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Abstract. Acceleration of stencil computation can be effectively improved by uti-
lizing the memory resource. In this paper, in order to reduce the branch divergence
of traditional mapping method between the global memory and the shared memory,
we devise a new mapping mechanism in which the conditional statements loading
the boundary stencil computation points in every XY-tile are removed by aligning
ghost zone to reduce the synchronization overhead. In addition, we make full use
of single XY-tile loaded into registers in every stencil computation point, common
sub-expression elimination and software prefetching to reduce overhead. At last
detailed performance evaluation demonstrates our optimized policies are close to
optimal in terms of memory bandwidth utilization and achieve higher performance
of stencil computation.
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1 INTRODUCTION

Stencil computations mean repeated updating of values associated with points on
a multi-dimensional grid, using only values in a set of neighboring points. GPUs can
effectively accelerate this type of application such as computational electrodynam-
ics [1], the solution of partial differential equations (PDEs) which applies the finite
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difference [2], and image processing for CT or MRI imaging [3]. But for a highly
tuned implementation how to manage memory resources remains a critical problem.
The challenge is to design and implement optimized algorithms that make full use
of memory bandwidth and/or arithmetic units and to reduce inefficiencies due to
excessive memory traffic and unnecessary computations.

GPUs just like CPUs are subject to memory bandwidth bottleneck. For exam-
ple, on NVIDIA C2050, a peak double precision performance of 515 GFLOP/s and
a peak memory bandwidth of 144 GB/s can be achieved, that is to say, byte-per-flop
ratio indicating the balance of the memory bandwidth versus float-point operations
per second (FLOP/s) is 0.28. Similar performance can nowadays be achieved by the
CPU-based shared memory system, e.g., a 4-way system with a total of 482.2 GHz
Opteron cores can have a peak performance of 450 GFLOP/s and a peaked band-
width of 170 GB/s (byte-per-flop is 0.38). For all these systems the CPU delivers
more bandwidth relative to floating point computation than the GPU. What is more
important is the fact that the byte-per-flop is relatively low in both systems. This
implies that optimizing memory access and decreasing redundant memory opera-
tions is a must even for compute bound application.

In this paper, stencil computation algorithms running on NVIDIA GPUs are
optimized. Firstly, we design a novel memory mapping mechanism between global
memory and shared memory of XY-tiles which extends the classical XY-tile and
ghost zone to include the aligned data points of 32 bytes (8 words) of neighboring
XY-tile shown in Figure 2. In this way, control flow divergence due to the conditional
statement in Listing 2 can be eliminated. Secondly, in every iteration only one XY-
tile’s data are loaded into shared memory and further are copied into registers in
the next iteration. All stencil computations about this tile are made available for
these registers. Data and the partial sub-sum are stored in the temporary registers.
By this way, the saved shared memory can be used to launch more other threads.
Moreover, FLOPs have been further reduced by developing common sub-expression
elimination [4] policy for symmetric 27 points stencil computations. Finally, in our
implementation the software pre-fetching is used to overlap arithmetic and memory
instructions to the benefit of hiding memory latency.

Comparing with inter-tile communication mechanism, policy of local computa-
tion reduces the communicating overhead of stencil computation in the neighboring
tiles. Nevertheless, overlapped memory access named ghost zone overhead in the
neighboring tiles may be produced in this policy. This is because of the fact that
the data in the boundary points of XY-tile must be reloaded twice for the adjacent
XY-tiles. We analyze the efficiency of our stencil algorithms by utilizing a model
of memory traffic which takes into account the size of ghost zone due to minimum
data reloading from global memory to shared memory. From this model we conclude
that overhead due to ghost zone may be largely alleviated by correct reuse of data
onto ghost zone in global memory or texture caches. Our implementation of the
7-point stencil is bound by memory bandwidth for both single and double precision
and close to optimal on Tesla C2050, i.e., it runs only 13 % slower than a memory
loading routine without considering the ghost zone overheads.
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The rest of the paper is organized as follows. Section 2 deals with the CUDA
programming model and algorithms behind stencil computation. In Section 3 we
detail algorithm framework of stencil computation based on registers and shared
memory. Section 4 deals with new memory mapping mechanism in which ghost
zone overheads are adequately considered to reduce memory access traffic on the
GPU. In Section 5 software prefetching mechanism is analyzed. In Section 6 we
evaluate the performance of our new memory mapping mechanism. In the last
section all new ideas are concluded in this paper.

2 STENCIL COMPUTATIONS ON GPUS

A stencil computation is characterized by updating each point in a structured grid
by an expression depending on values on a fixed geometrical structure of neighboring
grid points. The simplest example is the 7-point stencil, approximation of the 3D
Laplacian operator, as shown in Figure 1 a). The update of a data point depends
on the current position and its neighbors on the left, right, front, back, above and
below. A more complex example is 27-point stencils shown in Figure 1 b), where
an update of point (i, j, k) depends on the weighted sum of point (i, j, k) and its
26 neighbors.

