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Abstract. Multithreaded programs are prone to concurrency errors such as dead-
locks, race conditions and atomicity violations. These errors are notoriously difficult
to detect due to the non-deterministic nature of concurrent software running on mul-
ticore hardware. Data races result from the concurrent access of shared data by
multiple threads and can result in unexpected program behaviors. Main dynamic
data race detection techniques in the literature are happens-before and lockset al-
gorithms which suffer from high execution time and memory overhead, miss many
data races or produce a high number of false alarms. Our goal is to improve the
performance of dynamic data race detection, while at the same time improving its
accuracy by generating fewer false alarms. We develop a hybrid data race detection
algorithm that is a combination of the happens-before and lockset algorithms in
a tool. Rather than focusing on individual memory accesses by each thread, we
focus on sequence of memory accesses by each thread, called a segment. This al-
lows us to improve the performance of data race detection. We implement several
optimizations on our hybrid data race detector and compare our technique with
traditional happens-before and lockset detectors. The experiments are performed
with C/C++ multithreaded benchmarks using Pthreads library from PARSEC suite
and large applications such as Apache web server. Our experiments showed that
our hybrid detector is 15 % faster than the happens-before detector and produces
50 % less potential data races than the lockset detector. Ultimately, a hybrid data
race detector can improve the performance and accuracy of data race detection,
enhancing its usability in practice.
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1 INTRODUCTION

Multicore processors provide high computation power, however, in order to utilize
the increased power, concurrent software must be designed and written. Concur-
rency is achieved by multithreading in many systems. The interleaving of multiple
threads can result in concurrency bugs which are hard to reproduce.

Data race is a well-known concurrency problem which is defined as two threads
accessing a single memory address where at least one access is write and there is no
appropriate synchronization among the accesses [19]. There have been many works
in the past for detection of data races in multithreaded programs. The prior work
is divided into two broad categories, which are static data race detection [28, 22, 3]
and dynamic data race detection [13, 21, 2, 20, 15, 31].

Static data race detectors generate all possible thread interleavings and data
races are searched among these interleavings. This approach is often infeasible due
to state space explosion problem [12]. Moreover, they end up with many false posi-
tives due to the interleavings that are not possible to happen with any input data.
Typically, the number of false positives is more than the number of real races [18].
Dynamic data race detectors observe memory accesses while an application is run-
ning. This approach is scalable to real life programs. The deficiency of dynamic
analysis is that they consider an execution with a single input data, which limits
the coverage of the analysis. Due to limited coverage, dynamic detectors miss some
of the potential data races. In other words, dynamic detectors produce false neg-
atives. In order to overcome this problem, dynamic analysis must be repeatedly
executed with different inputs. Due to its scalability and potentially lower false
positive rates, dynamic data race detection is the most commonly used method of
data race detection.

There are two state-of-the-art algorithms used in dynamic data race detection,
lockset and happens-before data race detection algorithms. Lockset algorithm [25]
checks whether two threads access a shared variable while holding a common lock
or not. For each shared memory address, the algorithm maintains a candidate lock-
set. Lockset detectors produce many false positives. In other words, some of the
data races detected by the detectors are not real races. The main source of the
false positives is that the detectors ignore all the synchronization operations ex-
cept for locks. For instance, the detectors produce false positives for every shared
memory access where the synchronization among accesses is generated by condi-
tion variables. Happens-before data race detection algorithm is based on Lam-
port’s happens-before relation [13]. Happens-before relation defines a partial order
among the events generated during the execution of a program in a distributed
system. This relation has been extended for applications using shared memory as
well. Happens-before data race detection algorithms utilize vector clocks for main-
taining the happens-before relation [21, 15]. These detectors do not produce false
positives, however they may miss real races (false negative). Happens-before based
detectors suffer from high execution time and memory overhead. The size of each
vector clock is proportional to the number of threads count in the program. On the
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contrary, lockset based detectors are scalable and can be implemented with a low
overhead.

There has been prior work [20, 26, 11, 21] for combining the benefits of lockset
and happens-before detectors in a hybrid data race detector that has good per-
formance and few false positives. We develop a hybrid approach in this paper as
well. Almost all dynamic data race detection algorithms [2, 20, 21, 12, 15, 5] de-
tect potential data races by tracking accesses on each memory address during the
execution. This can result in memory overhead, which is crucial when working with
large programs. Our algorithm instead detects potential races by tracking accesses
on each segment [26], where a segment is formed by consecutive memory accesses
of a single thread. No synchronization operation is allowed inside a segment, thus,
all the memory accesses use the same vector clocks and the same locks. Moreover,
as we later show in Table 2, for most of the applications, the number of segments is
much less than the number of memory addresses accessed. This observation allows
us to reduce memory overhead.

We propose four optimizations on our segment based hybrid algorithm. The first
optimization is based on the observation that vector clock values of a segment does
not change after it is assigned. Thus, we added a limited vector clock cache for the
vector clocks of segments. The second optimization is based on exploiting the same
memory accesses inside a segment. If a memory address is accessed more than once
inside a segment, the second and subsequent accesses have no effect on detecting
the potential data races. The third optimization is based on the active number of
segments. We define a maximum number of active segments, if that is exceeded,
we start discarding older segments. Although this may lead to missing some of
the potential data races, performance increase is considerable in many cases. Our
last optimization is based on sampling a user given percentage of memory accesses
during analysis.

We implemented our hybrid detector and our optimizations using PIN Dynamic
Binary Instrumentation (DBI) tool [14]. This tool allows us to work with binaries
of applications rather than their source code, which may be crucial in commer-
cial settings. In order to compare our hybrid detector we also implemented using
PIN a lockset based detector (Eraser [25]) and a happens-before based detector
(DJIT+ [21]). We performed experiments on 8 different applications from PAR-
SEC benchmark suite [1], Apache httpd web server [9] and a parallel compression
tool pbzip2 [6]. All benchmarks are written in C/C++ using Pthreads library. Our
experiments showed that our hybrid detector is 15 % faster than happens-before
detector and produces 50 % less potential data races than lockset detector.

The main contribution of this work can be summarized as follows:

• We develop a segment-based hybrid dynamic data race detector and present
a formal treatment of the concepts and our algorithms.

• We propose four different optimizations on the hybrid algorithm. Two of these
optimizations increase the performance of data race detection without sacrificing
the precision. The remaining two optimizations provide a trade-off between
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the number of potential data races detected and the performance of data race
detection.

• We implement our techniques in a tool and compare with traditional dynamic
data race algorithms on large multithreaded benchmarks.

