
Computing and Informatics, Vol. 37, 2018, 915–945, doi: 10.4149/cai 2018 4 915

MAXPART: AN EFFICIENT SEARCH-SPACE
PRUNING APPROACH TO VERTICAL PARTITIONING

Benameur Ziani, Youcef Ouinten, Mustapha Bouakkaz

LIM – Department of Informatics
University of Laghouat, BP 37G M’kam 03000, Algeria
e-mail: {bziani, ouinteny, m.bouakkaz}@lagh-univ.dz

Abstract. Vertical partitioning is the process of subdividing the attributes of a re-
lation into groups, creating fragments. It represents an effective way of improving
performance in the database systems where a significant percentage of query pro-
cessing time is spent on the full scans of tables. Most of proposed approaches for
vertical partitioning in databases use a pairwise affinity to cluster the attributes of
a given relation. The affinity measures the frequency of accessing simultaneously
a pair of attributes. The attributes having high affinity are clustered together so as
to create fragments containing a maximum of attributes with a strong connectivity.
However, such fragments can directly and efficiently be achieved by the use of max-
imal frequent itemsets. This technique of knowledge engineering reflects better the
closeness or affinity when more than two attributes are involved. The partitioning
process can be done faster and more accurately with the help of such knowledge
discovery technique of data mining. In this paper, an approach based on maxi-
mal frequent itemsets to vertical partitioning is proposed to efficiently search for
an optimized solution by judiciously pruning the potential search space. Moreover,
we propose an analytical cost model to evaluate the produced partitions. Experi-
mental studies show that the cost of the partitioning process can be substantially
reduced using only a limited set of potential fragments. They also demonstrate the
effectiveness of our approach in partitioning small and large tables.

Keywords: Information systems, knowledge extraction, data mining, maximal fre-
quent itemsets, database design, vertical partitioning

916 B. Ziani, Y. Ouinten, M. Bouakkaz

1 INTRODUCTION

Database applications are often characterized by a large volume of data and high
demands with regard to query response time and transaction throughput. Vertical
partitioning is an effective way of improving performance in the database systems
where a significant percentage of query processing time is spent on the full scans
of tables. It represents an important aspect of physical database design that have
significant impact on performance and manageability [1]. Figure 1 illustrates the
principle of vertical partitioning. Consider a classical example of the employee table
(original table).

Original Table (Employee)

EmpId Name Job Department Salary City

Id1

Id2

Id3

Id4

Id5

Id6

Id7

Id8

Id9

Id10

F1

EmpId Name Department City

Id1

Id2

Id3

Id4

Id5

Id6

Id7

Id8

Id9

Id10

F2

EmpId Job Salary

Id1

Id2

Id3

Id4

Id5

Id6

Id7

Id8

Id9

Id10

Figure 1. Principle of vertical partitioning (EmpId is the key)

Assume that some employees’ information, such as Name, Department and City

is frequently required together. When scanning the employee table to fetch this
information, other non-relevant information on employee such as Job and Salary will
also be loaded. In such a situation and according to performance expectations, the
administrator can split the original table into two fragments F1 (Name, Department,
City) and F2 (Job, Salary). Such a partitioning is beneficial since it avoids access
to non-relevant information and thus significantly reduces the I/O requirements

MaxPart: An Efficient Search-Space Pruning Approach to Vertical Partitioning 917

during query processing. In order to minimize the costs of accessing the required
data, the relation is partitioned in such a way that each query uses as few fragments
as possible. The ideal partitioning is obtained if each query would have to access
a single fragment containing exactly the attributes it references, resulting in minimal
I/O requirements. Realistically, however, overlapping queries reduce the efficiency
of the partitioning. In such a case additional joins between two or more fragments
are required to fetch the desired data.

In vertical partitioning, the attributes of a relation R are clustered into non-
overlapping groups and the original relation R is projected into fragment relations
according to these attribute groups. The result of the fragmentation process is a set
of fragments defined by a partitioning scheme. The aim is to find a partitioning
scheme which minimizes the cost of accessing data during query processing.

However, selecting a suitable partitioning scheme is a difficult problem to solve,
since a large space of alternatives must be considered. A table can be vertically
partitioned in many different ways. The vertical partitioning problem is compu-
tationally intractable. Indeed, if a relation R has m non-primary key attributes,
the possible fragments are given by the Bell number [2] which is approximately
B(m) ≈ mm. Hence, on the one hand, the complexity of the partitioning prob-
lem increases exponentially with the number of attributes. Vertical partitioning,
on the other hand, basically stores attributes that are frequently accessed together
based on a given workload. But the latter may change over time which implies
that the partitioning process may need to be performed very often. Accordingly,
finding suitable vertical partitions is a daunting task even for skilled database ad-
ministrators (DBAs). Thus, database administrators (DBAs) are faced with the
challenging task of determining the appropriate choice of partitioned tables and,
therefore, there is a practical need for strategies that assist the DBAs in this pro-
cess.