 

Figure 1. Stencil space structure

As an actual example, we may consider the 3D heat equation ∂u
∂t

= k∇2 where
∇2 is the Laplacian operator, and we assume a constant heat conduction coefficient
and no heat sources. The following explicit finite difference scheme can solve the
problem on a uniform mesh of points:
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The superscript n denotes the discrete time step number (an iteration), the triple-
subscript i, j, k denotes the spatial index. The quantity ∆t is the temporal dis-
cretization (the time step) and the mesh spacing is equal in all directions. Note that
in reality the formula in (1) is a 7-point computation stencil applicable only to inner
grid points on a tile, and for simplicity we have omitted treatment of the boundary
points.
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For parallel computations on GPUs there exist thousands of threads to execute
concurrently to hide memory and instruction latency: once active threads stall, warp
scheduler chooses the ready threads in round robin mode. On the fine-grained level
threads are arranged into completely synchronous groups of 32 threads named as
one warp. Different warps are scheduled for execution independently of each other
by the Streaming Multiprocessors (SM). Individual thread within the same warp is
allowed to take a different execution path if conditional statements happen. How-
ever, since threads in a warp execute common instructions at a time, one execution
path in one branch of that warp is disabled until different execution paths merge
again. Consequently, control flow divergence significantly increases the number of
the executing instructions to the sum of the instruction counts of all execution paths
taken. In this situation, it is more beneficial to take branch-free implementation into
consideration, especially when optimizing compute bound software.

Warps may be further grouped into 1D, 2D or 3D regular thread blocks. Warps
belonging to the same thread block are executed on the same SM. The order in
which different thread blocks are executed is random. Threads within a thread
block can quickly synchronize and exchange data through a common shared memory.
The position of a thread inside a block is described by a set of local threadIdx.x,
threadIdx.y and threadIdx.z indices. Each thread block has a similar set of indices
(blockIdx.x, blockIdx.y, blockIdx.z) locating the position of the block in the global
data grid. In one policy of 3D stencil computations the grid is processed using 3D
thread blocks [5]. Based on blockIdx and threadIdx coordinates threads compute
global indices (i, j, k) of the processed data points.

A great many stencil optimization techniques have been previously suggested.
Micikevicous [6] gave an implementation of 3D stencil (FDTD3d) in which the shared
memory is used to load XY-tiles and registers are made available to save shared mem-
ory space. Phillips and Fatica [7] utilized the removing logic to reduce the number
of conditional statements and made 4 texture caches available. So its memory access
latency overheads increased. Recently Zhang et al. [8] statically allocated ghost zone
data to threads during initialization of the thread blocks. In addition, the method
avoids conditional statements, but its ghost zone in the Y-dimension are loaded in
non-coalesced way. This might also lead to degraded performance.

In our memory mapping mechanism all updated stencil data in every computed
point must be written into global memory. But in some applications the intermediate
updated data require no writing into the global memory immediately in the defined
stencil (e.g. Wave propagation solver, Jacobi solver). In this case, the temporal
block optimization [5, 11, 13] could make time-dimension data available to speed up
stencil computations for less memory access.

Many researchers have proposed automatic stencil code generation and perfor-
mance tuning for modern multi-core heterogeneous architectures. The auto-tuning
method searches through the space of parameters which may degrade performance,
such as loop unrolling factor, types of memory and thread block size. This method
demonstrates a portable high performance across different architectures and stencil
types. Datta et al. [4] developed an auto-tuning framework for stencil computa-
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tions, targeting multi-core systems, NVIDIA GPUs or Cell SPUs. Zhang et al. [8]
and Christen [10] also developed the tuning framework to optimize performance
on the GPU. Tang et al. [14] projected the Pochoir stencil compiler which uses a
domain specific language embedded in C++ to produce high performance code for
stencil computations using cache-oblivious policy for parallelism. Unat et al. [15]
suggested a compiler framework named Mint using annotated C as the front-end
and converting stencil computation into C code by utilizing pragmas with several
levels of optimization.

In this paper a more efficient and widely used 2.5D blocking policy [6] is applied.
Two-dimensional data points are used to tile the grid in the XY-plane and provide
threads with the (i, j) indices of the grid points. A loop is then used to traverse
the grid in the Z-dimension, providing additional k index. In this way there are no
Z-dimension ghost zone in the 2.5D policy since data are processed by the thread
block plane by plane. This guarantees data reuse in the neighboring XY-tile along
Z-dimension and reduces plenty of memory bandwidth requirements. So this policy
is superior to using 3D thread blocks because of data reuse and reduced shared
memory requirements in 2.5D blocking policy. What is more, in 2.5D policy the
initialization cost of the thread blocks (computing thread and grid indices, setting
boundary conditions, etc.) is decreased over a larger number of grid points processed
by every thread.

3 MORE EXPLOITATION OF REGISTERS
IN STENCIL COMPUTATION

A novel pseudo-code implementation of stencil computation is presented in Listing 1.
In registers r1, r2, . . . , r9, values of stencil points of the same XY-plane are stored.
Sub-routine load block ghost loads the whole XY-plane tile including ghost zone
into shared memory space: sh m from global memory; in sub-routine sh m regs,
9 values around stencil computation point (i, j, k) in the same XY-tile plane are
copied to the registers from shared memory; in the function stencil compute1, only
the partial sub-sum is computed by adding the weighted values stored in current
registers r1, r2, . . . , r9, namely, the partial stencil result of the single XY-tile is
produced by making all coefficients of the stencil kernel available to the data in one
k-loop iteration.

