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Abstract. A key issue for full-time video surveillance is to search or establish a ref-
erence image of background which corresponds to current video frame. However,
background that was ever in presence long time ago is enclosed or discarded due
to background forgetting assumption. How to rapidly pick up or even rebuild long-
term background needs to be discussed. This paper aims to present a framework
for background maintenance in order to solve the problem. A piecewise memoriz-
ing framework is proposed for matching, updating and even rebuilding long-term
background. Based on the metaphors of psychological selective attention theory,
the framework is composed of a prior piecewise perception processor for intensity
stationary test. Besides, a hierarchical memorizing mechanism constitutes the other
part of the framework for overcoming the exponential forgetting of long period back-
ground appearances. Applied to Gaussian mixture model (GMM), this framework is
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capable of maintaining short-term background states, identifying long period back-
ground appearances, and rapidly adjusting to new background states according to
different expressions derived from the prior perception of scene intensity changes.
Its effectiveness can be demonstrated by experimental results for solving various
typical problems.

Keywords: Long-term background memory, piecewise stationary test, Gaussian
mixture model, background subtraction, foreground detection
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1 INTRODUCTION

Background subtraction, which compares each current frame with a dynamic refer-
ence image of background derived from previous frames, forms a favorite and power-
ful anterior mechanism for applications such as foreground detection [1], face recog-
nition [2], object tracking [3], etc. Prevailing methods mainly exist in three aspects.
One focuses on statistical features, for instance, Gaussian mixture model (GMM) [4],
a kernel density estimation [5], Bayesian modeling [6], auto-regressive model [7], etc.
Other integrates structural information with local binary pattern (LBP) [8], self-
organizing network [9], codebook model [10], co-occurrence matrix [11], etc. The last
concentrates on the statistical and structural hybrid accompanied with a three-stage
model [12], spatio-temporal information saliency [13], a statistical multi-point-pair
model [14], an efficient hierarchical method [15], etc.

Despite its importance, background subtraction is far from a complete solution
to the disturbances of complex environments. The problems listed mainly in [12]
can be re-categorized as follows: background varying illumination including time
of day, light switch and shadows ; background periodic motion (e.g. waving trees);
background consistency containing camouflage, bootstrapping and foreground aper-
ture; and semantic feedback (e.g. moved objects, sleeping person and waking person,
namely ghosts) which is not able to be handled using the background subtraction
module only, as indicated in [12]. Except for background consistency, these prob-
lems seem to be probably solved once we memorize a series of full-time background
appearances with one of which the current frame is matched. However, it is hard for
memorizing background that was ever in presence long time ago (namely, long-term
or long period background) considering the restriction of memory capacity.

On account of the storage limitation, time constraint is always taken into consid-
eration. A background forgetting assumption is made that states often appearing in
high frequency are treated as background. A forgetting factor is employed to control
the contribution of earlier observations. Thus, only background appearances corre-
sponding to recent video frames are memorized. Inevitably, states representing long
period background are discarded. The strategy works as to the presence of the sta-
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tionary states such as time of day ; while, it lapses when non-stationary states such
as light switch appear. In order to solve this problem, a local principal component
analysis transformation accompanied with an adaptive learning (ALPCA) [16] is
proposed to learn separate feature eigensubspaces representing different background
appearances. ALPCA is effective especially when light switch appears, for it uses
spatial information to guide switches among short-term background appearances
representing different illumination conditions. Meanwhile, parameters correspond-
ing to the forgetting factor are rapidly updated. However, it will inevitably lapse into
frequent switches among recent background appearances with different illumination
conditions due to absence of long-term background memory.

Instead of memorizing long-term background, prevailing methods mainly focus
on concrete problems mentioned above. Narrowing down to GMM as an effective
background model, there have been various improvements contributed to address
these problems. A texture-contained GMM (TGMM) [17] and a spatial hierarchical
GMM (HGMM) [18] are utilized for solving the problem of light switch. Shadows are
eliminated using a Gaussian mixture shadow model (GMSM) [19] and TGMM. As
to the problem of ghosts, a memorizing GMM (MGMM) [20] is applied to tackling
the exponential decay [21] of GMM. Although these algorithms are competent to
handle certain problems, there is a lack of a common way to simultaneously solve
all these problems because of neglecting long period background memory. Even if
we can break through the restriction of memory capacity, it is still difficult for us to
seek the matched states of background associated with current video frame in real
time due to the large amount of full-time background storage.

In order to tackle the problem about long-term background, a piecewise memo-
rizing framework is proposed. Three major contributions can be claimed. Taking the
metaphors of psychological selective attention theory into consideration, hypotheses
of background subtraction indicating what to perceive and memorize are firstly pro-
posed. Second, a prior perception-concerned recognition of non-stationary intensity
change is presented based on a segmented stationarity test. Third, a memorizing
hierarchy corresponding to GMM is put forward for the storage of long period back-
ground and the adaptation to rapid intensity change. Particularly, the memorizing
framework accompanied with a prior perception processor based on segmented sta-
tionarity test is an adaptive multi-scale hierarchical system, which is constituted by
a conventional mixture of short-term background models, spatial states memorizing
a long-term background, and a sequence of global differences adapting to fast inten-
sity change of background. Unlike these referenced methods including our previous
research [22], a prior piecewise perception processor for intensity stationary test is
proposed to search or establish long-term background rapidly that corresponds to
current video frame. Regarding GMM as the basic background memorizing model
in this paper, this framework is named as P-MGMM (piecewise memorizing GMM).
The rest of the paper is organized as follows: in Section 2, we revisit GMM, point
out the limitations of related methods, discuss the corresponding metaphors of cog-
nitive psychology, and make related assumptions; in Section 3, we present a prior
segmented stationarity test, which is viewed as a pre-perception of background vari-
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ation; in Section 4, a memorizing hierarchy applied to GMM is proposed; the ex-
perimental results are discussed in Section 5; and conclusion is made in Section 6.

