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Abstract. In this paper, we consider the problem of parameter selection and uncer-
tainty measurement for a variable precision probabilistic rough set. Firstly, within
the framework of the variable precision probabilistic rough set model, the rela-
tive discernibility of a variable precision rough set in probabilistic approximation
space is discussed, and the conditions that make precision parameters α discernible
in a variable precision probabilistic rough set are put forward. Concurrently, we
consider the lack of predictability of precision parameters in a variable precision
probabilistic rough set, and we propose a systematic threshold selection method
based on relative discernibility of sets, using the concept of relative discernibility
in probabilistic approximation space. Furthermore, a numerical example is applied
to test the validity of the proposed method in this paper. Secondly, we discuss the
problem of uncertainty measurement for the variable precision probabilistic rough
set. The concept of classical fuzzy entropy is introduced into probabilistic approxi-
mation space, and the uncertain information that comes from approximation space
and the approximated objects is fully considered. Then, an axiomatic approach is
established for uncertainty measurement in a variable precision probabilistic rough
set, and several related interesting properties are also discussed. Thirdly, we study
the attribute reduction for the variable precision probabilistic rough set. The defini-
tion of reduction and its characteristic theorems are given for the variable precision
probabilistic rough set. The main contribution of this paper is twofold. One is to
propose a method of parameter selection for a variable precision probabilistic rough
set. Another is to present a new approach to measurement uncertainty and the
method of attribute reduction for a variable precision probabilistic rough set.

Keywords: Rough set, probabilistic approximation space, relative discernibility,
variable precision probabilistic rough set, approximation reduction

1 INTRODUCTION

Rough set [1, 2] theory is a mathematical theory that has been used since the 1980s
to handle uncertain, imprecise, and incomplete information. In recent years, rough
set theory has been applied successfully to many fields in computer science and
management science, e.g., intelligent data processing [3], data mining [4], big data
processing [5], pattern identification [6], image processing [3, 7], decision-making
support and process control [3, 8]. Against a varied background of management
science situations, several extensions of the Pawlak rough set model have been de-
veloped, such as a variable precision rough set model [9], rough set model based on
tolerance relations [10, 11], Bayesian rough set model [12], fuzzy rough set model [13],
rough fuzzy set model [14], probabilistic rough set model [15], etc. The basic model
of classical Pawlak rough set is based on equivalence relations (reflexive, symmetric,
and transitive are satisfied), and is represented by a precise inclusion relationship of
sets. In this model, equivalence relationship is the crucial concept, and the universe
of discourse is divided into a positive region, negative region and boundary region.
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But the strict equivalence relationship leads to a relatively broad boundary region,
i.e., an uncertainty region. Therefore, finding methods to minimize the boundary
region has become a highly discussed issue in both the theoretical and applied study
of rough set theory.

The core issue of rough set theory is classification analysis based on a binary
relationship for a given domain. The Pawlak rough set model is by nature a qual-
itative classification model. It classifies based on an equivalence relationship and
inclusion relationship between approximation sets, with no consideration of possible
overlap of information between set objects. In view of this, incomplete inclusion
relations and subordination relations among sets have to be considered. Regarding
this constraint of classical Pawlak rough set theory, an effective approach to reduce
the boundary region is to extend a strict inclusion relation between sets, and to
introduce a majority inclusion relation between sets. This leads to an important
extension of Pawlak rough set, i.e., variable precision rough set [9]. Subsequently,
many valuable extensions of Ziarko’s variable precision rough set were established.
Based on Ziarko’s idea, Beynon [16] and Katzberg [17] define the model of variable
precision rough sets with asymmetric bounds by introducing two parameters to the
lower and upper approximations. Sun and Gong [18] present a new generalized
model of Ziarko’s variable precision rough set based on binary relations over the
universe of discourse. In addition, probabilistic rough set theory that combines clas-
sical probability theory and Pawlak rough set theory is another effective model to
reduce the boundary domain of a Pawlak rough set. In 1987, Wong and Ziarko [19]
introduced probabilistic approximation space to the study of rough set and then pre-
sented the concept of probabilistic rough set. Subsequently, Yao et al. [20] proposed
a more general probabilistic rough set called decision-theoretic rough set. There
another perspective to deal with the degree of overlap of an equivalence class with
the set to be approximated was given, and an approach to select the needed param-
eters in lower and upper approximations was presented. As far as the probabilistic
approach to rough set theory, Pawlak and Skowron [21], Pawlak et al. [22] and Wong
and Ziarko [19] proposed a method to characterize a rough set by a single member-
ship function. By the definition of a rough membership function, elements in the
same equivalence class have the same degree of membership. The rough membership
may be interpreted as the probability of any element belonging to a set, given that
the element belongs to an equivalence class. This interpretation leads to probabilis-
tic rough set [23]. Compared with a classical Pawlak rough set model, variable rough
set models and probabilistic rough set models belong to the category of quantitative
models, and they can effectively overcome the weaknesses of the Pawlak rough set
model in terms of tolerance mechanism and generalization capacity when processing
imprecise, inconsistent, and incomplete information.

