Computing and Informatics, Vol. 37, 2018, 780}, doi: 10.4149/cai_2018_3

MALWARE DETECTION USING A HETEROGENEOUS
DISTANCE FUNCTION

Martin JURECEK, Rébert LORENCZ

Faculty of Information Technology

Czech Technical University in Prague

Thakurova 9, 160 00 Prague, Czech Republic
e-mail: {martin.jurecek, lorencz}@fit.cvut.cz

Abstract. Classification of automatically generated malware is an active research
area. The amount of new malware is growing exponentially and since manual in-
vestigation is not possible, automated malware classification is necessary. In this
paper, we present a static malware detection system for the detection of unknown
malicious programs which is based on combination of the weighted k-nearest neigh-
bors classifier and the statistical scoring technique from [I2]. We have extracted the
most relevant features from portable executable (PE) file format using gain ratio
and have designed a heterogeneous distance function that can handle both linear
and nominal features. Our proposed detection method was evaluated on a dataset
with tens of thousands of malicious and benign samples and the experimental re-
sults show that the accuracy of our classifier is 98.80 %. In addition, preliminary
results indicate that the proposed similarity metric on our feature space could be
used for clustering malware into families.

Keywords: Malware detection system, feature selection, similarity measure,
k-nearest neighbors classifier, partitioning around medoids

1 INTRODUCTION

The problem of automated malware detection presents challenges for antivirus ven-
dors (AV). Most AV rely primarily on a signature detection technique which is
relatively simple and efficient rule-based method for detecting known malware [10].
Signature (unique hex code strings) of the malware is extracted and added to the
database. The antivirus engine compares the contents of a file with all malware

760 M. Jurecek, R. Lérencz

signatures in its database and if a match is found, the file is reported as malware.
A good signature must capture malware with a minimal false positive probability.

The major weakness of signature detection is its inability to detect obfuscated
and zero-day malware. A number of non-signature based malware detection tech-
niques have been proposed [19, 1T}, 20]. These techniques are used in an effort to
detect new or unknown malware and can be grouped into two main approaches:
static and dynamic heuristic methods. Static methods can be based on an analysis
of the file format without actually running the program. Dynamic analysis aims
to examine a program which is executed in a real or virtual environment. Non-
signature based malware detection techniques suffer from two main problems: high
false positive rate and large processing overhead.

In this paper, we present a static malware detection system based on com-
bination of the statistical classifier and the k-nearest neighbors (KNN) classifier.
Experimental results indicate that the combination of the classifiers may provide
a potential benefit for detecting samples not detected by KNN.

In our work we propose the following four main contributions:

e We present a feature space extracted from PE file format by using feature se-
lection method based on information gain.

e We design a new distance function that can handle both nominal and linear
attributes.

e We present a malware detection system for detecting previously unknown ma-
licious PE files. In order to achieve a higher detection rate, the system uses
a combination of two different kinds of classifiers.

o We evaluate the effectiveness of our detection system and distance function on
a real-world malware collection.

The rest of the paper is organized in the following way. Section [2] provides an
overview of previous work on malware classification. In Section [B] we present the
feature space and the distance function used in KNN classifier. Section [] discusses
our proposed detection technique, while Section [5] covers our experimental results.
Finally, conclusions are given in Section [6]

2 RELATED WORK

In this section, we survey some relevant previous work in the area of classification
schemes for malware detection. To maintain the focus, we mainly discuss the work
using static detection based on machine learning techniques. Then we briefly dis-
cuss various existing statistical-based scores and also several methods that rely on
dynamic analysis.

Schultz et al. [I9] introduced the concept of data mining for detecting pre-
viously unknown malware. In their research they presented three different static
feature sources for malware classification: information from the portable executable

Malware Detection Using a Heterogeneous Distance Function 761

(PE) header and strings and byte sequences extracted from binaries. These features
were used in three different kinds of algorithms: an inductive rule-based learner,
a probabilistic method, and a multi-classifier system. A rule induction algorithm
called Ripper [4] was applied to find patterns in the dynamic-link library (DLL)
data (such as the list of DLLs used by the binary, the list of DLL function calls,
and the number of different system calls used within each DLL). The well-known
probabilistic method, learning algorithm Naive Bayes, was used to find patterns in
the string data and n-grams of byte sequences. Multinomial Naive Bayes algorithm
that combined the output of several classifiers reached the highest detection rate
of 97.76%. The authors tested the data mining methods against standard signa-
tures and their results indicate that the data mining detection rate of a previously
unknown malware was twice as high in comparison to the signature-based meth-
ods.

Kolter and Maloof [I1] improved the Schulz’s third technique by using overlap-
ping byte sequences instead of non-overlapping sequences. They used different kinds
of classifiers: naive Bayes, instance-based learner, similarity-based classifier called
TFIDF, Support Vector Machine (SVM), Decision Trees (DT) and boosted variants
of SVM, DT and TFIDF. Authors evaluated their classifiers performance by com-
puting the area under a receiver operating characteristic curve. Boosted Decision
tree model (J48) achieved the best accuracy, an area under the ROC curve of 0.996
and outperformed the rest of the classifiers.

In other studies, operational code (opcode) has been used as static informa-
tion for malware detection. Common techniques are based on the frequency of
appearance of opcode-sequences [I8], examination of opcode frequency distribution
difference between malicious and benign code [2], or identification of critical instruc-
tion sequences [22]. Other techniques use similarity of executables based on opcode
graphs [I7]. However, some executable files cannot be disassembled properly, there-
fore the opcode approach is not always feasible [2].