The rest of the paper is organized as follows. Section 2 gives background on our
multithreaded program model and happens-before relation. We describe dynamic
data race detection algorithms in Section 3. In Section 4, we present our segment
based hybrid data race detection algorithm and describe several optimizations on
this algorithm in Section 5. We discuss experimental results in Section 6, which is
followed by related work and conclusions.

2 BACKGROUND

Figure 1. Overview of our dynamic data race detection

In Figure 1, an overview of our dynamic data race detection is displayed. A dy-
namic binary instrumentation tool instruments a multithreaded application and
when this instrumented program is executed it generates events, which are input
to the data race detection algorithm. Then, the algorithm decides whether the
application has potential data race(s) or not.

2.1 Multithreaded Program Model

In this work, we consider multithreaded C/C++ applications that use the Pthreads
library [23]. A multithreaded program consists of threads, memory addresses, and
synchronization objects such as locks, condition variables, barriers, and semaphores.

During the execution of an instrumented program, a sequence of atomic opera-
tions (events), denoted by ex, . . . , ey, are generated by each thread. We utilize the
following types of events in our data race detection algorithms, similar to earlier
works [20, 5, 26].

• READ(x, ti): Memory address x is read by thread ti.

• WRITE(x, ti): Memory address x is written by thread ti.
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• ACCESS(x, ti): Either READ(x, ti) or WRITE(x, ti).

• WR LOCK(l, ti): Lock l is acquired write-held by thread ti.

• RD LOCK(l, ti): Lock l is acquired read-held by thread ti.

• LOCK(l, ti): Either WR LOCK(l, ti) or RD LOCK(l, ti).

• UNLOCK(l, ti): Lock l is released by thread ti. This is also composed of read
and write unlock operations.

• SIGNAL(cv, ti): Unblock at least one of the threads that are blocked on the
condition variable cv.

• SIGNAL ALL(cv, ti): Unblock all threads currently blocked on the condition
variable cv.

• WAIT(cv, ti): Thread ti blocks on a condition variable cv.

We use the notion of synchronization points to generate the causality relation-
ship among events. The following pair of corresponding events constitute the start
(left) and the end (right) of synchronization points, denoted by SYNCH POINTS:
(UNLOCK(l, ti),LOCK(l, tj)), (SIGNAL(cv, ti),WAIT(cv, tj)), (SIGNAL ALL(cv,
ti),WAIT(cv, tj)). Note that similar synchronization points can be defined for
semaphores, barriers as well as thread creation and exit events.

2.2 Happens-Before Relation and Vector Clocks

There exist several techniques for tracking the concurrency information or the depen-
dencies between events. Lamport’s happened-before relation [13], which is a partial
order relation, is used for capturing ordering between events generated during the
execution of a concurrent program. More formally, the happens-before relation (→)
among two events ex and ey is denoted as (ex → ey) and is the smallest transitive
relation that satisfies the following properties (where x 6= y and i 6= j) [21, 5]:

• Program Order: (ex ∈ ti ∧ ey ∈ ti) ∧ (ex is executed before ey in ti),

• Synchronization Order: (ex ∈ ti∧ey ∈ tj)∧(i 6= j)∧(ex and ey is a pair of events
from SYNC POINTS),

• Transitivity: (ex → ez) ∧ (ez → ey).

Two events, ex and ey are concurrent (‖) if neither of them happens-before the
other, that is, ex ‖ ey ⇔ (¬(ex → ey) ∧ ¬(ey → ex)).

Vector clocks [4, 17] are used to capture the happens-before relation among the
events generated during program execution. A vector clock assigns timestamps to
events such that the partial order relation between events can be determined by
using the timestamps. A vector clock, V C, consists of a vector of n integers where
n is the total number of threads in the execution. V Ci identifies the vector clock of
thread ti and V Ci[j] holds the logical time of thread tj known by thread ti. Initially,
V Ci[j] = 0, for i 6= j, and V Ci[i] = 1. A thread increments its own component of
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the vector clock after each event. For certain events that will be described in the
next section, it updates its vector clock by taking a component wise maximum with
the vector clock included in the message.

Below we describe these common vector clock operations:

• INIT(V Ci): Initialize a Vector Clock, V Ci[j] = 1, for i == j and V Ci[j] = 0,
for i 6= j,

• INCREMENT(V Ci): Increment a Vector Clock, V Ci[i] = V Ci[i] + 1,

• RECV(V Ci, V Cj): Receive Vector Clock, V Ci[k] = max(V Ci[k], V Cj[k]), ∀k ∈
{1, . . . , n},
• Compare Two Vector Clocks: V Ci < V Cj is true, if ∀k ∈ {1, . . . , n} : V Ci[k] ≤
V Cj[k] ∧ ∃k ∈ {1, . . . , n} : V Ci[k] < V Cj[k].

We say that ex → ey iff ex.V C < ey.V C. Hence, vector clocks precisely capture
the happens-before relation.

A sample execution of the vector clock algorithm is given in Figure 2, where
the tuples in brackets represent the vector clocks. In the example, event (action) s
happened-before t since [1, 0, 0] < [2, 1, 3], where vi < vj if all elements of vi are less
than or equal to the corresponding elements of vj and at least one element of vi is
strictly less than the corresponding element of vj. Whereas u is concurrent with t
since their vector clocks are not comparable.

Figure 2. Happens-before relation and vector clocks

3 DATA RACE DETECTION ALGORITHMS

We briefly describe two state-of-the-art algorithms in data race detection, namely
happens-before algorithm and lockset algorithm.

3.1 Happens-Before Data Race Detection

Happens-before data race detection algorithms check whether concurrent accesses
by multiple threads to the same memory address are possible, if so they return a race
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warning. These detectors do not produce false positives but they can produce false
negatives.

We describe DJIT+ [21] algorithm as the happens-before algorithm. The al-
gorithm maintains a vector clock for each thread ti, denoted by V Ci, which is
initialized at startup. A vector clock is kept for each synchronization object s,
denoted by s.V C, which is initialized to all zeros at startup. For each left event
of a SYNC POINTS, such as UNLOCK(s, ti) the following operations take place,
s.V C = V Ci and V Ci = INCREMENT(V Ci). Similarly, for each right event
of a SYNC POINTS, such as LOCK(s, ti), the following operation takes place,
V Ci = RECV(V Ci, s.V C). For example, in Figure 2, in Thread 1, one can think
of having an UNLOCK event after the second event with vector clock [2, 1, 0] and
the corresponding LOCK event occurs on Thread 3 changing the vector clock to
[2, 1, 3]. Two vector clocks are kept for each memory address x, denoted by xr.V C
and xw.V C, which are used to keep track of the last read and the last write to x by
each thread, respectively.

