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Abstract. Concept similarity measure aims at identifying a degree of commonal-
ity of two given concepts and is often regarded as a generalization of the classical
reasoning problem of equivalence. That is, any two concepts are equivalent if and
only if their similarity degree is one. However, existing measures are often devised
based on objective factors, e.g. structural-based measures and interpretation-based
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measures. When these measures are employed to characterize similar concepts in
an ontology, they may lead to unintuitive results. In this work, we introduce a new
notion called concept similarity measure under preference profile with a set of for-
mally defined properties in Description Logics. This new notion may be interpreted
as measuring the similarity of two concepts under subjective factors (e.g. the agent’s
preferences and domain-dependent knowledge). We also develop a measure of the
proposed notion and show that our measure satisfies all desirable properties. Two
algorithmic procedures are introduced for top-down and bottom-up implementation,
respectively, and their computational complexities are intensively studied. Finally,
the paper discusses the usefulness of the approach to potential use cases.

Keywords: Concept similarity measure, semantic web ontology, preference profile,
description logics

Mathematics Subject Classification 2010: 68-T30

1 INTRODUCTION

Most Description Logics (DLs) [1] are decidable fragments of First Order Logic
(FOL) with clearly defined computational properties. DLs are the logical underpin-
ning of the DL flavor of the ontology languages OWL and OWL 2. The advantage
of this close connection is that the extensive DLs literature and implementation ex-
periences can be directly exploited by OWL tools. More specifically, DLs provide
unambiguous semantics to the modeling constructs available in OWL DL and OWL 2
DL. These semantics make it possible to formalize and design algorithms for a num-
ber of reasoning services, which enable the development of ontology applications
to become prominent. For instance, ontology classification (or ontology alignment)
organizes concepts in an ontology into a subsumption hierarchy and assists in de-
tecting potential errors of a modeling ontology. Though this subsumption hierarchy
inevitably benefits ontology modeling, it merely gives two-valued responses, i.e., in-
ferring a concept is subsumed by another concept or not. However, certain pairs
of concepts may share commonality even though they are not subsumed. Thus,
a considerable amount of research effort has been devoted on measuring similarity
of two given concepts, i.e. concept similarity measure.

Basically, a concept similarity measure (abbreviated as CSM) is a function map-
ping from a concept pair to a unit interval (i.e. 0 ≤ x ≤ 1 for any real number x).
The higher the value is mapped to, the more likely similarity of them may hold.
Intuitively, the value 0 can be interpreted as total dissimilarity whereas the value 1
can be interpreted as total similarity or equivalence. Hence, one may regard CSM as
a generalization of the classical reasoning problem of equivalence. It plays a major
role in the discovery of similar concepts in an ontology. For example, it is employed in
bio-medical ontology-based applications to discover functional similarities of gene [2],
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it is often used by ontology alignment algorithms [3]. There is currently a significant
number of measures in DLs. Prominent examples are [4, 5, 6, 7, 8, 9]. However,
these measures are devised based on objective factors. For example, they use the
structure (or the interpretation) of concept descriptions to measure. When these
measures are employed to characterize similar concepts in an ontology, they may lead
to unintuitive results. The following example illustrates that using objective-based
measures may not suffice to answer the agent’s request.

Example 1. An agent A wants to visit a place for doing some active activities. At
that moment, he would like to enjoy walking. Suppose that a place ontology has
been modeled as follows:

ActivePlace v Place u ∃canWalk.Trekking u ∃canSail.Kayaking

Mangrove v Place u ∃canWalk.Trekking

Beach v Place u ∃canSail.Kayaking

canWalk v canMoveWithLegs

canSail v canTravelWithSails

Suppose that a measure used by that Agent A considers merely the objective
aspects, it is reasonable to conclude that both Mangrove and Beach are equally
similar to the concept ActivePlace. However, by taking into account also the agent’s
preferences, Mangrove appears more suitable to his perception of ActivePlace at that
moment. In other words, he will not be happy if an intelligent system happens to
recommend him to go for a Beach.

The example shows that preferences of the agent play a decisive role in the choice
of alternatives. In essence, when the choices of an answer are not totally similar to
a concept in question, a measure may need to be tuned by subjective factors, e.g.
the agent’s preferences. Another example is shown in [10] on the experiment of
the measure sim against Snomed ct1, which is one of the largest and the most
widely used medical ontologies currently available. It reports that roleGroup and
the Snomed ct top concept SCT-Top can unintentionally increase the degree of
similarity. By augmenting that knowledge, the experiment could produce more
accurate outputs. The main purpose of this paper is to investigate the use of concept
similarity measure under the agent’s preferences. As a result, the advantages of our
approach are fourfold (cf. Section 4 and Section 5). Firstly, it formalizes the notion of
concept similarity measure under the agent’s preferences and identifies its desirable
properties. Secondly, inspired by the skeptical and credulous measures in [5], when
used under different agent’s preferences, our theory corresponds to different types
of a rational agent, i.e., it has ordering when used by different agents. Thirdly, it
presents the similarity measure simπ with mathematical proofs on the satisfaction

1 http://bioportal.bioontology.org/ontologies/SNOMEDCT

http://bioportal.bioontology.org/ontologies/SNOMEDCT
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of those properties. Lastly, it presents two algorithmic procedures for implementing
the measure, viz. a top-down and a bottom-up versions of the proposed measure.

Our developed measure simπ is driven by the structural subsumption charac-
terization by means of tree homomorphism. It is worth to mention that Baader
proposes this idea in [11, 12] for ELH w.r.t. an unfoldable TBox, i.e., the subsump-
tion is characterized by means of an existence of a homomorphism in the reverse
direction. The notion of homomorphism degree is originally introduced in [13] and
employed at the heart of similarity measure for EL. This idea is extended at the
heart of concept similarity measure under the agent’s preferences for ELH. Prelim-
inary studies of this applicability are reported in our proceeding papers [14, 15]. It
should be noted that our measure we introduced, i.e. simπ, may look similar to the
measure proposed in [16] in a sense that both are recursive definitions for the same
DL ELH; however, they are radically different. These are caused by the distinction
of their inspirations and we discuss those points in Section 7. Preliminary, empirical
evaluation, and the conclusion are discussed in Section 2, Section 6, and Section 8,
respectively.

2 PRELIMINARIES

In this section, we review the basics of the Description Logic ELH and the problem
of concept similarity measure including the measure sim, which is extended to the
development of simπ (originally introduced in [15]).

2.1 Description Logic ELH

We assume countably infinite sets CN of concept names and RN of role names that
are fixed and disjoint. The set of concept descriptions, or simply concepts, for
a specific DL L is denoted by Con(L). The set Con(ELH) of all ELH concepts can
be inductively defined by the following grammar:

Con(ELH) ::= A | > | C uD | ∃r.C

where > denotes the top concept, A ∈ CN, r ∈ RN, and C,D ∈ Con(ELH). Conven-
tionally, concept names are denoted by A and B, concept descriptions are denoted
by C and D, and role names are denoted by r and s, all possibly with subscripts.

A terminology or TBox T is a finite set of (possibly primitive) concept definitions
and role hierarchy axioms, whose syntax is an expression of the form (A v D) A ≡ D
and r v s, respectively. The set CNdef of defined concept names are concept names
which appear on the left-hand side of a concept definition. Other concepts are
called primitive concept names, denoted by CNpri. A TBox T is called unfoldable if
all concept definitions are unique and acyclic definitions. A concept definition A is
unique if T contains at most one concept definition for A ∈ CNdef and is acyclic if A
is not referred directly or indirectly (via other concept definitions) to itself. For every
primitive concept definition A v D in T , each can be transformed into an equivalent
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one by introducing a fresh concept name A′ via the rule A v D −→ A ≡ A′ u D.
When a TBox T is unfoldable, concept names can be expanded by exhaustively
replacing all defined concept names by their definitions until only primitive concept
names remain. Such concept names are called fully expanded concept names.2

Like primitive definitions, a role hierarchy axiom r v s can be transformed into
a semantically equivalent role definition, by introducing a fresh role name r′ via the
similar rule r v s −→ r ≡ r′ u s. Role names occurring on the left-hand side of
a role definition are called defined role names, collectively denoted by RNdef . All
others are called primitive role names, collectively denoted by RNpri. A set of all r’s
super roles, denoted by Rr, is defined as Rr = {s ∈ RN|r v∗ s} and, r v∗ s if r = s
or ri v ri+1 ∈ T where 1 ≤ i ≤ n, r1 = r, rn = s, and ∗ is a transitive closure.

An interpretation I is a pair I = 〈∆I , ·I〉 where ∆I is a non-empty set repre-
senting the domain of the interpretation and ·I is an interpretation function which
assigns to every concept name A a set AI ⊆ ∆I and to every role name r a binary
relation rI ⊆ ∆I × ∆I . The interpretation function ·I is inductively extended to
ELH concepts in the usual manner:

>I = ∆I ; (C uD)I = CI ∩DI ;

(∃r.C)I =
{
a ∈ ∆I | ∃b ∈ ∆I : (a, b) ∈ rI ∧ b ∈ CI

}
.

