
Computing and Informatics, Vol. 37, 2018, 385–404, doi: 10.4149/cai 2018 2 385

ANALYSIS OF ITERATED GREEDY HEURISTIC
FOR VERTEX CLIQUE COVERING

David Chalupa

Operations Research Group, Department of Materials and Production
Aalborg University, Fibigerstræ de 16
Aalborg 9220, Denmark
&
Computer Science, School of Engineering and Computer Science
University of Hull, Cottingham Road, Hull HU6 7RX, United Kingdom
e-mail: dc@m-tech.aau.dk

Jǐŕı Posṕıchal

Faculty of Natural Sciences, University of Ss. Cyril and Methodius
Námestie J. Herdu 2, 917 01 Trnava, Slovakia
e-mail: jiri.pospichal@ucm.sk

Abstract. The aim of the vertex clique covering problem (CCP) is to cover the
vertices of a graph with as few cliques as possible. We analyse the iterated greedy
(IG) algorithm for CCP, which was previously shown to provide strong empirical
results for real-world networks. It is demonstrated how the techniques of analysis for
randomised search heuristics can be applied to IG, and several practically relevant
results are obtained. We show that for triangle-free graphs, IG solves CCP optimally
in expected polynomial time. Secondly, we show that IG finds the optimum for CCP
in a specific case of sparse random graphs in expected polynomial time with high
probability. For Barabási-Albert model of scale-free networks, which is a canonical
model explaining the growth of social, biological or computer networks, we obtain
that IG obtains an asymptotically optimal approximation in polynomial time in
expectation. Last but not least, we propose a slightly modified variant of IG, which
guarantees expected polynomial-time convergence to the optimum for graphs with
non-overlapping triangles.

386 D. Chalupa, J. Posṕıchal

Keywords: Vertex clique covering problem, iterated greedy, randomised search
heuristics, complex networks, random graphs

Mathematics Subject Classification 2010: 68R10, 05C69, 05C70

1 INTRODUCTION

This paper is dedicated to the analytical study of an iterated greedy (IG) heuristic
for the vertex clique covering problem (CCP) in several practically relevant classes of
graphs, including triangle-free graphs, sparse random graphs and models of complex
networks. These networks include social networks [21, 35], biological networks [12],
research citation and collaboration networks [21, 34], language networks [29] or the
Internet [4]. Both methods and software tools for exploration of complex networks
are developed [14].

The problem we study in this work is closely related to the popular areas of
community detection [28], graph clustering [34] and graph mining [9]. The aim of
CCP is to partition the vertices into as few pairwise disjoint subsets as possible
such that each subset induces a clique. In the context of social networks, CCP is
a problem of “strict” community detection, in which the vertices are partitioned into
the minimum number of groups so that everybody knows each other within each
group.

Definition 1 (Definition of CCP). Let G = [V,E] be an undirected graph on n ver-
tices and m edges. Let d(G) = 2m

n(n−1) be its density, with d(G) = 1 if 0 ≤ n ≤ 1.

The objective of CCP is to minimise k ≤ n such that there are classes V1, V2, . . . , Vk,
satisfying the following constraints:

1. each vertex is in exactly one class, i.e.

∀ i, j = 1..k, i 6= j : Vi ∩ Vj = ∅,
k⋃
i=1

Vi = V,

2. each class induces a clique, i.e.

∀i = 1..k : d(G(Vi)) = 1,

where G(Vi) = [Vi, E(Vi)] is a subgraph induced by Vi, containing only edges between
vertices of class Vi. The minimum value of k for which there is a clique covering will
be referred to as the clique covering number and denoted by ϑ(G) [10].

CCP is one of the classical NP-hard problems [24]. It corresponds to graph colour-
ing of the complementary graph, which perhaps explains why the current liter-
ature mostly overlooks this problem and focuses more on graph colouring. The

Analysis of Iterated Greedy Heuristic for Vertex Clique Covering 387

relationship between CCP and graph colouring influences the approximation re-
sults on CCP. To the best of our knowledge, the best general approximation al-
gorithm for CCP is the one for graph colouring, which achieves approximation
ratio O(n(log log n)2/(log n)3) [23]. However, better approximation ratio may be
obtained or the problem may be solved in polynomial time for restricted graph
classes [8].

We note that the similar edge clique covering problem (ECCP) is also studied
and is NP-hard, too. For ECCP, more studies seem to be currently published,
especially for specific classes of graphs [5, 22, 25].

Iterated greedy (IG) algorithm was previously demonstrated to provide encourag-
ing empirical results for CCP in real-world networks [11]. IG is a heuristic algorithm,
which utilises the block-based properties of CCP to find high-quality solutions effi-
ciently. In this context, it is closely related to evolutionary algorithms, as well as
randomised search heuristics [3].

Even though IG does not guarantee that the best solution is always found,
it usually performs well in practice. It is able to find optimal or near-optimal
solutions for social and research collaboration networks [11], as well as protein-
protein interaction networks [12]. In addition, IG does not use any prior knowledge
of a specific graph class to make the optimisation more efficient. Therefore, even
though more suitable algorithms can be found for specific families of graphs, the aim
of this paper is to explore the capabilities of a more general approach. Similarly to
the research on other randomised search heuristics [32], we obtain that IG mimics
the behaviour of classical algorithms to some extent, provably finding optimal or
asymptotically optimal solutions in polynomial time for several practically relevant
graph classes.

1.1 Contributions

It was previously shown that IG finds the optimal solution for paths in polynomial
time [10]. We extend this result by first showing that the behaviour of IG for
triangle-free graphs can be modelled using random walks and we prove that the
optimal solution is found in expected O(n5m2) time. This bound is based on rather
pessimistic assumptions. IG seems to be much faster in practice.

Next, we show that these arguments can be generalised to sparse random graphs
generated according to the Erdős-Rényi model [16] G(n, c/n), i.e. graphs on n ver-
tices with randomly generated edge with probability c/n for each pair of vertices.
We show that for graphs generated with c < 1, IG will find the optimal clique
covering in expected O(n3(log n)5) time with probability 1− o(1).

As a next step, we study the behaviour of IG for the Barabási-Albert (BA)
model of scale-free networks, which is a canonical model explaining the growth of
social and other complex networks [4]. We obtain that IG achieves approximation

ratio 1+O
(

(logn)3

n

)
for graphs generated by BA model in expected polynomial time.

This approximation ratio is asymptotically optimal.

388 D. Chalupa, J. Posṕıchal

Last but not least, we show that even though IG can fail to provide the optimum
for graphs with non-overlapping triangles with probability 1− o(1) [10], this draw-
back can be overcome by putting the triangles as blocks in the initial solution. Such
modification leads to an algorithm, which finds the optimum in expected polynomial
time.