Finally, in [24], the authors defined another quantitative model by combining
a variable precision rough set model and a probabilistic rough set model into a vari-
able precision probabilistic rough set model. The three above-mentioned quantita-
tive extension models based on classical Pawlak rough set models share one common
point: a precision parameter needs to be set in advance in their definition of lower
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and upper approximations. While introduction of a precision parameter can improve
the defects of the classical Pawlak rough set theory model, studies of the three mod-
els so far have only discussed the existence, domain of the value, and a semantic
explanation (management background) of precision parameters. They lack discus-
sion of how to determine precision parameters, i.e., they did not propose a definition
of parameters and the selection method. This has constrained the application of the
models. Besides, the parameters used in certain conditions are not necessary in
some cases. In this case, the credibility of decision rules may be reduced. In fact,
the selection of parameters is of vital importance to the selection of decision rules in
real life during the application of a variable precision probability rough set model.
In this paper, based on [25], we discuss the relative discernibility between sets in
probabilistic approximation space. We put forward a method of threshold selection
of precision parameters based on the relative discernibility of sets under the precon-
dition of relative discernibility of the set in probabilistic approximation space and
consistency of the quality of approximation classification. This makes it practical
to select precise parameters in a variable precision probabilistic rough set model.
Uncertainty measurement of concepts (objects) in approximation space is another
important part of the study of Pawlak rough set theory. As in the Pawlak rough
set model, the roughness and precision of variable precision probabilistic rough set
only describe uncertainties that come from the approximation space. In fact, the
uncertainty of a rough set in approximation space comes from both the approxima-
tion space and the approximated set. In view of this, we fully discuss both factors.
The concept of fuzzy entropy is introduced into probabilistic approximation space,
and an axiomatic approach is employed to put forward a new method to address
measurement uncertainty in a variable precision probabilistic rough set. Finally,
we briefly introduce an approximation reduction of an information system based on
a variable precision probabilistic rough set model.

The rest of this paper is as follows: Section 2 provides the basic concept of binary
relations over the universe and briefly reviews the Pawlak rough set theory, variable
precision rough set and probabilistic rough set. In Section 3, the discernibility of
probabilistic approximation space of variable precision probabilistic rough set is dis-
cussed first, then a parameter selection method for a variable precision probabilistic
rough set is proposed on this basis. Section 4 investigates the uncertainty measure-
ment of a variable precision probabilistic rough set by introducing the concept of
classical fuzzy entropy into probabilistic approximation space. Section 5 discusses
the attribute reduction of probabilistic approximation space based on variable pre-
cision probabilistic rough set and presents several interesting conclusions. At last,
we conclude our research and set out further research directions in Section 6.

2 PRELIMINARIES

In this section, we briefly review the concept of binary relations over a universe
as well as the Pawlak rough set model over the universe. Also, we will present
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the definitions of the variable precision rough set model and probabilistic rough set
model.

2.1 Pawlak Rough Set

First of all, we present the definition of an equivalence relation in the universe of
discourse.

Definition 1 ([1, 2]). Let U be a non-empty and finite universe. Denote U × U =
{(xi, xj) | xi, xj ∈ U}. Then the subset R ⊆ U × U is called an equivalence relation
on universe U , if R satisfies the following conditions:

1. Reflexivity: (xi, xi) ∈ R, ∀xi ∈ U ;

2. Symmetry: (xi, xj) ∈ R,⇒ (xj, xi) ∈ R, ∀xi, xj ∈ U ;

3. Transitivity: (xi, xj) ∈ R, (xi, xk) ∈ R⇒ (xi, xk) ∈ R, ∀xi, xj, xk ∈ U .

Let U/R be a set consisting of all equivalent classes based on equivalence relation
R in the universe, and let [x]R represent R equivalent classes that include element
x ∈ U . Then K = (U,R) is called a knowledge base or a relationship system, where
R represents a cluster of equivalence relationships in domain U .

When there is no risk of confusion, we make no distinction as to equivalence
relationship cluster R and equivalence relationship R, i.e., K = (U,R). Meanwhile
(U,R) is called Pawlak approximation space [26, 27].

Let (U,R) be the approximation space. For any X ⊆ U , we define

R(X) = ∪{[x]R ∈ U/R | [x]R ⊆ X, x ∈ U},

R(X) = ∪{[x]R ∈ U/R | [x]R ∩X 6= ∅, x ∈ U},

the lower approximation and upper approximation of R, respectively.
The lower approximation and upper approximation can also be represented as

follows:

R(X) = {x ∈ U | [x]R ⊆ X},

R(X) = {x ∈ U | [x]R ∩X 6= ∅}.

