
Computing and Informatics, Vol. 37, 2018, 424–456, doi: 10.4149/cai 2018 2 424

USE OF SELF-HEALING TECHNIQUES
FOR HIGHLY-AVAILABLE DISTRIBUTED
MONITORING

W lodzimierz Funika

AGH-UST, Faculty of Computer Science, Electronics and Telecommunication
Department of Computer Science, al. Mickiewicza 30, 30-059 Krakow, Poland
e-mail: funika@agh.edu.pl

Abstract. The paper addresses the self-healing aspects of the monitoring systems.
Nowadays, when the complex distributed systems are concerned, the monitoring
system should become “intelligent” – as the first step it can guide the user what
should be monitored. The next level of the “intelligence” can be described by the
term “self-healing”. The goal is to provide the capability that a decision made
automatically by the monitoring system should force the system under monitoring
to behave more stable, reliable and predictable. In the paper a new monitoring
system is presented: AgeMon is an agent based, distributed monitoring system
with strictly defined roles which can be performed by the agents. In the paper
we discuss self-healing in the context of monitoring. When the self-healing of the
monitoring system is concerned, a good example is the case where it is possible to
lose the monitoring data due to the storage problems. AgeMon can handle such
problems and automatically elects substitute persistence agents to store the data.

Keywords: Monitoring, self-healing, distributed systems, reliability, high availabil-
ity

Mathematics Subject Classification 2010: 68-M14, 68-M15

1 INTRODUCTION

Nowadays computer systems become more and more complicated. This statement
is especially up-to-date when the distributed systems are concerned. The number
of distributed systems is rapidly growing. A good example for this trend is cloud

Use of Self-Healing Techniques for Highly-Available Distributed Monitoring 425

storages and cloud computing. A few years ago those terms were known only to
a limited number of people who worked in IT industry or to scientists. Today,
solutions which use clouds are available broadly for different kinds of end-users.

Complex distributed systems can be built with the components which cooperate
together in order to achieve common goals. The monitoring of such components is
especially challenging. Decomposition of a system results in a need in distributing
the monitoring system itself. Moreover, the complexity of applications requires that
the monitoring system provides some aspects of ‘intelligence’ – it should be possible
to guide the user about what is the most optimal way of monitoring.

The most complex monitoring systems that are currently available are able to
work in an autonomous way. It means that some or most of the operations are
executed without user interaction. A monitoring system based on observations of
an application can decide what action should be taken – for instance if any other
monitoring should be performed or if a user interaction is required.

Similarly to clouds, terms like High Availability and Fault Tolerance are becom-
ing very popular. The solutions which combine both High Availability and High
Performance Computing (HPC) are becoming available for much more users [20].
This change drives changes in monitoring systems. The question is: how can a Highly
Available application be monitored?

Increasing the complexity of a monitoring system results in a higher probability
of faults in a system. In such a situation, the system should recover from a fault.
In other words, it should be able to perform self-healing. Healing can be also
considered from a perspective of an application. A good monitoring system in
addition to a regular monitoring can provide a way of healing the application. Based
on predefined rules, the system could take an action to help the application – for
instance to restart its components or disconnect a failed resource.

There is a big number of monitoring systems available on the market. Unfortu-
nately, the existing solutions do not provide all the features which are required by
some of the modern applications. The existing monitoring systems:

• are sometimes used to monitor highly available applications or systems but they
are not themselves highly available or fault tolerant,

• do not provide self-healing capabilities,

• are hard to deploy and complex to use,

• usually manifest problems when it comes to integration with applications (in
order to heal the application).

In order to monitor a highly available application, monitoring system should also
be highly available. This will minimize the risk of loosing important monitoring data
gathered at system runtime.

The main objective of our research is to verify whether self-healing techniques
can be used to build highly available and reliable monitoring systems needed for
developing and maintaining highly available applications.

426 W. Funika

In order to achieve this goal, we introduce a new model of monitoring system.
The model provides:

• self-healing capabilities which will help to implement high availability require-
ments; the system cannot loose any monitoring data gathered during a moni-
toring session,

• distributed, loosely-coupled architecture – the design of the system should be
based on a distributed architecture, the system should be able to monitor dis-
tributed applications,

• autonomicity – it should be possible to define and deploy the rules and actions
which will be executed automatically by the monitoring system,

• capability of integration with an application – the model should allow for in-
tegrating the monitoring system with an application in order to: heal it, or
to provide monitoring data which can be used by an application in its regular
functioning.

We have built a new monitoring system called AgeMon that was used to evaluate
the proposed solution. This name will be used in further paragraphs of this paper.

The main objectives of the research are as follows:

• analyze different aspects of the High Availability and Self-Healing,

• evaluate if Self-Healing concepts can be used to provide High Availability solu-
tions,

• select the best Self-Healing techniques which can be used in the monitoring
systems,

• create a reusable and generic model of a Self-Healing monitoring system,

• create a prototype of monitoring system which will provide self-healing com-
ponents. It should be possible to reuse these components in other monitoring
systems.

The rest of the paper is organized as follows: Section 2 introduces the key
concepts related to self-healing and reliability. Section 3 brings an overview of the
challenges faced when monitoring the modern distributed systems. The motivation
for a new monitoring system is introduced. Section 4 describes the architecture and
implementation of the AgeMon system; later on, the HA and self-healing concepts
in the context of monitoring systems. Section 5 presents the results of the system
tests. The last section summarizes the paper.

2 RELATED WORK – RESEARCH BACKGROUND

There exist a considerable number of monitoring systems for distributed environ-
ments available on the market, some being more domain-adjustable like
SemMon [22], while others are more specialized. Some of the monitoring systems

Use of Self-Healing Techniques for Highly-Available Distributed Monitoring 427

are very well known and de-facto became industry standards, like Nagios [23] or
Ganglia [24]. Various monitoring systems are described at the end of this section.
We are going to start with introduction to some key concepts that are important to
understand before deep diving into self-healing monitoring systems.

2.1 High Availability

The availability of a system determines if the system is able to provide the required
service. When a service cannot be used by the user, it is said that there is an outage
in the system. Downtime is duration of a time when the system is unavailable [17].
Highly Available (HA) system is designed to avoid losses of a service by reducing
failures and downtimes of the system. System availability can be measured and is
usually expressed as a percent of time when the system is available in a particular
year. A system which provides 99.999 % percent of availability is considered as
a high-availability system (the term five-nines is also used). The downtime of such
a system should not take more than 5.5 minutes per year.

High Availability systems are reactive – emphasis is on a failover and a re-
covery [18]. In addition, continuously available systems group applications with
a proactive approach. Such systems try to detect and prevent errors in advance.

2.2 Self-Healing

Self-healing is the ability of a system to recover from a failure state. Additionally,
a self-healing system should be able to perceive that its own operation is not cor-
rect [8]. A healing action can be performed in an autonomous way or could require
a user intervention (assisted-healing systems).

Self-healing [12] is also considered in the context of self-managing autonomic
systems. In such systems human operator takes on a new role. He/she does not
control the system in a direct way. Instead, the user defines general rules and policies
that guide the self-management process.

The key questions when self-healing is concerned is whether the healing can
be done automatically (self) or with a user interaction. In this paper, self-healing
is understood as an action which should not involve any manual user interaction
during the failure detection and recovery. Therefore, a system with the self-healing
functionality should also be autonomous (self-healing components of the system
should be autonomous).

An automaticity of the system does not exclude a user interaction, for instance
in a system setup. While the failure detection and recovery should be completely
automatic, human interaction may be needed to define high level rules for decision
making, templates, to define data sources, properties, etc. [13, 25].

In Figure 1 a state diagram of a self-healing system is presented [8].
There are three states of the system from the self-healing perspective. The most

desirable state is a normal, healthy state. The system in this state works correctly,
and should fulfil all the requirements. Nevertheless, the system should periodically

428 W. Funika

System Recovery

System Recovery

Normal

State

Degraded

State

Broken

State

Maitenance of health

Failure Detection Failure Detection

Figure 1. State diagram of the self-healing system

check its own state. It can be done by analyzing application logs. Additionally,
the system needs to manage the state of its redundant components and maintain
diversity – these tasks can result in failure detection, but the main intention is to
keep the system healthy.

In addition to the tasks used to maintain a healthy system, there are tasks
which are used to detect a failure in the system. There are multiple strategies here,
for instance used to detect the missing components ([9, 10, 11]) or perform system
monitoring [14].

A failure itself is a manifestation of an error caused by a system fault [3]. There
is a number of classifications of errors. For instance, it is possible to classify software
faults based on the circumstances needed to trigger an error [4, 5].

When a failure in the system is detected, the system is recognized as a bro-
ken one. Self-healing systems should be able to recover from this state, to heal
themselves. One of the major concepts used here is the redundancy of components.
With this approach, in case of a failure of a component, other components can take
the responsibility of the failed component. It may decrease the performance of the
system, but the system will continue to operate.

