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Abstract. Medical image registration is one of the fundamental tasks in medical
image processing. It has various applications in field of image guided surgery (IGS)
and computer assisted diagnosis (CAD). A set of non-linear methods have been
already developed for inter-subject and intra-subject 3D medical image registration.
However, efficient registration in terms of accuracy and speed is one of the most
demanded of today surgical navigation (SN) systems. This paper is a result of
a series of experiments which utilizes Fast Radial Basis Function (RBF) technique
to register one or more medical images non-rigidly. Initially, a set of curves are
extracted using a combined watershed and active contours algorithm and then tiled
and converted to a regular surface using a global parameterization algorithm. It
is shown that the registration accuracy improves when higher number of salient
features (i.e. anatomical point landmarks and surfaces) are used and it also has no
impact on the speed of the algorithm. The results show that the target registration
error is less than 2 mm and has sub-second performance on intra-subject registration
of MR image real datasets. It is observed that the Fast RBF algorithm is relatively
insensitive to the increasing number of point landmarks used as compared with the
competing feature based algorithms.
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1 BACKGROUND

Literature study showed that non-rigid medical image registration methods per-
form better and produce good results in case of deformable soft tissue than rigid
registration. Rueckert et al. [13] have demonstrated the superiority of free-form de-
formations based on B-splines when compared to rigid and affine transformations
applied to MRI breast images. Non-rigid registration techniques are usually divided
into two broad categories: intensity based and feature based. Intensity based tech-
niques directly operate on gray values but require optimization criteria like mutual
information (MI) to find the best possible mapping. Such methods are accurate but
computationally expensive. On the other hand, feature based techniques require to
identify (manually or semi-automatically) the corresponding feature points, contours
or even surfaces between images, to map one image onto the other.

Chui et al. [1] formulated feature-based non-rigid registration as a non-rigid point
matching problem using points, contours and curves. They developed an algorithm
called TPS-RPM (Thin Plate Spline – Robust Point Matching) along with thin-plate
splines (TPS’s) as the parameterisation of the non-rigid spatial mapping.

Levin et al. [6, 7] developed a technique for improving the speed of the point
landmarks based non-rigid registration using a standard PC based on the built-in
fast tri-linear interpolation feature of off-the-shelf graphics cards available in market.
They execute a thin-plate spline (TPS) based warp at discrete positions on a grid
that overlays each slice of the image data and has a configurable size. Built-in
interpolation capability of the underlying card is used to calculate the intensity
values of the voxels of each grid cell. With a data set of 512× 512× 173 voxels and
92 manual point landmarks, they reduced the registration time from 148.2 seconds
to 1.63 seconds using a brute force implementation of the grid based warp. However,
the accuracy of the grid based approach was less than the corresponding brute force
approach.

Another more recent example is the work by Lapeer et al. [5]. They adapted
the method of Livne and Wright [8] and developed a point-based algorithm for fast
medical registration using RBFs. They showed that the warp speed reduced to 0.54 s
for a size 2563 dataset (CT/MRI) of the Vanderbilt Database using 8–44 manually
defined point landmarks. They also concluded that the most optimum and theoret-
ically correct RBF function for 3D is the bi-harmonic spline instead of the ‘popular’
thin-plate spline (which is only optimal in 2D).

Usually point-based methods are often used in SN systems for head and neck
surgery by medical experts due to ease of identification of corresponding landmark
features. Further, they use it as a similarity metric such as the Target Registration
Error (TRE) to measure the registration accuracy. However, if more point land-
marks are needed then it is more time consuming and becomes impractical. On
the other hand, surface based registration uses more or sufficient number of points,
but involves a pre-processing step (called segmentation) to extract corresponding
surfaces and again results in consuming more processing time. Though, few point
landmarks are required to run the registration algorithm, but the use of more ac-
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curately placed landmarks improves the registration accuracy much more and thus
a hybrid approach of point-based and surface-based registration will be a good op-
tion to register two corresponding 3D surfaces or 3D volumes. This can be obtained
by applying a point-based registration technique to a set of corresponding landmarks
of two images or volumes obtained in the form of a few corresponding manual land-
marks and a corresponding parameterized surface with the same number of points.

This paper presents a non-rigid feature based registration method aimed at pre-
or intra-operative registration of medical images during surgical guidance. There-
fore, the method needs to be fast enough for SG and having an acceptable accuracy
i.e. less than 2 mm. The technique uses radial basis functions (RBFs), and more
particularly the biharmonic spline (BHS), to define a non-linear mapping function
between 3D images to be registered.