The algorithm shown in Listing 1 runs a series of steps to finish all stencil
computations. In line 9 and line 12 the input data of the first XY-tile and the
second XY-tile are loaded into registers from shared memory, respectively. The
updated value of every computed point is the sum of the weighted value of its
neighboring points which belong to the three different planes being adjacent to
each other, likewise, this value is equal to the sum of 3 partial sub-sums which can
be computed by their corresponding stencil expressions in three different adjacent
planes. So in line 11 and line 14 two partial sub-sums are computed for the first
XY-tile plane and the second XY-tile plane, respectively. In line 15 the sum of
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these partial sub-sums for the present two planes is stored in the temporary variable
inter1 (the corresponding PTX code is the register). In line 18 the input data of the
third XY-tile of the current iteration are loaded into registers from shared memory.
In line 19 the input data of the third XY-tile of the next iteration are loaded into
shared memory from global memory or texture cache. In line 21 the loaded data of
the third XY-tile in line 18 are used to compute the partial sub-sum of the third
XY-tile and the first stencil computation result is obtained by further adding the
value of inter1. Lines 22 and 23 initialize the subsequent iterations. In lines 25
and 26 the updated stencil value of the last XY-tile is computed. In the loop code
beginning from line 17 only the data of the third XY-tile are loaded into the registers
and can be used to compute the updated stencil value of the current iteration while
the partial sub-sum of the other two XY-tiles comes from the temporary value inter1
of the last iteration. So the registers are fully utilized by our stencil computation
and the saved shared memory can be allocated to more threads.

1 g l o b a l void s t enc i l c ompute ( in , out , nx , ny , nz )
2{

// shared memory f o r data po int
3 extern sha r ed f l o a t sh m [ ] ;
4 const u int t i l e x=threadIdx . x ;
5 const u int t i l e y=threadIdx . y ;

// the temporary s to r ed data in r e g i s t e r s f o r XY−t i l e
6 f l o a t r1 ˜ r9 ;

// r e g i s t e r s f o r p a r t i a l s t e n c i l sub−sum
7 f l o a t in t e r1 , i n t e r 2 ;

// load data in to the shared memory f o r the f i r s t XY−plane
8 l o a d b l o c k g h o s t ( in , f i r s t , t i l e x , t i l e y , sh m ) ;
9 sh m regs ( sh m , t i l e x , t i l e y ) ;

// load data in to the shared
10 l o a d b l o c k g h o s t ( in , second , t i l e x , t i l e y , sh m ) ;

// memory f o r the second XY−plane
// p a r t i a l s t e n c i l sub−sum f o r the f i r s t XY−plane

11 i n t e r 1=stenc i l compute1 ( r1 ˜ r9 ) ;
12 sh m regs ( sh m , t i l e x , t i l e y ) ;

// load data in to shared memory f o r the t h i rd XY−plane
13 l o a d b l o c k g h o s t ( in , th i rd , t i l e x , t i l e y , sh m ) ;

// p a r t i a l s t e n c i l sub−sum f o r second XY−plane
14 i n t e r 2=stenc i l compute1 ( r1 ˜ r9 ) ;

// p a r t i a l s t e n c i l r e s u l t obta ined by the sum of
// the v a r i a b l e s i n t e r 1 and i n t e r 2

15 i n t e r 1+=i n t e r 2 ;
16 out+=ix+iy ∗nx ;
17 f o r ( u int k=3;k<nz−1;k++){

// load data in to r e g i s t e r s from the shared
// memory f o r the t h i r d XY−plane

18 sh m regs ( sh m , t i l e x , t i l e y ) ;



Accelerating Stencil Computation on GPGPU by Novel Mapping Method 539

// i n i t i a l i z e the next i t e r a t i o n
19 l o a d b l o c k g h o s t ( in , k , t i l e x , t i l e y , sh m ) ;
20 out+=nx∗ny ;

// update cur rent XY−t i l e
21 out [0 ]= i n t e r 1+stenc i l compute1 ( r1 ˜ r9 ) ;

// i n i t i a l i z e the next i t e r a t i o n
22 i n t e r 1=i n t e r 2+stenc i l compute1 ( r1 ˜ r9 ) ;
23 i n t e r 2=stenc i l compute1 ( r1 ˜ r9 )
24 }
25 sh m regs ( sh m , t i l e x , t i l e y ) ;

// update the l a s t XY−t i l e
26 out [0 ]= i n t e r 1+stenc i l compute1 ( r1 ˜ r9 ) ;
27 }

Listing 1. Algorithm framework of stencil computations

The popular implementation of stencil solution is made by a holistic stencil
computation, that is to say, for every stencil computation tile k, all adjacent stencil
data in k − 1, k and k + 1 tiles are loaded into shared memory or registers of the
thread block and are computed by stencil expression. Reusing the k and k − 1
input tiles in the production of the next k + 1 tile relies on circular queue [7]. In
contrast, our implementation of stencil solution is achieved by the accumulation of
multiple partial stencil results. In every partial stencil calculation in a sub-routine
stencil compute1 only one XY-tile data are loaded into registers. The acquired
partial stencil results are accumulated in registers inter1 and inter2. Once stencil
result accumulated from the adjacent three XY-tiles has finished this result is stored
in the output array.

4 MEMORY MAPPING MECHANISM AND OPTIMIZATION

4.1 The Classical Memory Mapping Mechanism

The classical memory mapping algorithm from global memory to shared memory is
illustrated with Listing 2, in which one XY-tile data are loaded into shared memory.
The homogeneous implementation can be found in [6, 7]. In Listing 2 the adjacent
indices of the computed stencil point are shown here only for comprehensibility.
Actually, all indices are pre-computed before the k-loop at the beginning of the
routine stencil compute. Since the single thread computes all stencils points along
the Z-axis, only the k-index changes and needs to be updated in the k-loop.