In loosely coupled environments, an additional problem is to detect a malicious
fault, known also as the Byzantine Generals Problem. In order to solve such types
of problems, a voting procedure should be implemented.

Other solutions for recovery are typically very specific to a particular system.
Multiple attempts have been made to structure these problems. For instance, in one
of the approaches, healing is done through cooperation between components. This
type of recovery is becoming very popular [15, 16].

In addition to a normal and a broken state, a degraded state can be introduced.
The system in this state can be considered working, but some of its functions could
be limited. For instance, a performance indicator could be significantly degraded. If
no action is performed immediately, the degraded state can be quickly turned into
the broken state. As an example, let us consider an application which uses 99 % of

Use of Self-Healing Techniques for Highly-Available Distributed Monitoring 429

memory. It is very probable that the system will fail soon, if no action to free the
memory is performed.

2.3 Reliability

In general, software reliability is a probabilistic measure which can be defined as
probability that software faults do not cause a failure during specified time [19].
From a mathematical point of view, it can be defined as the following function [19]:

R(t) = Pr{T > t} =
∫ ∞
t

f(x) dx (1)

where R(t) = reliability, T = working time without failure, t = required (as-
sumed/specified) working time without failure, f(x) = failure probability density
function.

From the industry perspective, there are two major metrics that are used to
evaluate the reliability of a software:

• Mean Time Between Failures (MTBF) – elapsed time between failures in the
system. This assumes that the system can be recovered (manually or automati-
cally) from the failure (or the failure does not affect the overall functionality of
the system).

• Failure Rate – frequency of the failures in the system.

The following equation defines correlation between MTBF and Failure Rate (λ):

MTBF =
1

λ
. (2)

Measuring the reliability is especially useful during the process of developing
software. It can be used as a metric determining the current state of software
and see if there are improvements during different phases of testing (unit testing,
acceptance testing, integration testing, soak and stress testing).

2.4 Existing Monitoring Systems

Over years a considerable number of monitoring facilities were released. Below we
give an overview of some representative monitoring systems.

2.4.1 Ganglia

Ganglia [24] is a scalable distributed monitoring system. It is deployed on more
than 500 clusters over the world. It is designed to work in the high-performance
computing like clusters and Grids. Its hierarchical design is based on the federation
of clusters. Inside the cluster communication uses the multicast, while the com-
munication between clusters within the federation is based on tree point-to-point
connections.

430 W. Funika

Ganglia provides some aspects of high availability system. For instance, it is
possible to specify multiple sources for the data in the gmetad components. It is
used to failover in case one source in invalid. It is very scalable, but it does not
provide advanced self-healing capabilities, and it is not possible to integrate this
system with the monitored system in order to heal the system.

2.4.2 Autopilot

AutoPilot [26] provides an infrastructure for real-time, adaptive monitoring of dis-
tributed applications/systems. This monitoring tool can adaptively apply the data
reduction based on the fuzzy logic. Autopilot allows also optimizing the application
at runtime as the result of the application state observed by the monitoring system.
This could also be used to heal the monitored system.

Autopilot is based on the Pablo Toolkit. It supports rule definition and some
basic concepts of healing the application. It does not ensure high availability (it has
a single point of failures) and does not provide any self-healing capabilities. It is also
quite hard to use. The sensors and, especially, monitor tasks, need to be created
from scratch for any new application. It does not support a common monitoring
infrastructure like JMX.

2.4.3 GEMINI

GEMINI [27] is a Grid monitoring framework that fulfils space between resources
monitoring components and monitoring services clients. GEMINI combines applica-
tions, infrastructure and Grid middleware resources monitoring by providing unified
interfaces for data sources. As for monitoring, GEMINI performs measurements
using a set of loadable modules called sensors which retrieve monitoring data by it-
self or using external, legacy applications for this purpose. GEMINI was developed
within the K-Wf Grid Project but it is not intended to cooperate with this Grid
system only; the idea behind providing a generic framework is that it could be easily
adapted to various Grid environments. GEMINI is written in Java and is based on
the Globus Toolkit libraries and services.

Monitors and sensors provide web-services which can be used by the clients to
access the data. This solution allows developers to write extensions in an easy way.
While GEMINI is very flexible, it does not allow for interactions with the monitored
system. It is not a high availability system and it does not provide self-healing
capabilities.

2.4.4 Aksum and JavaPSL

Aksum [28] is part of the Askalon [29] project, aiming to simplify the development
and optimization of applications that can harness the power of Grid computing.

Aksum automatically searches for performance bottlenecks based on the con-
cept of performance properties. In contrast to many existing systems, performance

Use of Self-Healing Techniques for Highly-Available Distributed Monitoring 431

properties are normalized (values between 0 for the best case and 1 for the worst
case), enabling the user to interpret the resulting performance behaviour.

Aksum is highly customizable, which allows the user to build or define an own
performance tool. Performance properties are defined in JavaPSL [30], and may be
freely edited, removed from or added to Aksum in order to customize and speedup
the search process. The performance properties found can be grouped, filtered, and
displayed in several dimensions as long as more experiment data become available.

The Askalon is focused on monitoring workflows of the applications deployed
on the grid. It uses Globus infrastructure, therefore it is not possible to simply
deploy this monitoring tool outside the grid. It does not provide an infrastructure
to dynamically call the application logic, therefore its healing functionality is limited.
It does not provide self-healing.

2.4.5 SemMon

The SemMon [22] is a monitoring system for distributed applications which enables
adaptive monitoring. It is focused on monitoring distributed Java applications, but
it can also be used to monitor OS specific capabilities.

The system is able to learn what is important to monitor in the current situation.
The knowledge is gathered based on the previous user decisions. For instance, if the
user decides that in the current state of the system, a specific capability needs to be
monitored, the system will store this information, and use it in future to help the
user or start the measurement automatically.

The definition of the monitoring capabilities (the capabilities which can be mon-
itored by SemMon like CPU usage, number of threads) and metrics are expressed
with the semantic description. They are described in the ontology, which brings
an additional abstraction layer and could be used to improve the adaptation of the
system. Based on the semantic dependencies between metrics, the system can au-
tomatically provide a hint to the user what needs to be monitored in the specific
situation.

The SemMon system is a complete implementation of a robust system with se-
mantics, which is not biased to any kind of underlying ‘physical’ monitoring system,
giving the end-user the power of intelligent and computer-aided monitoring features
like automatic metrics selection and collaborative work. On the other hand, it is
not a high-available system. It has several single points of failures – e.g. reasoners
or database with results. In addition, it does not provide any self-healing features.

2.4.6 Dynamic Monitoring Framework

Dynamic Monitoring Framework [32] is a solution which tends to address multiple
challenges related to monitoring of the SOA based products. Service Oriented Archi-
tecture (SOA) is an architecture approach used in a wide area of solutions. It focuses
on implementing business requirements as a service. One of the biggest advantages
of such an architecture is the ability to support frequent changes of the requirements

432 W. Funika

at runtime. For instance, it is possible to update a specific service without shutting
down other services. It is also possible to change dependencies between services at
runtime. While this approach addresses a lot of business challenges, it also adds
complexity to the management and monitoring layers.

The Dynamic Monitoring Framework provides an interesting capability – ability
to monitor a dynamically changing environment. Unfortunately, it does not provide
any self-healing capabilities.

3 MONITORING SYSTEM MODEL

The model of monitoring system under discussion is designed to be based on the
distributed, agent-based architecture. The distribution of the system enables the
system to be more flexible and allows to dynamically fit into a complex monitored
system. Since the monitored systems are often distributed, or even the monitoring
system is used to monitor distributed values (like network flow) the distribution of
the monitoring system becomes one of the most important requirements.

The distributed monitoring system usually consists of the following components:
monitoring service/sensor and the user interface used to present the monitoring data
to the user. It could be extended by additional components like database used to
persist results or rule engines used for decision making based on the monitoring
results.

One of the possible implementations of the distributed architecture may involve
the agent-based approach [7]. This type of architecture brings a lot of values to the
system. For instance, the scalability of an MAS system is provided very naturally.
If one needs to have more resources in the system it is all about adding additional
instances of agents. A similar situation is with concurrency. MAS systems are
designed to be flexible and adaptable to the changing environment.

In addition, the attributes which are usually [6] discussed when MAS are con-
cerned are fault-tolerance and reliability. The system does not have a single point
of failures. The reliability is achieved collectively by all the agents of the system.

The main goal for the system model under discussion is not focused on the fully
autonomous agents. Therefore, in the first implementation of the system, agents will
have a limited extent of autonomy. Due to that limited autonomy, the reasoning
coordination can be simplified. At the same time, in the AgeMon we address some
of the common challenges with the agent based approach: communication between
agents, cooperation or problem decomposition are the aspects that are implemented
in the system. The agents are physically distributed, and need to cooperate in
order to achieve the monitoring goals. Therefore the system under discussion is
a distributed and multi-agent system.