An interpretation I is said to be a model of a TBox T (in symbols, I |= T ) if it
satisfies all axioms in T . I satisfies axioms A v C, A ≡ C, and r v s, respectively,
if AI ⊆ CI , AI = CI , and rI ⊆ sI . The main inference problem for ELH is
the subsumption problem. That is, given C,D ∈ Con(ELH) and a TBox T , C is
subsumed by D w.r.t. T (in symbols, C vT D) if CI ⊆ DI for every model I of T .
Furthermore, C and D are equivalent w.r.t. T (in symbols, C ≡T D) if C vT D
and D vT C. When a TBox T is empty or is clear from the context, we omit to
denote T , i.e. C v D or C ≡ D.

Let C ∈ Con(ELH) be a fully expanded concept to the form: P1 u · · · u
Pm u ∃r1.C1 u · · · u ∃rn.Cn, where Pi ∈ CNpri, rj ∈ RN, Cj ∈ Con(ELH) in the
same format, 1 ≤ i ≤ m, and 1 ≤ j ≤ n. The set P1, . . . , Pm and the set
∃r1.C1, . . . ,∃rn.Cn are denoted by PC and EC , respectively, i.e. PC = {P1, . . . , Pm}
and EC = {∃r1.C1, . . . ,∃rn.Cn}. An ELH concept description can be structurally
transformed into the corresponding ELH description tree. The root v0 of the ELH
description tree TC has {P1, . . . , Pm} as its label and has n outgoing edges, each
labeled with Rrj to a vertex vj for 1 ≤ j ≤ n. Then, a subtree with the root vj
is defined recursively relative to the concept Cj. In [11, 12], a characterization of
subsumption for the DL ELH w.r.t. an unfoldable TBox is proposed. Instead of
considering concept descriptions, the so-called ELH description trees corresponding
to those concept descriptions are considered. The subsumption is then characterized
by an existence of a homomorphism in the reverse direction (cf. Theorem 1).

2 In this work, we assume that concept names are fully expanded and the TBox can be
omitted.
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Definition 1 (Homomorphism [11, 12]). An ELH description tree T is a quintuple
(V,E, rt, l, p) where V is a set of vertices, E ⊆ V ×V is a set of edges, rt is the root,

l : V → 2CNpri
is a vertex labeling function, and ρ : E → 2RN is an edge labeling

function. Let T1 and T2 be two ELH description trees, v1 ∈ V1 and v2 ∈ V2, there
exists a homomorphism h from T1 to T2 (written as h : T1 → T2) iff the following
conditions are satisfied:

• h(rt1) = rt2 and l1(v1) ⊆ l2(h(v1)); and

• for each successor w1 of v1 in T1, h(w1) is a successor of h(v1) with ρ1(v1, w1) ⊆
ρ2(h(v1), h(w1)).

Example 2. (Continuation of Example 1) Each primitive definition can be trans-
formed to a corresponding equivalent full definition as follows.

ActivePlace ≡ X u Place u ∃canWalk.Trekking u ∃canSail.Kayaking

Mangrove ≡ Y u Place u ∃canWalk.Trekking

Beach ≡ Z u Place u ∃canSail.Kayaking

where X, Y , and Z are fresh primitive concept names. Similarly, canWalk ≡ t u
canMoveWithLegs and canSail ≡ uucanTravelWithSails, where t and u are fresh prim-
itive role names. In other words, RcanWalk = {t, canMoveWithLegs} and RcanSail =
{u, canTravelWithSails}. Figure 1 depicts TActivePlace, as an illustration.

v0: {X, Place}

v1: {Trekking}

{t, canMoveWithLegs}

v2: {Kayaking}

{u, canTravelWithSails}

Figure 1. The description tree of concept ActivePlace

Theorem 1 ([11, 12]). Let C,D ∈ Con(ELH) and TC and TD be the corresponding
description trees. Then, C v D iff there exists a homomorphism h : TD → TC that
maps the root of TD to the root of TC .

From Example 2, it is also not difficult to find a failed attempt of identifying
a homomorphism mapping the root of TActivePlace to the root of TMangrove, i.e. h :
TActivePlace 6→ TMangrove. Hence, this infers Mangrove 6v ActivePlace by Theorem 1.

2.2 Concept Similarity Measure in DLs

Concept similarity measure (abbreviated as CSM) is a function mapping from a con-
cept pair to a unit interval (0 ≤ x ≤ 1 where x is a real number). The higher the
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value is mapped to, the more likely similarity of that concept pair may hold. In the
following, we have formally defined the notion of CSM in DLs.

Definition 2. Given two concept descriptions C,D ∈ Con(L), a concept similarity
measure w.r.t. a TBox T is a function ∼T : Con(L) × Con(L) → [0, 1] such that
C ∼T D = 1 iff C ≡T D (total similarity) and C ∼T D = 0 indicates total
dissimilarity between C and D.

When a TBox T is clear from the context, we simply write ∼. Furthermore, to
avoid confusion on the symbols, ∼T is used when referring to arbitrary measures.

The measure sim [13, 10] extends Theorem 1 to the case where no such homomor-
phism exists but there is some commonality. Since an extension to sim is presented
in Subsection 4.1 for taking into account the agent’s preferences, the original defi-
nitions of homomorphism degree hd and sim are included here for self-containment.

Definition 3 (Homomorphism Degree [10]). Let TELH be a set of all ELH descrip-
tion trees and TC , TD ∈ TELH correspond to two ELH concept names C and D,
respectively. The homomorphism degree function hd: TELH × TELH → [0, 1] is
inductively defined as follows:

hd(TD, TC) = µ · p-hd(PD,PC) + (1− µ) · e-set-hd(ED, EC) (1)

where µ = |PD|
|PD∪ED|

and | · | represents the set cardinality;

p-hd(PD,PC) =

1, if PD = ∅,
|PD∩PC |
|PD|

, otherwise,
(2)

e-set-hd(ED, EC) =


1, if ED = ∅,

0, if ED 6= ∅ and EC = ∅,∑
εi∈ED

maxεj∈EC {e-hd(εi,εj)}
|ED|

, otherwise

(3)

with εi, εj existential restrictions; and

e-hd(∃r.X,∃s.Y ) = γ(ν + (1− ν) · hd(TX , TY )) (4)

where γ = |Rr∩Rs|
|Rr| and 0 ≤ ν < 1.

The value of ν in Equation (4) determines how important the roles are to be con-
sidered for similarity between two existential restriction information. For instance,
∃canWalk.Trekking and ∃canWalk.Parading for dissimilar nested concepts Trekking
and Parading should not be regarded as entirely dissimilar themselves. If ν is as-
signed the values 0.3, 0.4, 0.5, then e-hd(∃canWalk.Trekking,∃canWalk.Parading) is
0.3, 0.4, 0.5, respectively. This value might vary among applications. In this work,
ν is set to 0.4 for exemplifying the calculation of hd.
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Theorem 2 ([10]). Let C,D ∈ Con(ELH) and TC , TD be their corresponding de-
scription tree, respectively. Then, the following are equivalent:

1. C v D; and

2. hd(TD, TC) = 1.

Using a proof by induction, together with Theorem 1, it is not difficult to ob-
serve the correspondence between the homomorphism degree hd and subsumption.
Intuitively, Theorem 2 describes a property of concept subsumption, i.e. C is a sub-
concept of D if the homomorphism degree of the corresponding description tree TD
to TC is equal to 1, and vice versa.

Definition 4 (ELH Similarity Degree [10]). Let C and D be ELH concept names
and TC , TD be the corresponding description trees. Then, the ELH similarity degree
between C and D (in symbols, sim(C,D)) is defined as follows:

sim(C,D) =
hd(TC , TD) + hd(TD, TC)

2
. (5)

Example 3. (Continuation of Example 2)
For brevity, let ActivePlace, Mangrove, Beach, Place, Trekking, Kayaking, canWalk,
and canSail be abbreviated as AP, M, B, P, T, K, cW, and cS, respectively. Using
Definition 3, the homomorphism degree from TAP to TM, or

hd(TAP, TM) =

(
2

4

)(
1

2

)
+

(
2

4

)(
max{e-hd(∃cW.T,∃cW.T)}

2
+

max{e-hd(∃cS.K,∃cW.T)}
2

)
=

(
2

4

)(
1

2

)
+

(
2

4

)(
1 + 0

2

)
= 0.5.

Similarly, hd(TM, TAP) = 0.67, hd(TAP, TB) = 0.5, and hd(TB, TAP) = 0.67. Thus,
sim(M,AP) = 0.59 and sim(B,AP) = 0.59

3 PREFERENCE PROFILE

We first introduced preference profile (denoted by π) in [14] as a collection of pref-
erential elements in which the development of CSM should be considered. Its first
intuition is to model different forms of preferences (of an agent) based on concept
names and role names. Measures adopted this notion are flexible to be tuned by
an agent and can determine the similarity conformable to that agent’s perception.

The syntax and semantics of each form are given in term of partial functions
because agents may not have preferences over all concept names and role names. We
recommend to devise similarity measures with considerations on preference profile
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if we aim at developing concept similarity measure for general purposes – a measure
based on both subjective and objective factors. Mathematical definitions for each
form of preferences are formally defined as follows.

Definition 5 (Primitive Concept Importance). Let CNpri(T ) be a set of primitive
concept names occurring in T . Then, a primitive concept importance is a partial
function ic : CN→ [0, 2]3, where CN ⊆ CNpri(T ).