In line 6 data in a stencil point corresponding to one thread’s ID is loaded into
shared memory. The ghost zone is loaded into shared memory by boundary threads,
which are shown from line 7 till line 11. From this figure we can find that there
are many lines of conditional statements which can effectively aggregate control
flow divergence of threads in one warp and increase the total number of executed
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instructions. By utilizing texture cache as shown in [7] the conditional statements
have been removed and redundant loads of global memory have been prevented.
But the texture cache is not designed to reduce latency, thus texture loads have
similar cost of global loads regardless of whether or not there is a cache hit. In order
to shun the conditional statements Zhang and Mueller [8] statically allocated ghost
zone points to the individual threads at the start of the stencil routine. The threads
first load the interior data points of XY-tile into shared memory then load ghost
zone. Depending on the thread block size, some threads are loading the allocated
ghost points while many other threads may be idle until all branches in one warp
converge. On the other hand, the X-dimension ghost zone points are not loaded into
the shared memory in a coalesced way.

1 l o a d b l o c k g h o s t ( in , k , t i l e x , t i l e y , sh m )
2 {
3 u int bx=blockDim . x+2;
4 u int mx = blockIdx . x∗blockDim . x + threadIdx . x ;
5 u int my = blockIdx . y∗blockDim . y + threadIdx . y ;
6 sh m [ t i l e x+t i l e y ∗bx]= in [mx+my∗nx+k∗nx∗ny ] ;

// top and bottom ghost zones
7 i f ( t i l e y ==1) sh m [ t i l e x +( t i l e y −1)∗bx]= in [mx+

(my−1)∗nx+k∗nx∗ny ] ;
8 i f ( t i l e y==blockDim . y ) sh m [ t i l e x +( t i l e y +1)∗bx ]

=in [mx+(my+1)∗nx+k∗nx∗ny ] ;
// l e f t and r i g h t ghost zones

9 i f ( t i l e x ==1) sh m [ ( t i l e x −1)+ t i l e y ∗bx]=
in [mx−1+my∗nx+k∗nx∗ny ] ;

10 i f ( t i l e x==blockdim . x ) sh m [ t i l e x+1+t i l e y ∗bx]=
in [mx+1+my∗nx+k∗nx∗ny ] ;

// corner ghost zones
11 i f ( t i l e x==1&&t i l e y ==1)
{sh m [ t i l e x −1+( t i l e y −1)∗bx ] = in [mx−1 + (my−1)∗nx

+ k∗nx∗ny ] ;
sh m [ t i l e x −1+( t i l e y +1)∗bx ] = in [mx−1 + (my+1)∗nx

+ k∗nx∗ny ] ;
sh m [ t i l e x +1+( t i l e y −1)∗bx ] = in [mx+1 + (my−1)∗nx

+ k∗nx∗ny ] ;
sh m [ t i l e x +1+( t i l e y +1)∗bx ] = in [mx+1 + (my+1)∗nx

+ k∗nx∗ny ] ;
}

12 syncthreads ( ) ;
}

Listing 2. Ordinary memory mapping algorithm



Accelerating Stencil Computation on GPGPU by Novel Mapping Method 541

4.2 Modeling Memory Mapping Mechanism

The purpose of modeling the memory mapping mechanism is to evaluate the ef-
ficiency of our stencil implementation in terms of memory bandwidth usage and
memory overhead due to redundant data access to ghost zone. We will calculate the
theoretical minimum and the algorithm constrained minimum amount of memory
traffic in a single stencil computation, respectively.

Theoretically, for the global stencil memory access operations, the value of data
points is loaded into shared memory once and computed, and then the result is
written back to global memory once. If 4 bytes of data points are assumed for single
precision floating point (SPFP) the number of bytes of memory traffic per data point
is 8 bytes (4 bytes for loading and 4 bytes for writing).

For GPUs, different thread blocks executed on the stream multi-processors run
independently and cannot access each other. Therefore, in stencil computation every
thread block has to load the interior data of XY-tile and a layer of adjacent values
targeting to calculate stencil value of peripheral points of XY-tile. The values of
this peripheral layer of every XY-tile are often referred to as the ghost zone or halo
which simultaneously are interior values of adjacent thread blocks. Thus, all in all,
(blockDim.x + 2) ∗ (blockDim.y + 2) values of every XY-tile must be loaded into
shared memory. Consequently, memory access is increased since some of the data
are loaded more than once: first as interior data of XY-tile, again as the ghost zone
of adjacent XY-tile. Of course, this repetitive access overhead can be lessened by
enlarging the XY-tile perimeter, which produces a smaller ratio between the number
of data points of ghost zone and that of interior data points in one XY-tile. Since
the threads in different thread blocks cannot access each other, overhead of loading
ghost zone cannot be explicitly eliminated and should be added to memory traffic
of per data point.