3.1 Self-Healing, Distributed Monitoring System Architecture

The design of the monitoring system with the self-healing capability is considered
at the very first stage. In fact, this requirement is the driver of the design.

Use of Self-Healing Techniques for Highly-Available Distributed Monitoring 433

There are two main requirements which need to be addressed by high-level design
in order to provide self-healing of the monitoring system:

• redundancy of key components,

• high availability of the communication layer.

The redundancy of key components is the basic concept when the high avail-
ability feature is implemented. The redundancy is usually realized by physical or
programmatic duplication of the resources/components in the system. This is a sim-
ple and straightforward approach used in different systems. Unfortunately, it has
a huge disadvantage – it does not scale. For instance, if we have a system with
2 database components, and 2 oracles, addition of four more components to provide
duplication would not impact the overall system performance. But in case there are
50 database components adding more 50 ones just to fulfil a redundancy paradigm
could drastically degrade the system performance.

The redundancy of components is a key concept that needs to be introduced
when the high availability is considered. Unfortunately, it is not enough – it is
possible that the system consists of duplicated components, but these components
cannot communicate with each other. Therefore, the communication layer between
components/agents in the system should also feature high availability.

The design of the system under discussion should address these issues. The
new monitoring system – AgeMon is intended to provide self-healing capabilities
together with allocating the resources dynamically depending on the system state.
The redundancy of the components should be available, but should only be used
when no other way of providing high availability is feasible.

The AgeMon system is a distributed, agent based, self-healing monitoring sys-
tem. The key concept in the system are roles– which are used to group functionality.
For instance, the persistence role groups all the functionalities related to storing
monitoring data in a persistent way. Use of this approach will simplify design and
implementation and will also help define the best self-healing techniques for each
role.

All the agents in the system are able to perform one or more roles. There are
five types of the roles:

Monitoring Role – used to retrieve monitoring data and interact with the moni-
tored system,

GUI Role – interacts with the system administrator and displays monitoring data,

CLI Role – enables advanced capabilities used by the system administrator,

Persistence Role – stores monitoring results in a persistent way (e.g. in a data-
base),

Rule Role – dynamically reacts on changes in the system environment and per-
forms actions based on the monitoring results.

To provide the dynamic self-healing capability in a scalable way, the roles
can be automatically enabled or disabled by the agent in response to changes

434 W. Funika

in the system. This is a very important aspect of the system – it is not re-
quired to have duplicated agents/roles since it is possible to start a new role only
when needed. The communication between agents is based on a reliable messag-
ing protocol. The stub of the protocol is provided by the Agent Communication
Layer.

A sample deployment diagram is given in Figure 2.

Persistence

Computer with

an Application

Computer with

an Application

Agent A

Agent B

/ _
?

?

Agent C

/ _

Agent D

Agent E

GUI

Rule

Monitoring

CLI

Figure 2. AgeMon System – a sample deployment

In this example scenario, two applications are going to be monitored. The
arrows in the diagrams present the flow of the monitoring results which are sent
between agents. There are two agents with the monitoring role enabled – A and B.
Agent B is monitoring one application while the second agent is used to monitor
two applications. The monitored data is sent to other agents. In the example,
agent C is concurrently performing two roles – Rule and Persistence. It will be
used to store the monitoring results in the database. At the same time the agent
can perform user-define checks to test if the monitoring results should trigger an
action. Agent D is also used to store the monitoring results in the database. In
addition to this, it can present the monitoring data to the user. The agent E
can be used by the system administrator to validate the state of the monitored
system.

The above simple example illustrates some key-concepts of the system. It is
possible that more than one role is performed by a single agent. On the other hand,
it is possible that in the system there are more agents performing the same role.
The agent is able to send monitoring results to more than one agent.

The next subsections provide a description of the Roles in the AgeMon System.

Use of Self-Healing Techniques for Highly-Available Distributed Monitoring 435

3.2 Monitoring Role

The monitoring role is used to retrieve the data from the monitored system and to
interact with that system. Agents which perform this role act like sensors – they
periodically ask for a new monitoring value and deliver it to the monitoring system.
There are two types of measurements which can be done by the monitoring role:
OS-related measurements and application specific measurements.

In the Java world, the Java Management Extensions (JMX) is a broadly accepted
industry standard for monitoring and managing Java Applications [1, 2, 21]. This is
not limited to the application – JMX can be used to monitor an Operating System,
Networks or Devices. AgeMon utilizes this flexibility – support for JMX based
monitoring is built-in. It is also possible to integrate it with other monitoring
environments.

User is meant to select what he/she wants to monitor (select a monitoring ca-
pability) and create a monitoring task through a GUI. A monitoring agent will send
a monitoring value to the destination agent(s) at the predefined intervals. Agent is
also capable of buffering the results – it is possible to define the size of the packet
used to send the data.

Whenever the monitoring data cannot be sent to the destination agent an elec-
tion of a substitute agent (failover) will be triggered.

While probing the system under monitoring can be considered a fundamental
task of the monitoring role – participation in handling the ,feedback’ procedure
enables the healing of the monitored system.

Currently the system supports two direct ways of passing the information to the
monitored system. With the first one the AgeMon system can call a method on
an MBean. The MBean should be registered in the default platform MBean server.
With the second way, the call can be performed on any static method defined by
the user.

3.3 GUI Role

The GUI role is used to present monitoring data to the user. It is also meant to
perform administrative tasks – for instance to define and deploy rules. The other
rules provide important capabilities like persistence or healing, but it is possible to
use the basic features of the monitoring system without them. On the other hand
when the monitoring role and GUI role are not present, the system cannot operate
in an efficient way.

The central point of the GUI role is Agent Graph. It is a directed graph
where each vertex represents an agent connected to a monitoring group, and each
edge shows a monitoring connection created between two agents. It represents
a publisher-subscriber dependency between two agents, therefore it is always di-
rected. It is designed to execute a bunch of actions directly from a graph – for
instance it is possible to stop an agent, create a monitoring and visualisation.

436 W. Funika

The Monitoring Component allows the user to select measurable capabilities,
define a monitoring name or specify a polling interval. In addition, as a result of the
creation of a monitoring task, a monitoring link between two agents is established.

The Rule Component provides an ability to create, manage and delete the rules.
It can be only displayed in the context of the Rule Agent. A detailed description of
the Rules is provided in Section 3.4.

Managing of the Persistence Agent can be done through the Persistence Com-
ponent. The main functionality provided by this component is focused on enabling
the browsing of the monitoring data in a straightforward way. It is possible to list
measurement results and filter them, e.g. by a monitoring name.

The Visualisation Component allows the user to create and manage visualisa-
tions. It enumerates the available monitoring sessions and allows the user to create
a new visualisation or attach to the existing one.

Figure 3. Example visualisation – two measurements: CPU utilization and memory usage
are presented on the same chart

A sample visualisation is presented in Figure 3. It presents an ability to dis-
play different monitoring results on one chart. In this example CPU Usage and
the Free Physical Memory is presented at the same time. Due to it, the chart
contains two different vertical axes – one per each capability. This component pro-
vides more advanced options like a dynamic scale, dynamic rendering, zooming or
printing.

Use of Self-Healing Techniques for Highly-Available Distributed Monitoring 437

3.4 Rule Role

The Rule role introduces automation into the system. This is a very important
feature, especially when complex, distributed systems are under monitoring. The
user will not be able to capture all the issues, as well as to check all the results in
every minute over a long period of time. Carefully designed and implemented rules
will introduce a lot of new functionalities without additional cost.

A short definition of the Rule states that Rules are used to identify a change
in the state of the monitoring and monitored systems. For instance, it can identify
that a new Agent is attached. It can be also used to detect that CPU usage is
higher than 70 %. This definition is not complete, and will be extended later in this
section.

In order to react to the changes, a Rule is always connected with an appropriate
Action. The action is executed by the Rule when the criteria defined by the Rule
are met. There are multiple types of actions; most of them will be described later
in this section.

The system provides two types of rules: Value Expression Rule and System
Event Rule. The first one can be used to monitor the value of a selected capability,
for instance to react if the CPU usage is higher than 90 %. It is possible to create
a rule condition using Java Script language.

Another type of rules is the System Event Rule which allows to react on the
changes occurring in the Monitoring System. For instance, it is possible to monitor
whenever an agent is attached or detached to/from the system.

In order to react, AgeMon provides five different actions out of the box (it is
also possible to define new actions). The first, simplest action is a Console Action.
When this action is triggered, the message will be logged to a log file. A more
complex action is Email Action. When it is triggered, an email message will be sent
to a predefined email address.

The next action available in the AgeMon system provides the ability to run
an external command. When an ExecuteScript action is defined, the user can provide
the name of a script and path with the location of the script.

The next two actions are used to directly interact with the monitoring system.
They allow for execution of a specified code from the monitored system – depending
on the action’s type, the processor will execute a static method or invoke a method
on an MBean.