Even though most of these results are not particularly surprising, our analysis
introduces several insights into the behaviour of heuristics, which combine a classical
greedy approach with randomised search. It confirms that IG can be viewed as
a randomised local search algorithm, with its behaviour modelled using methods of
analysis of evolutionary algorithms. This includes the fitness levels method [27, 32,
36], as well as methods modelling the optimisation process as a random walk [2].

The rest of the paper is structured as follows. In Section 2, we briefly review the
background of CCP, IG algorithm and related work. In Section 3, we show that IG
finds the optimal solution for triangle-free graphs in expected polynomial time. In
Section 4, we show that IG finds the optimal solution for the specific case of sparse
random graphs in expected polynomial time with high probability. In Section 5, we
consider the impact of triangles upon our problem. In Section 6, we show that IG
achieves asymptotically optimal approximation ratio for graphs generated by BA
model in expected polynomial time. In Section 7, we show how to extend IG so that
it guarantees that the optimum is found for graphs with non-overlapping triangles.
In Section 8, we give conclusions and summarise the current open problems.

2 ITERATED GREEDY CLIQUE COVERING

IG is a randomised search heuristic, i.e., it does not guarantee that optimal solu-
tion is found but it might provide very good results for certain types of problem
instances. IG was previously successfully used to solve graph colouring [13], train
scheduling [42] or flowshop scheduling problem [33].

Over the last years, analysis of randomised search heuristics in combinatorial
optimisation problems has become a very active research area [3, 32]. Problems, for
which results have been published, include polynomial-time solvable problems such
as the maximum matching problem [20], Eulerian cycle problem [30] or minimum
spanning tree problem [31]. However, NP-hard problems are also often considered,
including the vertex cover problem [18, 26, 41], Euclidean travelling salesperson
problem [38] or the graph colouring problem [37].

At this point, we move on to the description of our IG algorithm for CCP. The
roots of this algorithm date back to the work by Culberson and Luo [13], who used
a similar approach to solve the graph colouring problem. Inspired by this work,
we have relatively recently developed an IG algorithm for CCP. Interestingly, our
previous results indicated that IG has all the features of typical local search. For
paths, IG converges to the optimum in polynomial time, for complements of bipartite
graphs, it can get stuck in local optima and there are also specific graph classes,
where IG will get stuck in local optima almost certainly [10].

Analysis of Iterated Greedy Heuristic for Vertex Clique Covering 389

However, the current theoretical results for IG are still relatively distant from
its main application in social and other complex networks. In our previous em-
pirical study, IG was able to find optimal solutions for real-world graphs in many
cases, while in the rest of the cases, the obtained solutions were very close to the
optimum [11]. Therefore, further analytical results for IG are of a high interest.

2.1 Description of IG

Our IG algorithm uses greedy clique covering (GCC) [10]. GCC begins with an
empty clique covering. Technically, the cliques are marked with labels, similarly to
the graph colouring problem. GCC takes the vertices in an order determined by
input permutation P . In each iteration, it puts a vertex into the first clique (i.e.
with the lowest index of its label) such that the clique property is not violated. If
this is not possible, a new label is used, leading to a new clique being created. This
way, a solution is iteratively constructed. We will refer to the choice of the first
clique as the First Fit rule [39]. Efficient implementation techniques are available
for GCC to run in O(m) time, where m is the number of edges in the graph. This
makes the algorithm particularly suitable for large but sparse networks. For more
detailed information on GCC, the reader may refer to the previous work [10].

1 begin with an uniformly random permutation P
2 repeat until convergence
3 construct solution [V1, V2, . . . , Vk] with greedy clique covering for P
4 let P = [V1, V2, . . . , Vk] so that V1, V2, . . . , Vk form blocks in P
5 perform block jump for a uniformly randomly chosen block

from V1, V2, . . . , Vk to create new P

Algorithm 1. Iterated greedy (IG) clique covering

Figure 1. Illustration of the block jump operator, which was introduced as a canonical
block-based operator for IG [10]. Operator block jump takes a chosen block representing
a clique and puts it to the first position in the permutation. The other blocks are then
shifted to the right.

The pseudocode of IG is given in Algorithm 1. First, GCC is used with a uni-
formly random initial permutation of vertices to construct the initial clique covering.
Then, IG groups vertices of the identified cliques into blocks, as shown in Figure 1.
One of these blocks is then taken uniformly at random and is put to the first position
in the permutation. The other blocks are then shifted to the right. This operation

390 D. Chalupa, J. Posṕıchal

will be further referred to as block jump. GCC is used once again with the resulting
permutation to construct clique covering for the next iteration. This new clique
covering will never consist of more cliques than the previous one, because of the
greedy nature of GCC and the fact that cliques of the previous solution form blocks.
The process is repeated until a stopping criterion is met. In this paper, we will
investigate the time until IG finds the optimal solution for specific graph classes.

3 RESULT FOR TRIANGLE-FREE GRAPHS

In this section, we move on to our analysis. Although IG is not a typical evolution-
ary algorithm, it is a closely related method. Therefore, we will use the methods
of runtime analysis for evolutionary algorithms, which have been demonstrated as
suitable for runtime analysis of IG.

We build our results on a relatively widely used method of fitness levels [27, 32,
36]. We divide the search space into levels such that each level contains all solutions
with the same number of cliques. Then, Lemma 1 can be used to find an upper
bound for the expected running time of our algorithm.

Lemma 1 ([32]). The expected optimization time I of a stochastic search algorithm
that works at each time step with a population of size 1 and produces at each time
step a new solution from the current solution is upper bounded by:

I ≤
m−1∑
i=1

1

pi
. (1)

In Lemma 1, m represents the number of fitness levels and pi is the minimum
probability that in time step i, the stochastic change will cause an improvement. In
Lemma 2, we recall the previous result on the quality of initial solution for IG for
paths. This result will be used in our next discussions, since paths are a special case
of triangle-free graphs.

Lemma 2 ([10]). For paths, the initial solution for IG can contain at most d2/3ne
cliques and there are at most dn/3e 1-cliques in the result.

We now show that in expectation, IG finds the optimal vertex clique covering in
polynomial time for triangle-free graphs. Even though CCP can be solved in poly-
nomial time for triangle-free graphs using maximum matching [8], and the simple
(1+1) evolutionary algorithm has previously been shown to be a polynomial-time
randomised approximation scheme for maximum matching [20], it is interesting to
investigate the behaviour of a more general randomised search heuristic for CCP.
We will see that IG is able to guarantee polynomial-time convergence to the opti-
mum in expectation. Additionally, analysis for triangle-free graphs represents a step
towards analysis for random graphs, as well as complex networks.

