
Computing and Informatics, Vol. 37, 2018, 894–914, doi: 10.4149/cai 2018 4 894

AN EFFICIENT ITEMSET REPRESENTATION
FOR MINING FREQUENT PATTERNS
IN TRANSACTIONAL DATABASES

Savo Tomović, Predrag Stanǐsić

University of Montenegro
Faculty of Mathematics and Natural Sciences
Džordža Vašingtona bb
81 000 Podgorica, Montenegro
e-mail: {savot, pedjas}@ac.me

Abstract. In this paper we propose very efficient itemset representation for frequent
itemset mining from transactional databases. The combinatorial number system
is used to uniquely represent frequent k-itemset with just one integer value, for
any k ≥ 2. Experiments show that memory requirements can be reduced up to
300 %, especially for very low minimal support thresholds. Further, we exploit
combinatorial number schema for representing candidate itemsets during iterative
join-based approach. The novel algorithm maintains one-dimensional array rank,
starting from k = 2nd iteration. At the index r of the array, the proposed algorithm
stores unique integer representation of the rth candidate in lexicographic order.
The rank array provides joining of two candidate k-itemsets to be O(1) instead of
O(k) operation. Additionally, the rank array provides faster determination which
candidates are contained in the given transaction during the support count and test
phase. Finally, we believe that itemset ranking by combinatorial number system can
be effectively integrated into pattern-growth algorithms, that are state-of-the-art in
frequent itemset mining, and additionally improve their performances.

Keywords: Frequent itemset mining, Apriori algorithm, combinatorial number
system

Mathematics Subject Classification 2010: 68P20, 68P30, 68T30

Efficient Itemset Representation for Mining Frequent Patterns 895

1 INTRODUCTION

The discovery of frequent itemsets (FI) was introduced in [4] as the first and the most
time-consuming phase of the process of finding association rules. The association
rule problem is a very important problem in data mining that occupies researchers’
attention for decades, with numerous practical applications including market basket
analysis, network intrusion detection and pattern discovery in biological applica-
tions [8, 9].

An example of association rule from transactional database might be that “85 %
of customers who bought Product X also bought Product Y ”. Discovering all such
rules is important for planning marketing campaigns, designing catalogues, manag-
ing prices and stocks, customer relationships management, etc. For example, a shop
may decide to place Product A close to Product B because they are often bought
together, to help shoppers finish their task faster. Or the shop may place them
at opposite ends of a row, and place other associated items in between to tempt
people to buy those items as well, as shoppers walk from one end of the row to the
other.

Overall performances of mining association rules are determined by the frequent
itemset discovery [5]. Efficient algorithms for generating rules from frequent itemsets
can be found in [7]. We do not consider the rule extraction sub-problem in this paper.

Although the pattern growth family of algorithms is considered as state-of-the-
art technique in frequent pattern mining, its run-time performance depends on the
compaction factor of the data set. For large and sparse databases the performance
of the algorithm degrades significantly because it has to generate a very big number
of sub-problems and merge the results returned by each sub-problem [7]. In general,
the join-based methods are slower but require less memory, while the memory needs
of the pattern growth or database projection based algorithms are usually very high,
providing that their execution time is smaller [6].

In this paper we introduce the combinatorial number system in context of the
frequent itemset mining. With the procedure based on combinatorial numbering
schema it is possible to efficiently represent any k-itemset with single integer value.
This is “lossless compression”, meaning that it is possible to reconstruct the original
itemset from the assigned value. Experiments show that memory requirements with
such approach can be reduced up to 300 %. It is especially observable for the very
low minimal support thresholds when the number of itemsets is the biggest. Usual
k-itemset representation requires O(k) integers.

Additionally, we propose Rank Join algorithm which makes several improve-
ments on the Apriori algorithm, that is a classic join-based approach. Although,
a hundreds of algorithms have been proposed on various kinds of extensions and
applications, the Apriori is still the most commonly recognized reference to evaluate
FIM algorithm performances. The Rank Join improves both major phases in Apri-
ori based algorithms: candidate generation step and support count and test step.
Experiments showed that, depending on particular instance of the problem, these
two steps can contribute to even more than 90 % of the total execution time [8].

896 S. Tomović, P. Stanǐsić

The paper is organized as follows. Section 2 introduces the problem of fre-
quent itemset mining. Related work is reviewed in Section 3. Section 4 introduces
combinatorial number system that is base for the new procedure for efficient rep-
resentation of frequent itemsets. The procedure is named RankItemset and it is
presented in Section 5. Section 6 describes a new algorithm named Rank Join, that
exploits efficient itemset representation in order to improve both major phases in
the Apriori based algorithms. Illustrative example is given in Section 7. Conclusion
can be found in Section 8.

2 PRELIMINARIES

This section contains definitions that are necessary for further text. We primarily
use notions from [1].

Suppose that I = {i1, i2, . . . , in} is a finite set; we refer to the elements of I as
items.

A transaction data set on I is a function T : {1, . . . , |T |} → P (I). The set T (k)
is the kth transaction of T . The numbers 1, . . . , |T | are the transaction identifiers
(TIDs).

Given a transaction data set T on the set I, we would like to determine those
subsets of I that occur often enough as values of T .

Let T : {1, . . . , |T |} → P (I) be a transaction data set on a set of items I. The
support count of a subset K of the set of items I in T is the number suppcountT (K)
given by: suppcountT (K) = | {t|1 ≤ t ≤ |T | ∧K ⊂ T (t)} |. The support of an item-

set K is the number: supportT (K) = suppcountT (K)
|T | .

An itemset K is µ-frequent relative to the transaction data set T if supportT (K)
≥ µ. We denote by F µ

T the collection of all µ-frequent itemsets relative to the
transaction data set T and by F µ

T,r the collection of all µ-frequent itemsets that
contain r items for r ≥ 1.

Note that F µ
T =

⋃
r≥1 F

µ
T,r.

Frequent itemset mining problem consists of finding the set F µ
T for given minimal

support µ and transaction data set T .