The more recent work [23] contains three statistical-based scoring techniques,
namely Hidden Markov models, Simple substitution distance, and Opcode graph-
based detection. Authors showed that a combination of these scoring techniques
with a Support Vector Machine yields significantly more robust results than those
obtained using any of the individual scores.

We also briefly mention a few existing detection methods that rely on dynamic
analysis. Examples of the information we can obtain from dynamic analysis include
application programming interface (API) and system calls, instruction traces, me-
mory writes, registry changes, and so on. In [24], an artificial neural network was
employed to detect previously unknown worms based on the computer’s behavioral
measures. Eskandari et al. [25] extracted a set of program API calls and combined
them with control flow graph. Qiao et al. [26] proposed a new malware analysis
method based on frequency analysis of API call sequences. Note that dynamic
analysis is time-consuming as each malware sample must be executed for a certain
time period.

762 M. Jurecek, R. Lérencz

3 FEATURE SPACE AND METRIC

We design our proposed detection system for the portable executable (PE) file for-
mat [B], which is the most widely used file format for malware samples. In order
to classify an executable file in the PE format, we extract static format information
and translate it into a feature vector suitable for classification.

3.1 Feature Space

Before presenting attributes used in our feature vector, let us firstly look at the
general outline of the PE file format. A simplified overview of the PE file format is
illustrated in Figure [T

PE file

DOS header
COFF header
Optional header
Section headers

Code
Imports Sections
Data

Headers

Figure 1. PE file structure

A PE file consists of headers and sections that encapsulate the information nece-
ssary to manage the executable code. The PE file header provides all the descriptive
information concerning the locations and sizes of structures in the PE file to the
loader process. The header of a PE file consists of the DOS header, the PE signature,
the COFF file header, the optional header, and the section headers. The optional
file header is followed immediately by the section headers which provide information
about sections, including locations, sizes, and characteristics. Sections divide the
file content into code, resources, and various types of data.

Based on our empirical studies and analysis of the PE format, we selected a set
of static features that are helpful in distinguishing malware and benign files and
used gain ratio for selection the most relevant features.

3.1.1 Features Selection

In order to determine which attribute in a given training set is the most useful
for discriminating between the classes, we use entropy-based measure, information
gain (IG) [I3]. The information gain is the expected reduction in entropy caused
by knowing the value of attribute a. IG(T,a) of an attribute a relative to training

Malware Detection Using a Heterogeneous Distance Function 763

dataset 7 and is defined as
IG(T,a) = Entropy(T) — Z |L7E|Entropy(7;) (1)

veV (a) | |

where V' (a) denotes the set of all possible values for attribute a, and T, denotes the
subset of T for which attribute a has value v. Note that the entropy of the training
dataset T is given by:

Entropy(T) = — ch log, pe (2)

ceC

where p, is the proportion of 7 belonging to class c.

The information gain measure is biased towards attributes with many values.
One way of avoiding this difficulty is to use a modification of the measure called
the gain ratio (GR) [I5]. The gain ratio measure penalizes attributes with large
numbers of possible values by incorporating a term called split information (SI):

d

7|7

SI(T,a) = — log (3)
27718 7]

where 7; are the d subsets of training dataset 7 resulting from partitioning 7 by
the d-valued attribute a. Split information SI(7, a) is the entropy of T with respect
to the values of attribute a. The gain ratio is then defined as

IG(T,a)

GR(T7 Cl) = m (4)

and we select only features with the highest values of gain ratio.

3.1.2 Our Proposed Feature Space

The following feature set was extracted using gain ratio and used in our work:

e Many fields from the PE headers, such as the number of sections, date/time
stamp, major or minor versions of linker, operating system, image, subsystem;
sizes and addresses of data directories; DLL characteristics, ete. Table [I] lists all
features that are derived from the PE headers. For detailed description of these
features, see Chapter 3 in [5].

e Features from sections and their headers: VirtualSize, VirtualAddress, Size-
OfRawData, PointerToRawData, Section Flags (see Chapter 4 in [5]), and fea-
tures not contained within the PE structure, including entropies and checksums
of sections.

e Resources of the PE file are used to provide supporting content, such as icons,
fonts, strings and other elements. In case of malicious files, resources are often

764 M. Jurecek, R. Lérencz
used to store code and configuration data. For example, the number of resources
and the number of types of resources were used in our work.

e Overlay is a data that is appended at the end of the executable file. We consid-
ered the size of the overlay.

e Other features: the size of all imports, the number of DLLs referred, the number
of APIs referred.

Feature Feature

NumberOfSections MajorOperatingSystem Version
TimeDateStamp MajorImageVersion
SizeOfOptionalHeader —MajorSubsystem Version
Characteristics MinorSubsystem Version
MajorLinkerVersion SizeOflmage
MinorLinkerVersion CheckSum
AddressOfEntryPoint ~ Subsystem

ImageBase DllCharacteristics
SectionAlignment NumberOfRvaAndSizes
FileAlignment Addresses and sizes of data directories

Table 1. List of features from the PE headers

Note that our feature set is similar to that in the existing works [12], 211, [I].

3.2 Distance Function

Many classifiers require some measure of dissimilarity or distance between feature
vectors, and its performance depends upon a good choice of distance function.
Especially the KNN classifier depends significantly on the metric used to compute
distances between two feature vectors.