BnR(X) = R(X)− R(X) is called the boundary region of X. PosR(X) = R(X) is
the positive region of X, and NegR(X) = U −R(X) is the negative region of X.

Apparently, R(X) = PosR(X) ∪BnR(X).
Based on the above definition, the following conclusion is obviously valid.

Theorem 1 ([27, 29]). Define (U,R) as an approximation space. For any X ⊆ U ,
there is:
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1. X is a definable set of R when R(X) = R(X).

2. X is a rough set of R when R(X) 6= R(X).

The lower approximation R(X) is the union of all elementary sets that are the
subsets of X, and the upper approximation R(X) is the union of all elementary sets
that have a non-empty intersection with X.

The lower (upper) approximation R(X)(R(X)) is interpreted as the collection
of those elements of U that definitely (possibly) belong to X.

2.2 Variable Precision Rough Set

The Pawlak rough set model is often too strict when including objects into the ap-
proximation regions and may require additional information. A lack of consideration
for the degree of overlap between an equivalence class and the set to be approximated
unnecessarily limits the applications of Pawlak rough set and has motivated a good
deal of new generalization of the Pawlak rough set model. In 1993, Ziarko [9, 28]
proposed the variable precision rough set model by introducing the majority inclu-
sion relation over the universe of discourse. In the following, we present Ziarko’s
variable precision rough set model.

Let U be the universe of discourse. For any two subsets X, Y ⊆ U , we define

mc(X, Y ) =

1− |X ∩ Y |/|X|, |X| > 0;

0, |X| = 0.

We call mc(X, Y ) the relative error classification rate of set X in relation to
set Y .

Let (U,R) be the Pawlak approximation space, for any X ⊆ U . We define the β
lower approximation and upper approximation of X with respect to approximation
space (U,R) respectively as follows:

Rβ(X) = {x ∈ U | mc([x]R, X) ≤ β},

Rβ(X) = {x ∈ U | mc([x]R, X) < 1− β}.

Furthermore, the β positive region, boundary region and negative region of X
with respect to approximation space (U,R) can be respectively defined as follows:

Posβ(X) = Rβ(X) = {x ∈ U | mc([x]R, X) ≤ β},

Bnβ(X) = {x ∈ U | β < mc([x]R, X) < 1− β},

Negβ(X) = {x ∈ U | mc([x]R, X) ≥ 1− β}.
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Remark 1. If β = 0, then the following relation holds:

Rβ(X) = {x ∈ U | mc([x]R, X) ≥ 1} = {x ∈ U | [x]R ⊆ X} = R(X),

Rβ(X) = {x ∈ U | mc([x]R, X) > 0} = {x ∈ U | [x]R ∩X 6= ∅} = R(X).

This is the Pawlak rough set model.

2.3 Variable Precision Probabilistic Rough Set

In this subsection, we introduce another generalized form of the Pawlak rough set
model: variable precision probabilistic rough set.

We first give the concept of probabilistic measurement on the universe of dis-
course [29, 30].

Definition 2 ([30]). Let U be a non-empty finite universe of discourse. The set
function P : 2U → [0, 1] is called the probabilistic measurement on universe U , and
satisfies the following conditions:

1. P (∅) = 0,

2. P (U) = 1,

3. P (
⋃
nAn) =

∑
n P (An), An ∈ 2U , n = 1, 2, . . . and An piecewise disjoint.

Let P be the probabilistic measurement on U , ∀A,B ∈ 2U and P (B) > 0. Then,

P (A|B) =
P (A ∩B)

P (B)
,

is the conditional probability of occurrence of event A given event B.

Definition 3 ([24]). Let U be a non-empty and finite universe of discourse. R is
an equivalence relation on U . U/R are equivalence classes formed by R. P is the
probabilistic measurement defined on the σ-algebra of measurable subsets of U .
Then we call this the probabilistic approximation space.

In the following, we present the definition of variable precision probabilistic
rough set with respect to probabilistic approximation space.

Let AP = (U,R, P ) be a probabilistic approximation space. For any 0.5 < α ≤ 1,
X ⊆ U , the lower approximation Pα(X) and upper approximation Pα(X) of X with
precision parameter α about probabilistic approximation space AP are, respectively,
as follows:

Pα(X) = {x ∈ U | P (X|[X]R) ≥ α},

Pα(X) = {x ∈ U | P (X|[X]R) > 1− α}.
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Similarly, the positive region, boundary region and negative region of X about
probabilistic approximation space AP are, respectively, defined as follows:

Pos(X,α) = Pα(X) = {x ∈ U | P (X|[X]R) ≥ α},

Bnα(X) = {x ∈ U | 1− α < P (X|[X]R) < α},

Negα(X) = U\Pα(X) = {x ∈ U | P (X|[X]R) < α}.