It is worth noting that our bound is very pessimistic, due to assumptions used
to make the proof simpler. IG seems to be much faster in most practical scenarios.

Analysis of Iterated Greedy Heuristic for Vertex Clique Covering 391

As a consequence of this result, we also have that IG solves CCP optimally in
polynomial time for trees and bipartite graphs in general. This will be an extension
of our previous result of IG for paths, for which IG behaves similarly [10]. However,
in contrast to paths, general triangle-free graphs do not have a bounded maximum
degree. This makes the random walks, which arise in the analysis of IG, to be
slightly more complex than simply “left versus right”. Hence, several new ideas will
be introduced in the following analysis.

Theorem 1. For triangle-free graphs on n vertices and m edges, the expected time
for IG to find the optimal vertex clique covering is upper bounded by O(n5m2).

Proof. Based on Lemma 1, the initial clique covering contains O(n) more cliques
than the optimum. These will determine our fitness levels.

The size of the maximum clique ω ≤ 2, since we have a triangle-free graph.
Cliques of size one will be called 1-cliques and two-vertex cliques will be called 2-cli-
ques. An improvement occurs if random changes cause 1-cliques move so that some
pair of 1-cliques are next to each other and form a 2-clique.

Suppose that we have a fitness level with ϑ+ d cliques, where d ≥ 1. Then, the
number of 1-cliques is at least 2d ≥ 2. We will now show that 1-cliques perform
a fair random walk [32] on the triangle-free graph.

We first look at what happens if block jump occurs. If block jump is applied
to a 2-clique, only the ordering of the 2-cliques can be changed. No vertex can be
taken by a 2-clique, since that would create a triangle. If block jump is applied to
a 1-clique, the 1-clique will form a 2-clique with its nearest following neighbour in
the permutation. This is due the First Fit rule, which was mentioned in Section 2.

A B

C
DE

F
...

...

...
... ...

...

Figure 2. An illustration of the situation with a 1-clique between several 2-cliques. This
picture should be perceived as a subgraph, other subgraphs can be attached to the black
vertices. The direction, where the 1-clique moves when block jump is applied on it depends
on which of the blocks A–F comes first in the permutation.

In Figure 2, we illustrate the situation, when a 1-clique was left between several
2-cliques. Each 1-clique must necessarily have only 2-cliques around it. If it did not
have, it would be joined with another 1-clique in a 2-clique.

Let X now be the waiting time until a block jump of this 1-clique occurs. Before
the final move of the 1-clique, there are X − 1 block jump operations.

The direction of the movement of this 1-clique is determined by which neighbour
(in Figure 2, determined by blocks A–F) comes first in the permutation. The

392 D. Chalupa, J. Posṕıchal

probabilities for the directions will depend on what happens during the waiting time.
More particularly, which of the blocks around the 1-clique was taken for block jump
as the last one. To make the proof simpler, we will pessimistically assume that the
block jump operations performed on the other 1-cliques during the waiting time did
not lead to an improvement. Now, we will have two cases, what can happen during
this waiting time.

Case 1. None of the blocks around the 1-clique jumped. Let X be the waiting
time. We have that X = 1 (i.e., it takes only one move to choose the 1-clique)
with probability 1/(ϑ + d) ≤ 2/n. In this case, no other moves could surely
be chosen. For X > 1, we observe that for our 1-clique vertex v with deg(v)
neighbours, the probability of this event will be:(

1− deg(v)

X − 1

)X−1
=

(
1− deg(v)

X − 1

) X−1
deg(v)

deg(v)

≤ e− deg(v). (2)

This is because in all X − 1 steps in the waiting time, only non-neighbour
blocks were taken. Thus, the direction of movement for our 1-clique stays the
same. Therefore, this case occurs with probability, which is upper bounded by
e− deg(v) + 2/n.

Case 2. Some block around the 1-clique jumped. We are interested in which of
the deg(v) blocks was the last to jump. The probability of this case is at least
1 − e− deg(v) − 2/n, because of the bound shown in Case 1. We will now argue
that this portion of probability is distributed fairly among all deg(v) neighbour
blocks. This is because the probability of block jump is uniformly distributed
among the blocks. Thus, for each situation, where A was the last to jump, there
are equally probable situations, where the last block jump was performed on B,
C, etc.

Hence, the probability of changing the direction of movement of 1-clique is at
least (1− e−deg(v) − 2/n)/ deg(v) for each neighbour block.

During the waiting time, the solution can be changed a lot. However, if con-
sidering the neighbours of our 1-clique only, then only 2-cliques must be around
it during the whole waiting time. Otherwise, an improvement would be achieved,
which is a possibility that we pessimistically exclude.

Let us now consider the event outlined in Case 1. None of the blocks around the
1-clique jumped, i.e., the direction will be determined by the block, which is currently
the first in the permutation. Based on the previous arguments, the probability that
one fixed neighbour block (in Figure 2, one of the blocks A–F) was the first one
in the beginning of the waiting time, is uniformly distributed, too. This is implied
by the fact that the initial permutation is uniformly random, and the probability
of block jump is also uniformly distributed among the blocks. Therefore, 1-cliques
actually perform fair random walks on the triangle-free graph.

From the cover time of random walks, it takes O(nm) block jump moves of
a 1-clique to visit each vertex at least once [2]. For two such random walks, we have

Analysis of Iterated Greedy Heuristic for Vertex Clique Covering 393

that it takes O(n2m2) block jump moves in expectation for two 1-cliques to arrive at
two adjacent vertices. O(n) is the time needed to obtain a block jump of the 1-clique
and O(n) is the complexity of GCC.

We have O(n) fitness levels, on which all this happens. Therefore, the expected
time to obtain the optimum is bounded by O(n5m2). �

4 RESULT FOR SPARSE RANDOM GRAPHS

We have shown that IG finds the optimum in polynomial time for triangle-free
graphs. At this point, we extend this result by studying sparse random graphs, gen-
erated by the well-known Erdős-Rényi model [16]. Consider the model in the form
G(n, c/n), generating graphs on n vertices such that an edge is put between each
pair of vertices independently with probability c/n. This model has an interesting
property that for c < 1, the graph will consist of small components with specific
properties with high probability. These properties have previously been used to
prove results for iterated local search algorithms for vertex cover [41] and graph
colouring [37].

Theorem 2. Let 0 < c < 1. Then, for an Erdős-Rényi random graph G from
G(n, c/n), the expected time for IG to find an optimal clique covering for G is
upper bounded by O(n3(log n)5) with probability 1− o(1).