The following rather straightforward statement is fundamental for the study of
frequent itemsets. It is known as Apriori principle.

Let T : {1, . . . , |T |} → P (I) be a transaction data set on a set of items I. If K
and K1 are two itemsets, then K1 ⊂ K implies supportT (K1) ≥ supportT (K).

3 RELATED WORK

During the last two decades numerous algorithms have been proposed to mine fre-
quent itemsets. The interest in this problem still persists [9], mainly due to high
computational complexity of the task as well as because it plays an important role
in many data mining applications [8].

Efficient Itemset Representation for Mining Frequent Patterns 897

There are several classifications and consequently several classes of frequent
itemsets mining methods [9, 5, 7]. The main challenge of all these approaches is that
the number of candidates and frequent itemsets is exponentially large, especially for
the lower minimal support thresholds. Although the exponential search space is the
fundamental problem of frequent itemset mining, it is possible to significantly speed
up the support counting procedure with the use of special memory resident data
structures to represent database of transactions [8].

In this section we follow the classification presented in [8, 9]. These papers are
the most novel and ones of the most detailed surveys of frequent itemset mining
algorithms proposed in the literature.

There are two basic classes of frequent itemset mining algorithms: join-based
and tree-based (projection-based) algorithms. The common property of all these
algorithms is that they extend prefixes or suffixes of itemsets to generate frequent
patterns [8]. Variants of frequent itemset mining, such as maximal [15, 16, 17, 18, 19]
and close [20, 21, 22, 23, 24, 25, 26, 27, 28, 29] frequent itemset mining are not
considered in this paper.

The join-based algorithms generate candidate itemsets in increasing order of
the itemset size, which is usually referred to as level-wise exploration [8, 5]. The
candidate generation process of the earliest algorithms used joins. The original
Apriori algorithm belongs to this category [8, 9]. It generates (k+1)-candidates from
previously generated frequent k-itemsets with the use of joins. Then the algorithm
computes candidate’s support in the database. If the support is equal or higher than
the minimum support threshold the itemset is stored as frequent (k+ 1)-itemset. It
is important to emphasize that candidate itemsets are generated lexicographically,
that is along with pruning irrelevant and duplicate candidates, the key issue of
computational efficiency [8, 9].

Although the Apriori is presented as a join-based algorithm, it can be shown
that the algorithm is a breadth first exploration of a structured arrangement of the
itemsets, known as a set enumeration tree [8]. The set enumeration tree is used to
model exponential search space as follows [11]. Given set of items I = i1, i2, . . . , im
where i1 ≺ i2 ≺ . . . ≺ im, a set-enumeration is constructed from the root of the
tree that represents the empty set. Then the m child nodes of the root representing
m 1-itemsets are created. Additionally, for a node representing itemset ij1ij2 . . . ijk
and registering ijk, the (m− jk) child nodes representing itemsets ij1ij2 . . . ijkijk+1,
ij1ij2 . . . ijkijk+2, . . . , ij1ij2 . . . ijkijm are created.

Later classes of algorithms explicitly discuss tree-based enumeration [8, 9]. The
algorithms from this class can explore the tree using breadth-first, depth-first or
hybrid strategies. The breadth-first strategy allows level-wise pruning according
to the Apriori principle, that is not possible in the second strategy. The depth-
first version allows better memory management because one only needs to maintain
a small number of projected transaction sets along the depth of the tree. It is
especially desirable to efficiently discover maximal patterns.

The enumeration tree originally is defined on the prefixes of the itemsets. Later
algorithms such as FP-Growth find all frequent itemsets ending with a particular

898 S. Tomović, P. Stanǐsić

suffix by recursively employing a divide-and-conquer strategy to split the problem
into smaller sub-problems [5, 7]. It uses the compact data structure called an FP-
Tree to build a compressed representation of the input data. The tree is constructed
by mapping each transaction onto a path in the FP-Tree. As different transactions
can have numerous items in common, their paths may overlap. The compression
achieved by using the FP-Tree structure is based on paths’ overlaps. If the FP-Tree
can be stored in main memory, this will allow to extract frequent itemsets directly
from the tree, without additionally passes over the database [7].

Frequent itemsets are generated from the FP-Tree by exploring the tree in
a bottom-up fashion. This strategy finds frequent itemsets ending with a partic-
ular frequent item and is usually referred to as suffix-based approach [8, 9, 5, 7].
Since every transaction is mapped onto a path in the tree, we can derive the frequent
itemsets ending with a particular item, by examining only the paths containing that
item – prefix paths. These paths can be accessed efficiently using pointers associated
with each node in the tree. Prefix paths are converted into a conditional FP-Tree,
which is structurally similar to an FP-Tree, except it is used to find frequent item-
sets ending with a particular suffix. FP-Growth uses the conditional FP-Tree for
frequent item i to solve the sub-problems of finding frequent itemsets ending in xi
where x ∈ I \ i.

The size of an FP-Tree is typically smaller than the size of the uncompressed
data because it is expected that many transactions often share several items. The
best-case scenario is when all transactions have the same set of items and the corre-
sponding FP-Tree contains only a single branch. But, when datasets are sparse, the
pattern growth algorithms are inefficient [7, 10]. The worst-case scenario happens
when every transaction has a unique set of items. In that case, the size of FP-Tree
is higher than the size of the original data [7].

The size of an FP-Tree also depends on how the items are ordered. The usual
heuristic is to sort frequent items in decreasing support counts. Nevertheless, order-
ing by decreasing support counts does not always lead to the smallest tree [7].

Although, the pattern growth family of algorithms is considered as state-of-the-
art technique in frequent pattern mining [8], construction of the FP-Tree becomes
challenging both from runtime and space complexity as the database grows larger [7,
10]. It is mainly due to the fact that the algorithm has to generate a large number
of sub-problems and merge the results returned by each sub-problem. There have
been many works that deal with the previous challenges.