Typically, a rule is deployed in a single Rule Role. This is the most common
situation, but AgeMon provides a second type of rule deployment called the coop-
erative mode which brings the high availability functionality. In this mode, the rule
is deployed in multiple Rule Agents. Agents are able to synchronize the evaluation
and execution of the rules, so the action will be executed only once. The following
assumptions for the cooperative mode are listed below:

438 W. Funika

• All the Rule Roles Agents have a running instance of the Cooperative Rule
(CR). Running means that the rule is executed against the monitoring data on
each of the agents.

• When the rule condition is met, only ONE role executes a Cooperative Action
(CA). The election algorithm will be used to select an agent which can perform
a CA (the algorithm is similar to the one used in finding the substitute agent).

• If the CA fails due to the internal reasons (e.g. not because of the exceptions
thrown from the monitored system) a next agent will try to re-execute a CA.

• All the roles have to have access to the monitoring data used in a definition
of the condition. This means that whenever a rule is deployed, the additional
monitoring links need to be created automatically.

• If a new rule agent joins the network, the CR will be automatically deployed
on it and the corresponding monitoring links will be created.

3.5 Persistence Role

The Persistence Role is used to store the monitoring results in a persistent way. By
default, this Role will use an in-memory database. Due to this reason, it is not
needed to install any third-party applications in order to enable persistence.

3.6 CLI Role

The CLI Role is the second role used by the user to interact with the Monitoring
System (and System Under Monitoring). This role is complementary to the GUI –
it will provide additional capabilities for the advanced user, while some of the other
features will only be available in the regular GUI. For instance, with the CLI it
will not be possible to create a visualisation instance, whereas it is meant to enable
creating customized queries used to export the monitoring data.

3.7 Communication in the System

Messaging is the key concept of the system. Agents interact with each other by
exchanging the messages. The system uses a state-of-the-art communication library
which is built by analogy to a stack. The bottom layer introduces a discovery
of all the agents in the same group. Multicast as well as gossip server(s) can be
used to detect members of a group. The low-level communication protocol is also
implemented in this layer. All the messages are exchanged in a reliable way. The
system allows to use point-to-point communication as well as point-to-many. In the
second approach, a message is sent with the UDP/multicast protocol. Thanks to
that messages are sent in single operation to all agents. This reduces the network
usage in contrast to plain TCP protocol. At the same time, additional components
built on top of protocol ensure reliability (e.g. failure detection, retransmissions

Use of Self-Healing Techniques for Highly-Available Distributed Monitoring 439

etc.). Due to the discovery protocol, it is possible to start the system in a typical
environment without any additional configuration.

The second layer of the communication library brings an agent abstraction which
simplifies sending the messages to the agent. The agents’ topology is reflected in
an object-oriented fashion. An agent object contains methods to send messages as
well as to subscribe for possible notifications.

The top layer defines the monitoring capabilities of the system. As mentioned
above, the communication between agents is based on exchanging the messages:
there are more than 40 types of them, gathered into two groups: foundation messages
and regular messages.

The library is highly extensible, it is allowed to define new types of messages
as well as corresponding processors. The library can also be used in other systems,
since it is not specific to the system under discussion.

3.8 Logging in the System

Having a mechanism for correct logging of the events in the application is an im-
portant feature of any modern systems. It can be used to validate the state of the
system as well as to track the issues that occurred during runtime.

AgeMon uses the log4j library, by default logging only important messages that
are presented on the console. It is possible to enable a very detailed logging and
redirect it to files. In order to reduce performance degradation when tracing is
enabled, the logging system uses an asynchronous appender. It is also possible
to rotate logs. Nevertheless in case a full, detailed logging is enabled, it may have
a significant impact on the agent performance. During the conducted tests, when the
TRACING level of the logger is enabled, CPU utilization was up to 50 % higher than
when the default logging settings are used. Tracing is very detailed – it is possible
to see the details of each message that is exchanged as well as all connections that
are being made on the TCP/UDP level.

In addition to the regular logging, it is possible to easily integrate the system
with more centric logging environments that can be used to profile the performance
of the system. We have successfully used logstash (for pushing data), elastic (as
data storage) and kibana (presentation & BI layer) to store and analyse AgeMon’s
performance.

4 HIGH AVAILABILITY AND SELF-HEALING

The AgeMon was designed as a self-healing, high availability monitoring system.
It is used as a proof-of-concept to verify which techniques can be used to build
self-healing monitoring systems. Below we outline the key-features implemented in
AgeMon which enable high availability and self-healing.

440 W. Funika

4.1 Automatic Discovery

The automatic discovery of all the agents in the group has an impact on the high
availability. It is not required to have any kind of central registry where all agents
have to be registered – therefore there is no single point of failure. The automatic
discovery can be also considered as one of the self-healing techniques. Agent, which
is detached from a group due to a network issue, is able to automatically re-attach
to the group when the issue is resolved.

4.2 Reliable Transport Protocols

The protocols used by the AgeMon system are reliable. This means that the trans-
port layer will notify other layers that the message has been or has not been delivered
successfully to the recipient. The successful delivery means that the recipient sent
back the ACK information in order to confirm that the message had been received.
The reliability of the protocol provides also additional features like preserving the
correct order of messages or enforcing the coherency of messages.

4.3 Network Failures Tolerance

The AgeMon system can operate when there occurred a network failure. The first
line of defence is the ability to cache the messages in the designated buffer on the
agent side. If the monitoring results cannot be sent to the destination agent, the
results will be stored locally and a second phase of resolving the problems will be
triggered – finding a substitute agent (it will be described later in this section).

4.4 Lack of Single Point of Failure

The single point of failures is usually the biggest pain point which prevents the
system from being highly available. There are two aspects of dealing with single
points of failure:

• avoid the problem by introducing the correct design decisions. The Agent-
based approach guarantees that the system is decentralized. All the agents are
homogeneous, except the roles. On the other hand, the roles can be dynamically
started in order to resolve the issues in the system.

• add redundancy for the components. Whenever it is not possible to avoid the
problem, all important components should be duplicated.

4.5 Roles Redundancy

Where it is not possible to avoid the single point of failure, one of the solutions is
to enhance redundancy in the system.

Use of Self-Healing Techniques for Highly-Available Distributed Monitoring 441

AgeMon is by its nature agent-based, and all the agents are the same – the only
difference between the agents are the roles which they play. There are multiple ways
of achieving the redundancy in the AgeMon System. The first one is quite simple
and is presented in Figure 4.

Computer 1

Persistence Role

?

Rule Role

Monitoring Role A

System

Under

Monitoring

Monitoring Role A

Computer 2

Persistence Role

Computer 3

Rule Role

Figure 4. Redundancy of key components in AgeMon system

In this example, AgeMon is used to monitor the OS specific values. All the
agents are duplicated – there are two monitoring agents, two persistence roles and
two rule roles. The agents are running on different computers in case of a physical
failure.

While AgeMon supports duplication of the agents, it has several disadvantages.
The complexity of deployment is very high in case of multiple monitoring agents, and
requires a lot of redundant connections. It requires a significantly higher network
bandwidth. Therefore this type of deployment is not recommended and in most
situations it is not needed.

AgeMon provides much more sophisticated solutions which enable high avail-
ability deployment – for instance it can automatically respond on changes in the
system and add the redundancy ‘on-the-fly’ by electing the substitute agents. This
approach is described in the next subsection.

4.6 Substitute Agents – Failover

The Agents Substitution is a key feature implemented in AgeMon, which enables
high availability in the Monitoring System. It is used to elect the substitute agent
that will persist the data in the database while the original destination agent is
down. Figure 5 depicts an example usage.

In this example (Figure 5 a)), the user wants to monitor two OS capabilities:
CPU Usage and Memory Usage. After some period of time Agent 2 is killed (Fig-

442 W. Funika

P
e
rs

is
te

n
c
e
 &

 R
u
le

M
o
n
ito

rin
g

S
y
s
te

m

U
n
d
e
r

M
o
n
ito

rin
g

A
g
e
n
t-4

?

A
g
e
n
t-1

G
U

I

A
g
e
n
t-3

P
e
rs

is
te

n
c
e

A
g
e
n
t-2

C
P

U
 U

s
a
g

e

M
e
m

o
ry

 U
s
a
g
e

P
e
rs

is
te

n
c
e
 &

 R
u
le

M
o
n
ito

rin
g

S
y
s
te

m

U
n
d
e
r

M
o
n
ito

rin
g

A
g
e
n
t-4

?

A
g
e
n
t-1

G
U

I

A
g
e
n
t-3

P
e
rs

is
te

n
c
e

A
g
e
n
t-2

P
e
rs

is
te

n
c
e
 &

 R
u
le

M
o
n
ito

rin
g

S
y
s
te

m

U
n
d
e
r

M
o
n
ito

rin
g

A
g
e
n
t-4

?