In Algorithm 1, we display the race detection portion of the happens-before
based data race detection algorithm. For each read of x by ti in line 1, the algorithm
checks whether xw.V C happens-before V Ci in line 3. If not, a race is detected in
line 12. Similarly, for each write of x by ti in line 6, the algorithm checks whether
each of xw.V C and xr.V C happens-before V Ci. If one of them does not, then the
algorithm concludes a potential data race in line 12. Note that by exploiting the
transitivity of the happens-before relation, the algorithm can decide on potential
race conditions by only comparing the vector clock of the last read and write with
the vector clock of the current access.

Algorithm 1 Happens-Before based data race detection algorithm

Input: Thread ti generates a memory access event on address x, ACCESS(x, ti)
Output: Potential data race detected or not

1: if ACCESS(x, ti) == READ(x, ti) then
2: xr.V C[i] = V Ci[i];
3: if xw.V C < V Ci then
4: return false; . No Race Found
5: end if
6: else if ACCESS(x, ti) == WRITE(x, ti) then
7: xw.V C[i] = V Ci[i];
8: if (xw.V C < V Ci) ∧ (xr.V C < V Ci) then
9: return false; . No Race Found

10: end if
11: end if
12: return true; . Race Found
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3.2 Lockset Data Race Detection

Lockset data race detection algorithms check whether accesses by multiple threads
to the same memory address can occur while threads are not holding a common lock,
if so they return a race warning. These detectors do not produce false negatives but
they can produce false positives for a given execution.

We describe Eraser [25] algorithm as the basic lockset algorithm and show it in
Algorithm 2. For each shared memory address x, the algorithm maintains a can-
didate lockset, CLS(x). The name candidate is given since the algorithm cannot
determine which lock is intended for which memory address. Thus, via candidate
locksets, the algorithm attempts to infer whether a shared memory address is pro-
tected by a unique lock throughout the execution. When a memory address is
accessed for the first time during the execution, its candidate lockset is assigned
to include all possible locks. Then, on each access in line 1, its candidate lockset
is updated to its intersection with the lockset of the thread that is executing the
access, LS(ti). This lock refinement step aims to find the unique locks that protect
the variable during the execution. If the intersection ends up with an empty set in
line 2, the algorithm concludes that there is a potential data race in line 3. Eraser
lockset algorithm includes optimizations and we implemented the Eraser lockset
algorithm that includes optimizations in this paper.

Algorithm 2 Lockset based data race detection algorithm

Input: Thread ti generates a memory access event on address x
Output: Potential data race detected or not

1: CLS(x) = CLS(x) ∩ LS(ti)
2: if CLS(x) == {} then
3: return true; . Race Found
4: end if
5: return false; . No Race Found

3.3 Hybrid Data Race Detection

When the above two approaches are examined in terms of preciseness, lockset de-
tectors can produce false positives, whereas happens-before based detectors can
produce false negatives. In terms of performance, lockset detectors are scalable,
whereas happens-before based detectors are not because happens-before detectors
require a high memory and processing overhead.

A hybrid data race detector combines the lockset and happens-before approa-
ches. A naive hybrid algorithm maintains two vector clocks and a lockset for each
memory address. Such an approach may help reduce the number of false positives
compared to a lockset detector. However, performance of the detector would be
worse than a happens-before based detector. First, the memory requirements would
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be more than a happens-before detector since it also uses a lockset for each memory.
Second, the computation overhead would increase since both vector clock compar-
isons and lockset calculations are needed.

4 SEGMENT BASED HYBRID DATA RACE
DETECTION ALGORITHM

In order to combine the best of traditional race detectors, we developed a seg-
ment based hybrid algorithm that utilizes the concept of a segment to improve
performance. Our segment based hybrid approach is based on Threadsanitizer [26]
algorithm. We formalize this algorithm and extend it with several performance
optimizations as discussed in the next chapter.

A segment segi of a thread ti is a sequence of memory accesses of ti, denoted
by {ei}, where the lockset and vector clock of the segment is the same as that of
thread ti. No function calls or synchronization operations are allowed inside a seg-
ment. The outcome of this is that all the events inside a segment are executed while
the thread holds the same vector clock and the same locks. Thus, the vector clocks
and the locksets could be kept on the granularity of segments instead of memory
accesses. Since we observe that the total number segments is much less than the
total number of memory addresses in an execution for most of the applications, this
approach reduces the memory requirements and increases the performance consid-
erably as shown in the experiments.

Our segment based hybrid algorithm maintains several data structures as shown
in Table 1. Algorithm 3 shows how these data structures are updated during pro-
gram execution. Note that a happens-before relation is established from a SIGNAL
to a WAIT but not from an UNLOCK to a LOCK operation as in the case for
happens-before algorithm. This is because the happens-before relation on lock
operations ensures that the same lock is used by threads during memory access,
however the lockset algorithm portion of the hybrid algorithm will consider this
case.

For each memory access in line 17 of Algorithm 3, Algorithm 4 is executed. In
Algorithm 4, first, the current segment of thread ti that is executing the memory
access is obtained as segi in line 1. Then, in line 2 for the write access, writer seg-
ment set of the memory address is updated so that it only includes segments that
do not happen-before the current executing segment in line 3. Additionally, the
current segment is added to the writer segment set of the memory address. Simi-
larly, reader segment set of the memory address is updated so that it only includes
segments that do not happen-before the current executing segment in line 4. It
can be observed from the definition of concurrency that segments in write segment
sets are pairwise concurrent, similarly for read segment sets. This is a useful per-
formance optimization because accesses from non-concurrent segments, which are
happens-before ordered, cannot cause a potential data race on a shared memory
address.
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Thread ti
Vector Clock V Ci

Writer Lockset WRLS(ti)
Reader Lockset RDLS(ti)

Segment si
Vector Clock segi.V C
Writer Lockset WRLS(segi)
Reader Lockset RDLS(segi)

Condition Variable cv

Vector Clock cv.V C

Memory Address x

Writer Segment Set WRSTx.
Reader Segment Set RDSTx.