The presented registration method is a non-rigid point-based method [5] where
the corresponding features are anatomical point landmarks and surfaces, the latter
being generated by extracting corresponding curves from images to be registered
using a semi-automatic method based on active contours and watersheds [4]. The
extracted curves are then converted to 3D parameterized surfaces using a 3D sur-
face generation [9] algorithm and a proper surface parameterization technique of
Yoshizawa et al. [19]. Furthermore, the method is largely insensitive to the number
of point landmarks used and has no effects on algorithm speed during the evaluation
stage, i.e. execution time, as compared to similar methods. Accuracy of the registra-
tion should improve by using higher number of point landmarks during registration
which is subject to accurate landmarks placement. Practically manual landmarks
placement is not only time consuming during the registration process but also prone
to errors. Therefore, we use two corresponding parameterized surfaces for the two
volumes to be registered. Parameterized surfaces will not only increase the number
of points but also minimize user involvement in landmarks placement and prepara-
tion. The rest of this paper describes the methods we used to obtain 3D curves, 3D
surface generation and parameterization, the fast RBF technique and a comparative
experiment of the fast RBF method with other feature-based non-rigid registration
methods.

2 METHODS AND ALGORITHMS

2.1 Initial Contours (Curves) Extraction

Previously [5], we use manual way to place single anatomical point landmarks in
matching slices of both images to be registered. We found that increasing landmarks
increased the accuracy of the registration. But this manual way is time consuming,
prone to errors and also requires the knowledge of expert such as radiologist. To
increase the number of point landmarks for the corresponding images to be regis-
tered, we extend our point based method to curve-based method; the latter uses
the boundary curves. The corresponding curves (point sets) with sufficient num-
ber of points were extracted from the both images using two popular techniques:
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active contours; and watersheds. Both methods have certain limitations, i.e., the
watershed technique is sensitive to image noise, causes over-segmentation and ac-
tive contours suffer from initialization problems. The problem of over-segmentation
in watersheds [4] was removed by using internal and external markers into regions
of interest while the output of watersheds solves the active contour initialization.
Both techniques overcome each other’s limitations resulting into a smooth and ac-
curate contour. The immersion-based watershed technique presented by Vincent
and Soille [17] and extended by Lapeer et al. [4] to convert watershed boundaries
into valid active contours using a boundary following algorithm was used. Once
a boundary contour, which is piece-wise linear, is obtained, we resample each curve
with a fine set of points (at pixel level) into a fixed and coarser set of points (at
edgel level) by continuously reducing a given set of points into a two point set based
on the computation of a mid point value. The resampling algorithm actually pa-
rameterises the input curves so they have the same number of points. This process
is repeated to get sufficient number of curves for the surface generation of both
datasets. The resultant set of corresponding boundary landmarks (curve) along
each slice are triangulated to form a 3D surface for each dataset.

2.2 From Curves to 3D Surface Generation

First we build an initial 3D surface using the curves obtained from the slices and
then parameterized to be used for registration. To get a surface mesh from two
adjacent and parallel curves we apply the advancing-front algorithm [9]. It uses
tiling to generate a mesh from a 3D set of points (curves). In order to get the
internal mesh for the last curve which covers the ROI for the corresponding slice,
we do calculate the mean position based on the boundary points of the last curve
and every boundary point is connected simply to the mean position. Though this
may give a fan triangulation (see Figure 1), a remeshing algorithm (coming later)
can automatically fill the boundary region with well-shaped triangles. Figure 1
shows an example of two triangulated MRI data sets of human heads downloaded
from Vanderbilt database, which we think to register. Fan triangulation contains
obtuse triangles and that is not good for the application like registration. There-
fore, we need a proper reparameterization method for correspondence creation and
also a suitable optimisation technique to minimize the aspect ratio of obtuse trian-
gles.

2.3 3D Surface Parameterization

Surface Parameterisation (SP) is the process of dividing a 3D surface into subsur-
faces (patches), followed by finding one-to-one mapping between each subsurface
and a planar domain. It can also be referred to as surface flattening, because it
maps a 3D surface into a flat (2D) surface. Most of the time surfaces of arbitrary
and complex shapes such as a human head or brain are represented by a collection of
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Figure 1. Corresponding mesh models after applying the advancing-front algorithm [9] to
two adjacent and parallel curves obtained from MR-T1 dataset of Vanderbilt database.
The mean point position of the last curve points is calculated and its triangulation with
every point on the last curve is the point of maximum curvature of the ROI.

triangles and their mapping is piecewise linear. SP has various applications in com-
puter graphics and geometric modeling, for example texture mapping, remeshing,
surface repairing, and creation of regular and structured surfaces.

The concept of a SP has been extensively discussed in differential geometry,
and Floater et al. [3] have presented a detailed survey about recent advances in
it. SP is the process of finding a mapping function which converts a 3D surface to
an equivalent 2D planar surface, i.e., it deforms a 3D surface in a continuous fashion
to a planar domain. However, a better SP is the one which creates a smooth one-
to-one mapping with a minimum deformation (metric distortion). Floater et al. [3]
have further classified this mapping (SP) which can either be:

• conformal, i.e., has no distortion in angles, or

• equi-areal, i.e., has no distortion in areas, or

• isometric, i.e., minimises some combination of angle distortion and area distor-
tion.