Studies dealing with the vertical partitioning problem have focused on reducing
its complexity and finding approximate solutions using heuristics-based approaches.
A basic question related to vertical partitioning is how the attributes are referenced
in a given workload? Therefore, most of the proposed algorithms cluster the at-
tributes of a relation according to their affinity. Attribute affinity expresses a bond
between a pair of attributes. The affinity between two attributes Ai and Aj mea-
sures the total number of accesses of queries referencing both attributes Ai and Aj.
The core idea of affinity based partitioning is to compute affinities between every
pair of attributes and then to cluster them such that high affinity pairs are as close
in neighbourhood as possible.

The drawback of affinity based approaches is that the used measure does not
reflect the closeness or affinity when more than two attributes are involved. In such
approaches, all possible grouping of couples of attributes having high affinity should
be examined. During regrouping the attributes are moved between fragments to
achieve any possible improvement. This task requires a large number of comparison
operations between affinity values of more than two attributes which can be very
costly for a large representative workload.

918 B. Ziani, Y. Ouinten, M. Bouakkaz

The natural way to reflect the closeness of k attributes of a given relation R is
to measure the accessing frequency of sets of attributes with different size s (1 ≤
s ≤ k). This measure can be achieved by the means of mining frequent itemsets.
This technique helps to discover important associations among attributes such that
the presence of some attributes in a query will imply the presence of some other
attributes. Thus, the partitioning process can be done faster and more accurately
with the help of such knowledge discovery technique of data mining. However, the
use of all frequent itemsets is limited by the high computational cost as well as the
large number of resulting outputs. Such approach generates an enormous number
of candidate fragments which leads to high computational overheads.

In this paper we propose MaxPart – an approach for finding an optimized solution
to vertical partitioning using maximal frequent itemsets. The proposed approach
exploits the input workload information to intelligently prune the search space of the
optimal solutions. It measures the correlation of attribute sets as naturally expected
by the partitioning process. Taking a representative workload as an input, MaxPart
goes through two major steps

1. enumerating potential fragments, that we call candidate fragments, according
to the workload characteristics using maximal frequent itemsets technique;

2. generating possible partitioning schemes exploiting the candidate fragments and
selecting the best one according to the workload cost.

We address the complexity of vertical partitioning problem from the perspective of
counting a reduced number of optimized possible solutions as efficiently as possi-
ble. We are motivated by the desire to achieve computationally simpler, but at least
equivalent, solutions for the studied problem. The counting aspect reveals the inher-
ent computational complexity of the partitioning process. We believe that maximal
frequent itemsets offer an attractive alternative to achieve this goal.

The reminder of the paper is as follows. We present in Section 2 an example
to motivate our proposal. Section 3 provides background information on the stud-
ied problem. In Section 4, we investigate related work on vertical partitioning in
relational databases and maximal frequent itemsets mining. Section 5 presents the
proposed analytical cost model for evaluating generated partitioning schemes. We
present the proposed approach to solve the vertical partitioning problem in Sec-
tion 6. Section 7 deals with the experimental study of the proposed approach. We
conclude the paper and present future directions in Section 8.

2 MOTIVATING EXAMPLE

We will first introduce the principle of MaxPart approach through a simple moti-
vating example. An obvious, but important observation, is that the efficiency of the
partitioning process depends on the interestingness of the generated fragments in
terms of size (length) and frequency. Based on a given workload, expected fragments

MaxPart: An Efficient Search-Space Pruning Approach to Vertical Partitioning 919

must, intuitively, store the maximum of attributes that are frequently accessed to-
gether.