In this section, we propose a similarity metric on our feature space. We used this
metric to compute distances to find & nearest neighbors used in KNN classifier. Note
that the features used in our work are of various types and sizes. These features can
be divided into three types: numbers, bit fields, and strings. For example, number
of sections or various addresses can be represented by numbers, section flags or
characteristics by bit fields, and checksums by strings. Furthermore, some features
have different ranges. For example, the number of sections is considerably smaller
than the total number of called API functions. The proposed distance function can
handle these types of features and also takes into account their different ranges.

The most commonly used metric is the Euclidean distance which works well for
numerical attributes. However, it does not appropriately handle nominal attributes.
The Value Difference Metric (VDM) [27] was proposed to define a suitable distance
function for nominal attributes. A version of the VDM without a weighting scheme

Malware Detection Using a Heterogeneous Distance Function 765

is defined for values x and y of an attribute a as:

c

VDM, (2,y) = Y

c=1

Na,x,c Na,y,c
n(l,]} nﬂ.,y

where

e (is the number of classes,

® N, is the number of instances in the training set 7 which have value x for
attribute a and the instance belongs to class c,

® 1, is the number of instances in 7 that have value x for attribute a.
Since the Euclidean distance is not suitable for nominal attributes, and VDM
is inappropriate for numeric attributes, heterogeneous metric can be used to handle

our feature space. Wilson and Martinez introduced Heterogeneous Value Difference
Metric (HVDM) [29] which is defined for feature vectors x and y as:

m

Z 3 (Za, Ya) (6)

a=1

HVDM(x,y) =

where m is the number of attributes of the feature vector and the definition of
distance function d,(x,y) depends on the type of attribute a as follows:

1, if x or y is unknown,
do(z,y) = ¢ NORM_VDM,(z,y), if a is nominal, (7)
NORM_DIFF,(x,y), if ais linear.

Functions NORM_VDM,(z, y) and NORM_DIFF,(z,y) are defined as:

C
n n
NORM_VDM,(x, = ﬂ_w’ 3
(z,y) ; o (8)
NORM DIFF, (z, y) = |”34;y| o)
0-(1

where o, is the standard deviation of the values of numeric attribute a.

3.2.1 Our Proposed Distance Function

Since the feature vector described in Section [3.1.2] contains more types of nominal
attributes we propose the following distance function:

(10)

766 M. Jurecek, R. Lérencz

where

H(z,y), if a is an array of bits,
o(z,y), if a is a checksum,

do(z,y) = (11)
NORM_DIFF,(z,y), if a is numeric,

NORM_VDM,(z,y), otherwise (a is a string).

H(z,y) denotes Hamming distance defined for binary « = (z1,...,2,),y = (v1,-- -,
Yn) a8

H(z,y) =i [z #yii=1,...,n}] (12)
and 0(z,y) is the characteristic function defined as
5(z.1) 0, ifx=y, (13)
x,y) =
Y 1, otherwise.

Since the distance functions d, are metrics, D is also a metric. Properties of
a metric, especially the triangle inequality, can be used in effective finding of nearest
neighbors in a metric space.

Note that we distinguish between a checksum and a string attribute that is not
a checksum. For the demonstration of distance function D on our feature space, we
present the examples of attributes of each type:

e array of bits: Section flags, Characteristics, DlIlICharacteristics,
e numeric attribute: number of sections, number of DLLs, size of all imports,

e checksum: checksums of various pieces of the file content,

e string: major/minor version of linker, operating system, subsystem.

4 PROPOSED SYSTEM FOR DETECTING MALWARE

In this section, we present a system for detecting malware which is composed of
a KNN classifier and a statistical scoring technique.

4.1 The k-Nearest Neighbors Classifier

The k-nearest neighbors (KNN) classifier is one of the most popular supervised
learning methods introduced by Fix and Hodges [§]. It is one of the simplest and
best-known nonparametric algorithms in pattern classification.

Let T = {(x1,¢1), ..., (Tm,cm)} be the training set, where z; is training vector
and ¢; is the corresponding class label. Given a query point z,, its unknown class ¢,
is determined as follows. First, select the set 7" = {(x1,¢1), ..., (zk, cx)} of k nearest

Malware Detection Using a Heterogeneous Distance Function 767

neighbors to the query point z,. Then assign the class label to the query point z,
by majority vote of its nearest neighbors:

¢, = arg max Z o(c, ci) (14)

(wi,ci)€T!

where c is a class label, ¢; is the class label for i*! neighbor among k nearest neighbors
of the query point, and §(c,¢;) takes a value of one if ¢ = ¢; and zero otherwise.
Cover and Hart [6] found that if the number of samples approaches infinity, the
nearest-neighbor error rate is bounded from above by twice the Bayes error rate.

Distance-weighted k-nearest neighbor procedure (WKNN) was first introduced
in [7] as an improvement to KNN. This extension is based on the idea that closer
neighbors are weighted more heavily than such neighbors that are far away from
the query point. KNN implicitly assumes that all k nearest neighbors are equally
important in making a classification decision, regardless of their distances to the
query point. In WKNN, nearest neighbors are weighted according to their distances
to the query point as follows. Let xi,...,x; be k nearest neighbors of the query
object and dy, ..., d; the corresponding distances arranged in increasing order. The
weight w; for i-th nearest neighbor is defined as:

bodi - if dy, # dy,
_ dp—dy
w; =

1, otherwise.

(15)

The resulting class of the query point is then defined by the majority weighted
vote as follows:
Cq = arg max Z w; - 0(c, ¢;). (16)
(z4,¢;)ET’
Note that finding the nearest neighbors is a very expensive operation due to the
enormous size of our dataset. The nearest neighbors can be found more efficiently
by representing the training dataset as a tree.