3 THE THRESHOLD SELECTION OF VARIABLE PRECISION
PROBABILISTIC ROUGH SET

According to the definition of the variable precision probabilistic rough set model,
it is well known that roughness of any non-empty subset X (X ⊆ U) in approxima-
tion space is caused by the existence of boundary region Bnα(X). Therefore, the
boundary region Bnα(X) affects the discernibility of X, and the boundary region
of X varies with parameter α, which further influences the discernibility of the set
itself. Because the discernibility of the boundary region of X is relative, a higher dis-
cernibility of X in a given classification probability value can be reached if a greater
classification probability exists. Based on the above analysis, the following defini-
tions are given.

As is well known, the variable precision probabilistic rough set model [24] is
an extension of the existing results. The variable precision probabilistic rough set
model was defined by introducing the classical probability measure into the Pawlak
approximation space, and then we use the conditional probability of any objects
(i.e., the equivalence classes of an element on universe of discourse) with respect to
the considered event (i.e., the approximated object set X) instead of the majority
include relation used in the original Ziarko’s model [9]. Based on the conditional
probability, the lower and upper approximations of variable probabilistic rough set
model were constructed. That is, the variable precision probabilistic rough set model
can be regarded as a probabilistic description of the original Ziarko’s model [9]
under the framework of probabilistic approximation space, i.e., the variable precision
probabilistic rough set model will be degenerated into the original Ziarko’s model
when we define P (X|[X]R) = 1 − |X∪[X]R|

|[X]R|
= mc(X, [X]R) (where | • | denotes the

cardinality of any set). Therefore, the following conclusions and other results of the
variable precision probabilistic rough set model are similar to the results given in
Ziarko [9].

Definition 4 ([9]). Let (U,R, P ) be a probabilistic approximation space. If the α
boundary region of X (X ⊆ U) about (U,R, P ) satisfies Bnα(X) = ∅ or, equiva-
lently, Pα(X) = Pα(X). Then X is called α discernible. Otherwise, X is called α
indiscernible.

It is easy to know that the discernibility of X depends on the value of precision
parameter α from this definition.
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Based on the above definition, the following conclusion can be reached.

Theorem 2 ([9]). Let (U,R, P ) be a probabilistic approximation space. For any
X (X ⊆ U), if X is discernable for parameter α (0.5 < α ≤ 1), then X is also
discernible for any α1 < α (0.5 < α1 ≤ 1).

Proof. For Bnα(X) = {x ∈ U |1 − α < P (X|[X]R) < α}, if X is discernible on
parameter α (0.5 < α ≤ 1), then there is Bnα(X) = ∅. For any α that satisfies α1 <
α (0.5 < α1 ≤ 1), there is {1−α1 < P (X|[X]R) < α1} ⊆ {1−α < P (X|[X]R) < α}.
This is Bnα1(X) ⊆ Bnα(X). So, Bnα(X) = ∅. Therefore, X is discernible for any
α1(α1 < α).

This completes the proof. 2

Corollary 1 ([9]). Let (U,R, P ) be a probabilistic approximation space. For any
X (X ⊆ U), if X is indiscernible with respect to parameter α (0.5 < α ≤ 1), then
X is indiscernible for any α < α2(0.5 < α2 ≤ 1).

The proof is same as the proof of Theorem 2.
Theorem 2 and Corollary 1 show that the discernibility of any set X increases

with the decreasing of the value of precision parameter α. Otherwise, the discerni-
bility of any set X decreases with the increasing value of precision parameter α.
That is, for a probabilistic rough set X, there could be a more highly discernible X
if a smaller classification precision parameter α was given.

Definition 5. Let U be a non-empty finite universe, and (U,R, P ) be a probabilistic
approximation space. For any X (X ⊆ U), if α = 0.5, we define the absolute
boundary region of X about probabilistic approximation space (U,R, P ) as:

Bn0.5(X) = {x ∈ U |P (X|[X]R) = 0.5}.

Definition 6. Let (U,R, P ) be a probabilistic approximation space. For any X
(X ⊆ U), if X is indiscernible for any α (0.5 < α ≤ 1), then we call X absolutely
indiscernible (or absolutely rough set). Otherwise, we call X relatively rough (or
weakly discernible).

Theorem 3 ([9]). Let (U,R, P ) be a probabilistic approximation space. For any X
(X ⊆ U), if P 0.5(X) 6= P 0.5(X), then X is indiscernible for any precision parameter
α (0.5 < α ≤ 1).