In recent years, several data structures, named Node-list [13], N-list [12], Node-
set [11] and DiffNodeset [10] have been presented to enhance the efficiency of mining
frequent itemset. They are all based on node sets originated from a prefix tree with
encoded nodes. The prefix tree employed by Node-list and N-list uses pre-order
number and post-order number to encode each node. The only difference between
Node-list and N-list is that Node-list uses descendant nodes to represent an itemset
while N-list represents an itemset by ancestor nodes. The Nodeset requires only the
pre-order (or post-order) number of a node to encode the node. DiffNodeset only
keeps track of differences in the Nodesets of a candidate itemset from its generating

Efficient Itemset Representation for Mining Frequent Patterns 899

frequent itemsets. Compared with the Nodeset, the cardinality of the DiffNodeset
is much smaller. Inspired by these data structures several algorithms have been de-
signed. Extensive experimental studies have shown that these algorithms are very
effective and usually outperform previous algorithms (FP-Growth∗, Eclat g) [10].

4 COMBINATORIAL NUMBER SYSTEM

In this section we establish a novel theoretical framework for the frequent itemset
mining problem.

Let us review the combinatorial number system and introduce one-to-one cor-
respondence between the integers 1, 2, . . . ,

(
n
m

)
and the set of m-combinations of

{1, 2, . . . , n} listed in lexicographic order. We primarily use results from [3].

Let (c1, c2, . . . , cm) represent one such combination where c1 < c2 < . . . < cm.
We define

complement(n, c1, c2,, cm) = (d1, d2, . . . , dm) (1)

as the complement of (c1, c2, . . . , cm) with respect to {1, 2, . . . , n}, where

di ← (n+ 1)− cm−i+1. (2)

The following function takes n and (c1, c2, . . . , cm) as input and returns (d1, d2,
. . . , dm) as output in O(m) time [3].

function COMPLEMENT(n, c1, c2, . . . , cm)
Step 1: for i = 1 to m do

di ← (n+ 1)− cm−i+1

end for.
Step 2: COMPLEMENT ← (d1, d2, . . . , dm)

Now, let the reverse of (c1, c2, . . . , cm) be given by (cm, cm−1, . . . , c1). The map-
ping

order(c1, c2, . . . , cm) = Σm
i=1C

ci−1
i (3)

has the following properties [3]:

1. if (c1, c2, . . . , cm) and (c
′
1, c

′
2, . . . , c

′
m) are two m-combinations and the reverse

of (c1, c2, . . . , cm) precedes the reverse of (c
′
1, c

′
2, . . . , c

′
m) in lexicographic order,

then

order(c1, c2, . . . , cm) < order(c
′

1, c
′

2, . . . , c
′

m); (4)

2. order(1, 2, . . . ,m) = 0 and order(((n − m + 1)(n − m + 2) . . . n)) =
(
n
m

)
− 1

implying that the transformation order maps the
(
n
m

)
different m-combinations

onto {0, 1, . . . ,
(
n
m

)
− 1} while preserving reverse lexicographic order.

900 S. Tomović, P. Stanǐsić

The following function takes (c1, c2, . . . , cm) as input and returns order(c1, c2, . . . ,
cm) as output in O(m2) time [3].

function ORDER(c1, c2, . . . , cm)
Step 1: sum ← 0
Step 2: for i = 1 to m do

sum ← sum +
(
ci−1
i

)
end for.

Step 3: ORDER ← sum

Using order and complement, we can define the following one-to-one mapping
of the set of

(
n
m

)
possible combinations onto {1, 2, . . . ,

(
n
m

)
} which preserves lexico-

graphic ordering:

rankc(n, c1, c2, . . . , cm) =(
n
m

)
−

order(complement(n, c1, c2, . . . , cm)).

Thus rankc(n, 1, 2, . . . ,m) = 1, rankc(n, 1, 2, . . . ,m,m + 1) = 2, . . . , rankc(n,

(n−m+1), (n−m+2), . . . n) =
(
n
m

)
. The following procedure is an implementation

of the preceding mapping: it takes n and the combinations (c1, c2, . . . , cm) as input
and returns the ordinal position h of the later in O(m2) time [3].

procedure RANKC(n, c1, c2, . . . , cm, h)
Step 1: h← Cn

m

Step 2: (d1, d2, . . . , dm)← COMPLEMENT (n, c1, c2, . . . , cm)
Step 3: h← h−ORDER(d1, d2, . . . , dm)

Let us explain the complexity of the RANKC in more details. In step 2 it
calls function COMPLEMENT with O(m) complexity. But, the dominant step
is 3rd in which function ORDER is called. Complexity for ORDER is O(m2) as
we stated earlier. Actually, in the second step in ORDER function there is loop
m iterations long, where in each iteration

(
ci−1
i

)
is calculated, 1 ≤ i ≤ m. Upper

bound complexity for each iteration is O(m), so overall complexity for ORDER is
O(m2).

Here we will just mention the question of inverting the RANKC mapping. Specif-
ically, given an integer h, where 1 ≤ h ≤

(
n
k

)
, it is required to determine the combina-

tion (c1c2 . . . ck) such that rankc(n, c1, c2, . . . , ck) = h. The function ORDERINV(n,
k, g) [3] is an implementation of the mentioned mapping. It takes n, k and h as
input and returns a combination (c1c2 . . . ck) as output in O(nk) time.

In the end of this section we propose hypothetical algorithm – Apriori Combi-
natorial for mining frequent itemsets in previously defined framework.

We use two dimensional array frequentItemsets to store support counts for k-
combinations that appear in database. In the iteration k all frequent k-combinations

Efficient Itemset Representation for Mining Frequent Patterns 901

will be generated. Instead of explicit candidate generation, our algorithm uses com-
binatorial number schema to map k-combinations to indexes of the array
frequentItemsest [k− 1]. This mapping preserves lexicographical ordering, so combi-
nation (1, 2, . . . , k) is mapped to 0 and appropriate support is stored in
frequentItemsets [k − 1][0]. Similarly, combination c1c2, . . . , ck is mapped to r =
RANKC (n, c1, c2, . . . , ck) while corresponding support count is stored in
frequentItemsets [k − 1][r].