Proof. Bollobás [6], Sudholt and Zarges [37], and Witt [41] state that, with prob-
ability 1 − o(1), a random graph G from G(n, c/n), 0 < c < 1, will consist of
components on O(log n) vertices and edges, which are trees or graphs with at most
one cycle.

For a tree, or a graph with cycle with at least 4 vertices, we have that the com-
ponent is triangle-free, i.e., the arguments from Theorem 1 can be applied directly.
The remaining case is a component with a single triangle. We first prove that for
such a component, each suboptimal solution contains at least two 1-cliques. We
use enumeration based on whether the optimal/suboptimal solutions contain the
triangle.

Case 1. The optimum does not contain the triangle. Hence, the optimum contains
only 2-cliques and 1-cliques, i.e., overestimation can occur only by using two
1-cliques instead of a 2-clique.

Case 2. The optimum contains the triangle. If the suboptimum also contains the
triangle, we have the same situation as in Case 1, since overestimation can occur
only by using two 1-cliques instead of a 2-clique. Suppose that the suboptimum
does not contain the triangle and it does not contain a 1-clique, too. Thus, it
can only contain 2-cliques. However, such a solution cannot be improved, since
a substitution of two of its 2-cliques by a triangle would leave the fourth vertex
for a 1-clique. Therefore, such a solution must be the optimum.

394 D. Chalupa, J. Posṕıchal

This proves that each suboptimum contains at least two 1-cliques. We now
analyse the expected time to obtain a situation when the two 1-cliques visit a con-
figuration, in which they form a 2-clique.

If the 1-cliques are in the same subtree of the component, they need to visit
O((log n)4) vertices to visit adjacent vertices simultaneously, and form a 2-clique.
This is implied by the fact that a component contains O(log n) vertices.

When the two 1-cliques are in different subtrees, we must explore the expected
time needed for them to visit vertices of the triangle simultaneously. If we assume
that events in both subtrees do not lead to an improvement, we can treat them as
independent. Therefore, we have that 1-cliques need to visit O((log n)4) vertices to
arrive at the triangle at the same time.

Expected waiting time for a block jump of a 1-clique is O(n). GCC has complex-
ity O(n log n) in the worst case, since we have at most n components with O(log n)
edges. An improvement is obtained when O((log n)4) vertex pairs are visited by two
1-cliques in a component in expectation. Expected waiting time until an improve-
ment to a better fitness level is therefore upper bounded by O(n2(log n)5). We have
O(n) fitness levels, which proves our theorem. �

5 ON THE IMPACT OF TRIANGLES

Up to this point, the analysis was only taking graphs into consideration with at most
one triangle per connected component. Lemma 3 summarises the negative result for
a graph with linear number of non-overlapping triangles. For graph Hϑ/2 depicted in
Figure 3, IG will get stuck in a suboptimal clique covering with probability 1−o(1).

...

Figure 3. An illustration of the graph Hϑ/2, consisting of ϑ/2 = n/6 connected compo-
nents, for which IG does not produce the optimal vertex clique covering with probability
1 − o(1). This is due to the fact that if two horizontal edges are selected instead of the
two triangles in at least one of the components, block jump will not be able to suitably
regroup the vertices [10].

Lemma 3 ([10]). For graph Hϑ/2, IG will not be able to produce the optimal vertex
clique covering with probability 1− o(1).

However, for graphs with a limited number of triangles, IG may achieve a good
approximation of the optimum in polynomial time. In Lemma 4, we recall a lower
bound for ϑn based on maximum independent set size αn and maximum clique
size ωn. Consequently, Theorem 3 formulates the main approximation result.

Analysis of Iterated Greedy Heuristic for Vertex Clique Covering 395

Lemma 4 ([11]). Let αn and ωn be the sizes of maximum independent set and
maximum clique for a class of graphs on n vertices, respectively. Then, it holds that
max{αn, n/ωn} ≤ ϑn.

Theorem 3. Let G be a graph on n vertices with τn triangles such that τn < n/3.
Then, IG will achieve approximation ratio:

1 + 6
τn

n− 3τn
(3)

for G in expected polynomial time.

Proof. Let VT ⊆ V be the set of vertices in G, which are in at least one triangle.
Based on the premises, we have that |VT | ≤ 3τn. Let GTF be the subgraph induced
by V \VT , i.e. the triangle-free subgraph, which excludes the vertices in VT and their
incident edges.

For the triangle-free subgraph GTF , we have that the situation around each
1-clique can be modelled using the analysis illustrated in Figure 2. Therefore, the
fair random walk argument remains valid for the triangle-free “segments” between
triangles.

Let ϑ′n(G) be the number of cliques used by IG when triangle-free subgraphs
are already covered optimally after O(n5m2) time in expectation, based on the
arguments of Theorem 1, and let ϑn(GTF) be the clique covering number of the
triangle-free subgraph GTF . For the number of cliques used by IG, we have that
ϑ′n(G) ≤ ϑn(GTF)+3τn, since GTF is covered optimally. The clique covering number
ϑn(G) satisfies ϑn(G) ≥ ϑn(GTF). Therefore, the achieved approximation ratio is
upper bounded by:

ϑn(GTF) + 3τn
ϑn(GTF)

= 1 + 3
τn

ϑn(GTF)
≤ 1 + 3

τn
(n− 3τn)/2

= 1 + 6
τn

n− 3τn
(4)

where the fact that (n−3τn)/2 ≤ ϑn(GTF) is implied by Lemma 4 and ω(GTF) = 2,
since GTF is triangle-free. �

6 RESULT FOR BARABÁSI-ALBERT MODEL
OF SCALE-FREE NETWORKS

At this point, we relate the previous result to models of real-world complex networks.
Complex networks are networks with non-trivial structure. This structure is closely
related to the process of their evolution. Complex networks are often statistically
characterised by their degree distribution P (k), which denotes the fraction of ver-
tices, which have degree k. Many real-world networks are believed to be scale-free,
which means that their degree distribution follows the power law, i.e. P (k) ∼ ck−γ,
where γ is a coefficient of steepness of the distribution and c is a suitable constant.

396 D. Chalupa, J. Posṕıchal

Therefore, scale-free networks contain many vertices with low degree but also sev-
eral vertices with very high degree. In real-world networks, it usually holds that
γ ∈ [2, 3] [1].

One of the most famous models used to explain the process of evolution of scale-
free networks is the Barabási-Albert (BA) model [4]. Its pseudocode is given in
Algorithm 2.