Proof. Because P 0.5(X) 6= P 0.5(X), i.e. Bn0.5(X) 6= ∅, and for any α (0.5 < α ≤ 1),
there is Bn0.5(X) ⊆ Bnα(X). Therefore, Bn0.5(X) 6= ∅ according to Theorem 2.
From Definition 4, it is known that X is α indiscernible.

This completes the proof. 2

Corollary 2. Let (U,R, P ) be a probabilistic approximation space. Then any X
(X ⊆ U) with a non-empty boundary region on (U,R, P ) must be indiscernible.
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Corollary 3. Let (U,R, P ) be probabilistic approximation space. For any X (X ⊆
U), X is an absolutely rough set if and only if Bn0.5(X) 6= ∅.

It is easy to see that the converse propositions of Theorem 2 and 3 are still valid
for the definition of various precision probabilistic rough sets.

Generally speaking, for any set X (X ⊆ U), the discernibility of X about proba-
bilistic approximation space (U,R, P ) depends on the value of precision parameter α.
In fact, there is always an α for every relative rough set X that makes X discernible
at this threshold value. Then we have the following definition.

Definition 7 ([9]). Let U be the non-empty finite universe of discourse, and R ∈
U × U an equivalence relation on universe U . Let

Ind(R,X) = {α | Bnα(X) 6= ∅, α ∈ (0.5, 1]}

be the whole set of α values that satisfy X and is indiscernible with respect to
probabilistic approximation space (U,R, P ).

Furthermore, the maximum value of parameter α that satisfies the condition
that X is discernible is called the discernible threshold value, denoted as γα(P,X).

Definition 8 ([9]). Let (U,R, P ) be a probabilistic approximation space. For anyX
(X ⊆ U), the discernible threshold value γα(P,X) satisfies the following conditions:

1. γα(P,X) = inf Ind(P,X),

2. γα(P,X) = min(n1, n2)

where

n1 = 1−max{P (X|[x])|P (X|[X]R) < 0.5, x ∈ U},

n2 = min{P (X|[x])|P (X|[X]R) > 0.5, x ∈ U}.

For any X (X ⊆ U), if X is relatively discernible, then the empty boundary
region (i.e., the discernible threshold value boundary region) of X is as follows:

Bnγα(X) = {x ∈ U | 1− γα(P,X) < P (X|[x]α) < γα(P,X)}.

Theorem 4. Let (U,R, P ) be a probabilistic approximation space. If there are
Bnα(X) 6= ∅ for any parameter α ∈ (0.5, 1] and X (X ⊆ U), then X is indiscernible
if and only if

Bnα(X) 6= Bnγα(X), α ∈ (0.5, 1].

In Theorem 4 we talk about α for which X is discernible, therefore, according
to Definition 4 we have Bnα(X) = ∅.

Based on the former definitions, the following conclusion is clear.
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Theorem 5. Let (U,R, P ) be a probabilistic approximation space. For any α (0.5 <
α ≤ 1), X (X ⊆ U), the domain of the probabilistic valueX that makes α discernible
is as follows:

(0.5, γα(P,X)].

In the following, we present a numerical example to demonstrate the method for
precision parameter selection given in this paper.

Example 1. Let U = {x1, x2, · · · , x20} and let R be an equivalence relation on uni-
verse U . P is the probabilistic measurement defined on the σ-algebra of measurable
subsets of universe U . Meanwhile, the elementary classes of elements on U with
respect to R are as follows, respectively.

E1 = {x1, x2, x3, x4, x5}, E2 = {x6, x7, x8}, E3 = {x9, x10, x11, x12, x19},

E4 = {x17, x18, x20}, E5 = {x13, x14, x15, x16}.

Suppose that
X = {x3, x5, x8, x14, x15, x16, x18, x19}.

Take P (X|E) = P (X∩E)
P (E)

. Then we have

P (X|E1) = 0.4, P (X|E2) = 0.34, P (X|E3) = 0.2,

P (X|E4) = 0.33, P (X|E5) = 0.75.

Based on Definition 7, it is easy to calculate and obtain the following results:

n1 = 1−max{P (X|E1), P (X|E2), P (X|E3)}

= 1−max{0.4, 0.34, 0.33, 0.2}

= 1− 0.4 = 0.6,

n2 = min{P (X|E5)} = min{0.75} = 0.75.

So, there is γα(P,X) = min{n1, n2} = min{0.6, 0.75} = 0.6.
That is, the maximum threshold value that makes X discernible is γα(P,X) =

0.6. Therefore, the corresponding empty boundary region when X is discernible is
as follows:

Bnγα(X) = {x ∈ U | 0.4 < P (X|[x]R) < 0.6}.

By using the conclusion of Theorem 4, we know that the domain of the value of
precision parameter α that makes X discernible is calculated as follows:

(0.5, γα(P,X)] = (0.5, 0.6].