In the support count phase in the iteration k, each transaction is read, and the
support for all k-combinations contained in the transaction is incremented.

Let us compare complexity of the Apriori Combinatorial to the original Apriori
algorithm. We have to compare complexities of the two main steps: candidate
generation step and support count step.

In the Apriori Combinatorial algorithm, there is no candidate generation step.
Actually, in the iteration k, it is sufficient to allocate

(
n
k

)
integers to the array

frequentItemsets [k − 1] and initialize them to 0.

For support counting, in each iteration the algorithm reads all transactions from
the database. The algorithm computes RANKC (s), s ⊂ t, |s| = k and increments
frequentItemsets [k − 1][RANKC (s)]. As it will be explained in the next section,
by using Pascal’s triangle it is possible to reduce complexity for RANKC to O(k).
Consequently, the complexity for support counting phase in the Apriori Combina-
torial is O

(
|T |Σkk

(
tmax

k

))
, where tmax is the size of the longest transaction and |T |

is the number of transactions in the database. Notice that factor αk that appears
in complexity estimation for the original Apriori is eliminated.

The previous considerations are summarized in Table 1.

Apriori-Like Apriori
Algorithms Combinatorial

candidate generation step Σw
k=2(k − 1)|Fk−1|2 O(1)

creating hash tree Σw
k=2k|Ck| 0

candidate prunning Σw
k=2k

2|Ck| 0

support counting O
(
|T |Σkαk

(tmax

k

))
O
(
|T |Σkk

(tmax

k

))
Table 1.

As we mentioned earlier, the Apriori Combinatorial is a hypothetical algorithm,
because it is impossible to manage the array frequentItemsets in cases where memory
capacity is limited, as it is expected to be. But still, it is possible to implement
the ideas from the Apriori Combinatorial, and significantly improve both major
steps in a join-based algorithms. In the next section we propose novel approach
for efficient itemset representation. In Section 6 we present Rank Join algorithm
that outperforms other Apriori-like algorithms by efficient implementation of the
candidate generation and support count steps.

902 S. Tomović, P. Stanǐsić

5 EFFICIENT ITEMSET REPRESENTATION

In this section we give a short introduction to the join-based approach and review
the Apriori algorithm from [4]. The Apriori is famous and widely-used algorithm
for the frequent itemset mining.

The Apriori algorithm iteratively generates frequent itemsets starting from fre-
quent 1-itemsets to frequent itemsets of the maximal size. Each iteration of the
Apriori consists of two phases: candidate generation and support count and test.

In the candidate generation phase potentially frequent k-itemsets or candidate
k-itemsets are generated. The anti-monotone property of the itemset support is
used in this phase and it provides elimination or pruning of some candidates with-
out calculating its actual support (candidate containing at least one not frequent
subset is pruned immediately, before support counting phase according to the Apri-
ori principle).

The set Ck, that contains candidate k-itemsets, is generated from Fk−1. The set
Fk−1 is known from the previous iteration and contains frequent (k − 1)-itemsets.
The two (k − 1)-frequent itemsets c1c2 . . . ck−1 and d1d2 . . . dk−1 give candidate k-
itemset e if and only if c1 = d1 ∧ c2 = d2 ∧ . . . ∧ ck−2 = dk−2 and ck−1 < dk−1. In
that case, we have e = c1c2 . . . ck−1dk−1.

The support count and test phase consists of calculating support counts for
all previously generated candidates (the set Ck) and tests the counts to the mini-
mal support threshold. In this phase, it is essential to efficiently determine if the
candidates are contained in a particular transaction in order to increment their sup-
port. Candidates that have sufficiently large support count, are termed as frequent
itemsets and they are stored as elements of the Fk.

The Apriori algorithm terminates when none of the frequent itemsets can be
generated.

We will use CT,k to denote candidate k -itemsets which are generated in the

iteration k over the transactional database T . By F µ
T,k we denote k-frequent itemsets

in the database T , having support count ≥ µ, where µ is minimal support threshold.
If T and µ are known from the context, we will omit them. Pseudo-code for the
Apriori algorithm comes next.

Algorithm: Apriori

Input: A transaction dataset T ;

Input: Minimal support threshold µ
Output: F µ

T

Method:

1. CT,1 = {{i}|i ∈ I}
2. F

µ

T,1 = {K ∈ CT,1|suppT(K) ≥ µ}
3. for (k =2; F µ

T,k−1 6= ∅; k++)

CT,k = apriori gen(F µ
T,k−1)

F µ

T,k = {K ∈ CT,k|suppT ≥ µ}

Efficient Itemset Representation for Mining Frequent Patterns 903

end for

4. F
µ

T =
⋃
r≥1 F

µ
T,r

Let us now introduce the procedure that will reduce memory requirements for
storing the set of all µ-frequent k-itemsets F µ

T,k in each iteration. Consequently, the

size of the final set FµT =
⋃
r≥1 F

µ
T,r that contains all µ-frequent itemsets in the given

database is reduced.
The idea is to represent each k-frequent itemset with just one integer. The

following procedure named RankItemset is an implementation of the mapping: it
takes k-itemset (c1, c2, . . . , ck) as an input and returns the ordinal position h of the
later. The procedure is based on results from [3], here reviewed in the previous
section.

procedure RankItemset(c1, c2, . . . , ck, h)
Step 1: sum← 0
Step 2: for i = 1 to k do

sum← sum+
(
n−ck−i+1

i

)
end for

Step 3: h← Cn
k − sum

The RankItemset preserves lexicographic ordering. Thus RankItemset(1, 2, . . . ,
k) = 1,RankItemset(1, 2, . . . , k + 1) = 2, . . . ,RankItemset((n − k + 1), (n − k +

2), . . . n) =
(
n
k

)
, where n is the number of items.

Let us estimate the complexity of the RankItemset . The dominant step is the
second one in which sum is calculated. There is a loop k iterations long, where in
each iteration

(
n−ck−i+1

i

)
is calculated, 1 ≤ i ≤ k. Upper bound complexity for each

iteration is O(k), so the overall complexity is O(k2).

