MFDM may be applied any formulation involving unknown
function and its derivatives.

2.1 Boundary Value Problem Formulations

Let us consider the local (strong) formulation of a boundary value problem given in
a domain Ω for the nth order ODE (PDE) with appropriate b.c.{

Lu = f,
Gu = g,

u = u(P ),
for P ∈ Ω,
for P ∈ ∂Ω

(1)

or an equivalent global (weak) one involving integral of the type∫
Ω
F (u, Lu) dΩ (2)

where L , G are differential operators.
The global (weak) formulation may be posed in the domain Ω either in the

form of:

• a functional optimisation (e.g. minimization of the potential energy functional)

min
u

I(u), I(u) =
1

2
b(u, u)− l(u) (3)

• or more general, as variational principle

b(u, v) = l(v), ∀v ∈ V (4)

together with given equality and inequality constraints, where b – is a bilinear
functional dependent on the trial function u and test function v, V – is the
space of the test function, l – is a linear operator dependent on v. In both cases
corresponding boundary conditions have to be satisfied.

In the variational formulations we may deal with the Petrow-Galerkin approach
when u and v are different functions from each other, and Bubnov-Galerkin one
when u and v are the same. Moreover, the variational form may have symmetric or
non-symmetric character.

More and more frequently are recently used so called meshless local Petrov-
Galerkin formulations (MLPG), especially for the meshless methods. In this case,
the whole domain Ω may be divided into a finite number of subdomains, usually
assigned to each selected node. Assuming a test function v “locally defined” on
each subdomain Ωi (assume to be equal to zero elsewhere except the area of Ωi)
one may obtain a global-local formulation of the Petrov-Galerkin type. The original
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functional minimisation or variational principle is practically applied rather to those
local subdomains than to the whole domain at once then.

The test function v may be defined in various ways. In particular, in the most
effective version, MLPG5 formulation [2] – the Heaviside type test function

v =

{
1, in Ωi,
0, outside Ωi

(5)

is assumed. Hence any derivative of v is also equal to zero in the whole domain Ω.
Therefore, relevant expressions in the functional b(u, v) and in l(v) vanish, reducing
in this way amount of calculations involved.

All variants of the global (weak) formulation of the multipoint method may
be realized using regular or totally irregular meshes, like in the case of the local
formulation of b.v. problems.

2.2 Multipoint Method

Using the FDM or MFDM discretization based on the selected FD stars (Figure 2)
with respect to the central node i, the classical difference operator Lu is presented
in the following form:

Lui ≈ Lui ≡
∑
j

cjuj = fi ⇒ Lui = fi, cj = cj(i). (6)

However, in the multipoint formulation, the difference operators L and M are
obtained by means of the Taylor series expansion of unknown function u and addi-
tional degrees of freedom. For this purpose e.g. a combination of the known right
hand side values f of the considered equation at each node of FD star is applied
instead of the function value at the central node only (Figure 2):

Lui ≈ Lui ≡
∑
j

cjuj =
∑
j

αjfj ⇒ Lui = Mfi. (7)

Here, j – is a number of a node in the selected FD star, Mfi – is a combination
of the equation right hand side nodal values, fj – may present value of the whole

operator L or its part only, e.g. a specific derivative u
(k)
j .

Two basic versions of the multipoint MFDM are considered: the general and
the specific ones [7, 8]. Equation (7) presents the basic formula for the specific
multipoint formulation.

In the general multipoint form, selected derivative u(k) is used as additional d.o.f.
rather then the right hand side f of the given differential equation. The multipoint
formula is as follows: ∑

j

cjuj =
∑
j

αju
(k)
j . (8)

Application of the specific approach is simpler and easier in implementation, but
is mainly restricted to the linear b.v. problems. When the specific formulation cannot
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Figure 2. MFD stars used in MFDM and the multipoint approach

be applied (e.g. for nonlinear b.v. problems), more complex various versions [7] of
the general approach may be used. In each of these multipoint MFD cases, one may
obtain higher order approximation, using the same FD star, as needed to generate
FD operators in the classical MFDM approach.