This completes the example.
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4 UNCERTAINTY MEASUREMENT OF VARIABLE PRECISION
PROBABILISTIC ROUGH SET

In the classical Pawlak rough set theory [1, 2], accuracy and roughness are used
to characterize the uncertainty of a set and approximation accuracy is employed to
depict the accuracy of a rough classification. Pawlak [1, 2] developed the uncer-
tainty measurement of an ordinary set in the universe of discourse. Subsequently,
Banerjee [34] studied the uncertainty measurement of a fuzzy set with respect to
approximation space. Although these measures are effective, several limitations
have been pointed out by many scholars when applying them to certain situations.
Therefore, several improved methods of uncertainty measurement for various gener-
alized rough set models (or generalized information systems) have been established
in recent years [37].

As is well known, the roughness of any object set with respect to the probabilis-
tic approximation space is induced by the non-empty boundary region, from the
definition of the variable precision probabilistic rough set model. There could be
a fuzzy membership relation between any object set and the elements in the universe
of discourse. Moreover, the fuzzy membership degree between any object set and
the elements is determined by the probability P (X|[x]).

For any α (0.5 < α ≤ 1), X ⊆ U , we denote the fuzzy set generated by the
conditional probability as X̃α

P . So, its membership function is defined as follows:

X̃α
P (x) = P (X|[X]R) = P (X ∩ [X]R)/P ([X]R), x ∈ U.

In particular, if P ([X]R) = 0 or [X]R = ∅, then we use the convention that
X̃α
P (x) = 1.

Based on the definition of rough membership function X̃α
P (x) on probabilis-

tic approximation space (U,R, P ), the lower and upper approximations of variable
precision probability rough set by rough membership function are represented re-
spectively as follows:

Pα(X) =
{
x ∈ U | X̃α

P (x) ≥ α
}
,

Pα(X) =
{
x ∈ U | X̃α

P (x) > 1− α
}
.

That is, the lower and upper approximations of variable precision probabilistic
rough set are α cut set and strong 1− α cut set of fuzzy set X̃P , respectively.

The boundary region and negative region of X are similarly described as follows:

Bnα(X) =
{
x ∈ U | 1− α < X̃α

P (x) < α
}
,

Negα(X) = U\Pα(X) =
{
x ∈ U | X̃α

P (x) ≤ 1− α
}
.
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In this section, we will present an approach to uncertainty measurement for
variable precision probabilistic rough set by using the concept of fuzzy entropy. The
concept of entropy, originally developed by Shannon [33] for communication theory,
has been a useful mechanism for characterizing the information in various models
and applications in diverse fields. By using Shannon entropy, several conclusions
can be established about the uncertainty measurement and knowledge granularity
of the rough set in the Pawlak approximation space [35]. As discussed above, there
is a fuzzy set generated by the conditional probability of the universe of discourse
for any target set X (X ⊆ U). So, we use the concept of fuzzy entropy to discuss
the uncertainty measurement for a variable precision probabilistic rough set.

Here, we first give the definition of fuzzy entropy as follows.
Let U be a non-empty and finite universe of discourse. Denote as F (U) all the

fuzzy subsets of universe U .

Definition 9 ([31, 32, 33]). Let mapping E : F (U) → [0, 1]. If the following con-
ditions are satisfied:

1. E(A) = 0 if and only if A is a crisp set on U ;

2. E(A) = 1 if and only if µA(x) = 0.5, ∀x ∈ U,A ∈ F (U);

3. If D(A, 0.5) ≥ D(B, 0.5), then E(A) ≤ E(B),∀A,B ∈ F (U);

4. E(A) = E(Ac) (Ac is the complementary set of A)

where D(A,B) =
√

1
|U |
∑

x∈U(µA(x)− µB(x))2 indicates the distance between two

rough sets.

Then E is called an entropy on F (U).
With the axiomatic definition of fuzzy entropy, a roughness measurement of

a variable precision probabilistic rough set is put forward.

Definition 10. Let (U,R, P ) be a probabilistic approximation space. For any X ∈
U , the roughness measurement of rough set X with respect to (U,R, P ) is defined
as follows:

f(X̃α
P ) =

4

|U |
∑
x∈U

X̃α
P (x)

(
1− X̃α

P (x)
)
.

Lemma 1. Let (U,R, P ) be probabilistic approximation space. For any X (X ⊆
U), f

(
X̃α
P

)
is a fuzzy entropy over F (U).

Proof. For any X (X ⊆ U), it is easy to verify that the relation 0 ≤ X̃α
P (x)(

1− X̃α
P (x)

)
≤ 1

4
holds. Therefore, 0 ≤ f

(
X̃α
P

)
≤ 1.

In the following, we will verify the conditions given in Definition 9 one by one

for the roughness measurement f
(
X̃α
P

)
of a variable precision probabilistic rough

set.
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1. If X̃α
P is a crisp set, then for any X there is X̃α

P (x) = 0 or X̃α
P (x) = 1.