Queries Freq.

q1 Select A, B, E 1
q2 Select B, E 3
q3 Select A, D, F 3
q4 Insert SQL 2
q5 Insert SQL 1

a)

Extraction Context

A B E
B E
B E
B E
A D F
A D F
A D F
A B C D E F
A B C D E F
A B C D E F

b)

AllPart MaxPart

1-Fragment A, B, D, E, F –

2-Fragment AB, AD, AE –
DF, AF, BE

3-Fragment ADF, ABE ADF, ABE

c)

Figure 2. Example of a) input workload, b) corresponding extraction context and c) can-
didate fragments

Example 1. The following example is extracted from [3]. It illustrates the effi-
ciency of using maximal frequent itemsets for the partitioning process. Instead
of using all frequent itemsets, our approach, called MaxPart, performs the verti-
cal partitioning exploiting the interesting properties of maximal frequent itemsets.
Consider a set of 5 queries q1, . . . , q5 referencing the attributes A,B,C,D,E, and F .
The queries and their frequencies are illustrated in Figure 2 a). Figure 2 b) shows
the corresponding extraction context. For a threshold value % of 40 %, the set of
candidate fragments generated using all frequent itemsets, which we call AllPart,
and by the means of MaxPart approach are shown in Figure 2 c). AllPart gen-
erates 13 candidate fragments, while MaxPart generates only two candidate frag-
ments.

According to the algorithm proposed in [3], the process of generating the pos-
sible partitioning schemes is done as follows. AllPart starts by considering the
fragment with the maximal length {A,D, F} as the first fragment of the partition.
It scans successively the 2-itemsets and find that {B,E} does not overlap with the
existing partition. It forms the second fragment. The remaining attribute {C},
that is non frequent, forms the third fragment. The result of this iteration is the

920 B. Ziani, Y. Ouinten, M. Bouakkaz

partitioning scheme [{A,D, F}, {B,E}, {C}]. Similarly, the second large fragment
{A,B,E} leads to the scheme [{A,B,E}, {D,F}, {C}]. The MaxPart approach
performs only two comparisons between the fragments {A,D, F} and {A,B,E} to
generate the same partitioning schemes. Indeed, the maximal fragment {A,D, F} is
firstly compared to the fragment {A,B,E} to deduce the second fragment {B,E}.
Similarly, the comparison between the fragments {A,B,E} and {A,D, F} generates
the second fragment {D,F}. In both cases, the remaining attribute {C}, which is
non frequent, forms the third fragment.

The above example clearly shows that our approach prunes significantly the
search space for the partitioning process. When processing a potential fragment Fk,
which has a maximal length, AllPart approach needs to compare it to the frag-
ments Fk−1, Fk−2, . . . , F1 resulting in a larger total computation cost. However,
most of the fragments Fk−1, . . . , F1 will not be used any more since they are in-
cluded in the maximal ones. As the number of attributes increases using large
representative workloads, the computational cost grows exponentially. Obviously,
the efficiency of the partitioning process depends on the number of enumerated
fragments. Indeed, the selection of an optimized partitioning scheme becomes com-
putationally more complex when there is a huge number of candidate fragments
to choose from. As the number of the candidate fragments becomes longer, the
number of possible comparisons becomes larger, thus the pruning effect of our ap-
proach is sharper. Hence, our proposal seems a good approach to cope with scal-
ability issues. We believe that the way partitioning schemes are achieved defines
the approach’s ability to scale. The objective of our approach is to reduce the
computational cost of the partitioning process without compromising its correct-
ness.

3 BACKGROUND

3.1 Workload-Based Vertical Partitioning

Fragmentation is a design technique to divide a single database into two or more
partitions such that the combination of the partitions yields the original database
without any loss or addition of information [4]. The result of the fragmentation
process is a set of fragments defined by a partitioning scheme. The objective is to
create vertical fragments of a relation so as to minimize the cost of accessing data
during transaction processing. In vertical partitioning, attributes of a relation R
are clustered into groups and the relation R is projected into fragment relations
according to these attribute groups.

A general formulation of the vertical partitioning problem is as follows: Given
a relation R of k attributes R = {A1, A2, . . . , Ak} and a representative workload
W of n queries {qf11 , q

f2
2 , . . . , q

fn
n }, where each query qi(1 ≤ i ≤ n) has an access fre-

quency fi, the vertical partitioning problem involves selecting a partitioning scheme,
F = {F1, . . . , Fm} among all possible partitioning schemes such that:

MaxPart: An Efficient Search-Space Pruning Approach to Vertical Partitioning 921

1. Every fragment Fi ⊆ F is composed of a subset of the attributes of R plus the
identifier column (primary key) which is used for join operations to reconstruct
the original data.

2. ∀Fi ∈ F ,∀Fj ∈ F , i 6= j : Fi ∩ Fj = ∅ (except for the primary key).