Function uj and additional d.o.f. of such right hand side fj (or derivative u
(k)
j

in the general case) are developed into the truncated Taylor series including higher
order derivatives with the respect to a chosen central point Pi.

uj = ūj +R0j, fj = f̄j +Rj. (9)

Afterwards, the weighted error functional

Ji =
∑
j

(uj − ūj)2 0w2
ij +

∑
j

(fj − Lūj)2 nw2
ij (10)

for higher order approximation of uj is generated. Here, the weighting factor w is
a function of the distances ρij = |Pi − Pj| between points Pi and Pj, n – is the order
of differential equation.

One of the following weighting factors is assumed [19]:

kw2
ij = ρ

2(−p+k−1)
ij , or kw2

ij =

(
ρ2
ij +

g4

ρ2
ij + g2

)−p+k−1

(11)

where p – is the local approximation order, g >= 0 – is a smoothing parameter.
Minimization of the functional ∂J/∂{Du} = 0 yields at each node i the local

multipoint MFD formulas for q = 0, 1, . . . , p order derivatives Dui =
{
ui, u

′
i, u
′′
i , . . . ,

u
(p)
i

}
first, and finally for the basic equation:

Dui =
∑
j

cjuj−
∑
j

αjfj (12)

in the specific case, or type (8) in the general multipoint case.
Having found in the whole domain Ω the FD relations for all derivatives emerging

in the b.v.p. equations, we apply these formulas to the problem considered. After
such discretization PDE depend on the primary unknowns u only. Collocation
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approach, carried out in the whole domain Ω ∪ ∂Ω may be used then in order to
generate the simultaneous FD equations and provide the final solution in the case
of the local b.v. problem formulation.

Though in all global and global-local formulations of the multipoint MFDM, the
function u and its derivatives are always approximated by means of the multipoint
finite difference formulas, assumption and discretization of the test function v and
its derivatives may be done in many ways. After necessary numerical integration
involved e.g. by means of the Gaussian quadrature, the system of discrete simulta-
neous equations is received.

3 A POSTERIORI ERROR ESTIMATION

As mentioned above, the main purpose of any a posteriori error estimation is to
obtain a reliable evaluation of accuracy of the computed numerical solution. Though
the exact solution is usually unknown, the higher precision result can be used as the
reference solution to evaluate the true error. Due to high quality of results obtained
by means of the multipoint approach we may also use them in order to provide
reference solutions needed for the global or local error estimation.

When presenting a posteriori error estimators, we use three types of solution:

• u – unknown true analytical solution usually known only for a benchmark prob-
lems;

• uL – rough numerical solution obtained by the standard MFDM or FEM;

• uH – improved higher order solution usually assumed as the reference one. For
this purpose the multipoint HO solution may be used.

We distinguish here:

• local estimation (at any required point) of the solution and/or residual errors;

• global estimation (over a selected subdomain or the whole domain of the con-
sidered problem) of the solution and residual errors.

The local error estimation at any required point of the domain or in its boundary
is typical for the MFDM. On the other hand, the most commonly used are the global
error estimators evaluated over the whole domain or over a chosen subdomain. In
the meshless methods, e.g. in two-dimensional approach, it may be applied to such
subdomain as the Voronoi polygon or the Delaunay triangle. The global estimators
provide information whether the specified subdomain (or the whole domain) mesh
needs refinement or raising the approximation order as well as the general informa-
tion about the accuracy of the computed numerical solution in a chosen suitable
norm.

Most of a posteriori error estimators (especially in the FEM) focused on the
global error in the energy norm. The energy norm associated with the bilinear form
is defined as follows:
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‖e‖E =

√
1

Ω

∫
Ω
b(u− ū, u− ū) dΩ. (13)

The global error may be also computed as the discrete l2(Ω) mean square norm

‖e‖2 =

√√√√ 1

N

∑
i

(ui − ūi)2 (14)

as well as the maximum norm. Here u is the true solution and ū is an approximate
rough one.

3.1 Multipoint Based Error Analysis

The special emphasis in this work are focused on a posteriori global and/or lo-
cal solution errors estimation, as well as the on residual errors both based on the
multipoint meshless method.

A posteriori error analysis based on the multipoint MFDM is discussed for any
type of formulation of boundary value problems and for discretization using arbitrary
irregular clouds of nodes. Several types of error estimations, which were developed
for the FEM analysis also, are considered.