2 METAPHORS AND HYPOTHESES

In this section, we will first review GMM [4] and point out the limitations of GMM-
based models. Afterwards, an analogy will be made between the attention theory
of cognitive psychology and the corresponding background subtraction methods in-
cluding both GMM-based and non-GMM approaches. Then, related hypotheses will
be made.

2.1 GMM Revisited and the Limitations of Related Models

In pixel-wise GMM, the current intensity belongs to an existing Gaussian that rep-
resents either background or foreground. The probability of the current intensity Xt

is expressed as P (Xt) =
∑K
k=1 ωk,t · η(Xt, µk,t,Σk,t), where η is a Gaussian probabil-

ity density function. K represents the number of Gaussians. µk,t, Σk,t and ωk,t refer
to the current mean, the covariance matrix and the weight estimation of Gaussian
k, respectively. Furthermore, the covariance matrix Σk,t is Σk,t = σk,t · I, assuming
the red, green, and blue pixel values are independent1. A new pixel intensity Xt+1

is checked against each Gaussian of the pixel-wise GMM in order to find the appro-
priate one to which it belongs. First, the parameters of the pixel-wise GMM are
updated as follows:

ωk,t+1 = (1− α) · ωk,t + α ·Mk,t+1,

µk,t+1 = µk,t + ρ · (Xt − µk,t) ·Mk,t+1, (1)

σ2
k,t+1 = σ2

k,t + ρ ·
(
(Xt − µk,t)T (Xt − µk,t)− σ2

k,t

)
·Mk,t+1

where α and ρ denote the learning rates. Let ρ be ρ = α · η(Xt|µk,t, σk,t). If the
kth Gaussian is matched, Mk,t+1 = 1; otherwise, Mk,t+1 = 0. Then Gaussians are
re-ordered by ωk,t/σk,t. If intensity Xt+1 is matched with none of the Gaussian
models, the mean µK,t, the standard deviation σK,t and the weight estimation ωK,t
of the last Gaussian are to be replaced by the current intensity Xt+1, an initially
high variance and a low prior weight, respectively. Ultimately, the weight estimation
ωk,t+1 is re-normalized. The first b Gaussians are chosen as the background model.
That is

Bt+1 = arg
b

min

(
b∑

k=1

ωk,t+1 > T

)
(2)

where Bt+1 denotes the current Gaussians representing background. T is a user-
defined threshold.

1 While this is certainly not the case, the assumption allows us to avoid a costly matrix
inversion at the expense of some accuracy.
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Pixel-wise GMM is especially suitable for the problem of time of day and wav-
ing trees. Yet, it also has shortcomings which is mainly presented as three aspects.
Firstly, the most frequently matched state k is supposed to hold a much lower
standard deviation σk,t and a firmly high weight ωk,t as expressed in Equation (1),
particularly when the background appearance remains unchanged. That will make
the state keep to the first place and hold the priority for matching with the new
pixel intensity. Secondly, the weight ωk,t of matched Gaussian is updated steadily
with a fixed learning rate α. Thirdly, Gaussians are chosen to represent background
according to Equation (2), which accumulates ωk,t+1 and is regarded as a conser-
vative way to keep background especially when the problem such as waving trees
occurs. Therefore, pixel-wise GMM keeps its own rhythm to fulfill parameter up-
dating, no matter how rapidly the scene intensity varies. When background changes
suddenly, the current state will be wrongly considered to be foreground (e.g. light
switch and moved objects) without any doubt. Actually, these shortcomings can be
rightly overcome using a fast learning strategy when immediate background change
occurs, once the most frequently matched states can be memorized as a long-term
background.

GMSM [19], which tackles the problem of shadows, develops pixel-wise GMM
by supposing shadows to be associated with frequently seen states labeled as fore-
ground. It improves the parameter updating strategy and incorporates frequently
matched shadows into background. In addition, a second pixel-wise GMM is built
for maintenance of shadows. Using GMSM, shadows are distinguished from fore-
ground. However, GMSM keeps only short-term background even though it improves
the parameter updating strategy of pixel-wise GMM. Moreover, it does not concern
any spatial information. When global change of background (e.g. light switch) oc-
curs, states corresponding to a former background before the time of change will be
pushed to perform a low ranking Gaussian and ultimately discarded.

Suppose that background sudden change keeps spatial consistency. Local texture
information or spatial statistic is combined with pixel-wise GMM, and that forms
TGMM [17] or HGMM [18]. Some non-GMMs (e.g. LBP [8] and ALPCA [16]) are
also this type. Due to consideration of spatial information, these models are effective
to light switch especially when rapid parameter learning is performed. Yet, they are
invalidated once faced with the problems such as moved objects, sleeping person and
waking person (namely, ghosts), especially when foreground scale is comparative to
the size of scene. Except for the storage of short-term background, it is needed to
be further discussed how to memorize long-term background.

To the best of our knowledge, MGMM [20] is one of the first GMM-based models
that considers memorizing long period background. Despite of its competence for
local background sudden change, it still has some problems to be discussed. First, it
only focuses on pixel-wise states but not spatial background simultaneously, and that
makes a lapse when light switch occurs. Second, it needs an initial period for model
learning, which excludes bootstrap in consideration. Besides, it might be incapable
of tackling moved objects and ghosts, when uncovered background never appears
during the learning period. Third, it makes an alternate learning rate for matched
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states to rapidly adapt to sudden change, which also may absorb sleeping person into
background. Fourth, it stores the longest memorized short-term background states,
which currently keeps a low rank order, into its long-term background memory.
That will lead to frequent switches of background states between short-term and
long-term memory, especially when background keeps changing repeatedly.