Memory access must be aligned by 32, 64 or 128 bytes on GPUs. So loading data
from global memory and writing data into global memory should be performed in
a coalesced manner, in other words, threads in a warp should access the consecutive
addresses within the aligned data segments. If the size of the thread block and the
most frequently changing dimension of the tile is a multiple of the warp size full
memory coalescence can be reached [9]. Generally, loading and writing of interior
data of block can be fully coalesced so long as the tiles are properly partitioned.
Since the values of the top and below Y-dimension ghost zone can also be correctly
aligned in the memory accesses they are also loaded in a coalesced manner. But
loading left or right X-dimension ghost zone becomes more challenging from the
point of view of performance because of their non-consecutive memory access. If
one tile has a thread block size of bx*by and ghost zone width of 1 the minimum
number of the loading data values from the global memory is bx∗by+2bx+2(by+2)∗
32/sizeof(float point number), where sizeof(float point number) is size of the data
value in bytes: 4 and 8 bytes for single and double precision number, respectively.
The number of points respectively in the interior tile and the top and bottom ghost
zone is bx∗by and 2 bx in a tile. Since the number of the minimum transaction bytes is



542 T. Mo, R. Li

the aligned 32 bytes, the minimum number of the loading data values for loading left
and right ghost zone is 2(by + 2) ∗ 32/sizeof(float point number). Further for single
precision floating point numbers the loading number of one tile can be simplified as

bx ∗ by + 2bx + 2(by + 2) ∗ 8 = bx ∗ by + 2bx + 16by + 32. (2)

The expression (2) accounts for the minimum loading number of SPFP values in-
cluding the ghost zone overhead produced by loading all data of XY-tile. One way
to lessen the memory overhead is to enlarge the thread block. On the contrary, for
some GPUs we can make use of the global memory caches to lessen the memory
overhead, which can guarantee that a fewer number of data points in one XY-tile
are directly loaded from global memory than the expression (2). In our tests on the
Fermi-based Tesla C2050 with L1 and L2 global memory caches the global memory
overhead brought by ghost zone can be partly or entirely cleared up if the data
among different XY-tiles are reused appropriately. But for this maximized reuse
the scheduling order of warps must be controlled and cannot be implemented in the
current GPUs.

4.3 New Memory Mapping Mechanism

For expression (2) it must be divisible by 32 for more coalesced memory accesses in
32 threads of one warp, that is to say, the value of expression (bx ∗ by + 2 ∗ bx +
16 ∗ by + 32) mod 32 is zero. So bx and by must be equal to a multiple of 16 and 2,
respectively. Further, in our test on Tesla C2050 with CUDA toolkit Visual Profiler
if the size of XY-tile is 32× 6, all warps show higher occupancy (defined as Active
Warps/Maximum Active Warps). Then the picked XY-tile size is 32 × 6. On the
other hand, for the ghost zone in every XY-tile Y-dimension width is 2 lines (top
and bottom) and X-dimension aligned overhead is 16 words or 64 bytes (for SPFPs
8 words or 32 bytes on left and right side, respectively). So the size of loaded tile
is 48 × 8, as shown in Figure 2. In order to eliminate threads divergence brought
by conditional statements in Listing 2 all threads may be mapped onto two threads
blocks of size 48×4. The detailed pseudo-code implementation is shown in Listing 3.
In this way, the number of bytes of memory traffic per data point is 12 bytes (4 bytes
in writing and 8 bytes in loading which consists of 4 bytes data and 4 bytes ghost
zone overhead).

 

Figure 2. New-mapped XY-tile
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1 load b lock ghos t new ( in , k , sh m )
2 { // change in to one dimension index
3 u int index= ( threadIdx . y ∗ blockDim . x ) + threadIdx . x ;
4 u int t i l e y 1=index /48 ;
5 u int t i l e y 2=t i l e y 1 +4;
6 u int t i l e x=index %48;
7 i n t i x = blockIdx . x∗blockDim . x + t i l e x − 8 ;
8 i n t iy1 = blockIdx . y∗blockDim . y + t i l e y 1 − 1 ;
9 i n t iy2 = blockIdx . y∗blockDim . y + t i l e y 2 − 1 ;
10 // load ing the data in to the shared memory
11 sh m [ t i l e x + t i l e y 1 ∗48 ] = in [ i x + iy1 ∗nx + k∗nx∗ny ] ;
12 sh m [ t i l e x + t i l e y 2 ∗48 ] = in [ i x + iy2 ∗nx + k∗nx∗ny ] ;
13 syncthreads ( ) ;
}

Listing 3. New memory mapping algorithm

In global memory writing full coalescence can be achieved for the proper block
size. If all interior data points of tile have an appropriate alignment in the mem-
ory, that is to say, for every thread block, every interior data value always starts
a 128-byte aligned global memory address, writes of every warp can be coalesced
into one 128-byte access on the GPU Compute Capability 2.0 architecture or into
two 64-byte accesses on the GPU Compute Capability 1.x architecture. On the con-
trary, loading data in one warp may demand two shared memory accesses for some
warps. The mapping to a thread block size of 48× 4 produces misalignment, since
48 is not divisible by 32, namely, some warps have to access non-contiguous memory
areas. Further the accessed data on the left ghost zone starts with a 32-byte offset
from the 128-byte aligned interior data. In this way, one loading operation may be
performed by the hardware as a combination of a separate 32-byte access and at
least one other access. But it does not reveal significant penalty by our performance
tests if the data is accessed by textures.

5 SOFTWARE PREFETCHING

Software prefetching is a well-known technique to overlap memory access latency
with computation. In our prefeching mechanism the prefetched data in a k-iteration
is used for stencil computation in (k + 1)-iteration. Concretely, this prefetching
mechanism is implemented in the following sequence of Listing 1.