A
g
e
n
t-1

G
U

I

A
g
e
n
t-3

P
e
rs

is
te

n
c
e

A
g
e
n
t-2

P
e
rs

is
te

n
c
e
 &

 R
u
le

M
o
n
ito

rin
g

S
y
s
te

m

U
n
d
e
r

M
o
n
ito

rin
g

A
g
e
n
t-4

?

A
g
e
n
t-1

G
U

I

A
g
e
n
t-3

P
e
rs

is
te

n
c
e

A
g
e
n
t-2

P
e
rs

is
te

n
c
e
 &

 R
u
le

M
o
n
ito

rin
g

S
y
s
te

m

U
n
d
e
r

M
o
n
ito

rin
g

A
g
e
n
t-4

?

A
g
e
n
t-1

G
U

I

A
g
e
n
t-3

P
e
rs

is
te

n
c
e

A
g
e
n
t-2

P
e
rs

is
te

n
c
e
 &

 R
u
le

M
o
n
ito

rin
g

S
y
s
te

m

U
n
d
e
r

M
o
n
ito

rin
g

A
g
e
n
t-4

?

A
g
e
n
t-1

G
U

I

A
g
e
n
t-3

P
e
rs

is
te

n
c
e

A
g
e
n
t-2

a
)

b
)e
)

f) c
)

d
)

F
igu

re
5.

O
verv

iew
of

th
e

election
algorith

m

Use of Self-Healing Techniques for Highly-Available Distributed Monitoring 443

ure 5 b)). The system detects such a situation and starts the failover procedure
which consists of two steps.

In the first step (Figure 5 c)) the monitoring agent creates a local buffer where
the monitoring data will be stored until the problem is resolved. This prevents from
losing any monitoring data.

The second step is focused on finding the substitute agent that can handle the
monitoring data. The election algorithm is used in order to fulfil this task (it is
possible to use different election policies). The failover monitoring link will be
automatically created and the monitoring data will be sent to the selected substitute
agent (Figure 5 d)).

At the same time, the rule agent was configured to monitor the state of the
monitoring agent. Since Agent 2 was killed, it sends an email to the administra-
tor. After some time, Administrator was able to free some space, and restart the
persistence agent (Figure 5 e)). The failover link will be deleted, and all the new
monitoring data will be sent directly to Agent 2.

In the last step of the failover/substitution algorithm the monitoring data stored
in the Substitute Agent (Agent-4) is transferred to the original destination agent
(Figure 5 f)). After this step, Agent 2 contains the complete and coherent monitoring
data.

The substitute agents are an important piece of the AgeMon system. Owing to
the election algorithms, the system can provide high availability capabilities. It can
also be considered as a self-healing strategy. While this technique does not lead to
a complete system recovery, it helps with resolving the problem. The monitoring
data will never be dropped if at least one agent can function.

4.7 Advanced Rules – Self-Healing

The rules can be triggered if the state of the Agent Group is changed, for instance,
when one of the agents is down. This simple rule can be used to define complex
actions and enable self-healing of the monitoring system. For instance, the system
can detect that one of agents is detached. Based on the log entries, the system can
decide that the agent is down due to the system restart, and try to start it again
(e.g. by executing a remote command on the server).

This is one of examples – of course, since there is no limitation for external
scripts, there are plenty of possible self-healing actions, starting with restarting
the network adapter to solve connectivity issues between agents, to ending with
removing the logs to gain free space. All these cases can be already allowed for
AgeMon.

4.8 High Availability/Self-Healing Strategies – A Summary

The roles performed by the agents have different requirements from the high avail-
ability perspective. For instance, we can use redundancy to setup the Monitoring

444 W. Funika

Role. The Persistence Role can also be setup redundantly, but it will not be effi-
cient from the disk usage perspective. A similar problem is when the Rule Role is
concerned – the same rule can be executed on multiple agents in parallel, but the
action can be triggered only on one agent.

Due to these reasons for each Role type, a different High Availability strategy
should be used:

Monitoring Role – for this type of the role, the best strategy is to combine both
agent redundancy and self-healing actions. The redundancy of the agent’s in-
stances will decrease the probability of failure. Even if such unexpected situation
occurs, the self-healing rules and actions can restart the problematic agents.

Rule Role – the cooperative rules should be used for the high availability environ-
ment. These rules can be executed/evaluated in parallel. The AgeMon system
will ensure that the action will be performed only by one instance of the agents.

Persistence Role – the approach with Substitute Agents is the best when this type
of the role is considered. In case of any type of failure (agent failure, connection
failure) the AgeMon system will elect the substitute agent which will be used to
persist the data. This will prevent from losing any monitoring results.

GUI Role and CLI Role – these types of the roles do not need to have a separate
high availability mechanism. They are not storing important data and do not
have any automated processing which should be parallelized.

Due to the roles approach used in AgeMon it is possible to develop different
high availability algorithms for different requirements. As is evident, each rule has
a different nature of operating and requires a different treatment in order to enable
high availability. Splitting the functionalities into the roles encapsulates them and
provides a good stub for implementing specific high availability algorithms.

5 SYSTEM TESTS

The first part of this section that is dedicated to testing the AgeMon System is
focused on High Availability. We will verify if the system can be used if some of its
components fail. These types of tests are referred to as destructive tests. We will
use them to validate if the self-healing techniques used in the AgeMon system are
good enough to ensure High Availability.

In the second part of the section, performance tests are presented. These types
of tests are used to determine the responsiveness and stability of the system under
different values of load. The performance tests deliver information about the scal-
ability or reliability of the system. They are followed by a description of the tests
which were used to verify what is the minimum time in which the system can react
to changes in the monitoring system.

Use of Self-Healing Techniques for Highly-Available Distributed Monitoring 445

5.1 Self-Healing Tests/High Availability Tests

In order to verify the High Availability of the AgeMon, two types of tests were
executed. The first group consists of a set of destructive tests. These tests attempt to
cause a failure in some components (e.g. random components, critical components)
in order to verify the robustness and reliability of the system. The second type of
the tests which were executed is the soak test. It is used to verify if the system
works correctly under significant load over a significant period of time.

Figure 6. Process of the election of a substitute agent

In the first test, a system that consists of 50 agents was under observation.
A half of the agents were executing monitoring scenarios, while others were used to
persist results. The configuration of the agent allows all agents to perform a persis-
tence role.

The test simulates a failure in the persistence agent. The self-healing mechanism
implemented in the AgeMon should detect this situation and try to elect a substitute
agent which can be used to persist monitoring results until the original agent is
available.

The election procedure (Figure 6) starts when a monitoring agent is not able to
send a message to a destination agent. Owing to the Agent Communication Layer,
each agent possesses the list of the active agents. If the destination agent is not
present, the election procedure is started (the election procedure is also started if
there was a failure when sending the message). At the same time all the messages
with monitoring results are stored by the agent in a local cache. The messages will
not be lost as long as there is a free memory space. A single message typically
needs 1–2 kB – it means that it is possible to keep half a million messages with
a 1 GB heap size.

At the moment of 28 ms after the failure was detected, a request to start an elec-
tion process is sent to all the agents in the group. The agent processes the request,

446 W. Funika

and based on the election policy it responds with the information which will be used
to elect an agent from the group. The monitoring agents are waiting for all responses
(or until a predefined time elapses). An average response time was between 120 and
180 milliseconds. After all the data is collected, the agent elects a substitute agent
and advertises this information to all agents. All messages cached in the monitoring
agent are sent to the elected agent.

4 s0 1 s 2 s 3 s 5 s

startup

sequence

2257 ms
agent connected to group

2374 ms
database server is started

3145 ms
database structure

is verified

Advert message

Advert message

Monitoring

Message

3145 ms
database structure

is verified

4770 ms
transfering

database

Substitute Agent

Monitoring Agent

Persistence Agent

4940 ms
transfer

completed

Monitoring

Message

1

3

4

2

2

Figure 7. Operations performed after Persistence Agent is recovered

The second test scenario covers a situation when Monitoring Agent failed (e.g.
due to the machine restart) and needs to be restarted. It presents the capability of
the monitoring system to auto-detect failures in the agent group and the flexibility
of a rule agent to execute a customized script.

For this scenario (Figure 7), a group of 20 agents is prepared. A half of the
agents are performing monitoring, 9 ones are persisting data and one is used as
a rule agent. There is one rule deployed in the system – this rule will execute
an external script in case one of the agent is detached. The script is used to connect
to the remote sever where the Monitoring Agent is installed and will try to execute
the restart script.

During the test, Monitoring Agent was killed with kill -9 command. After
about 100 ms, Rule Agent was notified by the Transport Layer about a missing
agent. During the next 140 ms the agent was executing a bash script. Monitoring
Agent was started after additional 50 ms. Therefore, the total time when the agent
was down is 295 ms. After additional 170 ms all agent’s services were started again,
and the agent was reconnected to the group.