For any A ∈ CNpri(T ), ic(A) = 1 captures an expression of normal importance
for A, ic(A) > 1 (and ic(A) < 1) indicates that A has higher (and lower, respectively)
importance, and ic(A) = 0 indicates that A is of no importance to the agent.

Example 4. (Continuation of Example 2) Suppose that an agent A is using a sim-
ilarity measure for querying some names similar to ActivePlace. He concerns that
those names will be similar to ActivePlace if they are places. Thus, the agent can
express this preference as ic(Place) = 2, i.e., values should be higher than 1.

On the other hand, suppose he does not care if those are places or not, he may
express this preference as ic(Place) = 0, i.e., values must be equal to 0.

Definition 6 (Role Importance). Let RN(T ) be a set of role names occurring in T .
Then, a role importance is a partial function ir : RN→ [0, 2], where RN ⊆ RN(T ).

For any r ∈ RN(T ), ir(r) = 1 captures an expression of normal importance
for r, ir(r) > 1 (and ir(r) < 1) indicates that r has higher (and lower, respectively)
importance, and ir(r) = 0 indicates that r is of no importance to the agent.

Example 5 (Continuation of Example 2). Suppose that the agent A wants to enjoy
walking. He may express this preference as ir(canWalk) = 2, i.e., values should be
higher than 1.

Definition 7 (Primitive Concepts Similarity). Let CNpri(T ) be a set of primitive
concept names occurring in T . For A,B ∈ CNpri(T ), a primitive concepts similarity
is a partial function sc : CN×CN→ [0, 1], where CN ⊆ CNpri(T ), such that sc(A,B) =
sc(B,A) and sc(A,A) = 1.

For A,B ∈ CNpri(T ), sc(A,B) = 1 captures an expression of total similarity
between A and B and sc(A,B) = 0 captures an expression of their total dissimilarity.

Example 6 (Continuation of Example 2). Suppose that the agent A believes that
trekking and kayaking invoke similar feeling. Thus, he can express sc(Trekking,
Kayaking) = 0.1, i.e., values should be higher than 0.

3 In the original definition of preference profile, elements in the domains of both ic and
ir are mapped to R≥0, which is a minor error.



590 T. Racharak, B. Suntisrivaraporn, S. Tojo

Another example is the similarity of concepts Pet1 and Pet2, in which both are
defined as follows: Pet1 v Dogu∃hasOwned.Human; Pet2 v Catu∃hasOwned.Human.
Here, Dog and Cat are both primitive concept names. Intuitively, Dog and Cat are
similar, then we may attach this knowledge in form of sc in order to yield more
accuracy on the measure.

Definition 8 (Primitive Roles Similarity). Let RNpri(T ) be a set of primitive role
names occurring in T . For r, s ∈ RNpri(T ), a primitive roles similarity is a partial
function sr : RN × RN → [0, 1], where RN ⊆ RNpri(T ), such that sr(r, s) = sr(s, r)
and sr(r, r) = 1.

For r, s ∈ RN(T ), sr(r, s) = 1 captures an expression of total similarity between
r and s and sr(r, s) = 0 captures an expression of their total dissimilarity.

Example 7 (Continuation of Example 2). Suppose that the agent A believes that
moving with legs and traveling with sails invoke similar feeling. He may express
sr(canMoveWithLegs, canTravelWithSails) = 0.1, i.e., values should be higher than 0.

Basically, our motivations of both functions sc and sr are the same, i.e., we aim
at attaching subjective feeling of proximity (about primitive concept names and
primitive role names) into a measure. In DLs, different primitive concept names
(and also primitive role names) are considered to be total dissimilarity even though
they may be recognized as being similar in real-world domains.

Definition 9 (Role Discount Factor). Let RN(T ) be a set of role names occurring
in T . Then, a role discount factor is a partial function d : RN → [0, 1], where
RN ⊆ RN(T ).

For any r ∈ RN(T ), d(r) = 1 captures an expression of total importance on the
role (beyond a corresponding nested concept) and d(r) = 0 captures an expression
of total importance on a nested concept (beyond the correspondent role r).

Example 8 (Continuation of Example 2). Suppose that the agent A does not con-
cern much if places permit to either walk or to sail. He would rather consider on
actual activities which he can perform. Thus, he may express d(canWalk) = 0.3 and
d(canSail) = 0.3, i.e., values should be close to 0.

Definition 10 (Preference Profile). A preference profile, in symbol π, is a quintuple
〈ic, ir, sc, sr, d〉 where ic, ir, sc, sr, and d are as defined above and the default preference
profile, in symbol π0, is the quintuple 〈ic0, ir0, sc0, sr0, d0〉 where
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ic0(A) = 1 for all A ∈ CNpri(T ),

ir0(r) = 1 for all r ∈ RN(T ),

sc0(A,B) = 0 for all (A,B) ∈ CNpri(T )× CNpri(T ),

sr0(r, s) = 0 for all (r, s) ∈ RNpri(T )× RNpri(T ), and

d0(r) = 0.4 for all r ∈ RN(T ).

Intuitively, the default preference profile π0 represents the agent’s preference in
the default manner, i.e., when preferences are not given. That is, every A ∈ CNpri

has normal importance and so does every r ∈ RN. Also, every (A,B) ∈ CNpri ×
CNpri is totally different and so does every (r, s) ∈ RNpri × RNpri. Lastly, every
r ∈ RN is considered 0.4 importance for the similarity of two existential restriction
information. It is interesting to note that changes in the definition of the default
preference profile yield different interpretations of the default preference and thereby
may produce a different degree of similarity under the default manner. As for its
exemplification, the value 0.4 is used by d0 to conform with the value of ν used in
this work.

In this work, a preference profile of an agent is denoted by subscribing that agent
below π, e.g., πA represents a preference profile of the agent A.

4 SIMILARITY MEASURE UNDER PREFERENCE PROFILE

A numerical value determined by CSM indicates a degree of similarity of two concept
descriptions w.r.t. the sole objective aspects. That is, either their structures or their
interpretations are similar (cf. Section 7). For example, sim(ActivePlace,Mangrove)
= 0.59 and sim(ActivePlace,Beach) = 0.59 indicates that the similarity of ActivePlace
and Mangrove, and that of ActivePlace and Beach are equivalently 59 %. However,
this information may not be useful for the agent to make decisions.

In this section, we present a conceptual notion for concept similarity measure
under the agent’s preferences (originally introduced in [15]) and its desirable prop-
erties. We also present the measure simπ by adopting preference profile onto the
measure sim. Our first intuition is to exemplify the applicability of preference pro-
file onto an arbitrary existing measure. This shows that our proposed notion of
preference profile can be considered as a collection of noteworthy aspects for the
development of concept similarity measure under the agent’s preferences.

Definition 11. Given a preference profile π, two concepts C,D ∈ Con(L), and
a TBox T , a concept similarity measure under preference profile w.r.t. a TBox T is
a function

π∼T : Con(L)× Con(L)→ [0, 1].

When a TBox T is clear from the context, we simply write
π∼. Furthermore, to

avoid confusion on the symbols,
π∼T is used when referring to arbitrary measures.
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The notion
π∼ may be informally read as the computation of ∼ is influenced by π.

That informal interpretation shapes our intuition to consider this kind as a gener-
alization of CSM in DLs. With adopting of this viewpoint of the interpretation, we
can agree that simπ (Subsection 4.1) is informally interpreted as we compute sim
(Definition 4) under an existence of a given π.

Basically, the notion
π∼ is a function mapping a pair of two concept descriptions

w.r.t. a particular π to a unit interval. We identify a property called preference in-
variance w.r.t. equivalence in our preliminary study [15]. Now, we aim at identifying

more important properties of
π∼. We start by investigating important properties of

CSM existing in the literature (e.g. [16, 9]). Our primary motivation is to identify

CSM’s properties which are also reasonable for
π∼. The following collects funda-

mental properties for the introduced concept similarity measure under preference
profile. They can be used to answer the question What could be good preference-
based similarity measures? In other words, any preference-based measures satisfying
the fundamental properties are considered to be good ones.

Formally, let C,D,E ∈ Con(L) and Π be a countably infinite set of preference

profile. Then, we call a concept similarity measure under preference profile
π∼ is:

1. symmetric iff ∀π′ ∈ Π : (C
π′
∼ D = D

π′
∼ C);

2. equivalence invariant iff C ≡ D =⇒ ∀π′ ∈ Π : (C
π′
∼ E = D

π′
∼ E);

3. structurally dependent iff for any finite sets of concepts C1 and C2 with the
following conditions:

• C1 ⊆ C2,

• concepts A,B 6∈ C2,

• ic(Φ) > 0 if Φ is primitive and Φ ∈ C2, and

• ir(ϕ) > 0 if Φ is existential, i.e. Φ := ∃ϕ.Ψ, and Φ ∈ C2,

the concepts C :=
d

(C1 ∪ {A}), D :=
d

(C1 ∪ {B}), E :=
d

(C2 ∪ {A}) and

F :=
d

(C2 ∪ {B}) fulfill the condition ∀π′ ∈ Π : (C
π′
∼ D ≤ E

π′
∼ F ); and

4. preference invariant w.r.t. equivalence iff C ≡ D ⇐⇒ ∀π′ ∈ Π : C
π′
∼ D = 1.