3. R =./mi=1 Fi.

4. The cost of processing the workload W using the partitioning scheme F is min-
imum.

In order to minimize the costs of accessing the required data, the relation is par-
titioned in a way that each query uses as few fragments as possible. The ideal
partitioning scheme is obtained if each query qi in the workload W would have to
access a single fragment containing exactly the attributes it references, resulting in
minimal I/O requirements. Realistically, however, the workload will contain over-
lapping between queries which reduces the efficiency of vertical partitioning. In such
a case additional joins between generated fragments are required to answer some of
the queries in the workload.

3.2 Basic Concepts on Frequent Itemsets Mining

To facilitate the understanding of our approach, we briefly sketch, in this section,
the key notions on frequent itemsets mining.

Definition 1 (Extraction context). An extraction context (or a formal context) is
a triplet K = (O, I,R), where O represents a finite set of objects (or transactions),
I is a finite set of attributes (or items) and R is a binary relation (i.e., R ⊆ O × I).
Each pair (o, i) ∈ R expresses that the object o ∈ O contains the item i ∈ I.

A B C D E

1 x x
2 x x
3 x x
4 x x
5 x x

Table 1. Example of extraction context

An example is illustrated in Table 1. Transactions are denoted by numbers and
items by letters. We have

I = {A,B,C,D,E}, O = {1, 2, 3, 4, 5}

and

R = {(1, C), (1, D), (2, B), (2, C), (3, A), (3, E), (4, B), (4, E), (5, B), (5, C)}.

922 B. Ziani, Y. Ouinten, M. Bouakkaz

Definition 2 (Itemset). An itemset (or k-itemset) is a subset I ⊆ I that contains
k items (|I| = k).

Definition 3 (Support of an itemset). Let K = (O, I,R) be an extraction context
and I ⊆ I be an itemset. The support of I, denoted Support(I), is the number of
transactions containing all the items of I, divided by the total number of transac-
tions:

Support(I) =
|{o ∈ O/(∀i ∈ I, (o, i) ∈ R|

|O|
.

Definition 4 (Frequent itemset). Let K = (O, I,R) be an extraction context and
I ⊆ I be an itemset. The itemset I is said to be frequent if Support(I) ≥ minsup
where minsup is a user-defined support threshold.

Definition 5 (Maximal frequent itemset). Let K = (O, I,R) be an extraction con-
text and I ⊆ I be an itemset. The itemset I is said to be maximal frequent itemset
if I is frequent and no super-set of I is frequent:

{(Support(I) ≥ minsup) ∧ (∀J ⊆ I : I ⊂ J ⇒ Support(J) < minsup)}.

Definition 6 (Frequent itemset mining problem). Let K = (O, I,R) be an extrac-
tion context. The frequent itemsets mining problem requires to discover all frequent
itemsets given a user-defined minimum support minsup.

4 RELATED WORK

4.1 Vertical Partitioning in Relational Databases

The idea of data partitioning was proposed in the early days of databases as a means
to increase I/O performance and it has been studied in different contexts. It is worth
pointing that the first works on the vertical partitioning have been proposed in the
context of centralized relational databases. With the emergence of new models of
data, the existing approaches have been widely adopted by taking into account
the characteristics of each of the emerging models. For example, in a centralized
context, the fragmentation aims at reducing the query processing costs whereas in
a distributed context it aims also at achieving a better distribution of data over
distant sites so as to achieve a parallelized treatment of queries. Thus, several
vertical partitioning approaches have been proposed for centralized databases [3, 5,
6, 7, 8, 9, 10, 11], distributed databases [12, 13, 14, 15, 16, 17, 18], object-oriented
databases [19, 20, 21, 22], data warehouse design [23, 24, 25] and XML database
systems [26, 27, 28, 29]. Due to space constraints, we cannot possibly list all the
related references here. Instead, we will restrict our discussion to related work on
vertical partitioning in centralized relational databases and to used techniques that
are directly related to our work.

The NP-hard nature of the vertical partitioning was pointed pretty early [2].
Therefore, studies dealing with this problem have focused on reducing its complexity