1 begin with a connected seed graph G0 = [V0, E0]
2 for t = (n0 + 1) . . . n
3 Vt = Vt−1 ∪ {vt}
4 attach vt to vertices from Vt−1 based on preferential attachment rule

Algorithm 2. Barabási-Albert (BA) model of scale-free networks [4]

In BA model, we begin with a connected seed graph on n0 vertices and m0 edges.
Then, at each time step t, one new vertex comes and brings w new edges to the
network, where w is a parameter of the model, which remains constant over time.
These edges are attached to the existing vertices preferentially, i.e., the probability
of attachment to vertex v is (deg(v))t

2mt
, where (deg(v))t is the degree of v in time step t

and mt is the number of all edges at this time step. In the context of social networks,
this can be interpreted in the way that a person with a larger number of contacts
is more likely to get a new contact. It is known that BA model generates networks
with degree distributions, which follow the power law in form P (k) ∼ ck−3, i.e.
γ = 3 [4].

Lemma 5. In BA model with w incoming edges per vertex and with a seed graph
with maximum clique size at most w + 1, the maximum clique number ωn satisfies
ωn ≤ w + 1 for any n.

Proof. We prove this by contradiction. Suppose that ωn > w + 1. Then, the last
vertex of the maximum clique must have been attached to at least w + 1 other
vertices. This contradicts the fact that we have w incoming edges per vertex. �

Lemma 6. Suppose that the seed graph for BA model is a tree. If w = 1, then the
resulting graph will also be a tree.

Proof. From Lemma 5, we have that the maximum clique number ω ≤ 2, i.e., it
will be triangle-free. For generation of a cycle, one would have to have at least two
incoming edges for the last vertex, which “closes” the cycle. Hence, the resulting
graph will be connected and acyclic, i.e., it will be a tree. �

Corollary 1. Let G be a graph on n vertices generated by BA model with 1 in-
coming edge per vertex and with a tree as a seed graph. Then, IG finds the optimal
clique covering for G in polynomial time.

The previous results are relatively straightforward. It is more interesting to see how
good solution IG produces for BA model with w ≥ 2. We first recall a classical

Analysis of Iterated Greedy Heuristic for Vertex Clique Covering 397

result on the number of triangles in BA model in Lemma 7 and Theorem 4 applies
it to show that the approximation achieved by IG is asymptotically optimal.

Lemma 7 ([7]). Let w ≥ 1 be fixed. The expected number of triangles in a graph
on n vertices generated by BA model with w incoming edges per vertex is given by:

(1 + o(1))
w(w − 1)(w + 1)

48
(log n)3 (5)

as n→∞.

Theorem 4. Let G be a graph on n vertices generated by BA model with a triangle-
free seed graph and an arbitrary number w of incoming edges per vertex. Then, IG

achieves approximation ratio 1 +O
(

(logn)3

n

)
for G in expected polynomial time.

Proof. Based on Lemma 7, we have that the number of triangles τn = O((log n)3).
The triangle-free seed graph assures that this upper bound also holds for small n.
Theorem 3 implies that IG achieves approximation ratio:

1 + 6
O((log n)3)

n−O((log n)3)
= 1 +O

(
(log n)3

n

)
(6)

in expected polynomial time. �

It is worth mentioning that this result is similar to the result of evolutionary
algorithms in the NP-hard makespan scheduling problem, where asymptotically van-
ishing discrepancies in the obtained solutions were proven [40]. However, Theorem 3
cannot be applied to graphs with linear or superlinear numbers of triangles, which
may be encountered in other network models [15]. In the next section, we investi-
gate the impact of non-overlapping triangles on the design of a suitable algorithm
for CCP.

7 RESULT FOR GRAPHS WITH NON-OVERLAPPING TRIANGLES

The previous results were mostly positive. However, Lemma 3 has also outlined
the limitations of IG. At this point, we investigate the behaviour of IG for graphs
with non-overlapping triangles. Consider the initial permutation being generated
such that non-overlapping triangles are placed into it as blocks. The rest of the
permutation is generated uniformly at random. In the following, we show that such
a modification of IG guarantees that the optimal clique covering is found in expected
polynomial time.

Lemma 8. LetG be a graph with maximum clique size ω = 3. Let S be an optimum
and let S ′ be a suboptimum for CCP in G. There are three cases of how IG can
overestimate ϑ(G):

Case 1. Instead of a 2-clique in S, there are two 1-cliques in S ′,

398 D. Chalupa, J. Posṕıchal

Case 2. Instead of a triangle in S, there is a 2-clique and a 1-clique in S ′,

Case 3. Instead of two triangles in S, there are three 2-cliques in S ′.

All possible ways of overestimation represented by S ′ represent compositions of these
three cases.

Proof. Graphs and clique coverings generated by GCC, where the first two cases
can occur, are common and can be found very easily. The existence of the third
case is proven by Lemma 3. To exclude the existence of other ways, we use simple
enumeration.

• Substitution of any number of 2-cliques by 1-cliques is a composition of events
included in Case 1.

• Substitution of one triangle by three 1-cliques is a composition of Case 1 and
Case 2.

• If we consider three triangles, the first two can be substituted based on Case 2
or Case 3 and the last triangle will remain for Case 2.

• If we consider four or more triangles, we can apply Case 2 and Case 3 iteratively.
The resulting 2-cliques are further divided according to Case 1.

�

Lemma 9. Let G be a graph with maximum clique size ω = 3. If there is a sub-
optimal clique covering S ′ of G, which contains more triangles than an optimum S,
then S ′ must also contain at least two 1-cliques.

Proof. Let c1, c2 and c3 be the numbers of cliques in S with 1, 2 or 3 vertices,
respectively. Let c′1, c

′
2 and c′3 = c3 + d be the respective values for S, and for d ≥ 1.

All vertices must be covered and S must contain less cliques than S ′. Hence:

c1 + 2c2 + 3c3 = c′1 + 2c′2 + 3(c3 + d) = n, (7)

c1 + c2 + c3 < c′1 + c′2 + c3 + d.

From these formulas, 3d = (c1 − c′1) + 2(c2 − c′2) and d > (c1 − c′1) + (c2 − c′2). This
implies that (c2 − c′2) > 2d and, thus, (c1 − c′1) < −d. The value −d can be at most
−1, i.e. c′1 > 1. �

We now split the number of 1-cliques into two values. Let an optimum S contain
c1 1-cliques. We will call this the number of free 1-cliques. If a suboptimum S ′

contains c′1 1-cliques, then (c′1 − c1) is the number of extra 1-cliques. The idea now
is to model the process as the minimisation of the number of extra 1-cliques, rather
than the number of all cliques in the covering.