Next, we discuss the underlying intuitions of each property subsequently. We
note that the properties 1 to 3 are adopted from [16, 9]. However, to the best of
our knowledge, the property 4 is first time introduced for concept similarity measure
under preference profile in this work (originally introduced in [15]).

Let Π be a countably infinite set of preference profile. In the following, we
discuss the intuitive interpretation of each property. Firstly, symmetry states that
an order of concepts in question does not influence the notion

π∼ for any π ∈ Π. For
instance, Mangrove

π∼ Beach = Beach
π∼ Mangrove. This property is controversial

as cognitive sciences believes that similarity is asymmetric. However, substantial
work in DLs [16, 10, 17, 6, 8, 9, 7, 15, 5] prefers symmetry (merely [4, 18] prefer
asymmetry). Here, we also agree on the symmetry because axiomatic information
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in TBox is not dynamically changed. Furthermore, the notion of preference profile
studied in this work is also static, i.e., it can be changed merely by tuning.

Secondly, equivalence invariance (alternatively called equivalence soundness [9]
in the context of dissimilarity measure) states that if two concepts C and D are
logically equivalent, then measuring the similarity of each toward the third concept E
w.r.t. any π ∈ Π must be the same. For instance, let C ≡ ∃canWalk.Trekking and
D ≡ ∃canWalk.Trekking. It is clear that C and D are logically equivalent. Therefore,
let E ∈ Con(L), C

π∼ E = D
π∼ E for any π ∈ Π.

Thirdly, the notion of structural dependence is originally introduced by Tversky
in [19]. Later, the authors of [16] collect it as another important properties for
CSM in their work. Basically, in Tversky’s model, an object is considered as a set of
features. Then, the similarity of two objects is measured by the relationship between
a number of common features and a number of different features. Extending this
idea to

π∼ gives the meaning that the similarity of two concepts C,D increases if
a more number of equivalent concepts is shared and each is considered important.

Lastly, preference invariance w.r.t. equivalence states that if two concepts are
logically equivalent, then the similarity degree of two concepts under preference
profile π is always one for every π ∈ Π, and vice versa. Taking the negation both
sides, this means C 6≡ D ⇐⇒ ∃π ∈ Π : C

π∼ D 6= 1. For instance, let C ≡
∃canWalk.Trekking and D ≡ ∃canWalk.Parading. It is clear that C and D are not
logically equivalent, then taking π = π0 obtains C

π0∼ D 6= 1; though, taking π = π1
where sc(Trekking,Parading) = 1 is defined in π1 yields C

π1∼ D = 1.
There are several properties which are not considered as fundamental properties

of concept similarity measure under preference profile because the behaviors may not
obey their properties when used under non-default preference profiles, e.g. reverse
subsumption preserving. In [16], a measure ∼ satisfies the reverse subsumption
preserving iff, for any concepts C,D, and E, C v D v E =⇒ C ∼ E ≤ D ∼ E.
The property states that the similarity of D and E is higher than the one of C
and E because E is closer to D than C. To refute it, we need only one preference
profile π such that the implication does not hold (cf. Example 9), i.e., to show that

(C v D v E) and ∃π ∈ Π : (C
π∼ E > D

π∼ E).

Example 9. Suppose concepts A1,A2,A3, and A4 are primitive. Query describes
features of an item that an agent is searching for. Item1 and Item2 are items, which
compose of features A1,A2,A3 and A1,A2,A3,A4, respectively.

Query v A1 u A2

Item1 v A1 u A2 u A3

Item2 v A1 u A2 u A3 u A4

The ontology shows the hierarchy: Item2 v Item1 v Query. By taking sc(A2,A4)

= 1, it is reasonable to conclude that Item2
π∼ Query > Item1

π∼ Query due to an
increased number of totally similar concepts.
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Our proceeding paper [5] studies CSM for the DL FL0. In this paper, we
suggest two measures, viz. the skeptical measure ∼s and the credulous measure ∼c,
which are derived from the known structural characterization subsumption through
inclusion of regular languages. This fact exhibits that there is not a unique CSM
for similarity-based applications. Which CSMs should be used depends on concrete
applications, especially the type of a rational agent. For example, when employing
the notion ∼ to a query answering system, a credulous agent may want to see
answers as much as possible; hence, the measure ∼c is employed. On the other
hand, a skeptical agent would like to see sufficient relevant answers; hence, the
measure ∼s is employed. This idea is generalized and is extended toward the notion
π∼ to be used under different agent’s profiles. In essence, if an arbitrary concept
similarity measure under preference profile

π∼ is fixed, measuring the similarity of
two concepts under different preference profiles may yield different values.

Definition 12. Let Π be a countably infinite set of preference profile and π1, π2 ∈ Π.
For any fixed measure

π∼, the concept similarity measure under π1 is more skeptical
than π2 (denoted by

π1∼ � π2∼) if C
π1∼ D ≤ C

π2∼ D for all C,D ∈ Con(L).

4.1 The Measure simπ

To develop an instance of
π∼, we generalize sim for all aspects of preference profile.

As a result, the new measure simπ is also driven by the structural subsumption
characterization by means of tree homomorphism for the DL ELH.

We start by presenting each aspect of preference profile in term of total functions
in order to avoid computing on null values. A total importance function is firstly
introduced as î : CNpri ∪RN→ [0, 2] based on the primitive concept importance and
the role importance.

î(x) =


ic(x), if x ∈ CNpriand ic is defined on x,

ir(x), if x ∈ RN and ir is defined on x,

1, otherwise.

(6)

A total similarity function is also presented as ŝ : (CNpri × CNpri) ∪ (RNpri ×
RNpri) → [0, 1] using the primitive concepts similarity and the primitive roles simi-
larity.

ŝ(x, y) =



1, if x = y,

sc(x, y), if (x, y) ∈ CNpri × CNpri and sc is defined on (x, y),

sr(x, y), if (x, y) ∈ RNpri × RNpri and sr is defined on (x, y),

0, otherwise.

(7)
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Similarly, a total role discount factor function4 is presented in the following in
term of a function d̂ : RN→ [0, 1] based on the role discount factor.

d̂(x) =

d(x), if d is defined on x,

0.4, otherwise.
(8)

The next step is to generalize the notion of homomorphism degree hd (Defini-
tion 3). Let C,D ∈ Con(ELH) and r, s ∈ RN. Also, let TC , TD,PC , PD, EC , ED, Rr,
andRs be as defined in Subsection 2.2. The homomorphism degree under preference
profile π from TD to TC can be formally defined in Definition 13.

Definition 13. Let TELH be a set of all ELH description trees, and π = 〈ic, ir, sc, sr,
d〉 be a preference profile. The homomorphism degree under preference profile π is
a function hdπ : TELH ×TELH → [0, 1] defined inductively as follows:

hdπ(TD, TC) = µπ(PD, ED) ·p-hdπ(PD,PC)+(1−µπ(PD, ED)) ·e-set-hdπ(ED, EC) (9)

where

µπ(PD, ED) =


1, if

∑
A∈PD î(A) +

∑
∃r.X∈ED î(r) = 0,∑

A∈PD
î(A)∑

A∈PD
î(A)+

∑
∃r.X∈ED

î(r)
, otherwise;

(10)

p-hdπ(PD,PC) =



1, if
∑

A∈PD î(A) = 0,

0, if
∑

A∈PD î(A) 6= 0,

and
∑

B∈PC î(B) = 0,∑
A∈PD

î(A)·maxB∈PC {ŝ(A,B)}∑
A∈PD

î(A)
, otherwise;

(11)

e-set-hdπ(ED, EC) =



1, if
∑
∃r.X∈ED î(r) = 0,

0, if
∑
∃r.X∈ED î(r) 6= 0

and
∑
∃s.Y ∈EC î(s) = 0,

∑
∃r.X∈ED

î(r)·maxεj∈EC {e-hd
π(∃r.X,εj)}∑

∃r.X∈ED
î(r)

, otherwise;

(12)

where εj is an existential restriction; and

e-hdπ(∃r.X,∃s.Y ) = γπ(r, s) · (d̂(r) + (1− d̂(r)) · hdπ(TX , TY )) (13)

4 We set the default value to 0.4 to comply with the default value of π0.
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where

γπ(r, s) =

1, if
∑

r′∈Rr î(r
′) = 0,∑

r′∈Rr î(r
′)·maxs′∈Rs{ŝ(r

′,s′)}∑
r′∈Rr î(r

′)
, otherwise.

(14)

Intuitively, the function hdπ (Equation (9)) is defined as the weighted sum of
the degree under preferences of the vertex set commonalities (p-hdπ) and the degree
under preferences of edge condition matching (e-set-hdπ). Equation (11) calculates
the average of the best matching under preferences of primitive concepts in PD.
Equation (13) calculates the degree under preferences of a potential homomorphism
of a matching edge. If edge labels share some commonalities under preferences
(Equation (14)), i.e. 0 < γπ ≤ 1, then part of the edge matching is satisfied; but the
successors’ labels and structures have yet to be checked. This is defined recursively
as hdπ(TX , TY ) in Equation (13). Equation (12) calculates the best possible edge
matching under preferences of each edge in ED and returns the average thereof.