4.2 The Statistical-Based Classifiers

In this section, we present the scoring techniques that we used in our research. In
the case of the statistical-based classifier, we ignore the positions of points in our
metric space and we focus on statistical properties of attribute values, in contrast
to the KNN classifier.

4.2.1 Naive Bayes

This section introduces the Naive Bayes classifier 28] for binary (two-class) clas-
sification problems. A Naive Bayes classifier is a probabilistic algorithm based on
Bayes’ Theorem that predicts the class with the highest a posterior: probability.
Assume a set of two classes {C, M}, where C denotes the class of benign samples

768 M. Jurecek, R. Lérencz

and M denotes the class of malware. Training datasets are provided and a new
(unknown) sample, which is represented by a feature vector x = (xy,...,x,), is
presented. Let P(M|xz) denote the probability that a sample is malicious given the
feature vector = that describes the sample. Similarly, P(C|x) denotes the probability
that a sample is benign given the feature vector x that represents the sample. The
Naive Bayes classification rule is stated as

If P(M|z) < P(C|z),x is classified as benign sample,
If P(M|z) > P(C|z),x is classified as malware. (17)

The a posteriori probabilities P(C|x) may be expressed in terms of the a priori
probabilities and the P(x|C) probabilities using Bayes’ theorem as

P([C) P(C)

P(C|z) = P@)

(18)

Assuming that the values of the attributes (features) are conditionally independent
on one another, Equation may be expressed as
_ I, P|C) P(C)

P(Clz) = o . (19)

Probabilities P(x;|C) can be estimated from the training set by counting the
attribute values for each class. More precisely, the probability P(z; = h|C) is
represented as the number of samples of class C' in the training set having the
value h for attribute x;, divided by the number of samples of class C' in the training
set. The output of the classifier is the highest probability class C”:

C'= arg max <P(C) HP(JJAC)) . (20)
4.2.2 Statistical Classifier — STATS

The following statistical classifier was introduced in [12]. Let @ = (x1,...,x,) be
a vector from our feature space and M a class of malware. Then probability

P(z € Mz, = h) = "2hM (21)

Nih

is the conditional probability that the output class of x is malware given that at-
tribute x; has the value h. Denote this probability by p;, ¢ = 1,...,n. Note that
the notations n,, , v and ng,, were used in the definition of VDM discussed in
Section 3.2} Define a function f with two parameters p; and S. as

f(pi, Se) = max{0,p; — S.} (22)

Malware Detection Using a Heterogeneous Distance Function 769

where S, is an empirical constant. For each file x we define a score as

score = 3" 13). 23
i=1
From this score, we can determine a threshold S, above which we will classify
a file as malware. The decision rule is then defined as follows:
malware, if score > S,
x is classified as (24)

benign file, otherwise.

The pseudocode of the statistical-based classifier is described in Algorithm [T}

Algorithm 1 Statistical classifier — STATS
Input: original training set, query point x, distance metric D
Output: label of z

1: score =0
2: Compute probability vector (py,...,pn)
3: fori=1tondo
4. if p; > S, then
5: score +=p; — S,
6
7
8
9

end if
: end for
. if score > S, then
return malware
10: else
11: return benign file
12: end if

In the rest of this paper, the statistical-based classifier is denoted as STATS.

4.3 Our Approach

We propose a malware detection approach based on a combination of the well-known
KNN classifier and the chosen statistical motivated classifier. In order to achieve
higher detection rates, there should be some kind of diversity between the classifiers.
KNN is a geometric-based classifier which uses labels of the nearest neighbors in
some metric space to classify an unlabeled point. On the other hand, statistical-
based approaches like Naive Bayes or the STATS classifier mentioned above use
conditional probabilities of attributes of sample point and do not use information
about its position in feature space.

The proposed detection method works as follows. First, set the threshold to
some sufficiently high value. Then compute score using the chosen statistical scoring
technique. If the score of the unknown file exceeds the threshold, then the resulting

770 M. Jurecek, R. Lérencz

class will be malware, otherwise apply distance-weighted KNN. The pseudocode for
the classification scheme is shown in Algorithm [2}

Algorithm 2 Our detection system

Input: original training set, query point x, distance metric D
Output: label of z

1: compute score from the statistical scoring technique
2: if score > threshold then

3: return malware

4: else
5
6

apply WKNN
. end if

The reason why we chose KNN is that it is a relatively accurate classifier for large
datasets and the results of our experiments demonstrate that the statistical classifier
is able to correctly classify samples lying in the area of feature space where the
accuracy of KNN is low. The statistical classifier uses information from the training
dataset in a different way than the KNN classifier. It checks whether a feature
vector contains values typical for malware, in contrast to KNN that considers only
differences between feature vectors.

For example, consider a feature vector x = (x1,...,x,) containing only a few
values (typically checksums), for which there is a high probability that x belongs
to malware. Many other attributes could have previously unseen values or ones
with a low prevalence. Therefore, malicious nearest neighbors could not be closer
than benign nearest neighbors and in this case, KNN classifier would not be an
appropriate method.

4.3.1 The System Architecture

The system consists of three major components: a PE parser, a database of condi-
tional probabilities and a classification module, as illustrated in Figure [2|

The functionality of the PE parser is to extract all PE format file’'s header
information, DLLs, and API functions from programs in the dataset and store all
the extracted information in a database. Recall that our system is applied only
to Windows PE files and the PE parser extracts only the most useful features for
discriminating between benign and malicious files. These features were determined
by the feature selection algorithm mentioned in Section [3

During the training phase, once the structural information of the PE files is
extracted, the conditional probabilities P(x is malware|x; = h) are computed for
each PE attribute x; and for each possible value h of attribute x;. Note that only
the PE features extracted from labeled samples of the training dataset are used in
the computation of the conditional probabilities.