It is possible to improve the RankItemset if we compute all
(
n−ck−i+1

i

)
in advance.

We have 1 ≤ ci ≤ n and 1 ≤ i ≤ k, so we can generate Pascal’s Triangle with n rows
and k columns. The Pascal’s triangle can be stored as lower triangle matrix, where
element (i, j), j < i is

(
i
j

)
.

Using the Pascal’s Triangle we reduce complexity to O(k); there is still a loop

k iterations long, where in each iteration
(
n−ck−i+1

i

)
is calculated, 1 ≤ i ≤ k, but now

in O(1) time. The previous implies that the overall complexity of the RankItemset
is reduced to O(k). Similarly, the complexity of the RANKC from the previous
section can be reduced to O(k), as we stated earlier.

The RankItemset procedure allows to change the step F µ
T,k = {K ∈ CT,k|suppT ≥

µ} with the following F µ
T,k = {RankItemset(K,hK)|K ∈ CT,k ∧ suppT (K) ≥ µ}. In

other words, instead of storing each frequent itemset explicitly, we store correspond-
ing RankItemset value. In that way we reduce space requirements for k-itemset
storing to O(1) instead of O(k). At the same time, the previous procedure does not
degrade time complexity because the RankItemset is O(k) as well as making a copy
of k-itemset and storing it in F µ

T,k.

904 S. Tomović, P. Stanǐsić

Here we will just mention that the function ORDERINV(n, k, g) [3] is an imple-
mentation of inverting the RankItemset. It takes n, k and h as an input and returns
an itemset (c1c2 . . . ck) as an output in O(nk) time. In other words, the proposed
representation of the itemsets does not influence the final result, i.e., we always
obtain the same set of the frequent patterns.

It is possible to integrate the RankItemset procedure into the most efficient
pattern-growth algorithm [14, 13] and improve their space efficiency. Additionally,
candidate ranking can be used to encode nodes in the set enumeration tree instead
of pre-order or/and post-order number. Node encoding can be done along with the
tree construction procedure, providing that several pre-order or/and post-order tree
traversals are not necessary any more.

6 RANK JOIN ALGORITHM

In this section we propose the Rank Join algorithm for frequent itemset mining. It
implements ideas from the previous sections and improves, at the first place, the
candidate generation procedure, but also the support count and test step.

The Rank Join maintains one-dimensional array rank, starting from k = 2nd

iteration. At the index r of the array, the algorithm stores the RankItemset of the
rth candidate in the lexicographic order, so rank [r] = RankItemset(cr1, c

r
2, . . . , c

r
k),

where cr1c
r
2 . . . c

r
k is the rth candidate in lexicographic order in the iteration k.

The array rank is used for efficient implementation of “joining” procedure in the
candidate generation phase as follows.

As it is described in the previous section, in the iteration k, a join-based algo-
rithm generates candidate k-itemsets from frequent (k−1)-itemsets (known from the
previous iteration). More precisely, two (k − 1)-frequent itemsets c1c2 . . . ck−1 and
d1d2 . . . dk−1 give candidate k-itemset e if and only if c1 = d1 ∧ c2 = d2 ∧ . . .∧ ck−2 =
dk−2 and ck−1 < dk−1. In that case, we have e = c1c2 . . . ck−1dk−1. So, each “joining”
is of O(k) complexity.

Having in hand the rank array, the Rank Join will join c1c2 . . . ck−1 and d1d2 . . .
dk−1 in O(1). Actually, let c1c2 . . . ck−1 be the rth and let d1d2 . . . dk−1 be the pth

frequent (k − 1)-itemset in lexicographic order. So, in order to check joining con-
dition it is sufficient to test if rank [r] = rank [p] and ck−1 < dk−1, which is O(1)
operation.

We emphasise here, that the Rank Join requires O(k) time to calculate a rank
for one candidate k-itemset. It is compensated in the general join-base algorithm
by the step where candidate k-itemset is inserted in a tree structure in O(k) time.
The Rank Join does not create tree for storing candidates. The role of the tree
in the support counting phase is given to the rank array, as will be described
later.

Finally, we can conclude that the candidate generation step in the iteration k
in a general join-base algorithm is O((k − 1)|Fk−1|2), while in the Rank Join it is
O(|Fk−1|2).

Efficient Itemset Representation for Mining Frequent Patterns 905

The rank array is used in the support count phase in order to reduce number
of candidate itemsets that are compared against transactions from the database.
Let us explain the idea in case of the iteration k. All candidates are lexicograph-
ically generated and stored in the array Ck. Also, for each candidate Ck[i] holds
rank [i] = RankItemset(Ck[i]). In order to find support counts for candidate itemsets
it is necessary, for each transaction t ∈ T , to enumerate those candidates that are
contained in t and consequently increment their support.

Consider transaction t = t1t2 . . . tl. If l < k there is no k-candidate that is
contained in t. If l ≥ k, the lexicographically smallest k-itemset contained in t is
t1t2 . . . tk. At the same time, the lexicographically largest k-itemset contained in t
is tl−k+1 . . . tl−1tl. So, candidates possibly contained in t are Ck[i], where

RankItemset(t1, t2, . . . , tk) ≤ rank [i] ≤ RankItemset(tl−k+1, . . . , tl−1, tl).
Because of lexicographical ordering they are placed consecutively. The idea is

illustrated in Figure 1. Notice that the rank array does not contain NULL pointers.
The previous procedure is similar but more efficient than the one implemented

in algorithms from [15] and [14], that is the most efficient join-based algorithms [8].
The later exploits an array PREFIX k[] according to the following consideration.
The various k-itemsets of Ck are stored in a vector lexicographically, and all of
them sharing a common 2-item prefix are stored in a continuous section of this
vector. Each entry in PREFIX k[] represents different 2-item prefix, and contains the
pointer to the first candidate in Ck characterized by that prefix. When transaction t
is processed, the algorithm generates all the possible prefixes of length 2. Once
a prefix {ti1, ti2} is selected, the possible completions of this prefix needed to build
k-subsets of t can only be found in {ti2+1, . . . , t|t|}. The previous is illustrated in
Figure 1.