The literature shows that a lot of work has been carried out on each of the above
mapping methods used in SP.

If a mapping is conformal and equi-areal then the mapping is isometric, i.e., it
preserves distances, areas, and angles. Isometry is one of the most desirable prop-
erties of any parameterisation to be achieved during flattening, which means that
a 3D surface after parameterisation should have all the features in their correspond-
ing parameter domain as well. Moreover, isometric parameterisation exists only if
a surface is locally ‘flatable’ (developable). But for our work with particular (tar-
geted) applications, we found that minimising some combination of angle and area
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distortion [14, 19] (isometric parameterisation) which has the feature of reproduc-
tion, i.e., a surface will be reproducible (developable) if and only if the mapping
used is bijective [3], would be a better choice.

The work in this section is for targeted and specific registration applications
where large deformations are involved, e.g. brain MR images. Surface parameteri-
sation will develop a global surface based correspondence measure for two or more
such images to be registered. Such a correspondence is produced through flattening
(initial parameterisation) each surface to a common parametric domain, followed by
distortion measurement in the initial parameterisation and an optimisation proce-
dure that further improves the two surface’s alignment in a spatial or parametric
domain. We use a 2D square as a parametric domain in this work, but this can
be extended to any other domain (sphere, cylinder, torus) based on the target ap-
plication and shape of the object. The technique, we use for flattening the 3D
surface is based on the efficient low-stretch parameterisation method of Yoshizawa
et al. [19], which is a global parameterisation method and has both features of
minimising angles and areas distortion. We then optimise the initial parameterisa-
tion (correspondence) obtained through Yoshizawa et al. [19] by using our proposed
parameterisation technique given below.

2.3.1 Our Parameterisation Approach

Our proposed parameterisation method consists of three steps. First, it param-
eterises the 3D surface using the algorithm by Yoshizawa et al. [19] and creates
an initial parameterisation. Second, it re-meshes the flattened mesh using a regular
triangular grid followed by an optional surface adjustment. The third step takes
the initial parameterisation [19] as an input and gradually improves it using repa-
rameterisation. A logical flow diagram of our proposed surface parameterisation
approach is given as follows:

3D image surface
↓

Build initial parameterisation
↓

Resample the surface with a regular grid
↓

Adjust the surface using 3D-back projection (optional)
↓

Surface smoothing via reparameterisation

The three steps of the proposed parameterisation approach are explained below:

i) Initial parameterisation. Our initial parameterisation approach is based on
the flattening [2] and stretch minimisation [19] method. During research ex-
periments on meshes it was observed that the method of Yoshizawa et al. [19]
is preferred for global parameterisation of large and complex meshes such as



250 S.K. Shah

Figure 2. Left (original MR image) and right (deformed MR image); both are the corre-
sponding 2D flattened meshes after applying the initial parameterisation algorithm [19]
to the 3D meshes given in Figure 1. The deformation is visible from the curves structure
in the mesh.

the one shown in Figure 1. It is not only a fast and efficient technique but it
also produces a parameterised mesh while trying to reduce production of obtuse
triangles. Obtuse triangles will impact the registration results (TRE) directly,
if not avoid or reduce them to a certain extent. Figure 2 shows the 2D plane
meshes on a unit square generated after applying the initial parameterisation
method [19]. The connectivity of the flattened 2D mesh is the same as that of
the original 3D mesh. All the coordinates (i.e. both x and y) of the flattened
mesh are normalized and in the range [0, 1] .

ii) Resampling (remeshing) using a structured 2D grid. After flattening
of the 3D mesh, we need to rebuild the original 3D surface from the flattened
mesh coordinates. The resampling will generate a new 3D surface with proper
coordinates to be used to the established correspondence representation of two
or more surfaces. As we want to increase the number of points and distribute
them uniformly to the original surface, we create a regular and triangular 2D
grid Gr of an arbitrary n×n size instead of the flattened one. For example a 2D
regular triangular grid of size 30 × 30 (see Figure 4 first row with two grids of
size 30×30) is used to represent and rebuild the original 3D meshes of Figure 1.
The size of the grid is configurable and set by the user. This particular grid
of size 30 × 30 will create exactly 900 landmarks and will be used during the
registration process.

In order to get the corresponding 3D point for each vertex of the 2D grid,
we use the barycentric coordinates of the corresponding parametric triangle in
the parametric domain to calculate the corresponding 3D positions for each
vertex of Gr. For example, to get the 3D coordinates of a point p

′

(x′ ,y′ ,z′ )
∈ <3

having a corresponding point u ∈ <2 in a parametric triangle (u1, u2, u3) with
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barycentric coordinates (λ1, λ2, λ3), this can be mapped (φ) as:

φ(u1)λ1 + φ(u2)λ2 + φ(u3)λ3,

i.e.
p
′

(x′ ,y′ ,z′ )
= xλ1 + yλ2 + zλ3 (1)

where λ1, λ2, λ3 ≥ 0, and λ1 + λ2 + λ3 = 1. x, y, and z represent the 3D
coordinates of the corresponding 3D triangle to which the point p

′
belongs. It

is a piecewise linear map and its inverse is represented as ui : <3 → <2. The
mapping used during resampling is visualised in Figure 3.