After extracting PE features and computing the conditional probabilities, fea-
ture vectors are created for every known PE file. The set of these feature vectors

Malware Detection Using a Heterogeneous Distance Function 771

Training phase:

Feature

Dataset of vectors
known
P fles . Classification
Conditional

probabilities module

Testing phase:

Unknown
PE files

Feature
vectors

Figure 2. Architecture of the classification model

called training set will be used in the classification module where the classification
algorithm is applied to feature vectors of unknown PE files.

5 EVALUATION RESULTS AND ANALYSIS

In this section, we introduce the performance metrics and present the results of
our experiments. We compare our approach with several other machine learning
methods for malware detection.

5.1 Performance Metrics

We present the evaluation metric we used to measure the accuracy of our proposed
approach for the detection of unknown malicious codes. For evaluation purposes,
the following classical quantities are employed:

e True Positive (TP) represents the number of malicious samples classified as
malware,

e True Negative (TN) represents the number of benign samples classified as be-
nign,

e False Positive (FP) represents the number of benign samples classified as mal-
ware,

o False Negative (FN) represents the number of malicious samples classified as

benign.

The performance of our classifier on the test set is measured using three standard
parameters. The most intuitive and commonly used evaluation measure in Machine

772 M. Jurecek, R. Lérencz

Learning is the Accuracy (ACC):

TP + TN
ACC = . 25
TP +TN + FP + FN (25)

It is defined on a given test set as the percentage of correctly classified instances.
However, since our dataset is not well-balanced, the accuracy measure could be
an inappropriate measure of performance. If we use a classifier which labels every
sample as benign, then TN will be very high and TP will be very low. As a result,
the accuracy obtained on our dataset will be very high.

The second parameter, True Positive Rate (TPR) (or detection rate), is defined

as:
TP

" TP +FN’
TPR is the percentage of truly malicious samples that were classified as malware.
The third parameter is False Positive Rate (FPR) and is defined as follow:

TPR (26)

FP

FPR = ——.
R TN + FP

(27)

FPR is the percentage of benign samples that were wrongly classified as malware.

We also evaluate our classifier using Receiver Operating Characteristic (ROC)
analysis [3]. ROC curve is represented as a two-dimensional plot, in which true
positive rate is plotted against false positive rate at various threshold settings. The
area under the ROC curve (AUC) serves as the performance measure of our detection
techniques. An AUC of 1.0 represents the ideal case where both false positive and
false negative equal zero. On the other hand, AUC of 0.5 means that the classifier’s
performance is no better than flipping a coin.

5.2 Dataset

The dataset used in this research consists of a total of 101,604 Windows programs
in the PE file format, out of which 21,087 are malicious and 80,517 are legitimate or
benign programs. There were no duplicate programs in our dataset. The malicious
and benign programs were obtained from the laboratory of the industrial partner.

In order to expose any biases in the data, we used the 5-fold cross-validation
procedure. Generally in k-fold cross-validation [T4], the dataset is randomly divided
into k subsets of equal size, where k-1 subsets are used for training and 1 subset
is used for testing. In each of the k folds a different subset is reserved for testing
and the accuracies obtained for each fold are averaged to produce a single cross
validation estimate.

In the cluster analysis we used five prevalent malware families that have appeared
during the year 2016. Specifically, we have used the following malware families:

e Allaple — a polymorphic network worm that spreads to other computers and
performs denial-of-service (DoS) attacks.

Malware Detection Using a Heterogeneous Distance Function 773

e Dinwod — a trojan horse that silently downloads and installs other malware on
the compromised computer.

e Virlock — a ransomware that locks victims’ computer and demands a payment
in order to unlock it.

e Virut — a virus with backdoor functionality that operates over an IRC-based
communications protocol.

e Vundo — a trojan horse that displays pop-up advertisements and also injects
JavaScript into HTML pages.

5.3 Classification Results

We implemented the classifiers as described in Section ll The feature space and
the distance function proposed in Section [3] were used in the KNN and the WKNN
classifiers. The combination of the WKNN and the statistical scoring technique
from [12] is denoted as WKNN_STATS and the combination of the WKNN and the
Naive Bayes classifier is denoted as WKNN_NB. For each experiment, we performed
5-fold cross-validation that gives approximately unbiased estimate of a classifier’s
accuracy.

In our first experiment, we attempt to distinguish between benign and malicious
PE files. We used accuracy, discussed in Section [5.1] as a comparison criterion for
comparing classifiers. The accuracies obtained after applying the WKNN and the
KNN classifiers for various numbers of nearest neighbors are depicted in Figure [3

0.985 .
>
S 0.980- 1
5 —=— WKNN
3 KNN
< o975 1
0 10 20 30 40 50

Number of nearest neighbors

Figure 3. Classification accuracies of the WKNN and the KNN classifiers, for various
numbers of nearest neighbors

The WKNN classifier achieved the highest accuracy using nine nearest neighbors,
while the KNN classifier achieved the highest accuracy using only three nearest
neighbors.