Figure 1. Locating candidates using RANK and PREFIX [15, 14] arrays

The Rank Join is formalized in the following listing.

906 S. Tomović, P. Stanǐsić

Algorithm: Rank Join

Input: A transaction dataset T ; Minimal support threshold µ
Output: F µ

T

Method:

1. CT,1 = {{i}|i ∈ I}
2. F

µ

T,1 = {K ∈ CT,1|suppT(K) ≥ µ}
rank [i] = i, 1 ≤ i ≤ |F µ

T,1|
3. for (k =2; F µ

T,k−1 6= ∅; k++)

CT,k = {e1, e2, . . . , ek|∃cr, dp ∈ F µ
T,k−1,

cr = e1e2 . . . ek−2ek−1 ∧ dp = e1e2 . . . ek−2ek
∧ rank [r] = rank [p]}
for each t ∈ T do

start = RankItemset(t1, t2, . . . , tk)
end = RankItemset(tl−k+1, , . . . , tk−1, tk)
for each Ck[i], start ≤ i ≤ end do

if Ck ⊂ t suppT (Ck[i]) + +
end for each

end for each

F µ

T,k = {K ∈ CT,k|suppT(K) ≥ µ}
end for

4. F
µ

T =
⋃
r≥1 F

µ
T,r

7 EXAMPLE

In this section, we will illustrate main benefits of the itemset representation with
combinatorial number system. Consider transaction dataset T from Figure 2. It con-
tains nine transactions. Generation of the candidate itemsets and frequent itemsets
in the original Apriori algorithm, where the minimum support count is 2 transac-
tions, is also illustrated in Figure 2 [5].

There are 6 + 6 + 2 frequent itemsets. In the original Apriori method, k-itemset
is represented with k integers. It means, that the Apriori needs 6∗1+6∗2+2∗3 = 24
integers to store all frequent itemsets.

With the RankItemset procedure from Section 5, we can uniquely represent
each frequent itemset with just one integer. It takes k-itemset (c1, c2, . . . , ck) as
an input and returns the ordinal position h of the later. For example, the itemset
(1, 2) is represented with 1, because it is lexicographically the first 2-combination of
{1, 2, 3, 4, 5}. Similarly, the itemset (1, 5) is represented with 4, while 3 corresponds
to the itemset (1, 2, 5) as it is the third 3-combination of {1, 2, 3, 4, 5}. In the end,
we have 6 + 6 + 2 = 14 frequent itemsets and we use 14 integers to store them.
Again, we emphasize that the proposed representation of the frequent itemsets does
not influence the final result, i.e., we always obtain the same set of frequent patterns
but in the most compact form. It is guaranteed by the combinatorial number system

Efficient Itemset Representation for Mining Frequent Patterns 907

Figure 2. Generation of candidate itemsets and frequent itemsets

that introduces one-to-one correspondence between the integers 1, 2, . . . ,
(
n
m

)
and the

set of m-combinations of {1, 2, . . . , n} listed in lexicographic order.
Finally, we explain how two candidates are joined in the Rank Join in O(1)

having in hand the rank array. Consider the itemset (1, 2, 3, 5), that will be pruned
by the Apriori principle because it contains the subsets that are not frequent (be-
cause of that it does not appear in Figure 2). It is generated by joining (1, 2, 3)
and (1, 2, 5). In the original Apriori this joining requires three comparisons: 1 = 1,
2 = 2 and 3 < 5. The Rank Join from Section 6, needs just two comparisons
rank(1, 2) = rank(1, 2) and 3 < 5. In general, in the original Apriori algorithm
joining of two k-itemsets requests k comparisons, comparing to just 2 in the Rank
Join.

8 PERFORMANCE EVALUATION

In order to prove theoretical considerations from Sections 5 and 6 we performed
a number of experiments.

Datasets used in experiments are synthetic datasets generated with IBM Quest
Data Generator. At the command-line we run seq data generator lit -ascii -ntrans
XX -tlen YY -nitems ZZ -fname TXXLYYNZZ. It will produce file TXXLYYNZZ
with XX×1 000 transactions involving YY average number of items per transaction,
drawn from ZZ× 1 000 total number of items. Each line of the file is a transaction.
The items in each transaction are represented by item numbers and are separated
by spaces. For example, file T1000L10N1 contains 1 000 000 transactions made from
1 000 items, with average length of 10.

We measured memory needed for storing frequent itemsets in KB with respect
to minsup parameter. Achieved improvements are up to 300 %. We emphasize the

908 S. Tomović, P. Stanǐsić

fact that the most significant enhancements are achieved for the smallest values of
minsup, when the number of frequent itemsets is the biggest. Results are presented
in Figures 3 and 4.

Figure 3. Experiment 1, datasets T200L10N1

Figure 4. Experiment 1, datasets T100L40N1

We implemented the Rank Join and the original Apriori algorithm with direct
count procedure [9], that is the most efficient join-based algorithm [8]. We used
programming language C and machine with Intel Celeron 2 GHz and 2 GB of RAM.
Datasets used in experiments are synthetic datasets generated with IBM Quest Data
Generator as it is already explained.

We measured execution time in seconds with respect to minsup parameter.
Achieved improvements are between 3 % and 15 %. We emphasize the fact that

Efficient Itemset Representation for Mining Frequent Patterns 909

Figure 5. Experiment 2, datasets T100L10N1

Figure 6. Experiment 2, dataset T1000L10N1

the most significant enhancements are achieved for the smallest values of minsup,
when the number of candidate itemsets is the biggest. Results of the experiments
are presented in Figures 5 and 6 for synthetic datasets and in Figure 7 for Ex-
tended BAKERY dataset. The dataset contains information about one year worth
of sales information for a couple of small bakery shops. The sales are made by
employees. The dataset contains information about the different store locations
in West Coast states (California, Oregon, Arizona, Nevada), the assortments of
baked goods offered for sale and the purchases made [30]. The experiment shows
that the proposed algorithm outperforms the original Apriori on the real dataset,
too.