Table 1. Segment-based hybrid algorithm data structures

It can be seen from Algorithm 4 that read and write accesses update segment
sets differently. On write accesses, both writer and reader segment sets are updated
(line 3 and 4), whereas, on read accesses, only reader segment set is updated (line 6).
The reason is as follows, on write accesses, it is safe to remove any of the read accesses
from RDSTx. Remember that, RDSTx consists of concurrent segments where x is
read. Since there is no read-read type of data race, removing any segment from
RDSTx does not lead to missing any races. On the contrary, on read accesses it is
not safe to remove any segment from WRSTx. The reason is that, it may lead to
missing a write-write data race because the removed segment might have a potential
race with one of the prospective segments in the same set. The outcome of this is
that all segments within any segment set are concurrent with each other. However,
not all segments in RDSTx are concurrent with all segments in WRSTx, which is
handled while checking race among WRSTx and RDSTx.

Algorithm 5 describes the data race checking between segment sets check-
Race(WRST,RDST), which is called at line 8 in Algorithm 4. The algorithm checks
for common locks among concurrent segments such that one segment is a writer seg-
ment and the other is either a reader or a writer segment since there is no read-read
data race. If the segments are a writer and a reader segment then the algorithm also
makes sure that there is no happens-before relation from the writer to the reader
segment as shown in line 8. We know that a happens-before relation cannot exist
from the reader to the writer as these have been removed during the reader segment
set update in Algorithm 4. If the algorithm could not find a common lock among
concurrent segments (lines 4 and 9), it returns true indicating a data race. Note
that if any two segments are ordered by the happens-before relation, they are not
checked for data race, which is similar to the happens-before algorithm. Then, if two
segments are concurrent then they are checked for holding a common lock, which is
similar to the lockset algorithm.
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Algorithm 3 Segment based hybrid data race detection algorithm instrumentation
for each operation

Input: Thread ti generates an operation op
Output: Instrumented program

1: if op is thread creation then
2: INIT(V Ci); WRLS(ti) = RDLS(ti) = {}
3: else if op is segment creation then
4: segi.V C = V Ci; WRLS(segi) = WRLS(ti); RDLS(segi) = RDLS(ti)
5: else if op is WAIT(cv, ti) then
6: RECV(V Ci, cv.V C)
7: else if op is SIGNAL(cv, ti) then
8: RECV(cv.V C, V Ci); INCREMENT(V Ci)
9: else if op is WR LOCK(l, ti) then

10: WRLS(ti) = WRLS(ti) ∪ {l}
11: else if op is WR UNLOCK(l, ti) then
12: WRLS(ti) = WRLS(ti) \ {l}
13: else if op is RD LOCK(l, ti) then
14: RDLS(ti) = RDLS(ti) ∪ {l}
15: else if op is RD UNLOCK(l, ti) then
16: RDLS(ti) = RDLS(ti) \ {l}
17: else if op is WRITE(x, ti) or READ(x, ti) then
18: ACCESS(x, ti)
19: end if

4.1 Segment Based Hybrid Algorithm Example

We now show an execution of our segment-based hybrid approach. A sample execu-
tion of the events belonging to two different threads and the state of data structures
for each line of the execution is described in Figure 3. For simplicity, we do not
display RDSTx and RDLS of threads.

Algorithm 4 Segment-based hybrid data race detection algorithm – ACCESS(x, ti)

Input: Thread ti generates a memory access event on address x
Output: Potential data race detected or not

1: segi = CurrentSegment(ti)
2: if ACCESS(x, ti) == WRITE(x, ti) then
3: WRSTx = {segx | segx ∈WRSTx ∧ ¬(segx.V C → segi.V C)} ∪ segi
4: RDSTx = {segx | segx ∈ RDSTx ∧ ¬(segx.V C → segi.V C)}
5: else if ACCESS(x, ti) == READ(x, ti) then
6: RDSTx = {segx | segx ∈ RDSTx ∧ ¬(segx.V C → segi.V C)} ∪ segi
7: end if
8: checkRace(WRSTx, RDSTx)
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Algorithm 5 Segment-based hybrid data race detection algorithm –
checkRace(WRST,RDST)

Input: Writer Segment Set WRST, Reader Segment Set RDST
Output: Potential data race detected or not

1: for wr1 ∈WRST do
2: for wr2 ∈WRST do
3: if WRLS(wr1) ∩WRLS(wr2) = {} then
4: return true; . Write-Write Race Found
5: end if
6: end for
7: for rd ∈ RDST do
8: if ¬(wr1.V C → rd.V C) ∧ (WRLS(wr1) ∩ RDLS(rd) = {}) then
9: return true; . Read-Write Race Found

10: end if
11: end for
12: end for
13: return false; . No Race Found

After t1 acquires lock l1, a new segment s1 is initialized. Memory address x is
written in s1, thus, s1 is added to WRSTx in ACCESS algorithm. s1 is finalized
when l1 is released by t1. Then, after t2 acquires l1, segment s2 is initialized. When
x is written in s2, it is added to WRSTx in ACCESS algorithm since s1 and s2

are concurrent. Since both s1 and s2 have a common lock, which is l1, checkRace
algorithm does not produce a data race alarm. The execution ends up with no race,
which is a True Negative.

5 OPTIMIZATIONS ON SEGMENT-BASED HYBRID ALGORITHM

In this section, we are going to discuss four optimizations that we proposed and
implemented on segment-based hybrid algorithm.

5.1 Optimization 1: Storing Vector Clock Comparison History Cache

We observed that maintaining a vector clock comparison history cache for the pre-
viously calculated vector clock comparisons can increase the performance of data
race detection. This is motivated by the fact that multiple memory accesses can
belong to the same segment and since all these memory accesses have the same
vector clock as the segment that they belong to, there may be an excessive number
of comparison operations between the same vector clocks. For each vector clock,
we keep a list that holds the previous comparisons of the vector clock with other
vector clocks. Since the same vector clock could be accessed concurrently, a lock is
required for accessing the list. These two requirements increase the total memory
requirement of data race detection but improves the performance as shown in the
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Line Thread 1 Thread 2
1 WR LOCK(l1, t1)
2 WRITE(x, t1) ∈ s1

3 WR UNLOCK(l1, t1)
4 WR LOCK(l1, t2)
5 WRITE(x, t2) ∈ s2

6 WR UNLOCK(l1, t2)

Line V C1 WRLS(t1) V C2 WRLS(t2) WRSTx

0 〈1, 0〉 {} 〈0, 1〉 {} {}
1 〈1, 0〉 {l1} 〈0, 1〉 {} {}
2 〈1, 0〉 {l1} 〈0, 1〉 {} {s1}
3 〈1, 0〉 {} 〈0, 1〉 {} {s1}
4 〈1, 0〉 {} 〈0, 1〉 {l1} {s1}
5 〈1, 0〉 {} 〈0, 1〉 {l1} {s1, s2}
6 〈1, 0〉 {} 〈0, 1〉 {} {s1, s2}

Figure 3. A program execution with segment-based hybrid algorithm and update of data
structures during the execution

experiments. We also only cache vector clocks of segments since after initialization
their values do not change, whereas vector clocks of threads and synchronization
objects can change during execution, increasing computation overhead.