The classification results of the classifiers implemented in this research are listed
in Table 21

M. Jurecek, R. Lorencz

774
Classifier TPR FPR Accuracy
KNN 96.23% 1.07% 98.37 %
WKNN 96.82% 0.99% 98.56 %
NB 82.718% 1.17% 95.50 %
STATS 90.08% 0.76 % 97.34%
WKNN_NB 97.37% 1.05% 98.62 %

WKNN_STATS 98.08%

1.01% 98.80%

Table 2. Classification results of six approaches implemented in this work

Among these classifiers, the WKNN_STATS outperformed others with the high-
est accuracy of 98.8 %. Note that the WKNN_STATS classifier was tested for various
threshold values, and the best result was achieved with the following parameters:

e the number of nearest neighbors £ = 9 used in the WKNN classifier,
e the thresholds S, = 0.8 and S, = 0.53 used in the STATS classifier.

In addition to that, we constructed the ROC curves which are shown in Figure[]]

for three chosen classifiers.

ROC curves
1.00 — —— ——
A T
———ﬂAAnAA‘fiiiif
QL
] 0.95 8
0] n
I
g 0~907“‘) B~ WKNN_Stats
% *% —A— WKNN
E 0.85FA Stats E
A
= A
080 v v e e
0.00 0.02 0.04 0.06 008 010 0.12 0.14

False positive rate

Figure 4. ROC curves for the WKNN, STATS and WKNN_STATS classifiers

We can conclude from Figure] that a combination of the classifiers outperforms

both individual classifiers.

Table [3] reports the AUC for three classifiers discussed in Section [and two

related static methods: KM [II] and PE

Miner [21]. As the table illustrates,

WKNN_STATS classifier provides the best AUC value with 0.998. The ROC curve
and AUC values confirm that our experiment provides excellent results regarding

malware detection.

Malware Detection Using a Heterogeneous Distance Function 775

Classifier AUC
WKNN 0.993
STATS 0.983
WKNN_STATS 0.998
KM 0.996
PE Miner 0.992

Table 3. Comparison of the AUC value for five static methods

5.4 Clustering Results

In the second experiment we apply cluster analysis to five prevalent malware fami-
lies described in Section 5.2 First, we present the clustering algorithm used in this
experiment and then describe the evaluation measures and show the results.

5.4.1 Partitioning Around Medoids

Partitioning around medoids (PAM) proposed by Kaufman and Rousseeuw [9] is
a well-known technique for performing non-hierarchical clustering. The reason why
we have decided to use the PAM algorithm is that it allows clustering with respect
to any distance metric. The pseudocode of the PAM algorithm is described in
Algorithm [3

Algorithm 3 PAM algorithm
Input: Number of clusters k, set of data points T'
Output: k clusters
1: Initialize: randomly select k data points from T to become the medoids
2: Assign each data point to its closest medoid
3: for all cluster do
4: identify the observation that would yield the lowest average distance if it were
to be re-assigned as the medoid
if the observation is not current medoid then
make this observation the new medoid
end if
end for
if at least one medoid has changed then
10: go to step 2
11: else
12 end the algorithm.
13: end if

776 M. Jurecek, R. Lérencz
5.4.2 Evaluation Measures

We evaluated the quality of clusters through the measures of purity and silhouette
coefficient (SC). Let n;; be the number of samples of class ¢ in cluster C; and let

Mij

Pi = (- The probability p;; is the probability that a randomly selected sample

from cluster C; belongs to class i. The purity of cluster C} is defined as Purity(C;) =
max; p;;-.

The overall purity value is defined as the weighted sum of individual purities for
each cluster, taking into account the size of each cluster:

k
1
Purity = - Z |C;|Purity (C;). (28)

J=1

To measure the quality of clusters, we compute the average silhouette coeffi-
cient [T6] for each cluster. Suppose there are n samples 1, ..., x, that have been
divided into k clusters C1, ..., Cj. Consider a sample z; € C;, and define the average
distance between z; to all other samples in cluster Cj:

a(z;) = -1 ‘ — Z d(zi,y (29)

yeCj
YF#T;
Let bg(x;) be the average distance from sample z; € C; to all samples in cluster
C}, not containing x;:

bi(2;) = ﬁ Z d(xi,y). (30)

After computing by (z;) for all clusters Cj, where k # j, we select the minimum
of those numbers:
b(z;) = min by (x;). (31)

ki

The silhouette coefficient of x; is obtained by combining a(z;) and b(x;) as

follows:
b(x;) — a(x;)
max(a(x;), b(x;))
The value of s(z;) in Equation (32)) can vary between -1 and 1. Tt is desirable
to have the value s(z;) as close to 1 as possible, since then the clusters are well-

separated. The average silhouette coefficient for a given cluster is defined as the
average value of s(x;) over all samples in the cluster.

s(x;) = (32)

5.4.3 Experimental Results

We computed the silhouette coefficient, as discussed above. For computing the
silhouette coefficient, we used our proposed distance function on the feature space

Malware Detection Using a Heterogeneous Distance Function T

Majority Class ~ Size Purity SC
Allaple 424 0.9343 0.3298
Dinwod 285 0.7429 0.7172
Virlock 452 0.9771 0.5635
Virut 337 0.68 0.2389
Vundo 252 0.6886 0.1921
Overall 1750 0.8298 0.3883

Table 4. The purity and the silhouette coefficient for clusters

discussed in Section Bl Table @l summarizes the results of silhouette coefficient based
experiments using the PAM algorithm.

According to the experiences of authors of SC [I6], silhouette coefficient values
between 0.7 and 1.0 indicate excellent clustering results. SC values between 0.5 and
0.7 indicate a reasonable structure of cluster. SC values below 0.25 indicate that no
substantial structure has been found.