Use of Self-Healing Techniques for Highly-Available Distributed Monitoring 447

5.2 Reliability

The total number of the messages sent during all tests is higher than 40 million.
There were different tests conducted – we tested the system under regular load,
then we performed a stress test of the system. After that the destructive tests were
conducted followed by the soak test.

In all these tests, we verified the reliability of the system (together with testing
other non-functional requirements like performance or scalability). These tests are
very promising – there was no single monitoring message missing. The system
could work with reduced performance (e.g. when load was too high) but we did not
observe any dropping messages. The tests evidence that transport layer is reliable –
all messages were delivered. In case there was a problem with network, the message
was not acknowledged – and it was retransmitted again.

There are only two cases when isolated messages can be lost. The first one can
occur when there is a failure in a monitoring agent before the message was broad-
casted to the other agents. The second situation happens when there is a failure
of the persistence agent during message processing (but before it is persisted in
the database). The theoretical solution for this problem assumes that the persis-
tence agent should acknowledge to the monitoring agent the fact that the message
is persisted. If there is no ACK message, the monitoring agent can try to:

1. retransmit the message, or

2. start an election procedure to find a substitute agent.

The drawback of both solutions is that it could reduce the overall performance of
the system (additional synchronization in the monitoring agent, additional message
in the communication layer). Therefore, we did not decide to implement it.

Fortunately, the system architecture allows avoiding both situations. For in-
stance, to avoid losing the messages in the monitoring agent we proposed duplica-
tion of those agents. The same idea applies to the persistence agents. Of course this
type of the deployment should only be considered when persisting all messages is
critical. The conducted tests have proved that losing a message is very unlikely to
happen.

There was no single message lost in all the tests – all messages (10 M during
destructive tests and 32 M during soak tests) were successfully delivered.

5.3 Performance Tests

To test the performance of AgeMon, a sample testing environment was prepared.
In this setup, there are multiple monitoring agents (the exact number depends on
the specific test scenario) installed on multiple-machines. They are monitoring CPU
usage. The monitoring data is sent to one persistence agent – the interval between
each send operation (we call delay) is defined in a scenario.

By measuring the total time of the test and comparing it with the expected
time, it will be possible to calculate overheads. If the overheads are high (cannot

448 W. Funika

be explained by network delays or serialization/deserialization of the messages) it
means that the persistence agent was not able to process so many requests.

In all the test scenarios the following servers/computers were used (connected
with Gigabit Ethernet):

• 5 × SunOS 5.10, 48 GB of memory, 2 × Intel R© Xeon R© CPU X5650 @ 2.67 GHz
(later referred to as Sun),

• 5 × Linux RedHat 5.5 (Tikanga), 30 GB of memory, 24 × Intel R© Xeon R© CPU
X5650 @ 2.67 GHz (later referred to as Linux),

• 1×Windows 7 Enterprise, 16 GB of memory, 1× Intel R© CoreTMCPU i5-3527U
@ 2.30 GHz (4 cores) (later referred to as Win7).

During the test some principal performance metrics were gathered like CPU Us-
age, Memory Usage, Threads Count, and Garbage Collector executions. The system
was monitored with a second instance of the AgeMon system running on different
ports with a different agent group. This second ‘monitoring’ system instance was
built with multiple monitoring agents and one persistence agent. The monitoring
data was extracted through a GUI agent.

Some 12 tests with different numbers of agents and messages were performed in
order to measure the differences between ‘ideal processing’ and the observed perfor-
mance. We assume here that more than 20 % difference between ‘ideal processing’
and the actual performance should be considered unacceptable.

The results were confronted with the ‘ideal processing’. The ideal processing
was calculated based on the number of messages and the delay between sending
the messages. It does not include any network delays or time used by the agent to
persist the data. Therefore, the ideal processing cannot be reached in a live system.
On the other hand, in a high performance system, the results should be close to the
ideal ones.

In order to verify if the performance of the Persistence Agent is correlated with
the number of agents, different types of configurations were used. Figure 8 presents
the results of the tests. The figure depicts the differences between the ideal situation
and the observed results (the difference is marked by pink and red colour). We can
draw multiple conclusions:

• The performance is directly related to the number of messages to be processed.
A huge amount of messages results in longer processing delays of each message.

• Persistence Agent can process 950 messages with acceptable performance. Tests
with more than 950 messages show a performance degradation (the difference
between ‘ideal processing’ and the observed performance was more than 20 %).

If AgeMon is used in an environment with a large number of messages (greater
than 1 000 messages per second), the performance may be unacceptable. In order
to resolve this issue, the user has two possible ways: multiply the number of the
persistence agents or deploy a persistence agent in the environment with a more
powerful CPU.

Use of Self-Healing Techniques for Highly-Available Distributed Monitoring 449

>
 2

0
 %

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

8
0
0

9
0
0

1
0
0
0

1
1
0
0

1
2
0
0

1
3
0
0

1
4
0
0

1
5
0
0

1
6
0
0

1
7
0
0

1
8
0
0

1
9
0
0

2
0
0
0

2
0
0

4
0
0

6
0
0

7
0
0

8
0
0

1
0
0
0

1
2
0
0

1
4
0
0

1
6
0
0

1
8
0
0

2
0
0
0

1
0
 a

g
e
n
ts

 /
 1

0
0
 m

s
1
0
 a

g
e
n
ts

 /
 1

0
0
 m

s

1
0
 a
g
e
n
ts
 / 1
0
0
 m
s2

0
 a

g
e
n
ts

 /
 2

5
 m

s

1
0
 a

g
e
n
ts

 /
 1

0
0
 m

s
3
5
 a

g
e
n
ts

 /
 5

0
 m

s

1
0
 a

g
e
n
ts

 /
 1

0
0
 m

s
6
0
 a

g
e
n
ts

 /
 8

0
 m

s

1
0
 a

g
e
n
ts

 /
 1

0
0
 m

s
9
 a

g
e
n
ts

 /
 1

0
 m

s

1
0
 a

g
e
n
ts

 /
 1

0
0
 m

s
2
9
 a

g
e
n
ts

 /
 2

0
 m

s

1
0
 a

g
e
n
ts

 /
 1

0
0
 m

s
2
2
 a

g
e
n
ts

 /
 2

0
 m

s1
0
 a

g
e
n
ts

 /
 1

0
0
 m

s
2
6
 a

g
e
n
ts

 /
 2

0
 m

s

1
0
 a

g
e
n
ts

 /
 1

0
0
 m

s
2
9
 a

g
e
n
ts

 /
 2

0
 m

s

1
0
 a

g
e
n
ts

 /
 1

0
0
 m

s
1
7
 a

g
e
n
ts

 /
 1

0
 m

s1
0
 a
g
e
n
ts
 / 1
0
0
 m
s1

0
 a

g
e
n
ts

 /
 5

 m
s

2
0
%

1
0
 a

g
e
n
ts

 /
 1

0
0
 m

s
1
0
 a

g
e
n
ts

 /
 1

0
0
 m

s

N
u
m

b
e

r
o
f
A

g
e
n
ts

D
e
la

y
 b

e
tw

e
e
n
 m

e
s
s
a
g

e
s

1
0
 a
g
e
n
ts
 / 1
0
0
 m
s5

 a
g
e
n
ts

 /
 5

 m
s

N
u
m

b
e

r
o
f
m

e
s
s
a
g
e

s
 p

ro
c
e
s
s
e
d

 p
e
r

s
e
c
o
n
d

 (
a
s
s
u
m

e
d
)

Number of messages processed per second (measured)

~
 9

5
0

1
1
5
0

1
0
 a

g
e
n
ts

 /
 1

0
0
 m

s
5
0
 a

g
e
n
ts

 /
 1

0
0
 m

s

F
ig

u
re

8.
P

er
fo

rm
an

ce
of

P
er

si
st

en
ce

A
ge

n
t

450 W. Funika

The tests results show that the system can be used to persist a big number
of messages per second. One persistence agent can successfully process over 1 000
messages per second – it should be enough for most of the monitoring cases.

In order to verify the scalability of AgeMon, some additional tests were per-
formed. In this test scenario a large number of agents were used. The first cycle of
the test started with one persistence agent and 20 monitoring agents. The monitor-
ing agents send messages to the persistence agent every 25 ms. In the next cycle the
number of persistence agents and monitoring agents is increased. For each cycle,
the performance of the system is measured. The results are given in Figure 9.

The AgeMon system can scale horizontally – as described above, the CPU could
be regarded as the biggest bottleneck. Therefore, in order to increase the number
of messages that can be processed by the system, the user may consider adding new
agents running on dedicated physical machines.

System can scale to a greater extent than that presented in Figure 9, but due to
the resource limitations we were not able to conduct more extensive tests. In order
to estimate if the system can be used in a deployment scenario with a significantly
greater number of agents instantiated we measured the overhead of the messages
that were not used to exchange the monitoring data.