Figure 3. A barycentric mapping of given point u in a certain parametric trian-
gle (u1, u2, u3) with barycentric coordinates (λ1, λ2, λ3), which corresponds to a point
p
′

(x′ ,y′ ,z′ )
∈ <3 through a parameterisation P

After replacing each vertex position of Gr by a corresponding 3D position, we
get a new 3D mesh with a uniform and equivalent number of points for each of
the two corresponding meshes of Figure 1. Figure 4 shows the corresponding
a) regular meshes, b) resampled and c) meshes flattened back to 2D using repa-
rameterisation. The discrepancies in c) show that the parameterisation itself
introduces errors which are visually apparent from the differences in comparing
the original a) 2D grid with the one c) flattened back to 2D after reparame-
terisation. Images in row b) show the corresponding resampled meshes of the
meshes shown in Figure 1 after sampling by a regular grid. Now, we have two
new meshes (row b) with the same number of points and with a known and
established one-to-one correspondence between their points. The corresponding
points can be used onward for training and test purposes during registration.

iii) Reparameterisation : Reducing triangle obtuseness. We start with
an initial parameterisation U0 and then improve it further to U1 . . . U opt by repa-
rameterisation. We stop the optimisation procedure when an optimum value in
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a)

b)

terms of minimum distortion (stretching error) over the whole mesh is obtained.
We observed that the first optimisation step already improves the quality of
mesh parameterisation. Figure 5 shows the parameterisation result of the man-
nequin head model and an MR-T1 dataset surface. It is clear from the third
image in first and second row of Figure 5 that the first step (U1) has better
results as compared to U0 due to reparameterisation, and also the triangles have
better aspect ratios. Similarly, Figure 6 further demonstrates that the reparam-
eterisations (U1, U2, U3) produce triangles of better aspect ratios as compared
to initial parameterisation [19] (U0).

The total stretching error measured quantitatively during initial parameteri-
sation (U0) and reparameterisations (U1, U2, U3, U4) is shown in Table 1 for each
model. It shows that after the first step (U0) the stretch converges to a constant
value, hence we stop the optimisation process.
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c)

Figure 4. The first row a) shows the two regular grids of size 30×30 each, the second row
b) corresponds to the resampled meshes of Figure 1 using the grids in the previous row,
whereas the third row c) shows the corresponding 2D meshes of row b) flattened back to
2D using the same algorithm. The discrepancies in c) in comparison to a) show that the
parameterisation itself introduces errors.

Technique U0 U1 U2 U3 U4

Mannequin head model 1.36 1.42 1.35 1.34 1.35

MR-T1 surface 1.16 1.01 1.01 1.02 1.02

Table 1. Row one and two show the total stretch for mannequin head and MR-T1 surface
models during the initial parameterisation U0 and reparameterisation U1, U2, U3, and U4,
respectively

2.4 The Fast Radial Basis Functions Method

The Radial Basis Function (RBF) method is one of the most widely used technique
to approximate or interpolate data scattered in more than one dimensions. The
purpose of interpolation is to approximate a real-valued function f(x) over a finite
set of values f = (f1, . . . , fN) at the distinct points X = {x1, . . . ,xN} ⊂ Rd. In
similar situation, one chooses an RBF, s(x), for representing such approximations,
normally of the following general form:

s(x) = p(x) +
N∑
i=1

λiφ (‖x− xi‖) , x ∈ Rd (2)
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U0 U1 U2 U3

Figure 5. The images from left to right of both rows show the corresponding meshes of
a mannequin head model and an MR-T1 dataset surface before and after (first and second
image in both rows) the initial parameterisation [19] (U0) while the last three images (U1,
U2, U3) represent the meshes after applying the proposed reparameterisation technique
three times to the initial parameterisation U0. For the MR-T1 dataset, the last four
surfaces show the image data and mesh together.

U0 U1 U2 U3

Figure 6. The same sequence as in the bottom row of Figure 5 but displayed in mesh
format only

where p(x) is a polynomial, λi is a real-valued weight1, φ is the (radial) basis function
and ‖x − xi‖ = r is the Euclidean distance between x and xi. So, an RBF might
be defined as a weighted sum of a radially symmetric basis function, added together
with a polynomial term.