The weight µπ in Equation (9) determines how important the primitive concept
names are to be considered for preference-based similarity. For the special case where
D = >, i.e. PD = ED = ∅, µπ is irrelevant as T> is the smallest ELH description
tree and hdπ(T>, TC) = 1 for all concepts C.

It is to be mentioned that the function hdπ may look similar to simid as both are
recursive definitions for the same DL ELH. However, they are obviously different
caused by the distinction of their inspirations and their viewpoints of the develop-
ment. While hdπ is inspired by the homomorphism-based structural subsumption
characterization, simid is inspired by the Jaccard Index [20]. Technically speaking,
simid employs t-conorm instead of fixing an operator. However, unlike simid, the
use of µπ for determining how primitive concepts are weighted and the use of γπ for
determining the proportion of shared super roles are employed. Furthermore, simid
is originated from the viewpoint of CSM, thus some aspects of preference profile are
missed; though some may exist. We continue the discussion in Section 7.

The function hdπ yields a numerical value that represents structural similarity
w.r.t. a particular profile π of a concept against another concept. As both directions
constitute the degree of two concepts being equivalent, the measure simπ is also
defined by means of these two directional computations.

Definition 14. Let C,D ∈ Con(ELH), TC and TD be the corresponding description
trees, and π = 〈ic, ir, sc, sr, d〉 be a preference profile. Then, the ELH similarity
measure under preference profile π between C and D (denoted by simπ(C,D)) is
defined as follows:

simπ(C,D) =
hdπ(TC , TD) + hdπ(TD, TC)

2
. (15)

Intuitively, the degree of similarity under a certain π is the average of the de-
gree of having homomorphism under the same π in both directions. Note that
ones may also argue to calculate the value by using alternative binary operators
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accepting unit intervals, e.g. based on the multiplication (in symbols, mul-simπ) on
both directions of hdπ or the root mean square (in symbols, rms-simπ) on values of
both directions [13]. Unfortunately, those give unsatisfactory values for the extreme

cases. For example, mul-simπ(A,>) = 0 × 1 = 0 and rms-simπ(A,>) =
√

02+12

2
=

0.707, whereas simπ(A,>) = 0+1
2

= 0.5. Since mul-simπ(C,D) ≤ simπ(C,D) ≤
rms-simπ(C,D) for any concepts C and D, we believe that the average-based def-
inition given above is the most appropriate method. Based on this form, simπ is
basically considered as a generalization of sim which determines similarity under
preference profile, i.e., behavioral expectation of the measure will conform to the
agent’s perception.

We present an example about the calculation of simπ in the following.

Example 10. (Continuation of Example 1) Let enrich the example. Assume the
agent A’s preference profile is defined as follows: (i) ic(Place) = 2; (ii) ir(canWalk) =
2; (iii) sc(Trekking,Kayaking) = 0.1; (iv) sr(canMoveWithLegs, canTravelWithSails) =
0.1; (v) d(canWalk) = 0.3 and d(canSail) = 0.3. Let ActivePlace, Mangrove, Beach,
Place, Trekking, Kayaking, canWalk, and canSail be rewritten shortly as AP, M, B, P,
T, K, cW, and cS, respectively. Using Definition 13,

hdπ(TAP, TM) =

(
3

6

)
· p-hdπ(PAP,PM) +

(
3

6

)
· e-set-hdπ(EAP, EM)

=

(
3

6

)
·
(
i(X) ·max{s(X, Y ), s(X,P)}+ i(P) ·max{s(P, Y ), s(P,P)}

i(X) + i(P)

)
+

(
3

6

)
· e-set-hdπ(EAP, EM)

=

(
3

6

)(
1 ·max{0, 0}+ 2 ·max{0, 1}

1 + 2

)
+

(
3

6

)
· e-set-hdπ(EAP, EM)

=

(
3

6

)(
2

3

)
+

(
3

6

)[
i(cW) ·max{e-hdπ(∃cW.T, ∃cW.T)}+ 1 ·max{0.019}

i(cW) + i(cS)

]
=

(
3

6

)(
2

3

)
+

(
3

6

)[
2 ·max{(1)(0.3 + 0.7(1))}+ 1 ·max{0.019}

i(cW) + i(cS)

]
=

(
3

6

)(
2

3

)
+

(
3

6

)[
(2)(1) + (1)(0.019)

2 + 1

]
≈ 0.67

Similarly, we obtain hdπ(TM, TAP) = 0.80. Hence, simπ(M,AP) ≈ 0.74 by Defini-
tion 14. Furthermore, using Definition 13, hdπ(TAP, TB) ≈ 0.51 and hdπ(TB, TAP) =
0.75. Hence, simπ(B,AP) ≈ 0.63 by Definition 14.
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The fact that simπ(M,AP) > simπ(B,AP) corresponds with the agent A’s needs
and preferences.

4.2 Properties of simπ

Previously, we theorize a set of desirable properties that a concept similarity measure
under preference profile should satisfy and formally introduce the measure simπ. In
this subsection, we provide mathematical proofs for the properties of simπ. This gives
many benefits to the users of simπ since they can predict its expected behaviors.

Lemma 1. For TD, TC ∈ TELH, hdπ0(TD, TC) = hd(TD, TC).

Proof. (Sketch) Recall by Definition 10 that the default preference profile π0 is
the quintuple 〈ic0, ir0, sc0, sr0, d0〉. Also, suppose a concept name D is of the form:
P1 u · · · u Pm u ∃r1.D1 u · · · u ∃rn.Dn, where Pi ∈ CNpri, rj ∈ CN, Dj ∈ Con(ELH),
1 ≤ i ≤ m, 1 ≤ j ≤ n, P1 u · · · u Pm is denoted by PD, and ∃r1.D1 u · · · u ∃rn.Dn

is denoted by ED. Let d be the depth of TD. We prove that, for any d ∈ N,
hdπ0(TD, TC) = hd(TD, TC) by induction on d.

When d = 0, we know that D = P1 u · · · u Pm. To show that hdπ0(TD, TC) =
hd(TD, TC), we need to show that µπ0 = µ and p-hdπ0(PD,PC) = p-hd(PD,PC). Let
us derive as follows:

µπ0 =

∑
A∈PD î(A)∑

A∈PD î(A) +
∑
∃r.X∈ED î(r)

=

∑m
i=1 1∑m

i=1 1 + 0
=

m

m+ 0
= µ.

Furthermore, we only need to show
∑

A∈PD max{ŝ(A,B) : B ∈ PC} = |PD ∩ PC |
in order to show p-hdπ0(PD,PC) = p-hd(PD,PC). We know that sc0 maps name
identity to 1 and otherwise to 0. Thus,

∑
A∈PD max{ŝ(A,B) : B ∈ PC} = |{x : x ∈

PD and x ∈ PC}| = |PD ∩ PC |.
We must now prove that if hdπ0(TD, TC) = hd(TD, TC) holds for d = h − 1

where h > 1 and D = P1 u · · · u Pm u ∃r1.D1 u · · · u ∃rn.Dn then hdπ0(TD, TC) =
hd(TD, TC) also holds for d = h. To do that, we have to show e-set-hdπ0(ED, EC) =
e-set-hd(ED, EC). This can be done by showing in the similar manner that γπ0 = γ
and hdπ0(TX , TY ) = hd(TX , TY ) from e-hdπ0(∃r.X,∃s.Y ) = e-hd(∃r.X,∃s.Y ), where
∃r.X ∈ ED and ∃s.Y ∈ EC . Consequently, it follows by induction that, for TD, TC ∈
TELH, hdπ0(TD, TC) = hd(TD, TC). �

Theorem 3. Let C,D ∈ Con(ELH), simπ0(C,D) = sim(C,D).

Proof. It immediately follows from Lemma 1, Definition 4, and Definition 14. �

Theorem 3 tells us that simπ is backward compatible in the sense that using
simπ with π = π0, i.e. simπ0 , coincides with sim. Technically speaking, simπ0 can be
used to handle the case of similar concepts regardless of the agent’s preferences.

Theorem 4. simπ is symmetric.
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Proof. Let Π be a countably infinite set of preference profile. Fix any π ∈ Π and
C,D ∈ Con(ELH), we have simπ(C,D) = simπ(D,C) by Definition 14. �

Theorem 5. simπ is equivalence invariant.

Proof. Let Π be a countably infinite set of preference profile. Fix any π ∈ Π and
C,D,E ∈ Con(ELH), we show C ≡ D =⇒ simπ(C,E) = simπ(D,E).

Suppose C ≡ D, i.e. C v D and D v C, then we know there exists a homomor-
phism h1 : TD → TC which maps the root of TD to the root of TC and h2 : TC → TD
which maps the root of TC to the root of TD, respectively, by Theorem 1. This
means TC = TD. Thus, simπ(C,E) = simπ(D,E). �

Theorem 6. simπ is structurally dependent.

Proof. (Sketch) Let Π be a countably infinite set of preference profile. Fix any
π ∈ Π and any finite sets of concepts C1 and C2 with the following conditions:

1. C1 ⊆ C2;

2. concepts A,B 6∈ C2;

3. ic(Φ) > 0 if primitive Φ ∈ C2;

4. ir(ϕ) > 0 if existential ∃ϕ.Ψ ∈ C2.