MaxPart: An Efficient Search-Space Pruning Approach to Vertical Partitioning 923

and finding approximate solutions using heuristics-based approaches. In the litera-
ture, most of the proposed algorithms cluster attributes of a relation according to
their affinity [5, 6, 7, 8, 9]. The core idea of affinity based partitioning is to compute
affinities between every pair of attributes and then to cluster them such that high
affinity pairs are as close in neighbourhood as possible. The proposed approaches
measure the affinity between pairs of attributes and try to cluster attributes accord-
ing to their pairwise affinity by using the bond energy algorithm(BEA) [30]. They
started from constructing an attribute usage matrix (AUM) to construct the at-
tribute affinity matrix (AAM) on which clustering is performed. The affinity matrix
is an n × n matrix for the n-attribute problem where the (i, j) element equals the
between-attributes affinity. Affinity between attributes measures the total number of
accesses of queries referencing both attributes i and j. The attribute affinity matrix
helps to perform a first clustering of attributes. A binary partitioning is repeti-
tively applied in a second step. The authors in [9] developed an algorithm based on
graphical technique. It considers the attribute affinity matrix as a complete graph
called the affinity graph. Each edge value in the affinity graph represents the affinity
between two attributes. A linearly connected spanning tree is constructed from the
affinity graph and all cycles of the spanning tree form fragments of the relation.

Despite their simplicity, affinity based approaches, however, have the following
shortcomings.

1. The metric used for clustering the attributes does not reflect the closeness or
affinity when more than two attributes are involved. Thus, it complicates the
comparison process between affinity values of more than two attributes which
can be very costly for a large workload. In such approaches, all possible group-
ing of couples of attributes having high affinity should be examined. During
regrouping, attributes are moved between fragments to achieve any possible im-
provement.

2. The proposed approaches performs a binary partitioning. Realistically, however,
this is not always an optimal solution. In real cases, the attributes can be
grouped into more than two fragments especially for a table having a very large
number of attributes.

3. Most of the proposed vertical partitioning algorithms do not have an objective
function to evaluate the goodness of partitions that they produce.

Some approaches use Genetic Algorithms to perform the partitioning [10, 11].
A binary string is used as the genetic representation of the partitioning. As an exam-
ple, suppose a relation to be partitioned consists of ten attributes. A binary string
(solution or chromosome) representing a binary fragmentation scheme is 1110001010.
This solution specifies that attributes 1, 2, 3, 7 and 9 constitute one fragment, while
attributes 4, 5, 6, 8 and 10 constitute the other fragment. The genetic algorithm
starts with an initial population P0 that is usually chosen at random. A process
of selection-crossover-mutation is repeated to form a final optimized solution. The
binary partitioning performed, however, is not always an optimal solution since the

924 B. Ziani, Y. Ouinten, M. Bouakkaz

attributes can be grouped into more than two fragments as mentioned above. Fur-
thermore, despite their theoretical success, Genetic Algorithms still suffer from their
parameters setting challenge. Indeed, finding the best parameter values is not a triv-
ial task for the DBAs and it is difficult to understand the effect of every parameter.
Many parameters have effects on other parameters which makes the problem even
more complex.

As vertical partitioning aims at grouping the attributes that are frequently ref-
erenced together, frequent itemsets mining appears as a natural solution to this
problem. In [3] a vertical partitioning approach using this data mining technique
was proposed. The proposed approach exploits the Apriori algorithm [31, 32] to gen-
erate all possible partitioning schema (called candidate fragments). Although the
proposed approach is suitable for the vertical partitioning, the use of all frequent
itemsets is limited by the high computational cost as well as the large number of
resulting fragments. It is well known that frequent itemsets often generate a huge
number of fragments that is very costly to handle. Furthermore, most of generated
fragments are redundant resulting in a larger total computation cost. This cost
increases exponentially with the number of the attributes in the workload. Thus,
frequent itemsets is not the best choice for solving the partitioning problem. How-
ever, as we have been motivated in Section 2, the partitioning process can be greatly
improved by the use of maximal frequent itemsets. Alluding to the closure principle
of frequent itemsets which means that every subset of a frequent itemset is also
frequent, the maximal frequent itemsets can imply and include all information of
the frequent itemsets. Because of this, we believe that mining maximal frequent
itemsets provides an interesting alternative since it generates the largest and the
most frequent fragments which match the partitioning problem requirements.

4.2 Maximal Frequent Itemsets Mining

The Knowledge Discovery from Database (KDD) means the non-trivial process of
trawling through data to find previously unknown relationships among the data
that are interesting to the user of the data [33]. Data mining is the core step of
the KDD process. Since its conception in the late 1980s, data mining has achieved
tremendous success. Many new problems have emerged and have been solved by
data mining researchers [34]. Due to its rich variety of important and challenging
problems, data mining is proving to be a fruitful research arena for knowledge and
information engineering [35]. Data mining is defined as the set of intelligent, com-
plex, and highly sophisticated data processing techniques used to extract knowledge.
Knowledge can take several forms depending on the purpose of the user and the data
mining algorithm. Mining Frequent itemsets is a data mining task which consists
of finding meaningful relationships between objects (items) of a database. It leads
to the discovery of associations and correlations among objects in data sets which
can help in many decision-making processes. It is one of the most widely used tech-
niques in data mining and knowledge discovery. It was originally proposed in [31]
with the Apriori algorithm. The drawback of mining all frequent itemsets is that