Hierarchic Estimators

The hierarchic estimators are based on the comparison of obtained results with
reference solution calculated using:

• h-type approach – mesh is locally or globally refined by density increase from h
to e.g. h/2,

• p-type approach – the approximation order is raised from p to p+ 1, or

• hp-approach – mixed of the above versions.

The higher order multipoint method may be successfully applied as p- or hp-
approach to compute improved solution (Figures 2, 3 and 4). It is worth mentioning
that the multipoint approach in p-type refinement may provide not only approxi-
mation order p+ 1, but may well overcome this value (Figure 3).

In what follows we will use next notations of errors. When the exact analytical
solution u of a boundary value problem is known (e.g. in benchmark problems) and
rough numerical solution uL using the standard MFDM approach (6) is found, the
true low order solution error is as follows:

e = u− uL. (15)

When the multipoint approach (7) is applied, an improved higher order solution uH

is obtained and used as the reference solution. One may then estimate the true
solution error (15) in the following way:
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Figure 3. Solution convergence of 1D (u′ + u′′ = f and b.c.) and 2D (Poissons b.v.p.)
tests for various approximation orders

Figure 4. The exact solution error of Poissons b.v.p.: basic MFDM (2nd approx. order,
max e = 3.0e−2) and multipoint MFDM (3rd approx. order, max e = 1.7e−4)

η = uH − uL ≈ e. (16)

Moreover, the exact higher order solution error

eH = u− uH (17)

may be also estimated when using the multipoint method with various orders of
approximation, e.g. p1 and p2 > p1. In that case

ηH = uH(p1) − uH(p2) ≈ eH . (18)
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In order to evaluate the accuracy of error estimation, the so called effectivity
index

Ieff = 1 + |‖η‖ − ‖e‖|/‖e‖, Ieff = 1 + |η − e|/e (19)

may be used. This index is based on comparison between the true e and estimated
η error norms. Ideally its value should be close to 1.0.

Poissons b.v. problem
with Dirichlet b.c. Test 1 Test 2

Max norm Mean square Max norm Mean square

Higher order true error eH

(version 3 local) 1.22e−6 4.12e−7 1.48e−3 5.93e−4

Higher order true error eH

(version 3 global) 1.8e−6 8.29e−7 8.05e−3 3.11e−3

Lower order true error e 2.54e−4 1.24e−4 1.35e−1 2.18e−2

Error estimation η 2.52e−4 1.23e−4 1.27e−1 1.87e−2

Effectivity index Ieff 1.007 1.007 1.06 1.143

Table 1. Error estimation for various multipoint MFDM versions; regular 249 nodes mesh

Several tests done for the multipoint approach show that the calculated values of
the above effectivity index are close to 1 (Table 1), i.e., high quality error estimation
was obtained. Here Poissons b.v. problem with Dirichlet b.c. Test 1 corresponds to
the exact solution u(x, y) = sin (x+ y) and Test 2 – corresponds to the exact solution
u(x, y) = −x3 − y3 + e(x,y) given in the rectangular domain [7].

Residual Estimators

The residual estimators use either explicit residual errors of low order r, or high
order rH as follows:

r = LuL − f, rH = LuH − f (20)

in locally formulated b.v. problem, and in global formulations:

r = b(uL, v)− l(v), ∀v ∈ V, rH = b(uH , v)− l(v) (21)

or equivalent implicit ones. The implicit type residual error (not specified here)
needs solution of the boundary value problem (4) with the residuum used as the
equation right hand side

b (e, e) = r. (22)

Each of these estimators provides a quality measure of the higher (using multipoint
approach) or lower (standard MFDM) order solution error.

When approximated higher order solution uH is defined at nodes, the local
residuum between the nodes may be calculated. At nodes the residual error is
equal to zero when the collocation requirement is imposed. In common opinion,
at the middle of this distance, between two neighbour nodes the local residuum is
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Figure 5. Local residual error distribution using 1, 9 and 19 points between nodes

expected to reach its maximum value. However, several tests done showed that the
error distribution (Figures 5, 6) essentially depends on the smoothing parameter g
used in the MWLS approximation weight function (11).