910 S. Tomović, P. Stanǐsić

Figure 7. Experiment 2, BAKERY dataset

Figure 8. Experiment 3, scalability

In all experiments, the parameter minsup is changed in a way that indicates
performance differences the best. We started with the greatest minsup value for
which there was a significant difference in the algorithms’ performances and reduced
it to the smallest value for which the original Apriori method can finish without “out
of memory error”.

In Figure 8 we present results of experiment in which Rank Join shows better
scalability. We set minsup = 0.25 % and change number of transactions from 100 K
to 1 000 K.

Efficient Itemset Representation for Mining Frequent Patterns 911

9 CONCLUSIONS AND FUTURE WORK

In this paper we have proposed a novel procedure for efficient representation of
k-itemset with just one integer value. In this segment it is superior by comparison
with any other approach. An itemset c is represented with the RankItemset(c) value.

Additionally, we presented new join-based approach called Rank Join. The
Rank Join significantly improves both major steps in join-base algorithms. We
performed a series of experiments and measured execution times with respect to
minsup parameter. In all test cases Rank Join is more efficient than any other
join-base algorithm. This is especially case for very small minsup values when these
algorithms generate the biggest number of candidate itemsets.

We believe that candidate ranking by combinatorial number system can be
effectively integrated into pattern-growth algorithms, that are state-of-the-art in
frequent itemset mining, and additionally improve their performances. As future
work, we plan to integrate candidate ranking into the most efficient pattern-growth
algorithm [14, 13]. It can improve their efficiency, because candidate ranking can
be used to encode nodes in the set enumeration tree instead of pre-order or/and
post-order number. Node encoding can be done along with the tree construction
procedure, providing that several pre-order or/and post-order tree traversals needed
in [10, 11, 12, 13], are not necessary.

REFERENCES

[1] Simovici, D. A.—Djeraba, C.: Mathematical Tools for Data Mining – Set Theory,
Partial Orders, Combinatorics. Springer, London, 2008.

[2] Maurer, B. S.—Ralston, A.: Discrete Algorithmic Mathematics. A. K. Peters,
Massachusetts, 1998.

[3] Akl, G. S.: The Design and Analysis of Parallel Algorithms. Prentice Hall, New
Jersey, 1989.

[4] Agrawal, R.—Imielinski, T.—Swami, A. N.: Mining Association Rules Between
Sets of Items in Large Databases. Proceedings of the 1993 ACM SIGMOD Interna-
tional Conference on Management of Data (SIGMOD ’93), Washington DC, USA,
1993, pp. 207–216, doi: 10.1145/170035.170072.

[5] Han, J.—Cheng, H.—Xin, D.—Yan, X.: Frequent Pattern Mining: Current Sta-
tus and Future Directions. Data Mining and Knowledge Discovery, Springer, Vol. 15,
2007, No. 1, pp. 55–86, doi: 10.1007/s10618-006-0059-1.

[6] Ivancsy, R.—Vajk, I.: Automata Theory Approach for Solving Frequent Pattern
Discovery Problem. International Journal of Computer, Control, Quantum and In-
formation Engineering, 2007, pp. 203–208.

[7] Tan, P. N.—Steinbach, M.—Kumar, V.: Introduction to Data Mining. Springer,
London, 2006.

https://doi.org/10.1145/170035.170072
https://doi.org/10.1007/s10618-006-0059-1

912 S. Tomović, P. Stanǐsić

[8] Aggarwal, C. C.—Bhuiayn, M. A.—Mohammad, H. A.: Frequent Pattern Min-
ing Algorithms: A Survey. In: Aggarwal, C., Han, J. (Eds.): Frequent Pattern Mining.
Springer International Publishing Switzerland, 2014, pp. 19–64.

[9] Aggarwal, C. C.: An Introduction to Frequent Pattern Mining. In: Aggarwal, C.,
Han, J. (Eds.): Frequent Pattern Mining. Springer International Publishing Switzer-
land, 2014, pp. 1–17, doi: 10.1007/978-3-319-07821-2 1.

[10] Deng, Z. H.: DiffNodesets: An Efficient Structure for Fast Mining Fre-
quent Itemsets. Applied Soft Computing, Vol. 41, 2016, pp. 214–223, doi:
10.1016/j.asoc.2016.01.010.

[11] Deng, Z. H.—Lv, S. H.: PrePost+: An Efficient N-Lists-Based Algorithm for Min-
ing Frequent Itemsets via Children-Parent Equivalence Pruning. Expert Systems with
Applications, Vol. 42, 2015, No. 13, pp. 5424–5432.

[12] Deng, Z. H.—Wang, Z. H.—Jiang, J. J.: A New Algorithm for Fast Mining Fre-
quent Itemsets Using N-Lists. Science China Information Sciences, Vol. 55, 2012,
No. 9, pp. 2008–2030.

[13] Deng, Z. H.—Wang, Z. H.: PrePost+: A New Fast Vertical Method for Min-
ing Frequent Itemsets. International Journal of Computational Intelligence Systems,
Vol. 3, 2010, No. 6, pp. 733–744.

[14] Orlando, S.—Palmerini, P.—Perego, R.: Enhancing the Apriori Algorithm for
Frequent Set Counting. In: Kambayashi, Y., Winiwarter, W., Arikawa, M. (Eds.):
Data Warehousing and Knowledge Discovery (DaWaK 2001). Springer, Berlin, Hei-
delberg, Lecture Notes in Computer Science, Vol. 2114, 2001, pp. 71–82.

[15] Orlando, S.—Palmerini, P.—Perego, R.—Silvestri, F.: Adaptive and
Resource-Aware Mining of Frequent Sets. Proceedings of the ACM ICDM Confer-
ence on Data Mining, 2002, doi: 10.1109/ICDM.2002.1183921.