Our optimization is formalized in Algorithm 6. For each vector clock V Ci, a list
vci prev comparisons and a lock vci lock is required. On each comparison, first the
local cache vci prev comparisons is searched. If the result is already there, there is
no need to make comparison. Otherwise, the comparison is done and the result is
added to vci prev comparisons.

The algorithmic complexity of this optimization is O(n), where n is the vector
clock history size.

Algorithm 6 Optimization 1

Input: Vector Clocks vc1 and vc2

Output: Comparison of vc1 and vc2

1: LOCK(vc1 lock);
2: result = vc1 prev comparisons(vc2);
3: if result == None then
4: result = compare(vc1, vc2)
5: vc1 prev comparisons(vc2) = result
6: end if
7: UNLOCK(vc1 lock);
8: return result;
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5.2 Optimization 2: Multiple Accesses of a Single Variable in a Segment

This optimization exploits the fact that repeated memory accesses of the same type
and same variable belonging to the same segment do not make a difference in terms
of race detection. This is because the earlier of the accesses will have already been
added to the writer or reader segment set of the variable and since the later access
has the same vector clock and locksets it will not have any impact. This opti-
mization can quickly be added to the ACCESS algorithm as shown in Algorithm 7.
There is no extra memory requirement for implementing this optimization. The
only requirement is the increased CPU utilization. The algorithmic complexity of
this optimization is O(n), where n is the average number of segments in the segment
sets.

Algorithm 7 Optimization 2 – updated Algorithm ACCESS

Input: Thread ti generates a memory access event on address x
Output: Potential data race detected or not

1: segi = CurrentSegment(ti)
2: if ACCESS(x, ti) == WRITE(x, ti) then
3: if segi 6∈WRSTx then
4: WRSTx = {segx | segx ∈WRSTx ∧ ¬(segx.V C → segi.V C)} ∪ segi
5: RDSTx = {segx | segx ∈ RDSTx ∧ ¬(segx.V C → segi.V C)}
6: end if
7: else if ACCESS(x, ti) == READ(x, ti) then
8: if segi 6∈ RDSTx then
9: RDSTx = {segx | segx ∈ RDSTx ∧ ¬(segx.V C → segi.V C)} ∪ segi

10: end if
11: end if
12: checkRace(WRSTx,RDSTx)

5.3 Optimization 3: Limiting The Total Number of Segments

In segment-based hybrid approach, many of the segments do not cause potential
data races. For instance, most segments do not access shared variables. Or even
if some shared variables are accessed, many of the segments are happens-before
ordered or protected by a common lock. Also, we make the observation that in
general segments that are closer to each other in terms of execution time are more
likely to cause race conditions. Therefore, discarding some of the segments may
increase the performance while preserving the number of potential data races found.

In our implementation, we define a limit that identifies the maximum number of
segments that can be utilized by our segment-based hybrid approach. Whenever the
total number of segments exceeds the maximum number, we discard a previously
created segment and remove that segment from any of the segment sets that it
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is present. We utilize a FIFO queue for choosing which segment to be discarded.
Although limiting the maximum number of segments increases the performance of
data race detection, it may lead to missing some of the potential data races since
the discarded segment can be a part of a potential data race in the execution.

It is important that the limit should be determined exclusively for each appli-
cation. In our experiments, we choose the maximum number relative to the total
segment count in the original execution.

In the worst case, the algorithmic complexity of this optimization is O(n), where
n is the total number of segment sets in the execution.

5.4 Optimization 4: Proportional Detection of Data Races

It is widely accepted that dynamic data race detection requires excessive processing
power and memory. This hinders the utilization of dynamic data race detection
tools in real deployed environments. PACER [2] proposes proportional detection
of data races. It makes a proportionality guarantee by detecting data races at
a rate equal to the sampling rate. Our sampling approach takes advantage of this
observation but it is simpler than PACER with no proportionality guarantee. On
each memory access operation in Algorithm 3, according to the given sampling rate,
we decide whether to call ACCESS procedure or not. Specifically, a random integer
is generated between 0 and 100. We use an equidistributed uniform pseudo-random
number generator [16].

If the generated integer is smaller than the sampling rate, we execute the in-
strumentation for the memory access. Our experiments show that the percentage
of instrumented memory accesses still converges to the sampling rate.

6 EXPERIMENTS

In this section, we describe our implementation and experiments on dynamic data
race detection. We implemented three dynamic data race detection algorithms, lock-
set, happens-before, and segment-based hybrid algorithm. We also show the results
of our optimizations described in the previous section. We performed experiments
with eight multi-threaded applications from PARSEC benchmark suite [1]. We also
used a parallel compression tool pbzip2 [6] and Apache httpd web server [9] as test
cases. All the experiments were performed on a PC running Linux with a 4 cores
CPU of 2.27 GHz and 32 GB of memory. We ran each experiment 10 times and
averaged the results.

We implemented the detectors using PIN dynamic binary instrumentation (DBI)
tool [14]. PIN allows us to work with binaries of applications rather than their
source code, which may be crucial in commercial settings. In our implementation,
we utilized the just-in-time compiler JIT mode of PIN. This allows instrumenta-
tion to be done at different granularities such as instruction, trace, image or rou-
tines. We used routine instrumentation for the synchronization function calls. For
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instance, a callback is inserted after pthread mutex lock function so that our hy-
brid algorithm updates the caller thread’s writer lockset. For memory accesses we
used trace instrumentation. We know that instruction instrumentation enables to
insert one analysis call for every instruction executed. In fact, instruction instru-
mentation could be useful for inserting an analysis call for every read and write
instruction so that data race detection algorithms’ memory access algorithms could
be executed. However, reducing the number of analysis calls results in efficient in-
strumentation. Therefore, instead of instruction instrumentation we prefer trace
instrumentation. A trace is composed of a sequence of Basic Block (BBL). A BBL
is a single entrance and single exit sequence of instructions. Thus, by trace instru-
mentation we firstly iterate over BBLs that forms the trace that is instrumented.
Then, for each BBL we iterate over instructions and call a function for each read
or write instruction that is executed. The number of analysis calls is reduced from
the executed instruction count to the number of executed traces. We developed
a tool, called Dyndatarace, that incorporates our solution and can be accessed on-
line1.