Suppose C :=
d

(C1 ∪{A}), D :=
d

(C1 ∪{B}), E :=
d

(C2 ∪{A}) and F :=
d

(C2 ∪
{B}) where C1 = {P1, . . . , Pm, ∃r1.P ′1, . . . ,∃rn.P ′n} and C2 = {P1, . . . , Pi,∃r1.P ′1, . . . ,
∃rj.P ′j}, w.l.o.g. we show simπ(C,D) ≤ simπ(E,F ) by following two cases.

Suppose m ≤ i, n = j, and A, B be primitives, we have p-hdπ(PC ,PD) =∑
P∈PC

ic(P )∑
P∈PC

ic(P )+ic(A)
, p-hdπ(PD,PC) =

∑
P∈PD

ic(P )∑
P∈PD

ic(P )+ic(B)
, p-hdπ(PE,PF ) =

∑
P∈PE

ic(P )∑
P∈PE

ic(P )+ic(A)
,

and p-hdπ(PF ,PE) =
∑
P∈PF

ic(P )∑
P∈PF

ic(P )+ic(B)
.

Since m ≤ i, we know p-hdπ(PC , PD) ≤ p-hdπ(PE,PF ) and p-hdπ(PD,PC) ≤
p-hdπ(PF ,PE). This infers simπ(C,D) ≤ simπ(E,F ).

Suppose m = i, n ≤ j, and A,B be existentials, then with the similar man-
ner, we can show e-set-hdπ(EC , ED) ≤ e-set-hdπ(EE, EF ) and e-set-hdπ(ED, EC) ≤
e-set-hdπ(EF , EE). This also infers simπ(C,D) ≤ simπ(E,F ).

Therefore, we have shown simπ(C,D) ≤ simπ(E,F ). �

Lemma 2. Let TD, TC ∈ TELH and Π be a countably infinite set of preference
profile. Then, hd(TD, TC) = 1⇐⇒ ∀π ∈ Π : hdπ(TD, TC) = 1.

Proof. Let Π be a countably infinite set of preference profile and π0 be the default
preference profile. Fix any π ∈ Π, we show hd(TD, TC) = 1⇐⇒ hdπ(TD, TC) = 1.

(⇒) hd(TD, TC) = 1 implies that there exists a homomorphism h : TD → TC which
maps the root of TD to the root of TC . Consequently, any setting on π does not
influence the calculation on hdπ(TD, TC).
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(⇐) In particular, it suffices to show hdπ0(TD, TC) = 1 =⇒ hd(TD, TC) = 1. By
Lemma 1, it is the case that hd(TD, TC) = 1.

�

Theorem 7. simπ is preference invariant w.r.t. equivalence.

Proof. (Sketch) Let C,D ∈ Con(ELH) and Π be a countably infinite set of prefer-
ence profile. Fix any π ∈ Π, we show C ≡ D ⇐⇒ simπ(C,D) = 1.

(⇒) Assume C ≡ D, we need to show simπ(C,D) = 1. By Theorem 2, we know
C ≡ D ⇐⇒ sim(C,D) = 1. With the usage of Lemma 2, Definition 4, and
Definition 14, we can derive simπ(C,D) = 1.

(⇐) This can be shown similarly as in the forward direction.

�

Theorem 4 to 7 spells out that simπ satisfies all fundamental properties of concept
similarity measure under preference profile.

Another important property of simπ is that there exists an algorithmic procedure
whose execution time is upper bounded by a polynomial expression in the size of
the description trees (Theorem 8).

Theorem 8. Assume that a value from any preference functions is retrieved in
O(1). Given C,D ∈ Con(ELH), simπ(C,D) ∈ O(|VC | · |VD|) where VC and VD are
set of vertices of the description trees TC and TD, respectively.

Proof. (Sketch) Let C,D ∈ Con(ELH), π be any preference profile, and TC , TD be
corresponding description trees. By Definition 14, we show hdπ(TC , TD) ∈ O(|VC | ·
|VD|) and hdπ(TD, TC) ∈ O(|VD| · |VC |). W.l.o.g. it suffices to show merely hdπ

(TC , TD) ∈ O(|VC | · |VD|), i.e., we show the computation of each composing part is
upper bounded by |VC | · |VD|. �

Definition 12 suggests that different preference profile settings represent different
types of a rational agent. An easy characterization is observed from the aspect of
role discount factor (d). Intuitively, when the settings ic, ir, sc, and sr defined by
two rational agents A, B are the same, the agent which defines the lower d on
every r ∈ RN is always more skeptical. For instance, if dA(canWalk) = 0.3 and
dB(canWalk) = 0.4, then simπA(∃canWalk.Trekking,∃canWalk.Parading) = 0.3 and
simπB(∃canWalk.Trekking,∃canWalk.Parading) = 0.4. This is clear that the agent A
is more skeptical than the agent B.

Proposition 1. Let Π be a countably infinite set of preference profile and π1, π2 ∈ Π
such that π1 = 〈ic1, ir1, sc1, sr1, d1〉, π2 = 〈ic2, ir2, sc2, sr2, d2〉, and RN be a set of role names.
The following holds:

∀r ∈ RN : (d1(r) ≤ d2(r)) =⇒≡ � simπ1 � simπ2

for fixed functions ic1 = ic2, i
r
1 = ir2, s

c
1 = sc2, and sr1 = sr2.
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5 IMPLEMENTATION METHODS OF SIMπ

Theorem 8 tells us that simπ can be computed in the polynomial time. This section
exhibits two algorithmic procedures of simπ belonging to that class.

5.1 Top-Down Implementation of simπ

Algorithm 1 Pseudo code for hdπ using top-down fashion

1: function hdπ(TD, TC , π)
2: return (µπ(TD, π) × p-hdπ(PD,PC , π)) + ((1 − µπ(TD, π)) ×

e-set-hdπ(ED, EC , π))
3: end function
4:

5: function e-set-hdπ(ED, EC , π)
6: if

∑
ir(ED, π) = 0 then

7: return 1
8: else if

∑
ir(EC , π) = 0 then

9: return 0
10: else
11: w ← 0
12: for ∃r.X ∈ ED do
13: m← 0
14: for ∃s.Y ∈ EC do
15: e← e-hdπ(∃r.X,∃s.Y, π)
16: if e > m then
17: m← e
18: end if
19: end for
20: w ← w + (m× î(r))
21: end for
22: return w/

∑
ir(PD, π)

23: end if
24: end function
25:

26: function e-hdπ(∃r.X,∃s.Y, π)
27: return γπ(r, s, π)× (d̂(r) + ((1− d̂(r))× hdπ(TX , TY , π)))
28: end function

Algorithm 1 presents the top-down approach for simπ implementation. Due to
the limited space, we omit to show Algorithm 1 in details. The reader may easily
observe that the time efficiency of Algorithm 1 is quintic because the computation
of p-hdπ is quadratic and e-set-hdπ contains double nested loops which indirectly
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make recursive calls to hdπ. It is also not difficult to observe that the number of
recursive calls is upper bounded by the height of the description trees.

It is worth to mention that using hdπ requires concept descriptions to be trans-
formed into ELH description trees. Taking this as an advantage, the next subsection
introduces an alternative way to compute hdπ from bottom to up, which is approxi-
mately three times faster than the counterpart top-down approach in the worst case
(cf. Subsection 6.1 for useful discussion).

5.2 Bottom-Up Implementation of simπ

Rather than computing (possibly duplicated) value of hdπ again and again, Algo-
rithm 2 employs the classical bottom-up version of dynamic programming technique
to compute hdπ of the smaller subtrees and records the results in a table (see the
variable result[·][·] in Algorithm 2) from which a solution to the original compu-
tation of hdπ can be then obtained (cf. at line No. 20, the function returns value
result[0][0]).

To compute hdπ from bottom to up, we need to know the height of the trees
in advance. For Algorithm 2, we employ breath-first search algorithm (denoted by
BFS) to determine the height of each description tree (cf. line No. 4 and 5 of the
algorithm). Algorithm 2 reuses the methods µπ, p-hdπ, e-set-hdπ, γπ,

∑
ic, and

∑
ir

from Algorithm 1 and provides pseudo code for e-hdπ since it is merely overridden.
What is the time complexity of Algorithm 2? It should be quintic because the

algorithm considers the similarity of all the different pairs of two concept names
for h times (cf. line No. 6). More formally, we know result[Tγ][Tλ] ∈ O(v2) where
v denotes the set cardinality of Px (and Ex) for any description tree x. Let m(i) and
n(i) be the number of nodes on level i of description trees D and C, respectively.
Then, the number of times operation result[·][·] is executed (say C) is equal to:

C =
h−1∑
i=0

m(i)∑
j=0

n(i)∑
k=0

v2

= v2
h−1∑
i=0

m(i)∑
j=0

n(i)∑
k=0

1

= v2
h−1∑
i=0

m(i)∑
j=0

(n(i) + 1)

= v2
h−1∑
i=0

(n(i) + 1)(m(i) + 1)

= v2
[
[(n(0) + 1)(m(0) + 1)] + [(n(1) + 1)(m(1) + 1)]

+ . . .+ [(n(h− 1) + 1)(m(h− 1) + 1)]
]
.
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Algorithm 2 Pseudo code for hdπ using bottom-up fashion