Lemma 10. Let G be a graph with maximum clique size ω = 3. Let IG begin with
a suboptimal clique covering S ′ with at least as many triangles as in an optimal
clique covering S for G. Then, IG cannot get stuck in a local optimum and will be
in the global optimum if the number of extra 1-cliques in the solution is minimal.

Analysis of Iterated Greedy Heuristic for Vertex Clique Covering 399

Proof. Let S contain c1 1-cliques, c2 2-cliques and c3 triangles. The analogous values
for S ′ are c′1, c

′
2 and c′3 ≥ c3. The premises imply that an improvement cannot be

obtained by making the number of triangles higher. Therefore, it is necessary that
c′2 < c2 and c′1 > c1. Since c1 1-cliques are present is S, the only way to obtain
an improvement is to reduce the number of extra 1-cliques by 2 and increase the
number of 2-cliques by 1. This holds for all suboptima, which proves the second
statement.

For the first statement, suppose that IG got stuck. Then, by Lemma 8, two
of the triangles must have been substituted by three 2-cliques. However, this is in
contradiction with the fact that these three 2-cliques must lie between the triangles
and block jump cannot cause a transformation, in which vertices between 2 different
blocks are regrouped to 3 blocks in between. �

Theorem 5. Let G be a graph on n vertices with maximum clique size ω = 3,
containing only non-overlapping triangles. Let P be the initial permutation for IG,
constructed by placing the triangles into P as blocks first and the rest of vertices
are placed into P uniformly at random. Then, IG will find the optimal solution in
O(n5m2) time in expectation.

Proof. Based on Lemma 9, the initial solution must be a global optimum or it
contains a 1-clique. Suppose that it is a suboptimum. Lemma 10 implies that the
following process is a minimisation of the number of extra 1-cliques and getting
stuck in local optima is avoided.

In each time step, we have a situation, in which a 1-clique is stuck between
2-cliques and triangles, similarly to Figure 2. The probability of moving towards each
direction is naturally determined by which block comes first. This is not influenced
by the fact that we can have triangles. We have to examine two cases, depicted by
Figure 4.

1 1

1

2

1 1

2

2
3

1

1

2

2

1

1

2

1

3

a) b)

Figure 4. Illustration of the cases for the non-overlapping triangles for the proof of The-
orem 5. Case a) represents a 1-clique, which can freely emerge both in suboptima and
optima. Case b) illustrates a situation, when 1-clique performs a random walk by “jump-
ing” over the triangle.

Case 1. If the 1-clique is not in a triangle, it can be surrounded by 2-cliques or
triangles, to which it can be connected only by a single edge (since it is in no
triangle). The 2-clique case is handled by the arguments from Theorem 1. In

400 D. Chalupa, J. Posṕıchal

Figure 4 a), we depict the situation, when it is adjacent to a vertex in a triangle
block. Such a 1-clique can be freely enhanced to a 2-clique and reduced back to
1-clique afterwards. Such a transformation can occur between two optima, which
shows that such a clique does not contribute to the number of extra 1-cliques.

Case 2. In this case, the 1-clique is in a single triangle. In this case, the other ver-
tices of the triangle must be separated into different cliques. Since they cannot
be in a triangle, they must each be in its own 2-clique, as shown by Figure 4 b).
When block jump is applied to the 1-clique, this 1-clique is transformed into the
triangle, and a new 1-clique can emerge on the opposite side of the triangle.
This position depends on the ordering of cliques on the other side, for which the
probability is uniformly distributed, leading to validity of the fair random walk
argument.

In each suboptimal solution, we have that the number of extra 1-cliques is at
least 2. Therefore, by applying the same cover time arguments as in Theorem 1, we
have that the expected time to obtain the optimum is upper bounded by O(n5m2).

�

Even though the assumption of non-overlapping triangles is still strong, it gives
us some insight into the impact of triangles on the problem structure and design of
suitable algorithms. We hope that these results may pave the way to more sophis-
ticated analyses of heuristics for CCP, as well as other combinatorial optimisation
problems for different models of complex networks and practically relevant scenarios.

8 CONCLUSIONS

We presented an analysis of an iterated greedy (IG) heuristic for the vertex clique
covering problem (CCP) in several practically relevant graph classes. As our analyt-
ical results indicate, IG can be viewed as a variant of local search, with non-trivial
methods needed to quantify the convergence and runtime properties of this ran-
domised search heuristic.

The classes of graphs concerned include triangle-free graphs, sparse random
graphs, scale-free networks generated by Barabási-Albert (BA) model, and graphs
with non-overlapping triangles.

We have shown that for triangle-free graphs, IG finds the optimum in expected
polynomial time. For sparse random graphs generated by the Erdős-Rényi model in
its form G(n, c/n), where c/n is the probability of edge generation, we have shown
that IG finds the optimum in expected polynomial time with high probability if
c < 1.

For BA model, we have shown that IG achieves approximation ratio

1 +O
(

(logn)3

n

)
in expected polynomial time.

Last but not least, we have shown that for graphs with non-overlapping triangles,
putting the triangles in the initial permutation for IG as blocks helps to improve the

Analysis of Iterated Greedy Heuristic for Vertex Clique Covering 401

worst-case performance of IG from getting stuck with probability 1−o(1) to finding
the optimum in expected polynomial time.

We believe that these results provide a valuable insight into the behaviour of
heuristics, which combine ideas of classical greedy algorithms with randomised iter-
ative improvement processes. This insight may represent a foundation of analysis for
other graph classes, as well as for other problems such as graph colouring [13, 37],
independent sets [11], or other similar algorithms such as the greedy randomised
adaptive search procedures (GRASP) [17].

Acknowledgement

This contribution was supported by Grant Agency VEGA SR under the grant
1/0145/18.

REFERENCES

[1] Albert, R.—Barabási, A.-L.: Statistical Mechanics of Complex Networks. Re-
views of Modern Physics, Vol. 74, 2002, No. 1, pp. 47–97, doi: 10.1103/RevMod-
Phys.74.47.

[2] Aleliunas, R.—Karp, R. M.—Lipton, R. J.—Lovasz, L.—Rackoff, C.:
Random Walks, Universal Traversal Sequences, and the Complexity of Maze Prob-
lems. Proceedings of the 20th Annual Symposium on Foundations of Computer Science
(FOCS ’79), 1979, pp. 218–223, doi: 10.1109/SFCS.1979.34.

[3] Auger, A.—Doerr, B. (Eds.): Theory of Randomized Search Heuristics. World
Scientific, Series on Theoretical Computer Science, Vol. 1, 2011.