In order to make a robust background subtraction model, improvements have
been made to memorize long period background in our previous work [22]. Base on
GMM, a framework that contains components representing not only short-term but
also long-term background memory is presented. This paper makes a further effort to
expound how this framework works and why it is composed of real-time state record,
spatial background memory and global difference memory, in order to solve most of
the problems except camouflage and foreground aperture. Besides, a prior perception
processor is precisely proposed to replace the simple stationary test in [22]. Before
that, statements on the origin of the piecewise memorizing framework are to be
made, which is derived from the metaphors of cognitive psychology.

2.2 The Metaphors of Cognitive Psychology

In cognitive psychology, the term selective attention [23] refers to the fact that we
usually focus our attention on one or a few tasks or events rather than on many.
In other words, the information that people process is divided into the attended
and unattended message. Selective attention theory is mainly classified into three
categories: filter theory, attenuation theory and late-selection theory, as shown in
Figure 1.

We firstly discuss these theories and make several extracts as follows:

• Filter theory predicts that all unattended messages will be filtered out, that is to
say, not processed for recognition or meaning. A filter is set to make a selection
of what message to process early in the processing, typically before the meaning
of the message is identified. Meanwhile, a lower working-memory capacity refers
to a decreased ability to actively block the unattended message.

• As for attenuation theory, some meaningful information in unattended messages
may still be available, even if it is difficult to recover. Furthermore, incoming
messages are subjected to an alternative hierarchical analysis. Moreover, only
a few firmed meaningful messages, together with those in a special context, have
permanently lowered thresholds.

• Late-selection theory holds that all messages are routinely processed but which
message to respond to is selected “late” in processing. In fact, the selection is
made in the response to “stimuli”, rather than due to the recognition of it. In
other words, the selective filter performs after the perception model.

Using metaphor, computers can be also simulated to have “attention”. In this
research, prevailing background subtraction methods can be described as the result
of selective attention. Applying this analogy to GMM, the “matching” step can be
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Figure 1. Illustration of selective attention theory [23]. a) Filter theory, b) attenuation
theory, c) late-selection theory.

regarded as the act of paying “attention”. In other words, the matched Gaussian
refers to the attended message; whereas unmatched states correspond to unattended
messages. Moreover, the working-memory capacity is equivalent to the number of
Gaussians. Thus, prevailing background subtraction methods can be described as
the result of selective attention. Correspondingly, background modeling approaches
(not solely GMM-based methods) can be classified into following three categories:

Match-concerned model pays attention to matched states. Only frequently
matched states are regarded as attended messages and viewed as background.
A limited number of states lead to a frequent replacement of background appear-
ances. Just like setting a selective filter before a perception processor as shown in
Figure 1 a), the always un-matching state equivalent to the unattended message
are discarded. In match-concerned model, states may correspond to Gaussians
derived from temporal statistics (for example, GMM [4] and TGMM [17]) or
histograms generated from structural information, such as LBP [8].

Meaning-concerned model concentrates on the potential background. Just like
setting an attentional filter before a perception processor as illustrated in Fig-
ure 1 b), matched states together with meaningful unmatched states are memo-
rized. In fact, the attenuation of unmatched states depends on the meaningful
information they contain. Commonly, the meaning of the unmatched states is
derived from a spatial consistency (e.g. HGMM [18]), from a permanently low-
ered threshold that enables frequently seen states labeled as foreground to be
background (e.g. GMSM [19]), or even from a tag labeling a background state
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that was ever in presence (e.g. MGMM [20]). In meaning-concerned model, each
state may represent a pixel-wise Gaussian [19, 20], a hierarchical Gaussian [18]
or an eigensubspace (e.g., ALPCA [16]).

Perception-concerned model focuses more on the identification of complex en-
vironments rather than on state discrimination. That is to say, the perception
processor module is laid before the selective filter, as illustrated in Figure 1 c).
In fact, even an early stage of perception processing may contribute to good
state discrimination results, i.e., states representing the appearances of a long
period background can be purposefully memorized. A representative perception-
concerned model is P-MGMM, about which details are to be discussed in Sec-
tion 3 and Section 4.

2.3 Hypotheses of Background Subtraction

According to the metaphors mentioned above, robust background models should
firstly possess memorizing ability. The fact that GMM uses exponential forget-
ting is a case in point. However, exponential forgetting contradicts the purpose of
memorizing long period background due to the constraint of memory capacity. To
overcome this, a primary stage of perception should be made prior to the atten-
tion selection for memorizing. Before that, a long-term image sequence should be
divided into short ones and then processed for better perception and memorization
of long-term background, which is named as a “piecewise” action. Now what to
perceive and memorize becomes a central issue. In order to answer these questions,
we propose the following three hypotheses:

• Background modeling essentially derives from a segmented long-term sequence.
According to the exponential forgetting of background appearances, long period
background must be memorized.

• A prior stage of perception is needed, in accordance with perception-concerned
model. That is, special attention to scene general change existing only in short-
term image sequences should always be paid in advance.

• Spatial information should be included, considering scene change always meets
a certain spatial consistency. The analogous status is also found in the data-
driven attention model [23] in cognitive psychology.

Taking the memory capacity into account, we present a segmented stationarity
test as the prior perception processor of late-selection theory [23] in order to identify
different scene changes generally, and propose a memorizing mechanism applied to
GMM to be the corresponding selective filter.

3 PRIOR PERCEPTION PROCESSOR

It is always necessary to detect in advance and rapidly adapt to scene change. Differ-
ent intensity changes of scene exist only in short period of time. Thus, stationarity
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test is regarded as a perceptional criterion when we consider pixel-wise intensity
values in short-term image sequences to be time series. Inversion number test is
viewed as a common stationarity test approach [24]. Hence, we constitute the inver-
sion number of pixel-wise temporal mean values to test the stationarity of segmented
time series {Xt} and subsequently identify different intensity changes.