In our implementations, we utilized the same implementation for the common
parts of different detectors as much as possible. For instance, we use the same
implementation of vector clocks for both the hybrid algorithm and the happens-
before algorithm. Similarly, we used the same implementation of locksets for both
the hybrid algorithm and the lockset algorithm.

While potential data races are being searched, it is crucial to track the dynamic
allocations and deallocations to prevent false alarms. In our implementations, we
overcome this problem by tracking all memory allocations and deallocations. When-
ever a deallocation is executed, all the shadow memory state that is kept for the
corresponding allocation call is cleaned up.
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×264 0.18 15 4 579 993 6 225 2.92× 13.80× 20.26× 25.20× 184 27 1
freqmine 0.27 15 18 525 725 1 350 2.42× 117.93× 332.41× 261.56× 76 23 7
vips 0.22 18 22 883 398 32 044 3.67× 103.69× 250.21× 315.43× 174 64 0
swaptions 0.14 4 47 837 320 1.91× 72.43× 134.98× 202.15× 0 0 0
bodytrack 0.18 5 5 803 300 8 702 2.72× 18.67× 31.24× 50.37× 47 5 4
fluidanimate 0.25 4 1 303 047 2 163 828 1.43× 89.42× 85.10× 113.52× 281 35 0
streamcluster 0.25 8 166 555 163 641 1.73× 75.28× 133.05× 178.56× 19 14 0
canneal 1.90 4 3 012 749 1 380 4.13× 16.41× 20.88× 26.71× 1 1 0
pbzip2 1.40 16 1 050 268 157 60 2.32× 41.92× 44.27× 50.30× 29 23 0
httpd 26.11 22 251 943 229 900 2.21× 13.32× 24.11× 26.75× 1777 1151 0

average 3.09 11.10 5 762 481 262 315 2.54× 56.29× 107.65× 125.06× 258 134 1

Table 2. Results for three race detectors

1 https://github.com/onderkalaci/dyndatarace

https://github.com/onderkalaci/dyndatarace
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In our experiments we compare the behavior of detectors in terms of execu-
tion overhead as well as the number of potential data races. Table 2 displays our
experimental results. In the table we show the overhead (slowdown) of dynamic
binary instrumentation over the uninstrumented execution in the column denoted
by Empty, which does not perform any computations or analysis related to data
race detection but the overhead of instrumenting memory accesses. We also display
the slowdown of each data race detector with respect to the Empty implementation.
On average, execution slow down is 125× for happens-before detector, 107× for
hybrid detector and 56× for lockset detector. Memory requirements are 2 084 M for
happens-before detector, 1 258 M for hybrid detector and 916 M for lockset detector.
Hence, the slow downs are arranged as Happens-before > Hybrid > Lockset as ex-
pected. Lockset slowdown is less than half of the happens-before and hybrid. This
is acceptable since heavy memory and execution overhead of vector clocks are not
present in the lockset. On the average, happens-before is about 15 % slower than
hybrid.

In terms of the number of data races detected by each algorithm, the results are
again expected and are as follows, Lockset > Hybrid > Happens-before. On average,
the potential number of data races detected by happens-before, hybrid and lockset
detectors are 1, 134, and 258, respectively. As discussed in the previous sections,
lockset detectors produce too many false positives. On the contrary, happens-before
detectors do not produce any false positives, but they can miss some of the potential
data races. Hybrid algorithm poses characteristics from both approaches.

We performed experiments to measure the impact of increasing number of
threads on the number of data races. For some of the applications, we were able
to change the number of the threads that run concurrently without changing the
inputs. Such applications include x264, freqmine, fluidanimate, canneal and pbzip2.
For these applications, we performed three different experiments with different num-
ber of threads as shown in Table 3. Our experiments show that although the exe-
cution time depends on the thread count, the total number of potential data races
detected are not affected.

Application Original Execution Experiment-1 Experiment-2 Experiment-3

x264 15 18 20 32

freqmine 15 18 20 32

fluidanimate 4 6 8 12

canneal 4 6 8 12

pbzip2 16 12 20 32

Table 3. Number of thread counts for different experiments

6.1 Results of Optimizations on Segment-Based Hybrid Algorithm

In this section, we explore the experimental results of the optimizations that are
applied to the segment-based hybrid algorithm.
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Since our goal is to find the best performance due to optimizations, we explore
a combination of them rather than exploring optimizations individually. We first
check the combination of Optimization 1 and 2 since these optimizations do not
affect the number of data races and the best combination parameters are searched.
Then we add either one of Optimization 3 and 4 to these two, since Optimization 3
and 4 cannot be combined. The reason is that both Optimization 3 and 4 lead to
false negatives and affect the performance. Therefore, it would be difficult to infer
the effect of each optimization on results when they are combined. The presented
execution time values are relative to the execution of segment-based hybrid algorithm
with no optimization applied.

Application Execution Time

History Size 0 1 10 50 250

×264 0.92× 0.95× 0.88× 0.89× 0.99×
freqmine 0.98× 0.85× 0.86× 0.83× 0.84×
vips 0.98× 0.9× 0.86× 0.97× 0.97×
swaptions 1.16× 1.44× 1.42× 1.33× 1.42×
bodytrack 1.09× 0.99× 0.95× 0.98× 1.03×
fluidanimate 0.96× 0.78× 0.77× 0.78× 0.79×
streamcluster 0.91× 0.68× 0.68× 0.68× 0.68×
canneal 0.99× 0.95× 0.99× 0.94× 0.97×
pbzip2 1.02× 1.0× 0.99× 1.0× 0.98×
httpd 0.71× 0.61× 0.62× 0.67× 0.64×
average 0.97× 0.91× 0.90× 0.91× 0.93×

Table 4. Optimization 1 and Optimization 2

6.2 Optimization 1 and Optimization 2

Table 4 shows the performance change by the addition of Optimization 1 when
Optimization 2 is always enabled, since Optimization 2 almost always improves
performance. On the average, when the vector clock history size is set to 10, the
maximum performance is achieved.

For some of the applications such as swaptions, Optimization 1 reduces the
performance, independent of the history size. In this case, unsuccessful searches in
the vector clock history utilize CPU so much that the gain of successful searches
cannot compensate the unsuccessful ones.