The basis function φ can take several forms, but three of them have a common
property of minimizing specific quantities of energy [10], which makes them suitable

1 The λ weights are determined in the ‘calculation’ step using a least mean squares
approach. This step is followed by the ‘evaluation’ step which applies the RBF to (usually)
all voxels. The latter step is much more time-consuming than the former one.
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for use in 2D and 3D non-rigid medical image registration techniques. Rohr [10]
further shows that the biharmonic spline (BHS): φ(r) = r and the thin-plate spline
(TPS): φ(r) = r2 log r, both minimize a bending energy potential of order two in
3D and 2D space, respectively. Thus to warp 3D image data, the BHS is therefore
the choice to be preferred. Lapeer et al. [5] confirmed its theoretical optimality in
3D as shown by Rohr experimentally.

Lapeer et al. [5] rewrite Equation (2) without the linear polynomial part for sake
of clarity, and extend it to 3D for evaluation of i = 1 . . .m evaluation points/voxels
(targets) represented by the target vector xi, after having found the spline param-
eters λj for j = 1 . . . n landmarks represented by the source (landmark) vector yj:

s(xi) =
n∑
j=0

λ(yj)φ(‖xi − yj‖), i = 0, 1, . . . ,m. (3)

Livne and Wright [8] describe a new technique for fast multilevel evaluation of RBF
expansions. The main idea of the fast RBF technique is to accurately represent
a smooth RBF, φ, on a regular and coarser grid with few nodes as compared to the
full voxel set of the image data, and thus the expensive summation in Equation (3)
needs to be applied to these few nodes only. The rest of the voxel values can finally
be computed using a less expensive formulation based on the values determined for
the surrounding nodes. Unlike the grid based approach by Levin et al. [7], those
are the RBF coefficients that are interpolated within the grid and not the intensity
values of the voxels.

The main principle behind the fast RBF method is to encapsulate the source
(landmarks) and target (voxel) points in two new separate and corresponding uni-
form grids of size H. The new uniform grids overlap the old landmark and voxel
sets respectively, which results into a two stage conversion process of the RBF in
Equation (3). The first stage is to calculate the level H expansion coefficients re-
placing the original source points (landmarks) with their corresponding grid points
by using a centered pth order tensor product interpolation:

φ(‖xi − yj‖) =
∑

j:Jkεσ
(k)
j

ωjJ3ωjJ2ωjJ1φ(‖xi −Y(J1,J2,J3)‖) (4)

where j = 0, 1, . . . , n and for dimension k = 1, 2, 3: σ
(k)
j :=

{
Jk :

∣∣∣Y (k)
Jk
− y(k)

j

∣∣∣ <
pH/2

}
, where ωjJk are the new centered pth-order interpolation weights from the

coarse centres Y
(k)
Jk

to the landmark positions y
(k)
j . The second stage replaces the

original target points (i.e. voxels) with their corresponding grid points using the
same approach:

φ(‖xi −YJ‖) =
∑
Ikεσ̄

(k)
i

ω̄iI3ω̄iI2ω̄iI1φ(‖X(I1,I2,I3) −YJ‖) (5)
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where i = 0, 1, . . . ,m, J = (J1, J2, J3), and for dimension k = 1, 2, 3: σ̄
(k)
i :={

Ik :
∣∣∣X(k)

Ik
− x(k)

i

∣∣∣ < pH/2
}

, where ω̄iIk are the centered pth-order interpolation

weights from the coarse evaluation point X
(k)
Ik

to the level h (original image grid

size) evaluation point x
(k)
i .

The so called anterpolation method is used to properly distribute the known RBF
coefficients λ(yj) at each landmark position to the surrounding nodes of grid Y. More
detail of the fast RBF method in 1D and 2D, and 3D can be found in [8] and [11],
respectively.

2.5 Performance Metric

The following two performance metrics were used to access the accuracy of our
method:

Target Registration Error (TRE): It is the RMS error between the homologous
validation landmarks after registration. The distance between every correspond-
ing pair of points of the two meshes (surfaces) is calculated to determine how
close and well registered the surfaces are. The closer the registered surfaces, the
better the registration. This distance is calculated as an RMS error between the
corresponding test landmarks after the registration process.

Normalized Mutual Information (NMI): As the NMI metric (Studholme
et al. [16]) is suited to both mono-modal and multi-modal scenarios, we use
this metric for image similarity measurement. It is the overlap invariant, and
has an optimal and minimum value of 2.0 and 1.0, respectively.

3 EXPERIMENTAL RESULTS

After getting the corresponding surfaces (set of 3D points) of a pair of images, we fit
the spline to the corresponding training landmarks to get the transformation matrix
and spline parameters (weights) for final registration and validation (using the test
landmarks). A quantitative experiment has performed, to show that the fast RBF
method is insensitive in terms of speed to an increasing number of accurately placed
landmarks in the form of corresponding surface points. Further, it is also shown
that the increasing number of accurately placed landmarks improves the registration
accuracy as well. For this purpose, six different competing methods are tested:

1. Brute force (non-optimized) RBF – applying a standard software based method
which applies the spline model to each voxel in the data set without any optimi-
sation. This method is considered to be the gold standard in terms of accuracy.