From the high-level perspective, the agents exchange two types of messages. The
first group consists of messages used to transfer monitoring data between agents (in
a typical case among the monitoring agents and persistence agents). Another type
of messages is used to synchronize, detect failures and keep up-to-date the group of
agents. These messages are vital to keep the group of the agents together within
a single monitoring system.

Fortunately, the overhead generated by these messages is almost negligible. In
our tests, these messages were responsible for 3 % of the network traffic, and 8 % of
CPU. Based on that, we can draw a conclusion that the system should be able to
handle at least 12 times more agents (up to 1 200) in a single group compared to
the maximum number of agents used in the tests.

5.4 Latency in the System

Below we discuss two test scenarios which were executed to measure the latencies
in the AgeMon system. The first one is quite interesting – it answers the question:
“How long it takes the system to make a decision based on the state of the System
Under Monitoring?” The second test is important as well, since it is used to check
when the monitoring data is persisted.

The average decision time (Avgdt) is one of the most important aspects of Age-
Mon. It defines the time which is required to take a decision. This factor describes
what the maximum speed of changes in the monitored system is, which can be
successfully detected and allows the system to make a correct, healing decision.

If the monitored system is faster than Avgdt, the monitoring system may not be
able to make a correct decision. An action made by the system could not be accurate
to the prevailing conditions. In the test scenarios the observed decision in the system

Use of Self-Healing Techniques for Highly-Available Distributed Monitoring 451

was performed 36 milliseconds after a change in the measured capability had been
observed.

In the next scenario, the persistence time was measured. The goal was to mea-
sure the average time between receiving the monitoring value and storing this in-
formation in the monitoring agent. The configuration in this scenario is similar to
what was introduced in the previous test. The only difference is that a persistence
agent is substituted for the rule agent. In this scenario the time needed to commit
will be measured.

The tests show that the Monitoring Agent requires 33 milliseconds to send a mes-
sage to the Persistence Agent. After additional 11 milliseconds the message is com-
mitted to the database by the Persistence Agent. The full process took 47 milli-
seconds.

The system can operate with millisecond-long latencies. The system requires
36 ms to make a decision and 47 ms to commit a result into the database. Prior to
defining the rules, network tests need to be performed (e.g. with the PING command)
in order to measure the latency.

The biggest contribution to the latency is caused by the message serialization.
It is planned to be improved in the next versions of the system (the message can be
constructed in a binary form instead of the use of the standard Java Serialization
mechanism).

400

800

1200

1600

2000

2400

2800

3200

3600

4000

N
u
m

b
e
r

o
f

m
e
s
s
a
g
e
s
 p

ro
c
e
s
s
e
d
 p

e
r

s
e
c
o
n
d
 (

m
e
a
s
u
re

d
)

1 Persistence Agent

20 Monitoring Agents

2 Persistence Agent

40 Monitoring Agents

3 Persistence Agent

60 Monitoring Agents

4 Persistence Agent

80 Monitoring Agents

5 Persistence Agent

100 Monitoring Agents

Number of agents in the monitoring system

Figure 9. Scalability in the AgeMon system

452 W. Funika

6 CONCLUSIONS

The main goal for our research was to design a model and evaluate the algorithms
and techniques which can be used to build a highly available monitoring system.
In the paper a set of approaches has been described. Our work focuses also on the
practical verification of the requirements. In order to do this, a new monitoring
system called AgeMon was developed. This system uses an agent based, distributed
approach. Each agent can perform different roles in the system. A role groups
similar functionalities.

Role is an important concept to build a highly available, self-healing system,
since different functionalities need different strategies to solve the problems related
to high availability. The Persistence Role in the system uses substitute agents to
persist data when one of the agents fails. The Rule Role can cooperate with other
roles to provide a reliable way of executing the actions. The Monitoring role can be
dynamically restarted in case of a failure.

The model lacks any single point of failure. The communication between agents
is based on a reliable and fast protocol and provides auto-discovery. Due to it, there
is no need to have a gossip/rendezvous server. Each component in the system could
be redundant, but it is not a “must”.

The system is a proof of concept for a more generic model. This model can be
applied to build high availability systems (it does not apply only to the monitoring
systems). Such concepts like roles, communication layer, and agent abstraction can
be successfully applied in other systems.

The monitoring mechanism used by the AgeMon is very flexible. By default
it can be used to monitor OS and any Java application. If such an application
uses JMX to provide monitoring information it can be automatically used by the
AgeMon. For any other type of monitoring, an appropriate adapter needs to be
developed. In order to implement such an adapter, a single interface needs to be
implemented.

An important part of the monitoring system is providing visualisation of the
results. Charts in AgeMon support a single or multiple sources. Owing to this it is
possible to compare two different measurements (e.g. CPU or memory) on a single
chart. It is possible to zoom, scroll and print charts.

The system supports multiple types of rules and actions. AgeMon provides built-
in rules like “agent attached”, “agent detached” and rules based on the monitored
value. It is also possible to create a custom rule by providing an implementation of
a particular interface in Java. Similarly, some number of built-in actions is avail-
able (console, email, execute script, execute static call) while other actions can be
implemented by the user.

The system is fully distributed. The system supports different types of deploy-
ment – for instance it is possible that a large number of agents are installed on a single
computer. It is also possible to have one agent per physical machine. Agents can be
distributed across a local network. The distribution over WAN or Internet is also
supported. In this case the tunnelling and gossip servers need to be used.

Use of Self-Healing Techniques for Highly-Available Distributed Monitoring 453

The Persistence Role provides the persistency of monitoring results. AgeMon
provides an in-memory, relational database out of the box (HSQL). If needed, other
SQL or NoSQL databases [31] can be used.

The system can be extended and integrated with the monitored application or
other monitoring systems in a straightforward way.

The use of AgeMon is very facile. It does not require any configuration or
sophisticated deployment. The system is built inside one file (a jar file) and no
installation is required. In the default configuration (default agent group, in memory
database) no changes to the configuration is needed – the user can start agents which
will automatically discover themselves and build the monitoring system.

To summarize, it is possible to build a high-available monitoring system. The
designed self-healing approach can be very helpful in achieving this goal.

Novel concepts introduced. The AgeMon system is one of the first designed and
implemented monitoring systems with self-healing capabilities. It is also a highly
available system; it does not have a single point of failure and supports the redun-
dancy of all its components.

The model used to build the system, which is based on roles, can be used to build
other self-healing systems. This approach can be applied to other types of applica-
tions, so it is not limited only to the monitoring systems. The self-healing strategies
defined in the model can be successfully used for other types of the components.

One of the most important achievements of our work is the evaluation of a num-
ber of HA and self-healing strategies. Different problems require different solutions,
the role-based approach helps with identifying similar functionalities with the same
healing strategies.

Additionally, the communication model designed for the system can be adopted
and used in many other applications with distributed components. It supports
auto-discovery, reliable and efficient communication. The model is built with three
different layers – a physical communication layer, an agent layer, and a monitoring
layer. The monitoring layer can be easily adapted to support other types of messages,
specific to a system under design.

Acknowledgment

The Author is indebted to several people, first of all to Dr. Piotr Pȩgiel for valuable
help and to Mr. Pawe l Koperek for inspiring discussions. The research presented in
this paper received financial support from AGH University of Science and Technol-
ogy Statutory Project.

REFERENCES

[1] Perry, J. S.: Java Management Extensions: Managing Java Applications with JMX.
O’Reilly, 2002. ISBN 0-596-00245-9.

454 W. Funika

[2] Fleury, M.—Lindfors, J.: JMX: Managing J2EE with Java Management Exten-
sions. Sams Publishing, 2002. ISBN 0-672-32288-9.

[3] Laprie, J. C. (Ed.): Dependability. Basic Concepts and Terminology. Springer-
Verlag, New York, 1992, doi: 10.1007/978-3-7091-9170-5.

[4] Gray, J.: Why Do Computers Stop and What Can Be Done About It? Technical
Report 85.7., Tandem Computers, 1985, pp. 17–19.

[5] Rentschler, M.—Kehrer, S.—Zangl, C. P.: System Self Diagnosis for In-
dustrial Devices. Proceedings of 18th IEEE International Conference on Emerging
Technologies and Factory Automation (ETFA 2013), September 10–13, 2013, doi:
10.1109/ETFA.2013.6648019.

[6] The Complex Adaptive Systems (CAS) Group: Multi-Agent System. http://wiki.
cas-group.net/index.php?title=Multi-Agent_System, 2011.

[7] The Intelligent Software Agents Lab. http://www.cs.cmu.edu/softagents/intro.
html.

[8] Ghosh, D.—Sharman, R.—Rao, H. R.—Upadhyaya, S.: Self-Healing Systems –
Survey and Synthesis. Decision Support Systems, Vol. 42, 2007, pp. 2164–2185, doi:
10.1016/j.dss.2006.06.011.