3.1 Inversion Number Test

We firstly cut {Xt}(t = 1, 2, . . . , N) into l segmented sequences, each is at a length
of M (N = lM). The ith segmented sequence is denoted by {Xi,j} (i = 1, 2, . . . , l;
j = 1, 2, . . . ,M), where Xi,j = X(i−1)M+j. The mean value of each segmented
sequence is expressed as follows:

µi =
1

M

M∑
j=1

Xi,j. (3)

Meanwhile, we select r pieces of {Xi,j} to constitute a sub-sequence {Xi,hj}, where
Xi,hj = Xi−r+h,j = X(i−r−1+h)M+j (i = 1, 2, . . . , l; h = 1, 2, . . . , r; j = 1, 2, . . . ,M).
Each two neighboring sub-sequences, for instance {Xi,hj} and {Xi+1,hj}, share a (r−
1)−rth overlap. Let Xi,hj (i = −r+1,−r+2, . . . , 0) be Xi,hj = X1,hj for convenience.
Correspondingly, we get a sub-sequence {µi,h} from the mean sequence {µi}, where
µi,h = µi−r+h (i = 1, 2, . . . , l; h = 1, 2, . . . , r).

As to each segmented sequence in a sub-sequence {Xi,hj}, a reverse order of µi,h
(h = 1, 2, . . . , r − 1) is defined, when there is µi,j < µi,h (j = h + 1, h + 2, . . . , r).
An inversion number Aµi,h of µi,h is obtained after traversing all the µi,j from µi,h
to µi,r, i.e., Aµi,h records the counts when µi,h > µi,j (h < j). The sum of Aµi,h in
{µi,h} is defined as follows:

Aµi =
r−1∑
h=1

Aµi,h . (4)

We define a random variable Ih,j that represents whether or not the ordered pair
〈µh, µj〉 in {µi,h} is reverse order. That is

Ih,j =

 1, if µi,h > µi,j,

0, others,
∀h < j. (5)

Thus, the inversion number is expressed as

Aµi,h =
r∑

j=h+1

Ih,j. (6)

Assuming the sub-sequence {Xi,hj} to be stationary, the random variable Ih,j is
equiprobable. That is,

P (µi,j > µi,h) = P (µi,j ≤ µi,h) =
1

2
(7)
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where h = 1, 2, . . . , r and j = h, h+ 1, . . . , r. From Equations (5) and (7) we obtain

E(Ih,j) =
1

2
× 1 +

1

2
× 0 =

1

2
. (8)

Then we evaluate the expectation and the variance of the inversion number sum
Aµi in {µi}. The expectation E(Aµi) is derived from Equations (4) and (6):

E(Aµi) = E
(∑r−1

h=1 Aµi,h
)

=
∑r−1
h=1

∑r
j=h+1E(Ih,j). (9)

When we substitute Equation (8) in Equation (9), the expectation E(Aµi) is ex-
pressed as follows:

E(Aµi) =
1

2

r−1∑
h=1

(r − h) =
r(r − 1)

4
. (10)

On account of the independence of Aµi,h and Aµi,j ∀h, j ∈ (1, r) where h 6= j, we
calculate the expression of the variance Var(Aµi) from Equation (4). That is

Var(Aµi) =
∑r−1
h=1

(
E
(
Aµi,h

)2
− E2

(
Aµi,h

))
. (11)

Substitute the Aµi,h by Equation (6), and we have

Var (Aµi) =
r−1∑
h=1

 r∑
j=h+1

E(Ih,j)
2 + 2C2

r−hE (Ih,jIh,k)j 6=k −

 r∑
j=h+1

E (Ih,j)

2
 . (12)

Once Equation (8) is introduced in, Var(Aµi) in Equation (12) can be simplified as
follows:

Var(Aµi) =
r(r − 1)(2r − 1)

24
. (13)

3.2 Identification of Intensity Changes

The sum of the inversion number of each sub-sequence {µi,h}, which is derived from
Equation (4), forms a corresponding sequence as {Aµi} (i = 1, 2, . . . , l). Due to the
histogram count of Aµi to all the pixels in a selected area, it is reasonable to assume
that Aµi is a normal stochastic variable, which is expressed as follows:

uµi =
|Aµi + 0.5− E(Aµi)|√

Var(Aµi)
. (14)

When |uµi | ≤ 1, we believe that there is no significant difference between Xi,j and
Xi,k ∀j 6= k. That is, {Xi,j} is a stationary sequence. Due to the spatial hypothesis
proposed in Section 2.3, we identify different intensity changes in each sub-sequence
{Xi,hj} by calculating uµi (i = 1, 2, . . . , l) from Equation (14). That is∣∣∣∣max

y∈Γ
(uµi(y))

∣∣∣∣ ≤ 1 (15)
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where Γ represents the selected area. maxy∈Γ(uµi(y)) denotes the max value of uµi
in Γ. If Inequation (15) holds, the last segmented sequence {Xi,j} of the current sub-
sequence {Xi,hj} contains gradual intensity change; otherwise, there is fast intensity
change.

4 HIERARCHICAL MEMORIZING MECHANISM

Hypotheses proposed in Section 2.3 have answered what to perceive and memorize
in perception-concerned background model. In order to tackle different scenarios of
background such as various illumination conditions, long period background must
be memorized. Considering the fast detection and rapid adaptation to scene change,
image sequences or video frames are to be segmented into sub-sequences for prior
perception of pixel-wise intensity change. It has been solved how to perceive the
rapid intensity change that occurs in segmented image sequences in Section 3, let
us now consider how to memorize long period background appearances and how to
track the rapid intensity change of background.