Regarding the clustering malware into families, our results show that the quality
of clusters varies widely, depending on the particular family. From the results in
Table [we see that the PAM algorithm can correctly classify the malware family
with an accuracy of about 68 % to over 97%, depending on the particular fam-
ily.

Note that such accuracies are lower than those obtained with classifiers presented
in Section] The reason is that distinguishing between malware families is a more
challenging problem than a binary classification of malware and benign files.

6 CONCLUSION

In this paper, we proposed a new detection system using a combination of the
k-nearest neighbors classifier and the statistical-based classifier. The system can
automatically detect unknown malware samples. The feature set used in our work
was a collection of properties extracted from the PE file format. We designed a new
distance function that is capable of handling various types of features.

Experimental results indicate that the combination of the classifiers may pro-
vide a potential benefit to detect samples not detected by KNN. We compared the
different classification methods and concluded that the combination of the weighted
k-nearest neighbors classifier and the statistical-based classifier achieves the highest
accuracy, 98.8 %. The results also indicate that the proposed heterogeneous distance
function and the feature space are appropriate for malware detection and could be
also used for clustering malware into families.

The proposed static malware detection system is relatively easy to implement,
and can be utilized to support commercial antivirus systems. For future work, it
would be interesting to experiment with additional statistical scoring techniques in
the context of malware classification.

778 M. Jurecek, R. Lérencz
Acknowledgements

The authors acknowledge the support of the OP VVV funded project CZ.02.1.01/
0.0/0.0/16-019/0000765 “Research Center for Informatics”.

REFERENCES

[1] AsqQuiTH, M.: Extremely Scalable Storage and Clustering of Malware Metadata.
Journal of Computer Virology and Hacking Techniques, Vol. 12, 2016, No. 2,
pp. 49-58, doi: [10.1007/s11416-015-0241-3|

[2] BiLAR, D.: Opcodes as Predictor for Malware. International Journal of Elec-
tronic Security and Digital Forensics, Vol. 1, 2007, No. 2, pp. 156-168, doi:
10.1504/1JESDF.2007.016865.

[3] BRADLEY, A. P.: The Use of the Area Under the ROC Curve in the Evaluation of Ma-
chine Learning Algorithms. Pattern Recognition, Vol. 30, 1997, No. 7, pp. 1145-1159,
doi: 10.1016/S0031-3203(96)00142-2.

[4] CoHEN, W. W.: Learning Trees and Rules with Set-Valued Features. Proceedings of
the Thirteenth National Conference on Artificial Intelligence (AAAI/TAAI), Vol. 1,
1996, pp. 709-716.

[5] Microsoft Corporation: Visual Studio, Microsoft Portable Executable and Common
Object File Format Specification, Revision 9.3, 2015.

[6] COVER, T.—HART, P.: Nearest Neighbor Pattern Classification. IEEE Trans-
actions on Information Theory, Vol. 13, 1967, No. 1, pp. 2127, doi:
10.1109/TIT.1967.1053964.

[7] DuDANI, S. A.: The Distance-Weighted k-Nearest-Neighbor Rule. IEEE Transactions
on Systems, Man, and Cybernetics, Vol. SMC-6, 1976, No. 4, pp. 325-327, doi:
10.1109/TSMC.1976.5408784.

[8] Fix, E.—HODGES JR., J. L.: Discriminatory Analysis — Nonparametric Discrimina-
tion: Consistency Properties. Technical Report, DTIC Document, 1951.

[9] KAUFMAN, L.—RoOUSSEEUW, P.J.: Finding Groups in Data: An Introduction to
Cluster Analysis. John Wiley and Sons, Wiley Series in Probability and Statistics,
Vol. 334, 2009.

[10] KEPHART, J. O.—ARNOLD, W. C.: Automatic Extraction of Computer Virus Sig-
natures. 4" Virus Bulletin International Conference, 1994, pp. 178-194.

[11] KOLTER, J.Z.—MALOOF, M. A.: Learning to Detect and Classify Malicious Ex-
ecutables in the Wild. The Journal of Machine Learning Research, Vol. 7, 2006,
pp. 2721-2744.

[12] MERKEL, R.—HOPPE, T.—KRAETZER, C.—DITTMANN, J.: Statistical Detec-
tion of Malicious PE-Executables for Fast Offline Analysis. In: De Decker, B.,
Schaumiiller-Bichl, I. (Eds.): Communications and Multimedia Security (CMS 2010).
Springer, Berlin, Heidelberg, Lecture Notes in Computer Science, Vol. 6109, 2010,
pp- 93-105.

[13] MiTcHELL, T. M.: Machine Learning. New York, 1997.

https://doi.org/10.1007/s11416-015-0241-3
https://doi.org/10.1504/IJESDF.2007.016865
https://doi.org/10.1016/S0031-3203(96)00142-2
https://doi.org/10.1109/TIT.1967.1053964
https://doi.org/10.1109/TSMC.1976.5408784

Malware Detection Using a Heterogeneous Distance Function 779

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

PicAarD, R.R.—Co00K, R.D.: Cross-Validation of Regression Models. Journal of
the American Statistical Association, Vol. 79, 1984, No. 387, pp. 575-583, doi:
10.1080/01621459.1984.10478083.

QUINLAN, J. R.: Induction of Decision Trees. Machine Learning, Vol. 1, 1986, No. 1,
pp. 81-106, doi: 10.1007/BF00116251.

Rousseeuw, P. J.: Silhouettes: A Graphical Aid to the Interpretation and Valida-
tion of Cluster Analysis. Journal of Computational and Applied Mathematics, Vol. 20,
1987, pp. 53-65, doi: [10.1016/0377-0427(87)90125-7.