6.3 Optimization 1, Optimization 2 and Optimization 3

Table 5 displays the effect of Optimization 3 when Optimizations 1 and 2 are applied
with a vector clock history size of 10. The table shows the effect of limiting the total
segment count on both the execution time and the number of potential data races.
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Since each application executes a different number of segments during execution,
the parameter that is altered is the percentage of number of segments with respect
to all segments in the original execution, displayed in row Limit. For instance, when
the total number of segments are limited to 50 % of the original execution for that
application, the performance is increased 17 % while only 4 of the potential data
races are missed. We observe that even when the limit is set to 4 % the number
of data races remain similar to the original and the performance improves by 31 %.
However, the execution time does not decrease in a linear fashion. A potential reason
for this is that the operation of destroying a segment requires a lot computation,
that is the destroyed segment must be removed from all of the segment sets that it
is a member of.

Limit 100 % 50 % 32 % 18 % 12 % 4 % 1 %
Application Time Race Time Race Time Race Time Race Time Race Time Race Time Race

×264 0.91× 27 0.90× 27 0.86× 27 0.86× 27 0.88× 27 0.80× 26 0.66× 4
freqmine 0.88× 23 0.41× 23 0.40× 23 0.36× 23 0.31× 23 0.29× 19 0.88× 19
vips 0.87× 64 0.88× 63 0.88× 59 0.87× 55 0.79× 53 0.77× 38 0.61× 0
swaptions 1.44× 0 1.40× 0 1.34× 0 0.98× 0 0.95× 0 0.87× 0 1.32× 0
bodytrack 0.97× 5 0.83× 3 0.73× 0 0.77× 0 0.80× 0 0.71× 0 0.64× 0
fluidanimate 0.81× 35 0.67× 34 0.68× 34 0.66× 34 0.61× 34 0.59× 33 0.79× 22
streamcluster 0.72× 14 0.61× 14 0.59× 14 0.57× 14 0.55× 14 0.44× 14 0.50 14
canneal 1.0× 1 1.01× 1 0.92× 1 0.90× 1 0.95× 1 0.91× 1 0.98× 1
pbzip2 0.99× 23 0.98× 23 1.00× 23 0.98× 20 0.98× 17 0.97× 17 0.96 0
httpd 0.68× 1 151 0.62× 1 121 0.58 1 113 0.61× 1 113 0.58× 1 097 0.57× 1 097 0.68× 56

average 0.93× 134 0.83× 130 0.80× 129 0.76× 128 0.74× 126 0.69× 124 0.80× 11

Table 5. Results of Optimization 1, Optimization 2 and Optimization 3. Limit between
100 %–1 %.

6.4 Optimization 1, Optimization 2, and Optimization 4

Table 6 displays the effect of Optimization 4 when Optimizations 1 and 2 are applied
with a vector clock history size of 10. The table shows that on average execution
times and the number of potential data races roughly converge to the sampling rate,
until 16 % sampling rate. When the sampling rate is decreased further, due to the
overhead of creating and managing segments, performance does not converge to the
sampling rate. Furthermore, for pbzip2, the execution time is not converging to
the sampling rate since this application makes too many I/O operations, which is
a bottleneck.

6.5 Vector Clock Operation Performance

In this section, we compare the average number of vector clock operations per mem-
ory access between the happens-before and hybrid detectors. In the happens-before
Algorithm 1, the number of vector clock comparisons is one or two depending on
the access type as can be seen from lines 3 and 8, respectively. As the proportion
of reads increases, the average number of vector clock comparisons per memory ac-
cess is expected to decrease. In the segment-based hybrid approach, the number
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Sample Rate 100 % 71 % 50 % 16 % 5 % 2 %

Application Time Race Time Race Time Race Time Race Time Race Time Race

×264 0.92× 27 0.66× 23 0.49× 19 0.17× 12 0.11× 9 0.10× 3

freqmine 0.88× 23 0.21× 23 0.13× 23 0.04× 12 0.02× 11 0.06× 4

vips 0.87× 64 0.67× 53 0.49× 35 0.12× 17 0.07× 1 0.06× 0

swaptions 1.54× 0 0.74× 0 0.67× 0 0.23× 0 0.21× 0 0.19× 0

bodytrack 1.01× 5 0.91× 0 0.52× 1 0.16× 0 0.08× 0 0.07× 0

fluidanimate 0.82× 35 0.56× 28 0.44× 27 0.08× 12 0.06× 2 0.06× 2

streamcluster 0.74× 14 0.42× 13 0.33× 12 0.12× 5 0.04× 2 0.05× 0

canneal 1.02× 1 0.82× 1 0.65× 1 0.37× 0 0.28× 0 0.31× 0

pbzip2 1.04× 23 0.97× 13 0.81× 6 0.74× 1 0.72× 0 0.75× 0

httpd 0.71× 1 151 0.41× 797 0.29× 478 0.08× 111 0.12× 23 0.04× 15

average 0.96× 134 0.64× 95 0.48× 60 0.21× 17 0.17× 4 0.17× 2

Table 6. Results of Optimization 1, Optimization 2 and Optimization 4. Sample rate
between 100 %–2 %.

of vector clock operations depends on the size of the segment set for each memory
access which increases as the number of concurrent accesses to a memory address
increases. The comparisons are done in two different points in segment-based hybrid
algorithm in lines 3, 4, 6 of Algorithm 4 and line 8 of Algorithm 5.

Application Hybrid Happens-Before

x264 2.12 1.07

freqmine 14.87 1.16

vips 7.99 1.11

swaptations 4.78 1.04

bodytrack 2.85 1.13

fluidanimate 1.85 1.08

streamcluster 2.58 1.07

canneal 2.54 1.34

Firefox 0.34 1.07

pbzip2 0.99 1.07

httpd 22.80 1.37

average 5.70 1.13

Table 7. Average number of vector clock comparison per memory access

The number of vector clock operations cannot be determined statically. There-
fore, to calculate the average number of vector clock operations in both algo-
rithms, we create two variables (m access cnt, vc compare cnt) and on each mem-
ory access, we increment the value of m access cnt and on each vector clock com-
parison, we increment the value of vc compare cnt. Then, after the execution
completes, we calculate the vector clock comparison per memory access, vcavg =
vc compare cnt/m access cnt. Table 7 shows vcavg for both algorithms. As expected,
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vcavg is 1.13 for happens-before algorithm, whereas, for segment-based hybrid algo-
rithm, vcavg is 5.70. Therefore, we can conclude that on average, happens-before
algorithm performs better than the hybrid segment-based algorithm in terms of the
average number of vector clock operations per memory access.