So, f
(
X̃α
P

)
= 0. On the other hand, if f

(
X̃α
P

)
= 0, then there is X̃α

P (x)(
1− X̃α

P (x)
)

= 0 for any x ∈ U . Thus, there is X̃α
P (x) = 0 or X̃α

P (x) = 1, i.e.,

X̃α
P (x) is a crisp set.

2. If x ∈ U , X̃α
P (x) = 0.5, then there is 1 − X̃α

P (x) = 0.5. Moreover, there is

X̃α
P (x)

(
1− X̃α

P (x)
)

= 0.25. So, f
(
X̃α
P

)
= 4
|U |
∑

x∈U
1
4

= 1.

On the contrary, suppose that f
(
X̃α
P

)
= 1. Then, there is X̃α

P (x)
(

1− X̃α
P (x)

)
= 1

4
, which holds by the above discussion. This proves that X̃α

P (x) = 0.5. In

other words, X̃α
P (x) arrives at the maximum fuzziness.

3. If D
(
X̃α
P , 0.5

)
≥ D

(
Ỹ α
P , 0.5

)
, for any X, Y ⊆ U , there is

f
(
X̃α
P

)
=

4

|U |
∑
x∈U

X̃α
P (x)

(
1− X̃α

P (x)
)

=
4

|U |
∑
x∈U

(
0.5 + X̃α

P (x)− 0.5
)(

0.5−
(
X̃α
P (x)− 0.5

))

=
4

|U |
∑
x∈U

(
0.25−

(
X̃α
P (x)− 0.5

)2)
= 1− 4

|U |
∑
x∈U

(
X̃α
P (x)− 0.5

)2
≤ 1− 4

|U |
∑
x∈U

(
Ỹ α
P (x)− 0.5

)2
= f

(
Ỹ α
P

)
.

4. For any x ∈ U , there is
(
X̃c
)α
P

(x) = 1 − X̃α
P (x),

(
X̃c
)α
P

(x) = 1 − X̃α
P (x) =(

1− X̃α
P (x)

)
X̃α
P (x). That is, there is f

(
X̃α
P

)
= f

((
X̃c
)α
P

)
.

Therefore, according to the results of 1., 2., 3. and 4., we know that f
(
X̃α
P

)
is

a fuzzy entropy on F (U).
This completes the proof. 2

By using Definition 9 and Lemma 1, the following results about the uncertainty
measurement of variable precision probabilistic rough set are clear.

Theorem 6. Let (U,R, P ) be a probabilistic approximation space. For any 0.5 <
α ≤ 1 and X ⊆ U , there is:

1. f(U) = f(∅) = 0.

2. For any X ∈ U , if Pα(X) = Pα(X), there is f
(
X̃α
P

)
= 0.

3. For any X ∈ U , if [x] 6= ∅, there is f
(
X̃α
P

)
= f

((
X̃c
)α
P

)
.
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Proof. It can be verified directly by the definitions. 2

5 ATTRIBUTE REDUCTION OF VARIABLE PRECISION
PROBABILISTIC ROUGH SET

In general, objects are described by different attributes. However, it is not neces-
sary to know all attributes for the classification of information systems. That is,
some attributes are unnecessary and do not affect the result of classification when
removed from the attribute set. Meanwhile, some attributes are indispensable to
the result of classification and affect the result when removed from the attribute set.
Furthermore, some attributes are relatively necessary for the classification and may
determine the result by associating with other attributes. The attribute reduction
presents a minimum attribute subset completely describing the classification as the
original attribute set for information systems [26, 36, 37, 38, 39, 40, 41]. This sub-
section will investigate the problem of attribute reduction for an information system
based on variable precision probabilistic rough set.

Let U be a non-empty finite universe of discourse. < is a family of equivalence
relationships over the universe U . Let K ⊆ < (K 6= ∅) and the intersection of all
equivalence relations in K be called indiscernible relations on [3]. We denote the
intersection of all equivalence relations as ind(K).

Definition 11. Let S = (U, V,A, F ) be an information system. C,D ⊆ A are
respectively a conditional attribute and decision attribute of probabilistic approx-
imation space (U,R, P ). Then, the α (0.5 < α ≤ 1) approximation dependence
of conditional attribute C and decision attribute D of probabilistic approximation
space is defined as follows:

dα(C,D) =
|
⋃
P (X|[X]R)≥α{X | X ∈ U/ind(D)}|

|U |
.

By the definition of approximation dependence in Definition 11, we can easily
know that this concept is a natural generalization of the classical approximation
dependence in Pawlak rough set theory.

Specifically, dα(C,D) will degenerate into the classical approximation depen-
dence in Pawlak rough set theory when α = 1.