4.1 P-MGMM Framework

Due to the hypothesis of spatial consistency proposed in Section 2.3, long period
background memory must contain models of different scales. Supposing that a pixel-
wise mode is regarded as a state, a spatial combination of background state models is
identified to be a version, which has been specified in HGMM [18]. Once we perceive
current sub-sequences to be non-stationary, parameters of matched pixel-wise states
need to be rapidly updated. Therefore, we need to adjust learning rates expressed in
Equation (1) as high as possible, which inevitably accelerates background forgetting.
This traditional exponential forgetting way makes real-time state record. In order
to avoid discarding long period background, additional states at each pixel together
with the corresponding versions are utilized to memorize different scales of long-term
background. Put another way, spatial background memory containing additional
states and versions which represent long period background is needed. Once rapid
intensity changes are detected, it is apparently not enough to match current frame
with states or versions in either real-time state record or spatial background memory
only, especially when new illumination condition appears in scene. Therefore, global
difference memory is presented, which can be viewed as the first order difference of
spatial background memory.

Narrowing down to GMM, modules of real-time state record, spatial background
memory and global difference memory constitute a piecewise memorizing hierarchy,
which together with prior perception processor forms P-MGMM framework. As il-
lustrated in Figure 2 a), states, versions and differences are expressed as S, V and D,
respectively. When labeled with ‘*’, they represent background appearances. Real-
time state record corresponds to a conventional mixture of states. Spatial back-
ground memory for long period background storage consists of states and versions.
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Figure 2. Sketch map of perception-contained piecewise memorizing framework, i.e.
P-MGMM for short. a) P-MGMM framework, b) P-MGMM maintenance algorithm from
step 1◦ to step 10◦ or 11◦.
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Together with spatial differences between current intensity values and the means
of k states in real-time state record, additional pixel-wise states constitute global
difference memory, which is competent to adapt to rapid variations of background.
According to P-MGMM, several considerable improvements are able to be made.
Concrete improvements are to be introduced following the maintenance steps of
P-MGMM framework, as illustrated in Figure 2 b).

4.2 P-MGMM Maintenance

First of all, P-MGMM matching is considered. Different hierarchical matches are
defined as pixel intensity values within D times the standard deviations of a distri-
bution, respectively. Then we have:∣∣∣Xs

t
(y)− µlabel

k,t
(y)
∣∣∣ ≤ D · σlabel

k,t
(y), label ∈ {s, sv, sd}, (16)∣∣∣∣∣∣ 1Γ

∑
y∈Γ

µs
1,t

(y)− µv
k,t

∣∣∣∣∣∣ ≤ D · σv
k,t
, (17)

∣∣∣∣∣∣ 1Γ
∑
y∈Γ

(Xs
t
(y)− µs

k,t
(y))− µd

k,t

∣∣∣∣∣∣ ≤ D · σd
k,t

(18)

where D = 2.5. Superscripts s, sv and sd correspond to state parameters in real-time
state record, spatial background memory and global difference memory, respectively.
Accordingly, superscripts v and d represent version parameters in spatial background
memory and difference parameters in global difference memory. Inequation (16) ex-
presses three state matchings at different parts of the framework. Xs

t
(y) represents

the current intensity value at location y. µlabel
k,t

(y) and σlabel
k,t

(y) denote the mean

and deviation of the kth state in real-time state record, spatial background memory
and global difference memory with label varying from s to sv and sd. As to spatial
matching expressed in Inequation (17), spatial mean of the first state in real-time
state record is calculated and compared with k means of versions in spatial back-
ground memory, when reaching the last frame of each segmented sequence. Besides,
a global difference matching is made by comparing spatial differences of current
intensity values and the means of k states in real-time state record with k means
of differences in global difference memory, as expressed in Inequation (18). Note
that state matchings at different parts of the framework (i.e., step 1◦, 7◦ and 8◦)
expressed in Inequation (16) are applied to foreground detection. Version and dif-
ference matching expressed in Inequation (17) and (18) are only used for parameter
updating.

We consider real-time state record as a short-term background memory. Like
classical GMM [4] which is a match-concerned model, Gaussians in this part only
serve as a real-time record of matched states. Put another way, there are only pixel-
level state models that exist in real-time state record. Inevitably, the always matched
state k is supposed to hold a much lower standard deviation σk,t, particularly when
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the background appearance remains unchanged. Therefore, a fixed lower bound of
standard deviation σlow for each state is used. Besides, we re-ordered Gaussians only
by ωk,t, while taking the over-learning of the above-mentioned standard deviation
into consideration. Then each short-term state in sorted Gaussians is regarded as
background, if its weight value is large enough. That is:

Bt+1 = {ωk,t+1 > T | k = 1 . . . K} (19)

where Bt+1 and T keep the same meaning, as has been explained in Equation (2).
Last but foremost, we define the learning rate as follows:

αt = α · S (20)

where the parameter S > 1 when there is rapid intensity change, and S = 1 in the
other case (i.e., step 2◦ or 3◦). Parameters of real-time state record are updated
using Equation (1), once state matching in real-time state record corresponding to
step 1◦ is performed.