[16] Bayardo Jr., R. J.: Efficiently Mining Long Patterns from Databases. ACM SIG-
MOD Conference, 1998, doi: 10.1145/276304.276313.

[17] Agarwal, R.—Aggarwal, C. C.—Prasad, V. V. V.: Depth First Generation
of Long Patterns. Proceedings of the Sixth ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining (KDD ’00), 2000, pp. 108–118, doi:
10.1145/347090.347114.

[18] Agarwal, R.—Aggarwal, C. C.—Prasad, V. V. V.: A Tree Projection Algo-
rithm for Generation of Frequent Itemsets. Journal of Parallel and Distributed Com-
puting, Vol. 61, 2001, No. 3, pp. 350–371.

[19] Burdick, D.—Calimlim, M.—Gehrke, J.: MAFIA: A Maximal Frequent
Itemset Algorithm for Transactional Databases. Proceedings of the 17th In-
ternational Conference on Data Engineering (ICDE), 2001, pp. 443–452, doi:
10.1109/ICDE.2001.914857.

[20] Lucchesse, C.—Orlando, S.—Perego, R.: DCI Closed:: A Fast and Memory
Efficient Algorithm to Mine Frequent Closed Itemsets. ICDM Workshop on Frequent
Itemset Mining Implementations (FIMI ’04), 2004.

[21] Lucchesse, C.—Orlando, S.—Perego, R.: Fast and Memory Efficient Mining
of Frequent Closed Itemsets. IEEE Transactions on Knowledge and Data Engineering,
Vol. 18, 2006, No. 1, pp. 21–36, doi: 10.1109/TKDE.2006.10.

https://doi.org/10.1007/978-3-319-07821-2_1
https://doi.org/10.1016/j.asoc.2016.01.010
https://doi.org/10.1109/ICDM.2002.1183921
https://doi.org/10.1145/276304.276313
https://doi.org/10.1145/347090.347114
https://doi.org/10.1109/ICDE.2001.914857
https://doi.org/10.1109/TKDE.2006.10

Efficient Itemset Representation for Mining Frequent Patterns 913

[22] Pasquier, N.—Bastide, Y.—Taouil, R.—Lakhal, L.: Discovering Frequent
Closed Itemsets for Association Rules. In: Beeri, C., Buneman, P. (Eds.): Database
Theory – ICDT ’99. Springer, Berlin, Heidelberg, Lecture Notes in Computer Science,
Vol. 1540, 1999, pp. 398–416.

[23] Pasquier, N.—Bastide, Y.—Taouil, R.—Lakhal, L.: Efficient Mining of As-
sociation Rules Using Closed Itemset Lattices. Information Systems, Vol. 24, 1999,
No. 1, pp. 25–46, doi: 10.1016/S0306-4379(99)00003-4.

[24] Pei, J.—Han, J.—Mao, R.: CLOSET: An Efficient Algorithm for Mining Frequent
Closed Itemsets. DMKD Workshop, 2000.

[25] Uno, T.—Kiyomi, M.—Arimura, H.: LCM Ver. 2: Efficient Mining Algorithms
for Frequent/Closed/Maximal Itemsets. ICDM Workshop on Frequent Itemset Mining
Implementations (FIMI ’04), 2004.

[26] Wang, J.—Han, J.: BIDE: Efficient Mining of Frequent Closed Sequences. Pro-
ceedings of the 20th International Conference on Data Engineering (ICDE), 2004,
doi: 10.1109/ICDE.2004.1319986.

[27] Wang, J.—Han, J.—Lu, Y.—Tzvetkov, P.: TFP: An Efficient Algorithm for
Mining Top-k Frequent Closed Itemsets. IEEE Transactions on Knowledge and Data
Engineering, Vol. 17, 2005, No. 5, pp. 652–664.

[28] Wang, J.—Han, J.—Pei, J.: CLOSET+: Searching for the Best Strategies for
Mining Frequent Closed Itemsets. Proceedings of the Ninth ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining (KDD ’03), 2003,
pp. 236–245, doi: 10.1145/956750.956779.

[29] Zaki, M. J.—Hsiao, C.: ChARM: An Efficient Algorithm for Closed Association
Rule Mining. SDM Conference, 2002.

[30] Extended BAKERY Dataset, http://wiki.csc.calpoly.edu/datasets/wiki/

ExtendedBakery.

https://doi.org/10.1016/S0306-4379(99)00003-4
https://doi.org/10.1109/ICDE.2004.1319986
https://doi.org/10.1145/956750.956779
http://wiki.csc.calpoly.edu/datasets/wiki/ExtendedBakery
http://wiki.csc.calpoly.edu/datasets/wiki/ExtendedBakery

914 S. Tomović, P. Stanǐsić

Savo Tomovi�c received his Ph.D. in computer science from the
University of Montenegro in 2011. He is currently Associated
Professor in the Faculty of Science – Department of Mathemat-
ics and Computer Science at the University of Montenegro and
Head of the Centre of the University Information System. He
teaches a wide variety of undergraduate and graduate courses
in several computer science disciplines, especially database sys-
tems, operating systems and programming. In addition, he is
currently engaged as an adviser in Crnogorski Telekom on the
project for data warehouse design and implementation. His pri-

mary research interest is in the area of data mining and artificial intelligence. During his
Ph.D. studies he was involved in the project Linear Collider Flavour Identification (LCFI)
with the aim to compare different data mining and classification algorithms as well as to
understand the relative importance of the various input variables for the resulting tagging
performance.

Predrag Stani�si�c is Full Professor in the Faculty of Science –
Department of Mathematics and Computer Science at the Uni-
versity of Montenegro and Vice Chancellor of the University of
Montenegro. He received his B.Sc. degree in mathematics and
computer science from the University of Montenegro in 1996,
his M.Sc. degree in computer science from the University of Bel-
grade, Serbia in 1998 and his Ph.D. degree in computer science
from Moscow State University M. V. Lomonosov in 1999. He
teaches a wide variety of undergraduate and graduate courses
in several computer science disciplines, especially database sys-

tems, operating systems and programming.