Here, the attribute reduction means that the minimum attribute subset of the
conditional attributes results in the same approximation dependence with respect
to the decision attribute. We then present the definition of the α approximation at-
tribute reduction for an information system based on variable precision probabilistic
rough set theory by using the concept of α (0.5 < α ≤ 1) approximation dependence
as follows.

Definition 12. Let S = (U, V,A, F ) be an information system. C,D ⊆ A are
respectively conditional attribute and decision attribute of probabilistic approxima-
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tion space (U,R, P ). Then the α approximation reduction Redα(C,D) is a minimum
attribute subset of conditional attribute set C and satisfies the following conditions:

1. dα(C,D) = dα(Redα(C,D), D);

2. The equation given in (1) will no longer be valid when any one attribute is
removed from Redα(C,D).

Theorem 7. Let S = (U, V,A, F ) be an information system. Then the approxima-
tion reduction of approximation space S always exists for any precision parameter
α (0.5 < α ≤ 1).

Proof. If for any c ∈ C ⊆ A, and satisfies RC−{c} 6= RC , then C is a reduction of
information system S = (U, V,A, F ). Otherwise, for any c ∈ C ⊆ A, and satisfies
RC−{c} = RC hold. Then, we consider the new attribute subset C1 = C − {c}.
Meanwhile, if for any c1 ∈ C1 ⊆ A, there is RC1−{c1} 6= RC hold, then, C1 is
a reduction of information system S = (U, V,A, F ). Otherwise, for any c1 ∈ C1 ⊆ A,
there is RC1−{c1} = RC hold. Next, we further consider C2 = C1 − {c1} and repeat
the above process. So, we will find the minimum attribute subset C∗ ⊆ C that
satisfies the relationships RC∗ = RC and RC∗−{c} 6= RC for any c ∈ C∗. Therefore,
C∗ is the reduction of information system S = (U, V,A, F ).

This completes the proof. 2

In general, there may not be only one reduction for information system S =
(U, V,A, F ) because there may be different combinations among the elements of the
attribute set. In practice, we focus on finding only one of the reductions for the
information system S = (U, V,A, F ).

6 CONCLUSIONS

By introducing precision parameter α (0.5 < α ≤ 1) into classical probabilistic
rough set, the variable precision probabilistic rough set converts two parameters in
the upper (lower) approximation of probabilistic rough set into one parameter. This
further improves the robustness and adaptability of the model, extends classical
Pawlak rough set theory, and allows rough set theory to process random, uncertain,
and inconsistent data information more effectively. Meanwhile, new models and
approaches are proposed in which rough set theory is applied to solve decision-
making problems with uncertainty in actual situations in management science.

In this paper, we discuss two issues for the variable precision probabilistic rough
set model: the relative discernibility of any object set in the universe and the un-
certainty measurement of the variable precision probabilistic rough set. For the
first aspect content, it is well known that the variable precision probabilistic rough
set model [24] is an extension of the existing results by combining the variable
precision rough set model [9] and the probabilistic rough set model [22, 23]. The
basic idea of the variable precision probabilistic rough set model was defined by
introducing the classical probability measure into the Pawlak approximation space,
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and the conditional probability of any objects (i.e., the equivalence classes of an
element on universe of discourse) with respect to the considered event (i.e., the
approximated object set X) instead of the majority include relation used in the
original Ziarko’s model [9]. However, the variable precision probabilistic rough
set model will be degenerated into the original Ziarko’s model when we define
P (X|[X]R) = 1− |X∪[X]R|

|[X]R|
= mc(X, [X]R). At the same time, the variable precision

probabilistic rough set model will be degenerated into the probabilistic rough set
model when we define 1−α = β in the upper approximation. So, all the results about
the relative discernibility of any object set of universe with the variable precision
probabilistic rough set are the generalization of the original Ziarko’s model [9]. Sim-
ilarly, the results will be degenerated into the corresponded conclusions of Ziarko’s
model when we define P (X|[X]R) = 1 − |X∪[X]R|

|[X]R|
= mc(X, [X]R). Therefore, the

results given in Ziarko’s model [9] are based on the classical Pawlak approximation
space and the results obtained in this paper are under the framework of probabilistic
approximation space. For the second aspect, we investigate the uncertainty mea-
surement of any object set with respect to the variable precision probabilistic rough
set model. By introducing the concept of the fuzzy entropy into the probabilistic
approximation space, we establish a new approach to measure the uncertainty of
the approximation quality of any object set with respect to the variable precision
probabilistic rough set model. Further, we explore the attribute reduction for the
information systems based on the variable precision probabilistic rough set model.
Factually, random information acquisition and decision-making problems under gen-
eral relations or one kind of certain relation are used more widely, and this offers
direction for our further study.
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