After parameters in real-time state record are refreshed, global difference match-
ing regarded as step 4◦ is made using Inequation (18). Once variations in scene are
perceived considering current segmented image sequence to be non-stationary, se-
quential background appearances derived from continuous intensity changes emerge.
States and versions in either real-time state record or spatial background memory are
incompetent at accommodating new background appearances in time. Therefore,
global difference memory is devoted to adapting to the continuity of background
intensities. Global difference memory consists of GMMs representing global differ-
ences and pixel-wise states, respectively. Following the parameter updating strategy
in real-time state record, the current mean µdk,t, the standard deviation σdk,t and the

weight estimation ωdk,t of the matched global difference are updated using Equa-
tion (1) with the learning rate αt switching between different intensity changes as
expressed in Equation (20), i.e. step 5◦ or 6◦. According to the rightly matched global
difference, corresponding states are selected for parameter updating. In fact, only
states referring to the inversion of foreground detection results derived from both
real-time state record and spatial background memory are needed to be refreshed.
The standard deviation σsdk,t of selected state k is updated using Equation (1). As
to pixel-wise mean µsdk,t, it is refreshed using Equation (1) when the intensity values
appear stationary in segmented sequences. Once there is obvious intensity change
in scene, the replacement of µsdk,t is expressed as follows:

µsdk,t+1 = µsdk,t + µdk,t. (21)

If no global match exists, the last global difference and pixel-wise state need to be
re-initialized.

Parameter updating in real-time state record and global difference memory rein-
force foreground detection results. Considering the stationarity of segmented image
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sequences, pixels representing foreground are labeled using either step 1◦ or an inter-
section of step 1◦ and 7◦. In order to differ foreground from long period background
appearance, state matching is also performed in spatial background memory using
Equation (16) and considered as step 8◦. Unlike MGMM [20], P-MGMM memorizes
the whole of the first states in real-time state record as the latest background appear-
ances once at the end of each segmented image sequence. That is, the most probable
background of real-time state record is preserved. Concretely, the most probable
background appearance B1

t representing the spatial mean of the first states in real-
time state record is checked against each global Gaussian of background version in
spatial background memory (i.e., step 9◦), as expressed in Inequation (17). Nearest
neighboring version matching is considered rather than order-first state matching.
As to stationary sub-sequences, parameters of states and versions in spatial back-
ground memory are updated using Equation (1), as step 10◦. When rapid intensity
changes appear in scene, the weight estimation of the matched version ωvk,t and
that of the corresponding states are updated using Equation (1) with its learning
rate expressed in Equation (20). The mean µsvk,t and the standard deviation σsvk,t of
pixel-wise states corresponding to the matched version are derived from the first
Gaussian in the real-time state record. Accordingly, the mean µvk,t and the standard
deviation σvk,t of the matched version are obtained from the spatial average of µsvk,t
and σsvk,t. And that is step 11◦. If no match exists, the last states in spatial back-
ground memory obtained from the descending order of ωvk,t should be replaced by B1

t

at the end of each segmented sequence.

5 EXPERIMENTAL RESULTS AND ANALYSIS

In this section, the reason for introducing prior perception processor and hierarchical
memorizing mechanism will be described. Using P-MGMM, experimental results of
foreground detection and corresponding analysis are to be made. Matlab R2012b is
selected as the experimental platform.

5.1 Reason for Introducing P-MGMM Using Experiment

First, an illustration why we propose three hypotheses of background subtraction is
made. Let us examine a long-term image sequence from PETS012 (see Figure 3 a)).
In Figure 3 b), a long-term intensity sequence labeled with line ‘-’ is sampled at
a fixed pixel of dataset PETS01-D3-T-C1. Stable background appearances fre-
quently emerge; moreover, it can be seen that obvious intensity changes indicated
in Figure 3 b) actually exist in short-term sequences. Therefore, a ‘piecewise’ action
is made, i.e., we divide the long-term sequence into short-term ones of equal length
with the endpoints labeled with ‘*’. The short-term sequences obtained are natu-
rally categorized into two types. One represents a stationary sequence without any
apparent intensity change. The other attends to the obvious intensity change with

2 http://ftp.pets.rdg.ac.uk/PETS2001

http://ftp.pets.rdg.ac.uk/PETS2001
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great difference. The same process is in progress at the pixels of the selected area
depicted in Figure 3 a), so that a certain spatial correlation is found. In light of these
observations, we propose three hypotheses of background subtraction mentioned in
Section 2.3.

(c)

(a)

(d)

R
at

io

(b)

end-point of short term sequences*"     "

long term sequence"         "

(1). fast illumination variation

(2). gradual illumination variation

(3). foreground

Figure 3. Illustration of the statistical characteristics derived from PET01. a) A long
term image sequence with varying illumination, b) a time sequence of the selected pixel,
c) a histogram of Aµ derived from the selected area, d) a segmented stationarity test
result in each sub-sequence {Xi,hj} (i = 1, 2, . . . , 47; h = 1, 2, . . . , 4; j = 1, 2, . . . , 112) of
the selected area.

The proposed hypotheses have indicated the importance of piecewise memorizing
framework with a primary stage of perception. Therefore, the reason for introducing
prior perception processor is further illustrated. The sum of the inversion number of
each sub-sequence {µi,h}, which is derived from Equation (4), forms a correspond-
ing sequence as {Aµi} (i = 1, 2, . . . , l). We calculate Aµi in the selected area of
Figure 3 a) to establish soundness of segmented stationarity test. In Figure 3 c),
a histogram of Aµi is counted to all the pixels in the selected area. Let r = 4. Thus,
E(Aµi) = 3, as calculated by Equation (10). Due to the histogram count of Aµi ,
it is reasonable to assume that Aµi is a normal stochastic variable, as expressed in
Equation (14).

We also identify different intensity changes in each sub-sequence {Xi,hj} of the
selected area in dataset PETS01-D3-T-C1 by testing Inequation (15) to demonstrate
its effectiveness, as shown in Figure 3 d). In order to indicate the reasonable structure



Background Subtraction Based on P-MGMM 881

Figure 4. Long period background appearances of different video clips derived from
PETS01-D3-T-C1. Each row depicts sorted background versions of the selected area
in different clips, as shown in Figure 3. The 1st row corresponds to the 1st video clip.
The 2nd row represents background states of the 8th video clip under fast illumination
change. The last row illustrates long period background states kept in the 47th video clip.
It is obvious that fast intensity change interferes with accurately memorizing long period
background.

of our P-MGMM containing a spatial background memory for a long period memory,
we experiment with the selected area illustrated in Figure 3 a). The memorized
long period background states of different segmented image sequences are shown in
Figure 4.