1. load block ghost – initialize the stencil computation by loading the first two XY-
tiles from the global memory or texture cache to the shared memory (in line 10
and line 13).

2. sh m regs – copy the data loaded from the shared memory in the previous itera-
tion to register for the current partial stencil computation sub-sum (in line 18).
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3. load block ghost – load data for the next iteration from global memory or texture
cache to the shared memory (in line 19).

4. stencil compute1 – compute the weighted sub-sum value for one XY-tile in the
current iteration by utilizing data in registers (in line 21–23)

5. go to step 2 (iteration of the k-loop).

The data loaded from the global memory in step 3 is not promptly used in the
current iteration. But the computations in step 4 are dependent on the data of
being copied into registers in step 2, namely in the current iteration, which is loaded
into the shared memory in the previous k-loop iteration. Therefore, operations of
steps 3 and 4 can be overlapped by the hardware as they have no common operands.
In this way, the global memory access latency can be hidden by performing the
arithmetic instructions in step 4. While the warp scheduling mechanism can overlap
arithmetic operations and memory access operations our prefetching method has
more opportunity for the scheduled warps and leads to a higher occupancy.

6 PERFORMANCE EVALUATION

In our performance evaluation performance constraints of the available memory
bandwidth are evaluated by memory bandwidth benchmarks and the memory map-
ping mechanism above. The computation constraints are evaluated by counting the
number of instructions in the assembly PTX code produced by the compiler.

Architecture Clock Cycle Peak Memory SPFP DPFP
Bandwidth Performance Performance

GHz GB/s GFLOP/s GFLOP/s

Tesla c2050 1.115 144 1 030 515

Table 1. Performance characteristics of Tesla C2050

First, we run a memory transit routine with zero-overhead shown in Listing 4
for 3D cube grids of single precision data whose memory access traffic per data
point is 8 bytes (4 bytes for loading and writing respectively). Since there is no
communication among different XY-tile threads and no ghost zone overhead for this
transit routine, we can get the theoretical lower bound memory access throughput
and an absolutely idealized constraint on stencil performance. Secondly, we run the
routine transmitting all the data which has a thread block size of 32×6, Y-dimension
bottom and top ghost zone width of 1, respectively, and aligned X-dimension left and
right ghost zone size of 8 words, respectively. Then we can evaluate the efficiency
and memory overhead of our new memory mapping mechanism by comparing the
results of two benchmarks. Thirdly, we estimate how close the single precision float
stencil computation by our novel memory mapping mechanism is to the theoretical
lower value of 8 bytes per data point in memory access without the overhead of
ghost zone. Finally, we compare the performance among different implementations
of stencil computation.



Accelerating Stencil Computation on GPGPU by Novel Mapping Method 545

We measure the performance on Tesla C2050 with error correction turned off
whose main hardware performance parameters are enumerated in Table 1. During
the tests we guarantee the grid size nx and ny is multiples of the thread block
size. All the codes were compiled by utilizing NVIDIA CUDA 5.0 for the 2.0 GPU
architecture.

1 g l o b a l void c u b e t r a n s i t ( source , target , nx , ny , nz )
2 {
3 const i n t ix=blockIdx . x∗blockDim . x +threadIdx . x ;
4 const i n t iy=blockIdx . y∗blockDim . y+threadIdx . y ;
5 For ( i n t k=0;k<nz ; k++)
6 t a r g e t [ i x+iy ∗nx+k∗nx∗ny]= source [ i x+iy ∗nx+k∗nx∗ny ] ;
7 }

Listing 4. Zero-overhead memory transit routine

6.1 Measure Memory Bandwidth of Traffic Without Ghost Zone Over-
head

The global memory bandwidth is estimated by running the benchmark in Listing 4.
The k-loop structure in cube transit routine represents the loading and writing of
2.5D-blocking implementation. We measure the latency of transmitting a 3D data
cube of SPFP values inside the global memory. The effective memory bandwidth
can be calculated by the expression

nx · ny · nz · (bytes per point)

t · 230
(GB/s) (3)

where t is the latency in seconds of one cube transit call and can be obtained by n
executions of cube transit and the bytes per point is 8 bytes. In Table 2 we give the
calculated bandwidth bytes per point (BPP), iteration time t and the throughput
in data points per second gained by cube size of 256 × 256 × 256. Similarly, the
throughput in the selected two other cube sizes of 192 × 192 × 192 and 512 ×
512 × 512 can also be calculated easily. So in the last column of Table 2, the
average throughput is produced by the three different cube sizes. The average
memory bandwidth of cube transit is approximately 75 % of the theoretical memory
bandwidth on Tesla C2050 (comparing with Table 1).

Architecture cube transit
256× 256× 256 Avg. Throughput

BPP [GB/s] [GP/s] t [s] [GP/s]

Tesla C2050 112.7 14.1 1.20E−03 1.35E+01

Table 2. Memory bandwidth tests using benchmark cube transit
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6.2 Measure Memory Bandwidth of New Memory Mapping Mechanism

The efficiency of our new memory mapping mechanism can be analyzed by the
routine cube ghost transit shown in Listing 5. What is more, by simply configuring
data type and parameters of texture cache, this mapping policy shows increasing
performance improvements in texture cache. Table 3 accounts for this result for
cube 256 × 256 × 256, where the memory bandwidth BPP is calculated by the
expression (3) but the value of bytes per point is 12 bytes.