MaxPart: An Efficient Search-Space Pruning Approach to Vertical Partitioning 925

if there is a large frequent itemset with size s, then almost all 2s candidate subsets
of the itemset might be generated and tested. Furthermore, the number of frequent
itemsets grows very quickly when the minimum support threshold is decreased. Con-
sequently, the complexity of the mining task becomes rapidly intractable. Moreover,
the huge size of the output complicates the task of the analyst (final user), who has
to extract useful knowledge from a very large amount of results. This drawback
is known as pattern explosion. Often an unwieldy number of results is produced,
comprising strongly redundant information.

Maximal frequent itemsets are a well known solution to the shortcomings de-
scribed above. A frequent itemset is called maximal if it has no superset that is
frequent. Maximal frequent itemsets are a small subset of frequent itemsets, but
they represent exactly the same knowledge in a more succinct way. Using this con-
densed representation, it is straightforward to derive the set of all frequent itemsets.
Hence, the problem of mining frequent itemsets can be reduced to mining maximal
frequent itemsets. Moreover, many practical data mining applications only require
mining maximal frequent itemsets rather than mining all frequent itemsets [36].
Interestingly, this problem has a strong connection to Formal Concept Analysis
(FCA) [37]. FCA and frequent itemsets mining are two research fields that are
closely related to each other [38, 39] and several research works showed that FCA
provides a strong theory for improving both performance and results of frequent
itemsets mining algorithms [40, 41, 42, 43, 44, 45].

A workshop dedicated to different implementation methods of frequent itemsets
mining (FIMI) is reported in [46]. Several algorithms [47, 48, 49, 50, 51] have been
tested and an analysis of each algorithm is performed, highlighting its performance.
More information on the implemented methods and experimental data can be found
in [46]. Within the category of mining maximal frequent itemsets, FPMAX [51] is
stated to be the best algorithm presented at the cited Workshop. Thus, we have
used this algorithm to validate our approach. Of course, this does not guarantee
that a more efficient implementation cannot be found. Our choice is motivated
by the results published in [46]. FPMAX is as an extension of the FPGrowth
method [52]. It builds a special data structure called MFI-Tree (Maximal Frequent
Itemsets Tree) to store all maximal frequent itemsets discovered. The MFI-Tree is
similar to an FP-Tree used by the FPGrowth method. An FP-Tree is a compact
representation of all relevant frequency information in the original database. Every
branch of the FP-Tree represents a frequent itemset. The nodes along the branches
store, in decreasing order, the frequencies of the corresponding items. In [53] we
have presented the principle and a java implementation of FPMAX algorithm.

5 ANALYTICAL COST MODEL

The number of disk accesses, and thus the amount of the data transferred, have
been the most commonly used parameters to evaluate the cost of query processing
on a given database. While the table is the basic unit in the relational databases,

926 B. Ziani, Y. Ouinten, M. Bouakkaz

we firstly provide an analytical cost model to evaluate the workload cost on a single
partitioned table. Then we broaden our view to the data warehouse context where
the queries involve several tables.

In the context of a single partitioned table, we assume that the cost of processing
a query q on a partitioning scheme is the sum of

1. the cost of joins between fragments needed to answer the query q and

2. the cost of processing q on the resulted portion of the original data.

Notations Meaning

||X|| Total number of tuples in a table X
|X| Total size, in bytes, of the attributes of a table (or a fragment) X
DBS Database bloc size in bytes
BX Number of blocks needed to store a table (or a fragment) X
BF

q Number of blocks to be accessed by the query q in a fragment F

tq Number of tuples satisfying a query q

Table 2. Cost model notations.

Based on the number of I/Os needed for joining two tables X and Y given in [54]
and the number of blocks accessed for processing a query q given in [55], we propose
an analytical cost model to evaluate the workload cost on a partitioning scheme.
Table 2 summarizes the notations used in our cost model. For the join operations
between two tables X and Y , we assume that all joins are achieved by the hash-join
method. The join attributes are used as hash keys in both tables X and Y . The
join operation can be viewed as consisting of two phases:

1. Hash phase: Each table is read/written once. The number of I/Os needed is
then: 2× (BX + BY), where BX and BY are the number of disk blocks needed
to store the tables X and Y , respectively.