5.2 P-MGMM for Foreground Detection

In order to demonstrate the reasonability and the effectiveness of P-MGMM to fore-
ground detection under complex environments, we tested and compared P-MGMM
with seven statistical or structural background subtraction methods (including
ALPCA [16], LBP [8], GMM [4], TGMM [17], HGMM [18], GMSM [19] and
MGMM [20]) using 12 datasets from four databases. Each long-term video is simply
segmented to ensure that each video clip has almost the same length, because of the
observation that the detection results of foreground are independent of different l
and M values. All the parameters of P-MGMM are user-settable. Besides, the
optimal parameter values of comparative approaches for each dataset are selected.
Experiments in [22] are repeated due to adding a prior perception processor in this
work, as illustrated in Figure 5, Figures 6, 7 and 10. Let r and c be the row and col-
umn size of a frame. Therefore, the time and memory complexity of P-MGMM can
be expressed as O(Mrc) and O(Klrc), respectively. The overall memory usage for
processing each long-term video can be calculated by bytes×rc(KM + 2Kl), where
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bytes represents the bytes needed for storage of each pixel. In addition, we listed
the processing time of P-MGMM and several comparative background subtraction
methods on F & GLC3, as shown in Table 1.

Background Model
Average Processing Time (second/frame)

Gradual Illumination Change Fast Illumination Change

ALPCA [16] 3.6102 4.6426

TGMM [17] 0.6927 0.9545

HGMM [18] 0.8367 1.1354

MGMM [20] 0.0825 0.1037

P-MGMM 0.0992 0.1250

Table 1. Average processing time of a single frame on F&GLC

frame 1146 frame 2361 frame 2926 frame 3075

ALPCA

GMM

MGMM

P-MGMM

Figure 5. Experimental results on PETS01-D1-T-C2 (l = 27 and M = 119) containing
ghosts. Each column depicts the detection results of the chosen area at different frames in
different segmented video clips. Parameters of P-MGMM for PETS01-D1-T-C2 are given
as follows: K = 3, T = 0.34, σlow = 2, α = 0.001, and S = 3 when the sub-sequence is
non-stationary.

Ghosts. PETS01-D1-T-C2 is included for solving the problem of ghosts result-
ing from the exponential decay of long period background. Approaches such
as ALPCA and MGMM keep the ability in memorizing background. That

3 F & GLC is a dataset made by the second author of this paper in Harbin Institute of
Technology where he did his doctorate.
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is, these methods are immune from the appearances of ghosts when the oc-
cluded object used to be there still moves away. Therefore, we detect ob-
jects appearing in the selected area of PETS01-D1-T-C2 using ALPCA, GMM,
MGMM and P-MGMM. Corresponding detection results display in rows, as
illustrated in Figure 5. Still foreground is misclassified into background us-
ing GMM and MGMM (see column 3) due to absence of spatial consideration.
GMM also performs poorly when the van is moving away (see column 4). As
to ALPCA, there are several uncovered background pixels regarded as fore-
ground because of the large scale of foreground compared to that of the scenario
(see column 4). Due to its spatial background memory, it is observed that
P-MGMM works well on resisting the object absorption from background and
ghosts.

Light switch. Here we select PETS01-D3-T-C1 and PETS01-D3-T-C2 which con-
tains light switch and waving trees. Methods including ALPCA, TGMM, HGMM
and MGMM are viewed to be effective on solving the problem of light switch.
First we perform P-MGMM and other algorithms on PETS01-D1-T-C1 and
find that P-MGMM works better than most of the other methods except for
some foreground apertures (see Figure 6). This phenomenon derives from us-
ing global difference memory, which can be overcome using erosion and dilation
operations. Then we apply these algorithms to PETS01-D1-T-C2. The ex-
perimental results corresponding to ALPCA, GMM, TGMM, HGMM, MGMM
and P-MGMM display in rows, as illustrated in Figure 7. It is observed that
ALPCA is impervious to fast illumination change. However, it can be seen
from Figure 7 that waving trees do interfere with the detection results due
to frequent switches of components. Obviously, GMM, TGMM, HGMM and
MGMM are incompetent at handling complex background illumination varia-
tions. P-MGMM generally performs better than the other comparative meth-
ods on discrimination between background varying illumination and foreground.
Anyway, P-MGMM also shows its imperfections in camouflage and foreground
aperture.

In order to present quantitative detection results, we select models adaptive to
fast illumination change (i.e., ALPCA, TGMM, HGMM, MGMM and P-MGMM),
and make comparisons on F&GLC. The experimental results are shown in Figure 8.
ALPCA produces false positives when pedestrians of large scale pass by, because it
is restricted by the number of learning frames and the scale of illumination scenarios
compared to that of pedestrians. Background illumination is falsely considered to be
foreground in TGMM confronted with weak texture features, although every param-
eter set of its regional texture measure is tried to operate on complex illumination
variations. HGMM, which is only adaptive to ever-present fast illumination change,
is to lapse when new global fast illumination change appears. In MGMM, initially
memorizing step of limited pixel-wise states over training time is rendered ineffec-
tive by complex varying intensities, especially when new state with low learning rate
appears in testing. With a much higher precision, P-MGMM performs better than
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frame 916 frame 1411 frame 2426 frame 2779 frame 3018 frame 3881 frame 4660

ALPCA

GMM

TGMM

HGMM

MGMM

P-MGMM

Figure 6. Experimental results on PETS01-D3-T-C1 under complex illumination varia-
tions with l = 47, M = 102. Each column illustrates the detection results of the chosen
area at different frames in different video clips. Parameters of P-MGMM for PETS01-D3-
T-C1 are given as follows: K = 3, T = 0.34, σlow = 1, α = 0.005, and S = 3 when the
sub-sequence is non-stationary.

most of the other methods on discrimination between fast illumination change and
foreground, for its instant identification of illumination changes based on a prior seg-
mented stationarity test, rapid adaptation to intensity change of background and its
capacity of memorizing long period background memory. On the other hand, more
foreground aperture appears in the detection results of P-MGMM with a lower recall
because of the similarity between foreground and long period background. However,
this problem can be solved using morphological methods.