1: Initialize a global result[·][·] to store the degree of similarity between 2 concepts.
2:

3: function hdπ(TD, TC , π)
4: Map < Z,List < T >> mapD ← BFS(TD) . mapD stores nodes on each

level of TD
5: Map < Z,List < T >> mapC ← BFS(TC) . mapC stores nodes on each

level of TC
6: h← mapD.size()
7: for i = h− 1 to 0 do
8: List < T > listTΓ ← mapD.get(i)
9: List < T > listTΛ ← mapC .get(i)

10: for Tγ ∈ listTΓ do
11: for listTΛ 6= null and Tλ ∈ listTΛ do
12: if i = h− 1 then
13: result[Tγ][Tλ]← p-hdπ(Pγ,Pλ, π)
14: else
15: result[Tγ][Tλ]← (µπ(Tγ, π)× p-hdπ(Pγ,Pλ, π))

+ ((1− µπ(Tγ, π))× e-set-hdπ(Eγ, Eλ, π))
16: end if
17: end for
18: end for
19: end for
20: return result[0][0]
21: end function
22:

23: function e-hdπ(∃r.X,∃s.Y, π)
24: hd′ ← result[TX ][TY ]
25: if hd′ = null then
26: hd′ ← 0
27: end if
28: return γπ(r, s, π)× (d̂(r) + ((1− d̂(r))× hd′))
29: end function

Thus, the algorithm makes the similar number of operations as Algorithm 1, plus
an additional amount of extra space. On the positive side, the algorithm has never
recursively invoked itself to determine the similarity of different pairs of nested
concepts, i.e., it directly uses values stored in the table. The algorithm also shows
that computing the similarity of nodes from level i, where i is greater than the
minimum height of description trees (cf. the condition listTΛ ! = null at line No. 11),
is irrelevant to the computation.

Algorithm 2 does work productively in an environment where recursion is fairly
expensive. For example, imperative languages, such as Java, C, and Python, are
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typically faster if using a loop and slower if doing a recursion. On the other hand,
for some implementations of functional programming languages, iterations may be
very expensive and recursion may be very cheap. In many implementations of them,
recursion is transformed into a simple jump but changing the loop variables (which
are mutable) requires heavy operations. Subsection 6.1 reports that the practical
performance agrees to this theoretical analysis that the bottom-up approach is more
efficient when implemented by imperative languages, such as Java.

6 EMPIRICAL EVALUATION

This section evaluates the practical performance of both algorithms against sim5,
reassures pragmatically the backward compatibility of simπ under π0 (Theorem 3
already proves this), and discusses the applicability of simπ in potential use cases.

6.1 Performance Analysis and Backward Compatibility of simπ

Both versions of simπ (cf. Subsection 5.1 and Subsection 5.2) are implemented in
Java version 1.8 with the usage of Spring Boot version 1.3.3.RELEASE. All the
dependencies are managed by Apache Maven version 3.2.5. We also implement unit
test cases along with the development of both versions to verify the correctness
of their behaviors. In the current state (when we are writing this paper), there
are 111 unit test cases. All of them are written to cover important parts of both
implementations.

To perform benchmarking, we have selected Snomed ct as a test ontology.
As mentioned in the introduction, it is one of the largest and the most widely
used medical ontologies currently available, and also, is expressible in ELH. In
our experiments, we employ a Snomed ct ontology version from January 2005
(hitherto referred as OSnomed) which contains 379 691 concept names and 62 role
names. Moreover, each defined concept is categorized into the 18 mutually exclusive
top-level concepts. In the sense of subsumption relation, concepts belonging to the
same category should be more similar than those belonging to different categories.

For our experiments, we used a 2.4 GHz Intel Core i5 with 8 GB RAM under
OS X El Capitan. Unfortunately, the overall number of concept pairs in OSnomed is
approximately 1011. Suppose an execution of simπ takes around a millisecond, we
still need around 1 158 days in order to complete the entire ontology. According to
this reason, we consider 2 out of 18 categories, viz. Clinical Finding and Procedure,
although there are more category pairs. Then, we randomly select 0.5 % of Clinical
Finding, i.e. 206 concepts, denoted by C′1. After that, we randomly select the same
number of concepts from Procedure, i.e. 206 concepts, denoted by C′2. This sampled
set is denoted by O′Snomed, i.e. O′Snomed = C′1 ∪ C′2. Then, we create three test
datasets from this sampled set, viz. C′1 ×C′1, C′1 ×C′2, and C′2 ×C′2.

5 We have re-implemented sim (proposed in [10]) based on the same technologies and
techniques as simπ.
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Firstly, we estimate the practical performance of the top-down fashion. For each
concept pair in each set, we

1. employ the default preference profile π0 on (top-down) simπ;

2. measure the similarity of concepts in O′Snomed by peeking on OSnomed to help
unfolding;

3. repeat the previous step with (top-down) sim;

4. repeat steps 2.–3. three times and calculate the statistical results (in millisec-
onds).

Results are gathered in Table 1. We note that avg, max, and min represent the
execution time for measuring similarity of a concept pair in the average case, in the
worst case, and in the best case, respectively.

Pairs Number of Pairs
sim

(avg/max/min)
simπ0

(avg/max/min)

C′1 ×C′1 25 2.280/7.000/0.000 1.800/10.000/0.000
C′1 ×C′2 215 2.291/97.000/0.000 2.278/84.000/0.000
C′2 ×C′2 1 849 3.395/45.000/0.000 3.931/128.000/0.000

Table 1. Execution time of top-down sim and top-down simπ0 on O′Snomed

Secondly, we estimate the practical performance of the bottom-up fashion by
following the same steps as we did previously. Indeed, we exclude the time used to
determine the height of each description tree, i.e., our benchmark begins from line
No. 7 to 21 of Algorithm 2. Table 2 gathers up the results.

Pairs Number of Pairs
sim

(avg/max/min)
simπ0

(avg/max/min)

C′1 ×C′1 25 2.200/6.000/0.000 1.693/5.000/0.000
C′1 ×C′2 215 2.040/32.000/0.000 1.946/10.000/0.000
C′2 ×C′2 1 849 3.368/55.000/0.000 3.435/45.000/0.000

Table 2. Execution time of bottom-up sim and bottom-up simπ0 on O′Snomed

The experiment shows that the practical performance of simπ is likely equal to
the performance obtained by sim – as ones may not expect. The results show that
the bottom-up simπ performs approximately three times faster than the counterpart
top-down simπ (in the worst case) when implemented by imperative languages (e.g.
Java as in our case). This conforms to our analysis discussed in Subsection 5.2.

Lastly, we evaluate the backward compatibility of simπ with sim. Our goal is to
ascertain that simπ can be used interchangeably as the original sim by setting pref-
erence profile to the default one (Theorem 3 already proves this). To this point, we
have performed an experiment on concept pairs defined in O′Snomed. The experiment
evaluates results from sim and simπ0 and found that both coincide, as desired.
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6.2 Applicability of simπ

6.2.1 Tuning via ic and d

We show the applicability of ic and d through similarity measuring on Snomed ct.
Figure 2 depicts an example unfoldable terminology extracted from OSnomed.

NeonatalAspirationOfAmnioticFluid ≡ NeonatalAspirationSyndromes

u ∃roleGroup.(∃causativeAgent.AmnioticFluid)

NeonatalAspirationOfMucus ≡ NeonatalAspirationSyndromes

u ∃roleGroup.(∃causativeAgent.Mucus)

Hypoxemia ≡ DisorderOfRespiratorySystem u DisorderOfBloodGas

u ∃roleGroup.(∃interprets.OxygenDelivery)

u ∃roleGroup.(∃findingSite.ArterialSystemStructure)

BodySecretion v BodySubstance

BodySubstance v Substance

BodyFluid v BodySubstance u LiquidSubstance

AmnioticFluid v BodyFluid

Mucus v BodySecretion

causativeAgent v associatedWith

Figure 2. Example of ELH concept definitions defined in OSnomed

Considering merely objective factors regardless of the agent’s preferences, it
yields that simπ0(NAOAF,NAOM) ≈ 0.96 and simπ0(NAOAF,H) = 0.2. The results
yield the quite similar concepts NAOAF and NAOM, which reflect the fact that both
are resided in the same cluster of Snomed ct. However, the result yielding that
the concepts NAOAF and H share a little similarity controverts the fact that both
carry neither implicit nor explicit relationship. This is indeed caused by the usage
of the special-purpose role called roleGroup – informally read as relation group.

In Snomed ct, the use of relation group is widely accepted to nestedly represent
a group of existential information [21]. As a consequence, it increases unintentionally
the degree of similarity due to role commonality (i.e. γπ). Since roleGroup precedes
every existential restriction, it is useless to regard an occurrence of this as being
similar. The importance contribution of roleGroup inOSnomed should be none. Hence,
the agent S who measures similarity on Snomed ct should set dS(roleGroup) = 0.

Furthermore, the Snomed ct top concept SCT-TOP subsumes every defined
concept of each category. This means this special concept is shared by every ex-
panded concept description. Intuitively, this special top concept is of no importance

6 Obvious abbreviations are used here for the sake of succinctness.
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for measuring similarity on Snomed ct and we can treat the top-level concepts as
directly subsumed by >. As a result, the agent S should also set icS(SCT-TOP) = 0.