2. Brute force (non-optimized) RBF with hardware acceleration – the same algo-
rithm as before but implemented on the GPU (Graphics Processing Unit) which
enables a significant speedup due to its parallel processing capabilities.
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3. Fast RBF method – the software-based optimised algorithm as described in
Section 2.4. In our previous work [5], it is observed that optimal value for the
H parameter in the model is 0.025.

4. Fast RBF method with hardware acceleration – the previous method imple-
mented on the GPU.

5. The grid approach by Levin et al. [7] with two different grid sizes.

6. The FFD (free form deformation) based non-rigid registration algorithm of
Rueckert et al. [13, 15] implemented in IRTK (The Image Registration
Toolkit) [12], is used to compare the results of our proposed Fast RBF method
with the state-of-art technique IRTK using NMI (for multi-model image reg-
istration), warp time and as well as visual assessment in the form of differ-
ence images. In FFD based registration, we set the initial control point spac-
ing to 25.6 mm and run up to three levels in a coarse-to-fine fashion, where
level 1 represents the coarsest level and level 3 represents the finest (optimised)
level.

To evaluate the speed-optimized algorithms which use hardware acceleration,
i.e. 2., 4. and 5., in terms of accuracy, the brute force algorithm 1. is considered as
the gold standard. This is because current GPU’s, despite being significantly faster
than CPU’s, only have 32 bits for floating point representation, whereas CPU’s
have 64 bits, what affects the accuracy of the warp. The experiments were run on
computer under the Windows XP operation system. The hardware in the computer
included: Intel Core 2 Quad 6600+ CPU; 3 GB of DDR2 RAM; and an NVIDIA
GeForce 8800GTX Graphics Card with 768 MB memory.

3.1 Non Rigid Image Registration Using Real Datasets

The MR datasets of three subjects of the ADNI database (adni.loni.ucla.edu) were
used and resampled to 2563 with 1 mm slice thicknesses. These datasets were used
to test intra-patient point based non-linear registration from the original dataset to
its natural deformed version (see Figures 11 to 13, columns 1 and 2 of all rows).
We ran our experiment with an increased number of landmarks by using first a few
anatomical point landmarks followed by a combination of surface points with few
manual anatomical point landmarks. This way the increase in point landmarks
represents more and more deformations in corresponding images and will eventually
improve the registration results. During the experiment, we used the BHS spline
rather than TPS, due to its suitability for 3D non-rigid medical image registration
in terms of speed and accuracy, as shown in [5].

Results of the different registration algorithms with ADNI datasets are given in
Table 2.
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BHS (φ(r) = r)
25 Landmarks Warp Time in sec. NMI %NMI TRE in mm

Brute force S/W 28.55 (1.54) 1.202 (0.043) 100.0 1.63 (0.49)
Brute force H/W 0.51 (0.05) 1.192 (0.036) 99.1 1.63 (0.49)
Fast RBF S/W 0.025 15.27 (0.47) 1.202 (0.043) 100.0 1.63 (0.49)
Fast RBF H/W 0.025 0.53 (0.04) 1.199 (0.041) 99.6 1.63 (0.49)
Grid 13 0.43 (0.01) 1.144 (0.066) 95.1 1.63 (0.49)
Grid 138 16.31 (1.08) 1.144 (0.066) 95.1 1.63 (0.49)

450+25 Landmarks Warp Time in sec. NMI %NMI TRE in mm

Brute force S/W 486.48 (4.02) 1.227 (0.013) 100.00 1.81 (0.20)
Brute force H/W 2.42 (0.47) 1.214 (0.027) 98.9 1.81 (0.20)
Fast RBF S/W 0.025 31.15 (1.04) 1.227 (0.024) 100.0 1.81 (0.20)
Fast RBF H/W 0.025 0.62 (0.02) 1.222 (0.021) 99.6 1.81 (0.20)
Grid 13 2.69 (0.06) 1.146 (0.051) 93.4 1.81 (0.20)
Grid 138 282.25 (2.78) 1.143 (0.052) 93.1 1.81 (0.20)

800+25 Landmarks Warp Time in sec. NMI %NMI TRE in mm

Brute force S/W 843.04 (5.30) 1.222 (0.025) 100.00 1.48 (0.13)
Brute force H/W 3.91 (0.20) 1.210 (0.020) 99.1 1.48 (0.13)
Fast RBF S/W 0.025 35.65 (1.56) 1.223 (0.027) 100.0 1.48 (0.13)
Fast RBF H/W 0.025 0.80 (0.01) 1.219 (0.024) 99.8 1.48 (0.13)
Grid 13 4.53 (0.02) 1.137 (0.045) 93.1 1.48 (0.13)
Grid 138 485.71 (3.10) 1.136 (0.044) 93.0 1.48 (0.13)

IRTK (FFD) Warp Time in sec. NMI %NMI TRE in mm

Level 1 ≈ 240.00 1.217 (0.040) 99.1 N/A
Level 2 ≈ 888.00 1.251 (0.039) 101.9 N/A
Level 3 ≈ 3 700.00 1.268 (0.039) 103.3 N/A