[9] George, S.—Evans, D.—Marchette, S.: A Biological Programming Model
for Self-Healing. First ACM Workshop on Survivable and Self-Regenerative Systems
(SSRS ’03), 2003, pp. 72–81, doi: 10.1145/1036921.1036929.

[10] Aldrich, J.—Sazawal, V.—Chambers, C.—Nokin, D.: Architecture-Centric
Programming for Adaptive Systems. Proceedings of 1st Workshop on Self-Healing
Systems (WOSS ’02), 2002, pp. 93–95, doi: 10.1145/582128.582146.

[11] Dabrowski, C.—Mills, K. L.: Understanding Self-Healing in Service Discov-
ery Systems. Proceedings 1st Workshop on Self-Healing Systems (WOSS ’02), 2002,
pp. 15–20, doi: 10.1145/582128.582132.

[12] IBM. The IBM Autonomic Computing Initiative: http://www-03.ibm.com/

systems/z/os/zos/features/sysmgmt/autonomic/index.html.

[13] Raz, O.—Koopman, P.—Shaw, M.: Enabling Automatic Adaptation in Systems
with Under-Specific Elements. Proceedings 1st Workshop on Self-Healing Systems
(WOSS ’02), 2002, pp. 55–60, doi: 10.1145/582128.582139.

[14] Blair, G. S.—Coulson, G.—Blair, L.—Duran-Limon, H.—Grace, P.—
Moreira, R.—Parlavantzas, N.: Reflection, Self-Awareness and Self-Healing in
OpenORB. Proceedings 1st Workshop on Self-Healing Systems (WOSS ’02), 2002,
pp. 9–14, doi: 10.1145/582128.582131.

[15] Georgiadis, I.—Magee, J.—Kramer, J.: Self-Organizing Software Architec-
tures for Distributed Systems. Proceedings 1st Workshop on Self-Healing Systems
(WOSS ’02), 2002, pp. 33–38, doi: 10.1145/582128.582135.

[16] de Lemos, R.—Fiadeiro, J. L.: An Architectural Support for Selfadaptive
Software for Treating Faults. Proceedings 1st Workshop on Self-Healing Systems
(WOSS ’02), 2002, pp. 39–42, doi: 10.1145/582128.582136.

[17] Weygant, P. S.: Clusters for High Availability: A Primer of HP Solutions. Prentice
Hall, 336 pp., 2001. ISBN 978-0-13089-355-0.

https://doi.org/10.1007/978-3-7091-9170-5
https://doi.org/10.1109/ETFA.2013.6648019
http://wiki.cas-group.net/index.php?title=Multi-Agent_System
http://wiki.cas-group.net/index.php?title=Multi-Agent_System
http://www.cs.cmu.edu/softagents/intro.html
http://www.cs.cmu.edu/softagents/intro.html
https://doi.org/10.1016/j.dss.2006.06.011
https://doi.org/10.1145/1036921.1036929
https://doi.org/10.1145/582128.582146
https://doi.org/10.1145/582128.582132
http://www-03.ibm.com/systems/z/os/zos/features/sysmgmt/autonomic/index.html
http://www-03.ibm.com/systems/z/os/zos/features/sysmgmt/autonomic/index.html
https://doi.org/10.1145/582128.582139
https://doi.org/10.1145/582128.582131
https://doi.org/10.1145/582128.582135
https://doi.org/10.1145/582128.582136

Use of Self-Healing Techniques for Highly-Available Distributed Monitoring 455

[18] Richards, M.: The Secret to Bulding Highly Available Systems. No Fluff Just Stuff,
Vol. 2, 2011, No. 5. http://wmrichards.com/ha.pdf.

[19] Goel, A. L.: Software Reliability Models: Assumptions, Limitations, and Applica-
bility. IEEE Transactions on Software Engineering, Vol. 12, 1985, pp. 1411–1423, doi:
10.1109/TSE.1985.232177.

[20] Longbottom, C.: Make a High-Performance Computing and High-Availability
Datacentre. Computer Weekly, 2013. http://www.computerweekly.com/feature/
Making-your-datacentre-fit-for-high-performance-computing-and-high-

availability.

[21] Oracle: Java Management Extensions (JMX) Technology. http://www.oracle.com/
technetwork/java/javase/tech/javamanagement-140525.html.

[22] Funika, W.—Godowski, P.—Pegiel, P.— Król, D.: Semantic-Oriented
Performance Monitoring of Distributed Applications. Computing and Informatics,
Vol. 31, 2012, No. 2, pp. 427–446.

[23] Nagios Web Site: https://www.nagios.org/.

[24] Ganglia Web Site: http://ganglia.sourceforge.net/.

[25] Shehory, O.—Martinez, J.—Andrzejak, A.—Cappiello, C.—Funi-
ka, W.—Kondo D.—Mariani, L.—Satzger, B.—Schmid, M.: Self-Healing
and Recovery Methods and Their Classification. In: Andrzejak, A., Geihs, K., She-
hory, O., Wilkes, J. (Eds.): Proceedings Dagstuhl Seminar 09201 “Self-Healing and
Self-Adaptive Systems”, May 10–15, 2009, Dagstuhl, Germany, Schloss Dagstuhl –
Leibniz-Zentrum fuer Informatik, Germany, 2009. ISSN 1862-4405.

[26] Ribler, R. L.—Vetter, J. S.—Simitci, H.—Reed, D. A.: Autopilot: Adap-
tive Control of Distributed Applications. Proceedings of the Seventh Interna-
tional Symposium on High Performance Distributed Computing, July 1998, doi:
10.1109/HPDC.1998.709970.

[27] Balís, B.—Bubak, M..— Labno, B.: GEMINI: Generic Monitoring Infrastruc-
ture for Grid Resources and Applications. Proceedings of the Cracow ’06 Grid Work-
shop “The Knowledge-Based Workflow System for Grid Applications”, ACC Cyfronet
AGH, Krakow, 2007, pp. 60–73.

[28] Fahringer, T.—Seragiotto, C.: Automatic Search for Performance Problems
in Parallel and Distributed Programs by Using Multi-Experiment Analysis. In:
Sahni, S., Prasanna, V. K., Shukla, U. (Eds): High Performance Computing –
HiPC 2002. Springer Verlag, Lecture Notes in Computer Science, Vol. 2552, 2002,
pp. 151–162.

[29] Fahringer, T.—Jugravu, A.—Pllana, S.—Prodan, R.—Seragiotto,
C. Jr.—Truong, H.-L.: ASKALON: A Tool Set for Cluster and Grid Comput-
ing. Concurrency and Computation: Practice and Experience, Vol. 17, 2005, No. 2-4,
pp. 143–169, Wiley, Inc., 2005.

[30] Fahringer, T.—Seragiotto, C.: Performance Analysis for Distributed and Par-
allel Java Programs. IEEE International Symposium on Cluster Computing and the
Grid (CCGrid 2005) 2005, http://dps.uibk.ac.at/local/conferences/ccgrid/
2005/pdfs/115.pdf.

http://wmrichards.com/ha.pdf
https://doi.org/10.1109/TSE.1985.232177
http://www.computerweekly.com/feature/Making-your-datacentre-fit-for-high-performance-computing-and-high-availability
http://www.computerweekly.com/feature/Making-your-datacentre-fit-for-high-performance-computing-and-high-availability
http://www.computerweekly.com/feature/Making-your-datacentre-fit-for-high-performance-computing-and-high-availability
http://www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html
http://www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html
https://www.nagios.org/
http://ganglia.sourceforge.net/
https://doi.org/10.1109/HPDC.1998.709970
http://dps.uibk.ac.at/local/conferences/ccgrid/2005/pdfs/115.pdf
http://dps.uibk.ac.at/local/conferences/ccgrid/2005/pdfs/115.pdf

456 W. Funika

[31] Ga̧siorowska, K.—Tryba la, D.—Funika, W.: Storage of Monitoring Data in
NoSQL Database. Procedia Cracow Grid Workshop ’16, Krakow, ACC CYFRONET
AGH, Krakow, 2016, pp. 39–40. ISBN: 978-83-61433-20-0.

[32] Żmuda, D.—Psiuk, M.—Zieliński, K.: Dynamic Monitoring Framework for the
SOA Execution Environment. Proceedings of International Conference on Compu-
tational Science (ICCS 2010). Procedia Computer Science, Vol. 1, 2010, No. 1,
pp. 125–133.

W lodzimierz Funika works at the Institute of Computer
Science of the AGH University of Science and Technology in
Krakow (Poland). His main research interests are in distributed
programming, tools construction, performance analysis and vi-
sualization, machine learning. Involved in EU Cross-Grid, Core-
GRID, K-WfGrid, ViroLab, GREDIA, UrbanFlood, MAPPER,
VPH-Share projects as well as in Polish-wide projects PL-Grid,
PLGrid PLUS, PLGrid Core, and PLGrid NG.