Figure 6. Residual error distribution using 20 points between nodes; the influence of the
MWLS weight factor g
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Figure 7. Convergence rates of solution and its derivatives exact errors; Poissons b.v.
problem with Dirichlet b.c.

Smoothing Estimators

Smoothing estimators (well known as Zienkiewicz-Zhu one [10, 18]) are based on the
difference between the recovered (rough) and the reference (smoothed) derivatives
(e.g. stresses) of the solution. The higher order approximation of derivatives up to
order p is also obtained when applying the multipoint method. These derivatives
may be used instead of the recovered ones in the error estimation process. It is worth
noticing here, that beside the improved solution, the multipoint approach provides
the evaluation of HO approximation of derivatives without any additional effort.
The best feature of the multipoint method is the same order of the convergence rate
for derivatives as it is for the solution itself (Figure 7).

3.2 Adaptive Solution Approach

There may be different reasons for using the a posteriori error estimators. Besides the
evaluation of the numerical solution, reliable a posteriori estimation techniques may
be applied for adaptation strategy controlled by error estimation (especially residual
one). It is very effective when mesh generator [11, 15] based on the mesh density
control concept is used. The main idea is to avoid abrupt changes in mesh density
during mesh generation and modification. The mesh refinement strategy deals with
“filters” to the Liszka’s sieve method generalized for irregular meshes [11]. These are
based upon error indicators calculated as a result of an a posteriori error analysis
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applied to the considered boundary problem. In general, the new nodes are inserted
at points, where admissible error norms are exceeded.

Figure 8. Solution convergence a) of 1D b.v. problem (u′ + u′′ = f and b.c.); b) based on
the series of adaptive meshes; c) using the both types of the error indicators

During the adaptation process the set of strongly irregular meshes is used.
Therefore, several global error indicators were proposed to analyze the convergence
of the solution and the residual errors. They determine by pair of values which char-
acterize both the measured error e and the domain discretization (mesh modulus h).
The indicators allow for effective estimation of the solution and residual convergence
on the set of regular and arbitrary irregular adaptive meshes. The evaluation of the
error indicator quality is possible by means of the convergence rate a and its mean
deviation

Ind =

√√√√ 1

N

∑
i

(ei − a · xi − b)2. (23)

The best results (Figure 8) are obtained for the simplest pairs of the discrete indi-
cators based on the moment of inertia criterion of points (hi, ei)

h̄ =

√√√√ 1

N

∑
i

h2
i , ē =

√√√√ 1

N

∑
i

e2
i (24)
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and center of gravity of the scattered data

h̄ =
1

N

∑
i

hi, ē =
1

N

∑
i

|ei|. (25)

In the adaptive mesh refinement steer by error estimation only some fundamen-
tals were formulated as well as simple tests were analyzed so far.

3.3 Effective Error Estimator by Means of the Multipoint MFDM

We conclude this chapter with some general remarks on the requirements imposed
on the error estimators when using the multipoint MFDM as the reference solution.
Following Grätsch and Bathe [5] some features of an effective error estimator have
to be reached:

• The accuracy of error estimator in the sense that the predicted error should be
close to the true (unknown) error.

In the case of the multipoint approach estimation of the lower order standard
MFDM or FEM error is expected to be very good due to higher order approxi-
mation applied. The numerical results obtained so far for tested b.v. problems
confirm high accuracy of the error estimate.

• The convergence rate of the error estimate should be close to the rate of true
error and tend to zero when mesh density is raised.

Using multipoint approach, especially for the fine mesh, the calculated index of
effectivity (19) tends to 1.

• The computational cost of error estimation has not to be high, when compared
to the costs of the total computations of analysis itself.

In general, the computational cost of the HO meshless error analysis is much
smaller when compared with the cost of remeshing or cost of the refinement
algorithms commonly applied in the FE analysis. MFDM provides the clear
advantage in calculation of derivatives – one can obtain them without any ad-
ditional effort other than the solution itself.

• The error estimator should be robust with regard to a wide range of applications,
including nonlinear analysis.

The numerical results of preliminary tests of application of the multipoint me-
thod in the various b.v. problems including nonlinear analysis done so far are
very encouraging. The error estimator is expected to be robust for a wide range
of applications.