[4] Barabási, A.-L.—Albert, R.: Emergence of Scaling in Random Networks. Scien-
ce, Vol. 286, 1999, No. 5439, pp. 509–512, doi: 10.1126/science.286.5439.509.

[5] Behrisch, M.—Taraz, A.: Efficiently Covering Complex Networks with Cliques
of Similar Vertices. Theoretical Computer Science, Vol. 355, 2006, No. 1, pp. 37–47,
doi: 10.1016/j.tcs.2005.12.005.

[6] Bollobás, B.: Random Graphs. Cambridge University Press, Cambridge, 2001, doi:
10.1017/CBO9780511814068.

[7] Bollobás, B.—Riordan, O. M.: Mathematical Results on Scale-Free Random
Graphs. In: Bornholdt, S., Schuster, H. G. (Eds.): Handbook of Graphs and Net-
works. Wiley, 2005, pp. 1–34.

[8] Cacetta, L.—Purwanto, P.: Deficiencies and Vertex Clique Covering Numbers
of a Family of Trees. Australasian Journal of Combinatorics, Vol. 1, 1990, pp. 15–27.

[9] Chakrabarti, D.—Faloutsos, C.: Graph Mining: Laws, Generators, and Algo-
rithms. ACM Computing Surveys, Vol. 38, 2006, No. 1, Article No. 2.

[10] Chalupa, D.: An Analytical Investigation of Block-Based Mutation Operators for
Order-Based Stochastic Clique Covering Algorithms. In: Blum, C., Alba, E. (Eds.):
Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation
(GECCO ’13). ACM, 2013, pp. 495–502, doi: 10.1145/2463372.2463436.

https://doi.org/10.1103/RevModPhys.74.47
https://doi.org/10.1103/RevModPhys.74.47
https://doi.org/10.1109/SFCS.1979.34
https://doi.org/10.1126/science.286.5439.509
https://doi.org/10.1016/j.tcs.2005.12.005
https://doi.org/10.1017/CBO9780511814068
https://doi.org/10.1145/2463372.2463436

402 D. Chalupa, J. Posṕıchal

[11] Chalupa, D.: Construction of Near-Optimal Vertex Clique Covering for Real-World
Networks. Computing and Informatics, Vol. 34, 2015, No. 6, pp. 1397–1417.

[12] Chalupa, D.: On Combinatorial Optimisation in Analysis of Protein-Protein Inter-
action and Protein Folding Networks. In: Squillero, G., Burelli, P. (Eds.): Proceed-
ings of the 19th European Conference on Applications of Evolutionary Computation
(EvoApplications 2016). Springer, Lecture Notes in Computer Science, Vol. 9597,
2016, pp. 91–105, doi: 10.1007/978-3-319-31204-0 7.

[13] Culberson, J. C.—Luo, F.: Exploring the k-Colorable Landscape with Iterated
Greedy. In: Johnson, D. S., Trick, M. (Eds.): Cliques, Coloring and Satisfiability:
Second DIMACS Implementation Challenge. American Mathematical Society, 1995,
pp. 245–284.

[14] Czech, W.—Dzwinel, W.—Goryczka, S.—Arodz, T.—Dudek, A. Z.: Ex-
ploring Complex Networks with Graph Investigator Research Application. Comput-
ing and Informatics, Vol. 30, 2011, No. 2, pp. 381–410.

[15] Dorogovtsev, S.—Mendes, J. F. F.: Evolution of Networks. Advances in Physics,
Vol. 51, 2002, No. 4, pp. 1079–1187, doi: 10.1080/00018730110112519.

[16] Erdős, P.—A. Rényi: On Random Graphs. Publicationes Mathematicae Debrecen,
Vol. 6, 1959, pp. 290–297.

[17] Feo, T. A.—Resende, M. G. C.: Greedy Randomized Adaptive Search Procedures.
Journal of Global Optimization, Vol. 6, 1995, No. 2, pp. 109-133.

[18] Friedrich, T.—He, J.—Hebbinghaus, N.—Neumann, F.— Witt, C.: Analy-
ses of Simple Hybrid Algorithms for the Vertex Cover Problem. Evolutionary Com-
putation, Vol. 17, 2009, No. 1, pp. 3–19, doi: 10.1162/evco.2009.17.1.3.

[19] Garey, M. R.—Johnson, D. S.: Computers and Intractability. Series of Books in
the Mathematical Sciences, Vol. 29, W. H. Freeman, New York, 2002.

[20] Giel, O.—Wegener, I.: Evolutionary Algorithms and the Maximum Matching
Problem. In: Alt, H., Habib, M. (Eds.): Proceedings of the 20th Annual Symposium
on Theoretical Aspects of Computer Science (STACS ’03). Springer, Lecture Notes in
Computer Science, Vol. 2607, 2003, pp. 415–426.

[21] Girvan, M.—Newman, M. E. J.: Community Structure in Social and Biological
Networks. Proceedings of the National Academy of Sciences of the United States of
America, Vol. 99, 2002, No. 12, pp. 7821–7826, doi: 10.1073/pnas.122653799.

[22] Gramm, J.—Guo, J.—Hüffner, F.—Niedermeier, R.: Data Reduction and
Exact Algorithms for Clique Cover. Journal of Experimental Algorithmics, Vol. 13,
2009, Article No. 2, doi: 10.1145/1412228.1412236.

[23] Halldórsson, M. M.: A Still Better Performance Guarantee for Approximate
Graph Coloring. Information Processing Letters, Vol. 45, 1993, No. 1, pp. 19–23,
doi: 10.1016/0020-0190(93)90246-6.

[24] Karp, R. M.: Reducibility Among Combinatorial Problems. In: Miller, R.,
Thatcher, J., Bohlinger, J. D. (Eds.): Proceedings of a Symposium on the Complex-
ity of Computer Computations. Plenum Press, 1972, pp. 85–103, doi: 10.1007/978-
1-4684-2001-2 9.

https://doi.org/10.1007/978-3-319-31204-0_7
https://doi.org/10.1080/00018730110112519
https://doi.org/10.1162/evco.2009.17.1.3
https://doi.org/10.1073/pnas.122653799
https://doi.org/10.1145/1412228.1412236
https://doi.org/10.1016/0020-0190(93)90246-6
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9

Analysis of Iterated Greedy Heuristic for Vertex Clique Covering 403

[25] Keil, J. M.—Stewart, L.: Approximating the Minimum Clique Cover and Other
Hard Problems in Subtree Filament Graphs. Discrete Applied Mathematics, Vol. 154,
2006, No. 14, pp. 1983–1995.