Tuning the measure with this expertise knowledge yields more realistic result.
That is, the similarity of concepts under the same category which uses roleGroup in
their definitions is slightly reduced. Also, the similarity of concepts under different
categories is totally dissimilar. Continuing the case, simπS(NAOAF,NAOM) ≈ 0.84
and simπS(NAOAF,H) = 0.0, as desired.

6.2.2 Tuning via sr

Let us use the ontology given below to query for places similar to ActivePlace.

ActivePlace v Place u ∃canSail.Kayaking

Mangrove v Place u ∃canWalk.Trekking

Supermarket v Place u ∃canBuy.FreshFood

Suppose the agent feels walking and sailing are similar and are still satisfied much on
both actions. Taking sr(canWalk, canSail) = 0.6 yields simπ(M,AP) > simπ(S,AP),
which conforms to the agent’s preferences and needs.

6.2.3 Tuning via sc

Let us use the ontology given below to query for a product which offers features the
agent is satisfied with most.

WantedFeatures v F0 u F1 u F2

Item1 v F0 u F3

Item2 v F0 u F4

According to the ontology, WantedFeatures represents a collection of desired features
and Fi (where i ∈ N) represents a feature. A purchase decision is sometimes affected
by satisfied alternations, which are varied by different people. Assume that the agent
feels satisfaction to have F3 if the agent cannot have F1. Taking sc(F1,F3) = 0.8 yields
simπ(WF, I1) > simπ(WF, I2), which conforms to the agent’s perceptions.

6.2.4 Tuning via ir

Let us use the ontology given in Example 1 to query for places which are most similar
to ActivePlace. Typically, a human decision is affected by a priority of concerns,
which are varied by different people. Suppose that the agent weights more on places
which permit to walk more than other activities. Taking ir(canWalk) = 2 yields
simπ(M,AP) > simπ(B,AP), which conforms to the agent’s preferences.



608 T. Racharak, B. Suntisrivaraporn, S. Tojo

7 RELATED WORK

As we develop the notion
π∼T as a generalization of ∼T , this section relates our devel-

opment to others in two areas, viz. CSMs without regard to the agent’s preferences
and CSMs with regard to the agent’s preferences.

7.1 CSMs Without Regard to The Agent’s Preferences

In the standard perception, CSM refers to the study of similar concepts inherited
by nature, i.e. the ones similar regardless of the agent’s preferences. CSM is widely
studied and the techniques are roughly classified into two main groups, viz. path-
distance-based approach and DLs-based approach.

In the path-distance-based approach, a degree of similarity is calculated based on
the depth of a subsumption hierarchy. The method [22, 23] considers the distance
between concepts w.r.t. their least common subsumer. A potential drawback of
this approach is its ignorance on concept definitions defined in TBox. Hence, any
pair of concepts out of the subsumption relation is always considered as totally
dissimilar.

In DLs-based approach, a simple approach is developed in [20] for the DL L0

(i.e. no use of roles) and is known as Jaccard Index. Its extension to the DL ELH
is proposed in [16]. This work also introduces important properties of CSM and
suggests a general framework called simi which satisfied most of the properties.
In simi, functions and operators, such as t-conorm and the fuzzy connector, are
to be parameterized and thus left to be specified. The framework also does not
contain implementation details. This may cause implementation difficulties since
merely promising properties are given and no guideline of how concrete operators
are chosen is provided. Similar approaches can be found in [4, 5, 6, 7] for other DLs.

There is another approach which considers their canonical interpretation of con-
cepts in question, such as [8, 9]. A potential drawback of these approaches is that
it cannot be applied to an ontology without ABox, e.g. Snomed ct.

The notion of homomorphism degree is originally introduced in [13] and is thereof
extended toward the development of simπ in this work. Theorem 3 suggests that
simπ can be used to measure similarity of concepts inherently by nature through
the setting π0, i.e. simπ0 . As inspired by the tree homomorphism, the measure
differs [16] from the use of µπ to determine how important the primitive concepts
are to be considered and the use of γπ to determine a degree of role commonality
between matching edges of the description trees.

7.2 CSMs with Regard to The Agent’s Preferences

Most CSMs are objective-based. However, there exists work [10, 16] which provides
methodologies for tuning. We discuss their differences to ours in the following.

In an extended work of sim [10], a range of number for discount factor (ν) and the
neglect of special concept names are used in the similarity application of Snomed
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ct. For instance, when roleGroup is found, the value of ν is set to 0. These ad
hoc approaches can be viewed as specific applications of d and ic, respectively, of
preference profile. Unfortunately, no other aspects of π appear in its use.

In simi [16], the function pm is used to define the similarity degree of primitive
concept pairs and role pairs. Using pm with primitive concept pairs invokes the
equivalent intuition as sc; however, this does not mean so in the aspect sr. Allowing
to define the similarity of defined role names, as in [16], may be not appropriate
since defined role names are contributed by primitive role names. For example, let
r1 v s1 and r2 v s2 are defined in T . It is clear that r1, r2 ∈ RNdef . By defining
pm(r1, r2), the defined similarity should be also propagated to the similarity of s1
and s2. However, this point is not discussed in [16]. In respect of this, RNpri is merely
used in sr and γπ is defined for the similarity of defined role names. The authors
of [16] also define the function g : NA → R>0 representing the weight for concept
names and existential restriction atoms (based on their definition). Ones may feel
the resemblance of g and ic, ir; however, they are also different in three perspectives.
Firstly, the mapping of g is reached to the infinity whereas ic and ir are bounded.
This characteristic of g is impractical to use as it may lead to the unbalance of
weight assignments. For instance, one may define g(A1) = 1 but g(A2) = 1012

where A1, A2 ∈ CNpri. To avoid this situation, the authors should provide a guideline
for weight assignments. Secondly, the mapping of g is lower bounded by one. This
clearly makes an impossibility to define the intuition of having no importance. Thus,
the situation given in Subsubsection 6.2.4 is not expressible. Lastly, the domain of
g is the set of atoms whereas ic (and ir) is the set of primitive concept names (and
the set of role names, respectively). Using the set of atoms as the domain is also
impractical since there can be infinitely many existential restriction atoms and the
interpretation of functions is slightly dubious. For instance, given g(∃r.C) = 2 and
g(∃r.D) = 3, do both r intentionally contribute the equal importance? Thus, this
definition is inappropriate to represent the agent’s perception. Moreover, the aspect
d disappears from [16]. Lacking of fully ic and d makes the framework inappropriate
to use for Snomed ct applications. These distinctions of simi and simπ are radically
caused by their different motivations. Table 3 summarizes this discussion, where
4 denotes totally identical to the specified function whereas 3 denotes partially
identical to the specified function.

CSM ic ir sc sr d

simπ 4 4 4 4 4

the extended work of sim [10] 4 4

simi [16] 3 4 3

Table 3. Concept similarity measures which embed preference elements

Not only distinct on the mathematical representation of simi and simπ, the
desired properties presented in each work are also different. While the proper-
ties introduced in [16] are motivated for CSM, our properties are developed under
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the consideration of the agent’s preferences (
π∼T ). Hence, some properties intro-

duced for CSM are revised in subjective manners and the new property is intro-
duced.

8 CONCLUSIONS AND FUTURE WORK

This paper introduces the notion called concept similarity measure under preference
profile (in symbol,

π∼T ) with the set of its desirable properties, as intended behaviors
of good preference-based measures. The measure simπ (cf. Section 4), which is re-
garded as a measure of the proposed notion, is capable of informing the degree under
preferences of similarity of two concepts although they are not in the subsumption
relation. At the heart of the measure is the calculation of the degrees under prefer-
ences of homomorphism between two description trees in both directions. Proofs of
inherited properties are shown in Theorems 4, 5, 6, and 7. The measure can also be
used regardless of the agent’s preferences. Theorem 3 suggests that this is handled
by the default preference profile setting, i.e. simπ0 .

Apart from the mathematical definition, we suggest two concrete algorithms,
viz. the top-down approach (cf. Subsection 5.1) and the bottom-up approach (cf.
Subsection 5.2), for implementations of simπ. The computational complexity of
both algorithms is clearly discussed and is practically evaluated against OSnomed

(cf. Subsection 6.1). The usability of possible use cases are discussed in Subsec-
tion 6.2.

The proposed measure has great potential use in knowledge engineering, such
as the development of recommendation systems based on the agent’s preferences,
the development of domain-specific knowledge bases, and the ontology engineer-
ing. Moreover, it may be used with heterogeneous ontologies by identifying dupli-
cated primitive concepts and primitive roles among ontologies via sc and sr, respec-
tively.

There are several possible directions for the future research. Firstly, it appears
to be a natural step to extend the notion of preference profile to support more
expressive DLs, e.g. universal restriction, concept negation, and also, to support
an ABox. Secondly, we also aim at devising a concept similarity measure under
preference profile which can handle more expressive DLs. Thirdly, we intend to
explore the possibility to extend the notion of preference profile beyond

π∼T , e.g.
non-standard instance checking under preference profile. Apart from theoretical
perspectives, we also intend to explore possibility on optimizing the proposed algo-
rithmic procedures.
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