Shadows. CVRR-IR4 are selected as an evaluation of shadow removal. Approaches
such as TGMM and GMSM are viewed as effective methods for shadow removal.
TGMM introduces an intensity integration at gray level. As to GMSM, a limi-
tation of high appearance frequency is adopted in color space. In fact, elabo-
rate experimental results indicate that TGMM and GMSM only works on weak
shadow. Considering the real-time need of processing time, the gray-level in-
tensity integration of TGMM is embedded into our P-MGMM. An experiment

4 http://cvrr.ucsd.edu/aton/shadow/

http://cvrr.ucsd.edu/aton/shadow/
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frame 908 frame 1706 frame 2694 frame 2898 frame 3070 frame 3519 frame 4317

ALPCA

GMM

TGMM

HGMM

MGMM

P-MGMM

Figure 7. Experimental results on PETS01-D3-T-C2 accompanied with waving trees un-
der complex illumination changes (l = 53, M = 101). Each column illustrates the de-
tection results of the chosen area at different frames in different video clips. Parameters
of P-MGMM for PETS01-D3-T-C2 are given as follows: K = 5, T = 0.21, σlow = 1,
α = 0.005, and S = 3 when the sub-sequence is non-stationary.

is made on foreground detection of CVRR-S-I. The experimental results are il-
lustrated in Figure 9. It is observed that P-MGMM keeps the same detection
results as TGMM.

Wallflowers. In order to test our P-MGMM on problems besides ghosts, light switch
and shadows and show its effectiveness with various disturbances of complex en-
vironments, qualitative and quantitative experiments are made on Wallflower5

which includes seven sequences representing typical problems (i.e., LS, TD, WT,
C, B, FA, MO). Together with P-MGMM, comparative algorithms are imple-
mented. Qualitative and quantitative results are listed in Figure 10 and Ta-
ble 2, which demonstrate the effectiveness of P-MGMM on foreground detection.

5 http://research.microsoft.com/en-us/um/people/jckrumm/wallflower/

testimages.htm

http://research.microsoft.com/en-us/um/people/jckrumm/wallflower/testimages.htm
http://research.microsoft.com/en-us/um/people/jckrumm/wallflower/testimages.htm
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ALPCA TGMM HGMM MGMM P-MGMM

Figure 8. Experimental results on F & GLC containing an extreme fast illumination
change accompanied with a pedestrian on high illumination condition (l = 54, M = 118).
The 1st and 2nd column of row 1 and row 2 illustrate the chosen area on different frames
and the corresponding ground truths of the 40th video clip. The 1st row shows the detec-
tion results of a pedestrian at frame 73. The 2nd row depicts the immunity of the selected
methods to fast illumination change at frame 110. The 3rd and 4th row illustrate the
precision-recall and ROC curve of the comparative algorithms, respectively. Parameters
of P-MGMM for F & GLC are given as follows: K = 3, T = 0.34, σlow = 2, α = 0.005,
and S = 3 when the sub-sequence is non-stationary.
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frame 280

frame 292

frame 294

frame 288

frame 290

frame 296

frame 286

frame 284

frame 282

frame 298

GMSM TGMM P-MGMM

Figure 9. Experimental results on CVRR-S-I containing weak shadows with a pedestrian
(l = 4, M = 75). Rows depict the detection results at a two-frame interval from frame 280
to frame 298. Columns from left to right correspond to original frames, ground truths,
detection results of GMSM, TGMM and P-MGMM. Parameters of P-MGMM for CVRR-
S-I are same as those for F & GLC.
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LS TD WT C B FA MO

ALPCA

LBP

GMM

TGMM

HGMM

GMSM

MGMM

P-MGMM

Figure 10. Experimental results on Wallflower with M = 100. The 1st and 2nd row
illustrate the original frame and corresponding ground truth. Detection results including
ALPCA, LBP, GMM, TGMM, HGMM, GMSM, MGMM and P-MGMM are illustrated
from the 3rd to the 10th row.

Of course, the problems of camouflage and foreground aperture are left to be
solved using erosion and dilation operations.

6 CONCLUSION

A piecewise memorizing framework, which is capable of solving most typical prob-
lems on background subtraction, especially forgetting of long-term memory back-
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ground, is applied to GMM in this paper. Inspired by the metaphors of psycholog-
ical selective attention theory, a prior perception-concerned recognition for station-
ary intensity test is presented, followed by a hierarchical memorizing mechanism
containing real-time state record, spatial background memory and global differ-
ence memory. Real-time state record duplicates establishment and maintenance
of prevailing exponential forgetting models such as GMM and LBP for short-term
background memory. Enlightened from spatial information for fast adaptation to
background variations (e.g. ALPCA and HGMM) and hierarchical memory strategy
for enlarging memory capacity (e.g. MGMM), spatial background memory is devel-
oped. In order to ensure the robustness of the framework, global difference mem-
ory is designed and can be partially viewed as the first order difference of spatial
background memory. Experimental results with various benchmark sequences have
quantitatively and qualitatively demonstrated the effectiveness of our P-MGMM
compared with many other statistical and structural background models on fore-
ground detection with various disturbances of complex environments. Next, we will
concentrate on applying the proposed framework to other background models in the
literature.
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