Table 2. Results after applying the BHS basis function for non-rigid registration of the
MR-T1 ADNI datasets of the same subject taken at different time points. 25 point land-
marks were used for training and 25 for validation in the first part of the table. In the
second part of the table, 450 surface based landmarks were used for training, while another
450 surface based point landmarks were used for validation, plus an additional 25 manually
placed point landmarks were used. The third part is similar to the second part but the
number of training and validation landmarks are both increased to 800. The last part (last
three rows) of the table shows the results after applying the multilevel free form defor-
mation (FFD) non-rigid registration algorithm of Rueckert et al. [13, 15] implemented in
IRTK (The Image Registration Toolkit) [12]. The FFD based results are calculated after
different levels of registration, i.e. level 1, 2, and 3. All tests were run over 5 subjects. All
the values show the averages along with standard deviation in brackets. Second column
shows the evaluation, i.e. warp time of the RBF in seconds. The third column shows the
NMI. The next column shows the %NMI as compared to the Brute-Force Software and
used as the golden standard. The fifth and final column shows the TRE in mm which is
evaluated on the validation landmarks – note that the latter is the same for all methods
as its calculation is based on the same BHS model.
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4 RESULTS AND DISCUSSION

4.1 Quantitative Results: ADNI Datasets

Let us first have a look at the evaluation time of different algorithms. The sec-
ond column in Table 2 shows that the evaluation time of the Fast RBF method
(both software and hardware versions) is only marginally affected by increasing the
number of landmarks with a factor of almost 20, unlike all other methods which
are proportionally more affected. In comparison to IRTK, the evaluation time of
the Fast RBF hardware accelerated method is in subseconds, while IRTK takes ap-
proximately 240, 888, and 3 700 seconds during level 1, 2 and 3, respectively, using
each dataset. Thus, the evaluation time of the Fast RBF method in hardware is
significantly less dependent on the number of landmarks used than for competing
methods, and it is substantially faster than the IRTK method as well as the other
competing algorithms.

The final column in Table 2 shows the TRE in mm which is evaluated on the vali-
dation landmarks. It should be noted that the TRE is the same for all methods as its
calculation is based on the same BHS model. The average TRE with 475 landmarks
is slightly worse, however the standard deviation is substantially smaller despite be-
ing measured over a much larger set of validation points illustrating a statistically
more significant result. Similarly, the average TRE with 825 landmarks is decreasing
with the increase in number of landmarks from 475 to 825. The table shows that
the average TRE for 825 landmarks is 1.48 mm, which is better than when using 25
(1.63 mm) and 475 (1.81 mm) landmarks.
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Figure 7. Effect of the number of point landmarks on TRE of each warping algorithm

It can also be seen from Figure 7, that the TRE (with error bars) goes up
(from 1.63 mm to 1.81 mm) initially due to manual error in landmarks placement
but then going down (from 1.81 mm to 1.48 mm) with the increase (from 475 to 825)
in number of surface point landmarks. The error bars further indicate that point
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Figure 8. Effect of the number of landmarks on NMI of each warping algorithm

landmarks created using parameterisation are more consistent than the manually
placed anatomical point landmarks. Furthermore, there are no statistically signif-
icant differences (p >> 0.10) between TRE’s of the upper and middle part of the
Table 2 (t = −0.643, dof = 8, p = 0.54), as well as between the upper and lower
part of the Table 2 (t = −0.471, dof = 8, p = 0.65) but the TRE’s of the middle and
lower part of the Table 2 (t = 2.471, dof = 8, p = 0.038) has significant difference
based on a two-tailed t-test p value (i.e. p < 0.05).

Looking at the accuracy using the NMI metric (third column of Table 2), we
see virtually no loss in accuracy for the Fast RBF method in software as compared
to the gold standard (brute force software) and when implemented in hardware, its
accuracy is better than the brute force hardware implementation. The NMI of the
larger landmark sets (475 and 825) is better than when using just 25 landmarks.
The IRTK method shows slightly better results in term of NMI with increment of
deformation levels (level 1 to level 3), but this is due to local support features of FFD
based registration. The difference images in Figures 11 to 13 (see last column in all
rows) also justify this. As can be seen from the difference images, where the local
regions are aligned slightly better using the IRTK algorithm than the proposed
Fast RBF method which is based on global support RBFs (the BHS function).
This problem of Fast RBF could likely be removed by using locally constrained
RBFs [18].

Figure 8 indicates that the NMI of the Fast RBF hardware and software based
algorithms is almost the same with both sets of landmarks, i.e. 475 and 825, which
is better than using a few (25) manual point landmarks only2.