In comparison with the peak memory bandwidth (144 GB/s) given in Table 1
the throughput (12.8 × 12 = 153.6 GB/s) of our texture access implementation
given in Table 3 shows much advantage on Tesla C2050. It means there is much
reuse of data in the ghost zone in the texture caches. In fact, we have proved
it by using tools of Visual Profiler. On the other hand, It is significantly slower
(8.7 × 12 = 104.4 GB/s) to have access to the global memory for reduced data
reuse. All these results demonstrate the texture caches can effectively eliminate the
performance downside of the misalignment brought by ghost zone.

1 g l o b a l void c u b e g h o s t t r a n s i t ( in , out ,nx , ny , nz )
2 {
3 const i n t ix=blockIdx . x∗blockDim . x+threadIdx . x ;
4 const i n t iy=blockIdx . y∗blockDim . y+threadIdx . y ;
5 const u int t i l e x=threadIdx . x ;
6 const u int t i l e y=threadIdx . y ;

// c a l c u l a t e the g l o b a l and shared memory i n d i c e s t1 ,
// t1 , t2 , i 1 and i 2 ac t s l i k e L i s t i n g ˜3

7 out+=ix+iy ∗nx ;
8 f o r ( i n t k=0;k<nz ; k++) {
9 sh m [ t1 ]= in [ i 1 ] ;
10 sh m [ t2 ]= in [ i 2 ] ;
11 i 1+=nx∗ny ;
12 i 2+=nx∗ny ;
13 syncthreads ( ) ;
14 out [0 ]= sh m [ t i l e x +8+( t i l e y +1)∗48 ] ;
15 out += nx∗ny ;
16 syncthreads ( ) ;
17 }
18 }

Listing 5. Bandwidth measure routine with ghost zones

The average transferred number of points of cube in our new global memory
mapping routine cube ghost transit is computed as 12.8 GP/s in Table 3 in contrast
to 13.5 GP/s in routine cube transit shown in Table 2. Explicitly there is no ghost
zone overhead in the running of the former. But ghost zone overhead (only reading
the ghost zone and no writing the ghost zone) exists in the running of the latter.
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So the average throughput of the latter is less than the former, that is to say, the
latter needs more bytes of memory accesses traffic than the former in processing
a data point of XY-tile. Further since the memory access traffic of the former is 8
bytes/point (4 bytes in reading and writing respectively) the effective memory access
traffic of the latter can be computed as 13.5/12.8× 8 = 8.4 bytes per data point in
every XY-tile which is approximately 5 % more than the idealized memory access
traffic lower bound value of 8 bytes per data point (without the ghost zone overhead).
From Table 3 evidently the average performance is inferior to that achieved by
256× 256× 256 cube, which is due to a lower cache reuse as can be revealed by the
Visual Profiler of NVIDIA performance tools.

Architecture Memory Type cube ghost transit
256× 256× 256 Avg. Throughput

BPP [GB/s] [GP/s] t [s] [GP/s]

Tesla C2050 Global 126 10.5 1.61E−03 8.7
texture 161 13.4 1.26E−03 12.8

Table 3. Memory bandwidth tests using benchmark cube ghost transit

6.3 Performance of Single Precision Floating Point Stencil Computation

There are 53 FLOPs (27 multiply and 26 add operations in all) in the PTX as-
sembly code of the general 27-point stencil. By utilizing Common Sub-expression
Elimination the number of FLOPs can be reduced to 18. On Tesla C2050 suc-
cessive multiplication and addition operations are combined into a single hardware
instruction: Fused Multiply Add (FMA). We summed up the assembly of the stencil
routines compiled for Tesla C2050 GPU by using cuobjdump. There are 53 instruc-
tions in an iteration of the k-loop, including 27 floating point instructions (26 FMA
and 1 FMUL) and other auxiliary instructions for loop branch, memory access, data
copying and thread synchronization. If all instructions are executed with the peak
floating point instruction number of 515 billion instructions per second, the com-
puted maximized throughput for the general 27-point stencil is 515/53 = 9.7 GP/s.

Listing 2 reveals the throughput of general 27-point stencil computation on
Tesla C2050, along with memory bandwidth by the cube ghost transit routine and
the computed constraint (9.7 GP/s) above. For the general 27-point stencil the con-
straint of the maximized instruction throughput is lower than the streaming memory
bandwidth of cube ghost transit routine, therefore the 27-point stencil implementa-
tion is compute bound. In Figure 3, the 27-point stencil performance verges on
the computed constraint above. This demonstrates that the time to access memory
largely overlaps with the time to execute the instructions through GPU hardware.
There are two reasons for it. Firstly, the implementation has a high occupancy,
namely, there is a large number of resident warps per stream multi-processor. Con-
sequently, when stencil data is transited there is a high likelihood that the stream
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multi-processors schedule instruction to execute for some warps. Secondly, the soft-
ware prefetching leads to an explicit overlap between the memory transit and com-
putations.
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Figure 3. Bandwidth comparison among 27-point stencil, cube ghost transit routine and
the computed constraint

In Table 4 the average performance of our stencil computation is given. The per-
cent fraction of the peak Instruction per Cycle (IPC) is acquired by Visual Profiler.
On average, the stencil routine is executed at 93 % of peak IPC and acquires ap-
proximately 46 % of the peak FLOP/s performance. In the last column, the percent
fraction of the cube ghost transit routine throughput is listed as 71 % and achieves
relatively lower fraction of the streaming memory bandwidth. This indicates that
27-point stencil is compute bound for Tesla C2050.