2. Merge phase: Each table is read once. Consequently the cost of this phase is
BX +BY . The total cost for joining X and Y is then [54]:

C./ = 3× (BX +BY). (1)

In the partitioning scheme, we apply this formula for each join performed be-
tween the fragments needed to answer a given query q.

As in [3], we use the number of blocks estimate as the cost of the second step
of query processing. Let R be a relation of n tuples and m the number of blocks
needed to store R. Assume that k tuples satisfy a given query q and are distributed
uniformly among the m blocks. Then the number of blocks accessed to process the
query q is given by [55]:

BR
q = m×

(
1−

(
1− 1

m

)k
)
. (2)

MaxPart: An Efficient Search-Space Pruning Approach to Vertical Partitioning 927

To evaluate the workload cost on a partitioning scheme we apply this formula, for
each query q, on the portion of data obtained by joining the fragments needed to
answer q. Thus, the cost of processing a query q, on a partitioning scheme, is
estimated as follows:

1. Evaluate the cost of joining the fragments required by the query q:
Let R be the original relation. Assume that Fq = {F 1

q , F
2
q , . . . , F

N
q } is the set of

fragments required to answer the query q. The portion P Final
q of original data

needed to answer q is obtained by:

P Final
q =./Ni=2

(
F i
q , P

i−1
q

)
(3)

where P 1
q = F 1

q and P i
q represents the intermediate portions of data obtained

after the ith join. Using Equation (1), the cost of performing the joins is:

Cost./ =
N−1∑
i=2

3×
(
BF i

q
+BP i−1

q

)
(4)

where

BX =
||R|| × |X|
DBS

.

2. Estimate the number of blocks to be accessed in the result portion:

Let B
PFinal
q

q be the number of blocks to be accessed in the portion P Final
q required

to answer the query q. Using Equation (2), we have:

B
PFinal
q

q =

[
BPFinal

q

(
1−

(
1− 1

BPFinal
q

)tq)]
(5)

where

BPFinal
q

=
||R|| × |P Final

q |
DBS

.

Consequently, the cost of processing a given query q is:

Cost(q) =

[
N−1∑
i=2

3×
(
BF i

q
+BP i−1

q

)]
+B

PFinal
q

q . (6)

Finally, we have:

Cost(q) =

[
N−1∑
i=2

3×

(
||R|| ×

(
|F i

q |+ |P i−1
q |

)
DBS

)]

+

[
||R|| × |P Final

q |
DBS

×

(
1−

(
1− 1

||R||×|PFinal
q |

DBS

)tq)]
, (7)

928 B. Ziani, Y. Ouinten, M. Bouakkaz

Cost(q) =
||R||
DBS

[(
N−1∑
i=2

3×
(
|F i

q |+ |P i−1
q |

))

+

(
|P Final

q | ×

(
1−

(
1− 1

||R||×|PFinal
q |

DBS

)tq))]
. (8)

In data warehouse environment, the above cost model has to be changed in order
to suit the new context. A data warehouse stores a large volume of data and is usu-
ally organized in a star schema. A typical star schema consists of a large central fact
table linked to multiple dimension tables through primary-foreign key relationships.
Dimensions tables are usually much smaller then the fact table. Processing queries
over a star schema is expensive. The major bottleneck in evaluating such queries
has been the joins of the central (and usually very large) fact table with the sur-
rounding dimension tables (also known as a star joins). The proposed partitioning
reduces the size of the fact table tuples participating in a sequence of joins. This
way, the joins are performed on a much smaller size tuples. This will be obviously
more efficient than the original tuples with much less I/O cost.

In such a context, we assume that the cost of processing a query q on a parti-
tioning scheme is the sum of the two following costs:

1. Cost1./: the cost of joins between the fact table fragments needed to answer
the query q. The ideal partitioning is obtained if each query would have to
access a single fragment containing exactly the attributes it references, This
way, additional joins are avoided.

2. Cost2./: the cost of joins between the resulted portion of the original fact table
and the dimension tables involved by q.