6.6 Memory Performance

We show the memory requirements of lockset, happens-before and segment-based
hybrid algorithms for each application in Table 8. The results show that hybrid
detector’s memory requirement is almost 40 % less than happens-before detector
and 30 % more than lockset detector. These results are expected since utilization of
vector clocks increases memory requirements remarkably. Happens-before detectors
are entirely based on vector clocks, lockset detectors do not utilize vector clocks and
hybrid detectors are partially based on vector clocks.

Application Lockset Hybrid Happens-Before

x264 794 884 2 785

freqmine 1 444 2 201 3 873

vips 1 502 2 220 3 564

swaptations 304 574 744

bodytrack 752 1 408 2 062

fluidanimate 674 886 1 240

streamcluster 513 590 574

canneal 750 904 1 766

pbzip2 721 910 1 104

Firefox 1 066 1 271 1 971

httpd 1 562 1 990 3 244

average 916 1 258 2 084

Table 8. Memory requirements for data race detection algorithms (MB)

7 SUMMARY OF RESULTS

We proposed four different optimizations on our algorithm to improve performance.
The first two improvements do not alter the number of data races that are detected in
any of the benchmark applications. When the first two optimizations are combined
they reduce the execution time by 10 %, if the vector clock comparison history cache
size is set to 10. The last two improvements alter both the execution time and data
races detected relative to the original application. For the third optimization, when
the total number of segments is limited to 50 % of the number of segments in the
original application, execution time decreases by 17 % where the number of potential
races almost remains the same. For the last optimization, average execution times
and the number of detected data races roughly converge to a user given sampling
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rate. We also performed experiments which show that the memory requirements of
happens-before algorithm is more than segment-based hybrid algorithm, whereas,
hybrid algorithm executes more vector clock comparisons on the average than the
happens-before.

We showed that a hybrid race detector has several advantages over other types
of race detectors as described above. However, due to the use of instrumentation
there is a big slowdown for all detectors that can make it impractical for online
execution purposes. We discuss potential improvements in future work.

8 RELATED WORK

Dynamic data race detection algorithms proposed in the literature are based on
lockset approach, happens-before approach or combination of both approaches. In
this section we explore these approaches and their differentiated variants. Eraser [25]
is the pioneer of the lockset based detectors. Since lockset based detectors only
recognize locks, the synchronization formed among threads by other primitives such
as condition variables or barriers are ignored. Thus, false positives are inevitable
with lockset detectors.

Happens-before detectors inspect data races by verifying the happens-before
relation among memory accesses. The happens-before relation is represented by
vector clocks in many happens-before based detectors such as DJIT+ [21] and Lite-
Race [15]. Contrary to lockset detectors, happens-before detectors do not produce
any false positives. However, they miss some potential data races. In other words,
pure happens-before based detectors produce false negatives. DJIT+ and other
traditional happens-before detectors suffer from high execution time and memory
overhead. The size of vector clocks are proportional to the number of threads in
the system. Therefore, memory requirements and comparison complexity of vector
clocks are proportional to the thread count. In order to overcome these performance
issues several enhancements have been proposed. FastTrack [5] implements a scalar
data structure, called epoch, consisting of two integers, and replaces vector clocks
with epochs whenever possible. This replacement does not affect the precision of the
happens-before algorithm. iFT [7] represents an improvement over the FastTrack
method. It reduces the average runtime and memory overhead to 84 % and 37 %,
respectively, of those of FastTrack.

PACER [2] proposes a sampling method on FastTrack algorithm. It makes
a proportionality guarantee such that it detects potential data races at a rate equal
to the sampling rate. LiteRace [15] is another happens-before data race detection
algorithm that applies a different sampling approach than ours, and detects 70 % of
data races by sampling only 2 % of memory accesses. This work is orthogonal to
ours. With low sampling rates, Carisma [32] can detect race conditions also.

Hybrid data race detector algorithms combine happens-before and lockset de-
tectors. One of the main purposes of these detectors is to solve the false positive
problem of lockset approach and false negative problem of happens-before approach.
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In [20], the combination of both approaches is implemented where their algorithm
incurs a higher overhead than lockset detector, but the number of false positives is
decreased. AccuLock [30] is a hybrid detection algorithm that combines FastTrack
and a new Lockset analysis. RaceTrack [31] implements a hybrid adaptive algorithm
that automatically pays more attention to the more suspicious code. The algorithm
aims to increase the precision while decreasing the overhead. Threadsanitizer [26]
and Helgrind+ [11] decrease the execution overhead by inspecting data races among
segments instead of memory addresses similar to ours. We implemented several
other optimizations in this work that do not exist in those works and present a more
formal treatment of segments, which was not done previously.

There are other approaches for race detection as well. Race detection can be
considered as a safety verification problem for concurrent programs. Model checking
is a formal verification technique that can find and prove the absence of races. Safety
or liveness can be given in the form of temporal logics such as LTL or CTL. Model
checking has been used in the context of race detection [8, 24]. However, due to the
exponentiality of both the program path and the scheduling space model checking
does not scale well to large programs. Runtime verification, similar to testing, deals
only with observed execution of a program, whereas model checking considers all
possible executions. Similar to model checking, in runtime verification temporal logic
specifications can be used and one can generate trace reorderings under scheduling
constraints to find bugs unseen in the observed execution [10].

In [27], the authors propose a new relation, called casually precedes, which is
a more generalized relation than happens-before relation. This new relation does
not sacrifice from the precision of happens-before relation, instead, it enables the
detector to produce fewer false negatives. In [10], the authors present a sound
predictive race detection technique based on a new foundation of maximal causal
model incorporating the control flow information. There is also work on parallelizing
data race detection [29] which shows that with 4 cores as the original application,
they can speed up the median execution time by 4.4 for a happens-before detector
and by 3.3 for a lockset race detector.

9 CONCLUSION

We presented a new segment-based hybrid data race detection algorithm with opti-
mizations, which is a combination of happens-before and lockset algorithms. Data
race detectors suffer from low performance and may produce many false alarms. We
use the concept of segments as well as several other optimizations to improve its
performance and reduce false alarms. We implemented our algorithms using a dy-
namic binary instrumentation platform. We compared our results with traditional
lockset-based and happens-before based data race detection algorithm on several
multithreaded applications and obtained favorable results. Our hybrid detector is
15 % faster than the happens-before detector and produces 50 % less potential data
races than the lockset detector.
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As a future work, the segment method can be applied to happens-before al-
gorithm where it could improve the performance without sacrificing the precision.
Although our dynamic binary instrumentation allows us to work with binaries of
applications and does not require the source code, we will investigate other efficient
instrumentation techniques, such as compiler based instrumentation, to improve the
applicability of detectors in industrial settings.
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