[26] Kratsch, S.—Neumann, F.: Fixed-Parameter Evolutionary Algorithms and the
Vertex Cover Problem. Algorithmica, Vol. 65, 2013, No. 4, pp. 754–771, doi:
10.1007/s00453-012-9660-4.

[27] Lehre, P. K.: Fitness-Levels for Non-Elitist Populations. In: Krasnogor, N.,
Lanzi, P. L. (Eds.): Proceedings of the 13th Annual Conference on Genetic and Evo-
lutionary Computation (GECCO ’11). ACM, 2011, pp. 2075–2082.

[28] Leskovec, J.—Lang, K. J.—Dasgupta, A.—Mahoney, M. W.: Community
Structure in Large Networks: Natural Cluster Sizes and the Absence of Large
Well-Defined Clusters. Internet Mathematics, Vol. 6, 2009, No. 1, pp. 29–123, doi:
10.1080/15427951.2009.10129177.

[29] Náther, P.—Markošová, M.: Positional Word Web and Its Numerical and An-
alytical Studies. Computing and Informatics, Vol. 30, 2011, No. 6, pp. 1287–1302.

[30] Neumann, F.: Expected Runtimes of Evolutionary Algorithms for the Eule-
rian Cycle Problem. Computers and Operations Research, Vol. 35, 2008, No. 9,
pp. 2750–2759, doi: 10.1016/j.cor.2006.12.009.

[31] Neumann, F.—Wegener, I.: Randomized Local Search, Evolutionary Algorithms,
and the Minimum Spanning Tree Problem. Theoretical Computer Science, Vol. 378,
2007, No. 1, pp. 32–40, doi: 10.1016/j.tcs.2006.11.002.

[32] Neumann, F.—Witt, C.: Bioinspired Computation in Combinatorial Optimiza-
tion – Algorithms and Their Computational Complexity. Springer, 2010.

[33] Ruiz, R.—T. Stützle: A Simple and Effective Iterated Greedy Algorithm for
the Permutation Flowshop Scheduling Problem. European Journal of Operational
Research, Vol. 177, 2007, No. 3, pp. 2033–2049.

[34] Schaeffer, S. E.: Graph Clustering. Computer Science Review, Vol. 1, 2007, No. 1,
pp. 27–64, doi: 10.1016/j.cosrev.2007.05.001.

[35] Stanimirović, Z.—Mǐsković, S.: A Hybrid Evolutionary Algorithm for Efficient
Exploration of Online Social Networks. Computing and Informatics, Vol. 33, 2014,
No. 2, pp. 410–430.

[36] Sudholt, D.: A New Method for Lower Bounds on the Running Time of Evolu-
tionary Algorithms. IEEE Transactions on Evolutionary Computation, Vol. 17, 2013,
No. 3, pp. 418–435, doi: 10.1109/TEVC.2012.2202241.

[37] Sudholt, D.—Zarges, C.: Analysis of an Iterated Local Search Algorithm for
Vertex Coloring. In: Cheong, O., Chwa, K. Y., Park, K. (Eds.): Algorithms and
Computation (ISAAC 2010). Springer, Lecture Notes in Computer Science, Vol. 6506,
2011, pp. 340–352.

[38] Sutton, A. M.—Neumann, F.: A Parameterized Runtime Analysis of Evolu-
tionary Algorithms for the Euclidean Traveling Salesperson Problem. Proceedings
of the 26th Conference on Artificial Intelligence (AAAI-12), AAAI Press, 2012,
pp. 1105–1111.

https://doi.org/10.1007/s00453-012-9660-4
https://doi.org/10.1080/15427951.2009.10129177
https://doi.org/10.1016/j.cor.2006.12.009
https://doi.org/10.1016/j.tcs.2006.11.002
https://doi.org/10.1016/j.cosrev.2007.05.001
https://doi.org/10.1109/TEVC.2012.2202241

404 D. Chalupa, J. Posṕıchal

[39] Welsh, D. J. A.—Powell, M. B.: An Upper Bound for the Chromatic Number
of a Graph and Its Application to Timetabling Problems. The Computer Journal,
Vol. 10, 1967, No. 1, pp. 85–86.

[40] Witt, C.: Worst-Case and Average-Case Approximations by Simple Randomized
Search Heuristics. In: Diekert, V., Durand, B. (Eds.): Proceedings of the 22nd Annual
Symposium on Theoretical Aspects of Computer Science (STACS 2005). Springer,
Lecture Notes in Computer Science, Vol. 3404, 2005, pp. 44–56, doi: 10.1007/978-3-
540-31856-9 4.

[41] Witt, C.: Analysis of an Iterated Local Search Algorithm for Vertex Cover in Sparse
Random Graphs. Theoretical Computer Science, Vol. 425, 2012, pp. 117–125, doi:
10.1016/j.tcs.2011.01.010.

[42] Yuan, Z.—Fügenschuh, A.—Homfeld, H.—Balaprakash, P.—Stützle,
T.— Schoch, M.: Iterated Greedy Algorithms for a Real-World Cyclic Train
Scheduling Problem. In: Blesa, M. J., Blum, C., Cotta, C., Fernández, A. J., Gal-
lardo, J. E., Roli, A., Sampels, M. (Eds.): Proceedings of the 5th International Work-
shop on Hybrid Metaheuristics (HM 2008). Springer, Lecture Notes in Computer
Science, Vol. 5296, 2008, pp. 102–116.

David Chalupa received his Master’s degree in software en-
gineering and his Ph.D. degree in applied informatics from the
Slovak University of Technology in Bratislava, Slovakia, in 2011
and 2014, respectively. He is currently Postdoctoral Fellow in
the Operations Research Group at the Aalborg University in
Denmark. Prior to that he was with the Computational Science
Research Group (CSRG) at the University of Hull in the United
Kingdom. His research interests include heuristics and meta-
heuristics, combinatorial optimisation and complex networks.

Jǐŕı Posp��chal received his diploma degree in physical chem-
istry from the University of Jan Evangelista Purkyně in Brno,
Czech Republic in 1984, and his Ph.D. degree in chemistry from
Faculty of Chemical and Food Technologies at the Slovak Univer-
sity of Technology, Bratislava, in 1990. From quantum chemistry
and computer assisted organic synthesis he soon transferred his
interests to computer science and is now Professor of applied
informatics at the Faculty of Natural Sciences at the University
of Ss. Cyril and Methodius in Trnava, Slovakia. His research in-
terests are evolutionary algorithms, artificial intelligence, neural
networks, and graph theory.

https://doi.org/10.1007/978-3-540-31856-9_4
https://doi.org/10.1007/978-3-540-31856-9_4
https://doi.org/10.1016/j.tcs.2011.01.010