Architecture 27-Point Stencil
IPC [GP/s] GFLOP/s cube ghost transit
[%] [%]

Tesla C2050 93 9.1 472 71

Table 4. Average performance of single precision 27-point stencil

We ran the tests ourselves in the best thread block size of FDTD3d 7-point
stencil [6] and listed the result in Table 5. From this table our new mapping im-
plementation is almost twice faster than FDTD3d on Tesla C2050. It demonstrates
that the loading policy of the shared memory has a great impact on performance.
From the generated PTX code in the FDTD3d implementation 100 instructions
are approximately generated in one iteration of the k-loop like Listing 1. In this
NVIDIA’s implementation, traditional loading policy is made available. However,
the control flow divergence in traditional policy leads to non-synchronization of
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32 threads in one warp, namely, two different groups’ sequential execution. In this
way, NVIDIA’s implementation brings more instructions. The performance of the
tuning framework devised by Zhang et al. [8] and Christen [10] listed in Table 5 is
inferior to ours. It is because of the fact that the control flow divergence of warps
brought by conditional statement is removed and higher occupancy holds due to
our problem-specific hand-tuned optimization. But for another problem domain in
which the intermediately processed data requires no writing into the global memory
immediately in a stencil computation, a higher performance demonstrates with tem-
poral blocking pipeline on the GTX 285 in Table 5 by Nguyen et al. [11], which is
approximately 1.4 higher than ours. Recently in Naoya et al. [16] their stencil orig-
inal data in ghost zone are approximately replaced by the data of nearby boundary
points in the same computed XY-tile. So the communication overheads among dif-
ferent thread blocks require no consideration. Its optimized performance can reach
131.4 GFLOP/s shown in Table 5.

6.4 Performance of Double Precision Floating Point Stencil Computation

Table 5 also summarizes the performance of different kinds of stencil implementa-
tions. In the last two columns results of some double precision stencils are listed.
Since processed data of double precision computation are twice as large as those of
single precision memory bandwidth bound double precision implementation should
perform roughly at 50 % of the single precision throughput. This case can be re-
vealed by our implementation of 7-point stencil shown in Table 5. However, for
the compute-bound 27-point stencil performance of double precision is only 32 %
performance of single precision. Further by Nvidia’s cuobjdump tool the total num-
ber of instructions of double precision implementation is about 91 more than that
of single precision implementation. It is because of the fact that the coefficients
of the stencil kernel are stored in the constant memory of Tesla C2050. For the
single precision case the instructions get stencil coefficients directly from the con-
stant memory, but for the double precision case the compiler remarkably produces
additional instructions which load the coefficients from the constant memory to the
registers. In this way, the occupancy decreases due to a relatively larger register
usage. In reverse, the double precision implementation of 7-point stencil stores the
coefficients in registers and achieves a relative 50 % more float point than its single
precision version.

7 CONCLUSIONS

In this paper, we have devised a new memory mapping mechanism between shared
memory and global memory to remove the conditional statement of the surrounding
XY-tile stencil computation points by combining coalesced memory accesses of the
GPU with aligned ghost zone overhead. In addition, in our stencil computation
only one XY-tile is loaded into registers and the other two XY-tiles utilize the last
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Policy Type Single Precision Double Precision
GP/s GFLOP/s GP/s GFLOP/s

Our implementation 7 points 12.3 97 6.5 51
27 points 8.9 472 3.1 153

FDTD3d (Nvidia) 7 points 6.7 54
Holewinski et al. [13] 7 points 5.9 48 3.2 26
Kamil et al. [12] GTX280 7 points 1.6 13
Nguyen et al. [11] 7 points 9.2 74 4.6 37

7-p time steps 17 136
Christen et al. [10] 7 points 3 24
Zhang and Mueller [8] 7 points 10.9 87 5.7 46
Naoya et al. [16] 7 points 16.4 131

Table 5. Performance of many kinds of different stencil computation implementation

results in the temporary registers. In this way a great deal of shared memory is
saved for storing more values of XY-tiles and reduce shared memory clashes. We
make full use of a thread block size of 32×6 to guarantee only two coalesced memory
loading operations and no conditional statements. So it is significantly important
for many-threaded GPUs to alleviate control flow divergence of a warp. On Tesla
C2050 the acquired memory traffic for single precision data is 8.9 bytes per stencil
computation point, only 11 % worse than the idealized value of 8 bytes about which
only reading from and writing into global memory is considered and ghost zone
overhead may be omitted. In comparison with previous implementation execution
of our code has greater bandwidth than all other stencil executions in which the
intermediate results must be written into global memory. At last our Common
Sub-expression Elimination decreases the number of FLOPs in the 27-point stencil
from 53 to 18.

As illustrated in the above sections, the previous optimization of stencil compu-
tation places stress on use of registers, more locality of texture cache, less control
flow divergence and more effective coalesced accesses method. In our implementa-
tion, the new mapping mechanism guarantees more coalesced memory accesses and
completely eliminates control flow divergence of loading boundary data points which
constitutes ghost zone overhead in tiles. On the other hand, control flow divergence
is weakness and bottleneck in GPU. Once it happens, two different thread groups
of 32 threads in warps have to execute in sequence rather than in parallel mode.
In this way, despite some other overhead, such as calculation in mapping addresses,
the performance of stencil computation is improved.
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