2 The result of the FFD method are not displayed as this method does not depend on
the number of landmarks.
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Figure 9. Effect of the number of landmarks on %NMI of each warping algorithm, com-
pared against the non-optimised ‘Brute force’ software based method (gold standard)

The %NMI metric shows the performance of the optimised techniques in com-
parison to the non-optimised ‘Brute force’ software based method (gold standard).
Figure 9 shows tha %NMI drawn against the number of landmarks. This suggests
that the fast RBF method implemented in hardware exhibits the highest correspon-
dence (99 % +) as compared to the brute force implementation. The main reason
of the loss in accuracy is due to the single floating point precision capability of the
GPU used.

4.2 Visual Results: ADNI Datasets

The following figures show the results for visual assessment and comparison with
IRTK. Figure 10 represents the corresponding triangulated parameterised (red and
green) meshes before (separately) and after (fused) the registration experiment.
Images in the last row of Figure 10 show the deformation vectors between the cor-
responding vertices of the two meshes before (leftmost) and after (center and right-
most) the registration experiment. These vectors are visualised through color coding
from blue to red in ascending order of deformation. The vectors in the center and
right most image show the TRE error (as a displacement) between the validation
landmarks before and after the registration process.

Figures 11 to 13 show arbitrarily selected transverse slices from the full resolution
MR ADNI datasets. The first two images of the first row of each figure show the
original dataset and its natural deformed version before registration, whereas the last
two images show corresponding registered and absolute difference images after the
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Figure 10. The first two images in the first row show the corresponding triangulated
parameterised (red and green) meshes and the last image shows their combination before
the registration experiment. In the last image, a white displacement line is drawn between
every two corresponding vertices of the two meshes. The second row from left to right
shows the images of the above row by using colored surfaces. The third row from left to
right shows the fused meshes and surfaces after the registration experiment. Images in
the last row show the deformation vectors between the corresponding vertices of the two
meshes (leftmost) before and (center and rightmost) after the registration experiment.
These vectors are visualised through color coding from blue to red in ascending order
of deformation. The vectors in the center and rightmost image shows the TRE error
(as a displacement) between the validation landmarks before and after the registration
process.
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registration experiment performed with our method (Fast RBF). Row 2 corresponds
to the registered and absolute difference images after the registration experiment
performed with IRTK at level 1 and 3, respectively. The first three images in some
rows show the corresponding training and validation (red and blue) landmarks before
registration, and after (red, blue and green, respectively) registration.

Figure 11. All the rows from left to right show arbitrarily selected transverse slices from
the full resolution MR datasets (ADNI database). The first two images of row 1 illustrate
the original and naturally deformed MR image before registration, while the last two
images show corresponding registered and absolute difference images after the registration
experiment performed with our method (Fast RBF). Row 2 corresponds to the registered
and absolute difference images after the registration experiment performed with IRTK at
level 1 and 3, respectively. The first three images in some rows show the corresponding
training and validation (red and blue) landmarks before registration, and after (red, blue
and green, respectively) registration.

5 CONCLUSION

In this article, we have presented the Fast RBF non-rigid registration method for
medical imaging data using anatomical point landmarks and optimised parame-
terised surfaces, respectively. We have seen that the increase in the number of
landmarks affects both accuracy and evaluation time. The number of point land-
marks increased from anatomical point landmarks to a surface which represents an
image deformation field better than the standalone anatomical point landmarks.
The hardware implementation of the algorithm to run the evaluation part of the
algorithm in less than a second using standard computer with a latest graphic card.

The evaluation (warp) time of both the hardware and software implementation
of the Fast RBF algorithm is clearly less susceptible to the number of point land-
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Figure 12. For each image block: Both rows show arbitrarily selected transverse slices
from the full resolution MR datasets (ADNI database). The first two images of row 1
illustrate the original and naturally deformed MR image before registration, while the
last two images show corresponding registered and absolute difference images after the
registration experiment performed with our method (Fast RBF). Row 2 corresponds to
the registered and absolute difference images after the registration experiment performed
with IRTK at level 1 and 3, respectively.
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Figure 13. For each image block: Both rows show arbitrarily selected transverse slices
from the full resolution MR datasets (ADNI database). The first two images of row 1
illustrate the original and naturally deformed MR image before registration, while the
last two images show corresponding registered and absolute difference images after the
registration experiment performed with our method (Fast RBF). Row 2 corresponds to
the registered and absolute difference images after the registration experiment performed
with IRTK at level 1 and 3, respectively.
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marks used as compared to the other tested competing methods. It is considered
that the use of more accurately placed point landmarks using surface parameteri-
sation and reparameterisation improves its accuracy and makes the algorithm more
favourable for IGS applications where both speed and accuracy are critical. We
presented experiments on real medical datasets with a larger non-rigid deformation,
for example MR images of the brain. It was observed that Fast RBF in software
and hardware outperforms the feature-based methods both in terms of speed and
accuracy, whilst performs a little bit less well in accuracy (when expressed in terms
of NMI) than the FFD based method, which is due to iterative nature of the FFD.
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