• The adaptive refinement process and the mesh optimization, with respect to the
purpose of the computation, should be possible when implementing the error
estimator.
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The multipoint MFDM allows for effective adaptation strategy controlled by
the error estimation. So far, only some fundamentals were formulated as well as
a number of simple tests was analysed.

• The upper and lower bounds of the actual error should be provided by the error
estimator.

Using multipoint method of approximation order p, the mean error bound of
solution is expected [3, 8, 17] to be an O(hp+1), where h is an average distance
between the nodes. Analysis of analytical, a priori error estimate as well as
upper and lower bounds is planned in the paper that follows.

4 NUMERICAL RESULTS

Several tests of multipoint MFDM application to error analysis have been solved.
Among other Poissons boundary value problems, the prismatic bar twisting [16] was
examined. The Prandtl stress function and the shear stress in prismatic bars of
various cross-sections like square (for comparison with the true solution), I-beam,
and railroad rail shape were analysed. The local formulation of the Saint-Venant
problem is as follows {

∇2Φ = −2Gθ, in Ω,
Φ = 0, on ∂Ω

(26)

where Φ – the Prandtl stress function, Gθ = 1 – torsional stiffness, Ω – domain of
the bar cross-section. The total shear stress for prismatic bar is

τ = |grad Φ| =
√
τ 2
zx + τ 2

zy (27)

where shear stresses are

τzx =
∂Φ

∂y
, τzy = −∂Φ

∂x
. (28)

The true solution error analysis for various local and global multipoint meshless
FDM formulations are presented in Figures 9 and 10. The Prandtl stress function
was obtained for square cross-section where the analytical solution of the Saint-
Venant problem is known.

The results of multipoint MFDM error estimations (Figure 11), including es-
timation of the higher order solution error eH by using the MLPG5 formulation
(Figure 12), are very encouraging. Each formulation of the meshless multipoint
method, including the MLPG5 one, provides higher order solution results (in com-
parison with the standard meshless FDM) of the b.v. problems.

The total shear stress in I-beam and its smoothing error estimation are presented
in Figure 13. Finally Figure 14 presents the results obtained for irregular mesh of
railroad rail shape bar and its error estimation when compared multipoint 3rd and
2nd order approximation.
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Figure 9. True solution error obtained by the MFDM (max = 8.84e−4), 3rd approx. order
multipoint local formulation (max = 5.04e−4), 3rd approx. order the multipoint MLPG5
formulation (max = 3.91e−5)

Figure 10. The solution (Prandtl stress function) convergence rate for series of regular
meshes

The analysis done required development of appropriate computer program. It
was written in C++ Visual Studio using the original advanced visualization tool [6]
based on the OpenGL for presentation the meshless method results.

5 FINAL REMARKS

The higher order multipoint meshless finite difference method based on arbitrary
cloud of irregularly distributed nodes, moving weighted least squares approximation
and the global, local or global-local formulations of boundary value problems, was
considered. The paper is focused on a posteriori estimation of the global or local
solution and residual errors based on the multipoint MFDM.
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Figure 11. Multipoint error estimation: true solution MFDM error (max = 8.84e−4);
multipoint estimation, local formulation (max = 7.47e−4); multipoint estimation, MLPG5
(max = 8.77e−4)

Figure 12. True multipoint 3rd order error (local formulation) and its estimation by mul-
tipoint MLPG5

Due to high quality of its results, the multipoint method may be used to develop
the reference solutions needed for a posteriori error estimation. A posteriori error
analysis of the multipoint MFDM may be applied for two purposes: evaluation of the
accuracy of the computed numerical solution and generation of a series of adaptive
meshes based on it. The multipoint MFDM based error estimate is, in general, very
accurate and quite efficient. The method provides at once higher order solutions
and therefore it does not need time consuming remeshing. Multiple preliminary
tests confirm high quality of a posteriori error estimation based on the multipoint
MFDM.

Further development of application of the multipoint meshless FDM to a priori
and a posteriori error analysis, as well as its use to analysis of a large class of b.v.
problems is planned.
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Figure 13. Total shear stress in I-beam and its estimated error

Figure 14. Irregular mesh, Prandtl stress function and estimated error in a railroad rail
shape bar
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