RunwAL, N.—Low, R. M.—STtAMP, M.: Opcode Graph Similarity and Metamor-
phic Detection. Journal in Computer Virology, Vol. 8, 2012, No. 1-2, pp. 37-52, doi:
10.1007/s11416-012-0160-5.

Santos, I.—Brezo, F.—Nieves, J.—PENvyA, Y.K.—SaANz, B.—LAOR-
DEN, C.—BRINGAS, P.G.: Idea: Opcode-Sequence-Based Malware Detection. In:
Massacci, F., Wallach, D., Zannone, N. (Eds.): Engineering Secure Software and Sys-
tems (ESSoS 2010). Springer, Berlin, Heidelberg, Lecture Notes in Computer Science,
Vol. 5965, 2010, pp. 35-43.

ScauLTz, M. G.—ESKIN, E.—ZADOK, F.—STOLFO, S. J.: Data Mining Methods
for Detection of New Malicious Executables. Proceedings of the 2001 IEEE Sympo-
sium on Security and Privacy (S & P 2001), IEEE Computer Society, 2001, pp. 38-49,
doi: 10.1109/SECPRI.2001.924286.

SHABTAI, A.—MoskoviTCH, R.—ErLovici, Y.—GLEZER, C.: Detection of Mali-
cious Code by Applying Machine Learning Classifiers on Static Features: A State-
of-the-Art Survey. Information Security Technical Report, Vol. 14, 2009, No. 1,
pp. 16-29, doi: [10.1016/7.istr.2009.03.003.

SHAFIQ, M.Z.—TABISH, S. M.—MiRrzA, F.—FArR00Q, M.: PE-Miner: Mining
Structural Information to Detect Malicious Executables in Realtime. In: Kirda, E.,
Jha, S., Balzarotti, D. (Eds.): Recent Advances in Intrusion Detection (RAID 2009).
Springer, Berlin, Heidelberg, Lecture Notes in Computer Science, Vol. 5758, 2009,
pp. 121-141.

SippIQUI, M.—WANG, M. C.—LEE, J.: Data Mining Methods for Malware De-

tection Using Instruction Sequences. Proceedings of the 26™® TASTED International
Conference on Artificial Intelligence and Applications (AIA '08), 2008, pp. 358-363.

SinceH, T.—Dr1 TroI1A, F.—CORRADO, V. A.—AusTIN, T. H.—STAMP, M.: Sup-
port Vector Machines and Malware Detection. Journal of Computer Virology and
Hacking Techniques, Vol. 12, 2016, No. 4, pp. 203-212.

STOPEL, D.—BOGER, Z.—MOSKOVITCH, R.—SHAHAR, Y.—ELovICI, Y.: Ap-
plication of Artificial Neural Networks Techniques to Computer Worm Detection.
Proceedings of the 2006 IEEE International Joint Conference on Neural Networks
(IJCNN’06), 2006, pp. 2362-2369.

ESkANDARI, M.—HASHEMI, S.: A Graph Mining Approach for Detecting Un-
known Malwares. Journal of Visual Languages and Computing, Vol. 23, 2012, No. 3,
pp. 154-162, doi: [10.1016/j.jvlc.2012.02.002.

Q1a0, Y.—YaANG, Y.—Ji, L.—HE, J.: Analyzing Malware by Abstracting the
Frequent Itemsets in API Call Sequences. 2013 12** IEEE International Conference

https://doi.org/10.1080/01621459.1984.10478083
https://doi.org/10.1007/BF00116251
https://doi.org/10.1016/0377-0427(87)90125-7
https://doi.org/10.1007/s11416-012-0160-5
https://doi.org/10.1109/SECPRI.2001.924286
https://doi.org/10.1016/j.istr.2009.03.003
https://doi.org/10.1016/j.jvlc.2012.02.002

780 M. Jurecek, R. Ldrencz

on Trust, Security and Privacy in Computing and Communications (TrustCom), 2013,
pp. 265-270.

[27] STANFILL, C.—WALTZ, D.: Toward Memory-Based Reasoning. Communications of
the ACM, Vol. 29, 1986, No. 12, pp. 1213-1228, doi: 10.1145/7902.7906.

[28] WEBB, A.R.—CoprsEy, K. D.: Statistical Pattern Recognition. Third Edition. Wi-
ley, 2011.

[29] WiLsON, D.R.—MARTINEZ, T.R.: Improved Heterogeneous Distance Functions.
Journal of Artificial Intelligence Research, Vol. 6, 1997, No. 1, pp. 1-34.

Martin JURECEK graduated from the Charles University in
Prague, Faculty of Mathematics and Physics, with the speciali-
zation in mathematical methods of information security. He is
now a Ph.D. student at the Faculty of Information Technology
of the Czech Technical University in Prague. His main research
interests focus on the application of machine learning and artifi-
cial intelligence approaches to malware detection. Another area
of his interest is cryptography and information security.

Rébert LORENCZ graduated from the Faculty of Electrical En-
gineering of the Czech Technical University in Prague in 1981.
He received his Ph.D. degree in 1990 from the Institute of Mea-
surement and Measuring Methods, Slovak Academy of Sciences
in Bratislava. Currently he is Full Professor at the Faculty of
Information Technology of the Czech Technical University in
Prague. His research interests are cryptography and arithmetic
units for cryptography primitives, various cryptoanalysis meth-
ods of block and stream ciphers. Another topic of his interest is
alternative arithmetic for numerical computation.

https://doi.org/10.1145/7902.7906