Thus, the cost of processing a query q, on a partitioning scheme, is estimated
as follows:

1. Evaluation of the cost of joining the fragments of the fact table re-
quired by the query q: Let F be the original fact table. Assume that
Fq = {F 1

q , F
2
q , . . . , F

N
q } is the set of fragments required to answer the query

q. The cost of performing the joins is obtained in precisely the same manner as
in the preceding cost model (Equation (4)):

Cost1./ =
N−1∑
i=2

3×
(
BF i

q
+BP i−1

q

)
(9)

MaxPart: An Efficient Search-Space Pruning Approach to Vertical Partitioning 929

where

BX =
||F || × |X|
DBS

, (10)

Cost1./ =
N−1∑
i=2

3×
(||F || × |F i

q |
DBS

+
||F || × |P i−1

q |
DBS

)
, (11)

Cost1./ =
3× ||F ||
DBS

∗

[
N−1∑
i=2

(
|F i

q |+ |P i−1
q |

)]
. (12)

2. Evaluation of the cost of joining the result portion with the dimension
tables involved by q: Let F Final

q be the portion of the original fact table needed
to answer q and {D1, D2, . . . , Dd} the set of the dimension tables involved by q.
We have:

Cost2./ = 3×
(
BFFinal

q
+BD1

)
+ · · ·+ 3×

(
BFFinal

q
+BDd

)
, (13)

Cost2./ = 3×
(
d ∗BFFinal

q
+BD1 + · · ·+BDd

)
, (14)

Cost2./ = 3×

(
d ∗ ||F || ∗ |F Final

q |
DBS

+
||D1|| ∗ |D1|

DBS
+ · · ·+ ||Dd|| ∗ |Dd|

DBS

)
, (15)

Cost2./ =
3

DBS
×

(
d ∗ ||F || ∗ |F Final

q |+
d∑

i=1

(||Di|| ∗ |Di|)

)
. (16)

Finally, we have:

Cost(q) = Cost1./ + Cost2./,

Cost(q) =
3× ||F ||
DBS

∗

[
N−1∑
i=2

(
|F i

q |+ |P i−1
q |

)]

+
3

DBS
∗

[
d× ||F || × |F Final

q |+
d∑

i=1

(||Di|| ∗ |Di|)

]
, (17)

Cost(q) =
3

DBS
∗

[
||F || ×

(
N−1∑
i=2

(
|F i

q |+ |P i−1
q |

)
+ d× |F Final

q |

)

+
d∑

i=1

(||Di|| ∗ |Di|)

]
. (18)

930 B. Ziani, Y. Ouinten, M. Bouakkaz

In both cases, the cost of processing the workload W is:

Cost(W) =
∑
qi∈W

(Cost(qi)× fi).

6 THE MAXPART APPROACH

6.1 MaxPart Overview

This section describes the MaxPart approach outlined in Algorithm 1. MaxPart
takes as input i) a relation R, ii) a workload W and iii) a predefined threshold
value σ and returns an optimized partitioning scheme Fopt which minimizes the cost
of the workload W . The MaxPart approach goes through the following main steps:

1. Construction of the extraction context: Given a representative workload
W = {qf11 , q

f2
2 , . . . , q

fn
n }, where each query qi(1 ≤ i ≤ n) has an access frequency

fi, we build the extraction context for mining maximal frequent itemsets. It
expresses the access patterns of queries to attributes. Accesses to attribute by
queries are represented by a text file where each row represents a query qi(1 ≤
i ≤ n) and each column a non-key attribute Aj involved in the corresponding
query. Each row i corresponding to the query qi is duplicated fi times which
corresponds to the frequency of the query qi. The extraction context has

∑n
i=1 fi

rows. The number of columns in each row depends on the number of attributes
involved in the considered query. For retrieval transactions, the set of attributes
in the SELECT clause are considered. For an INSERT/DELETE transaction, all the
attributes in the relation are used.

2. Generation of candidate fragments: For a given value of threshold, we
generate the corresponding sets of maximal frequent itemsets using the FPMAX
algorithm. Each generated itemset corresponds to a candidate fragment. The
generated fragments are then clustered into classes. Each class contains the
fragments with the same length (number of attributes). The fragments in each
class are sorted in descending order according to their support.

3. Generation of possible partitioning scheme: Let F = {Fk, . . . ,F1} be the
set of classes of fragments generated in the previous step. Each class Fi corre-
sponds to the fragments having length i. For all Fj ∈ Fk(1 ≤ j ≤ size(Fk)), we
construct a possible partitioning scheme as follows:

• The itemset Fj is taken as the first fragment.

• The classes Fk,Fk−1, . . . ,F1 are successively examined to construct non-
overlapping fragments having the maximal length and the highest support.

• Finally, each non-frequent single attribute is considered as a fragment.

The result of this step is a set {P1, P2, . . . , Pp} of the possible partitioning
schemes.

MaxPart: An Efficient Search-Space Pruning Approach to Vertical Partitioning 931

4. Evaluation of the generated partitioning scheme: The Partitioning sche-
mes generated in the previous step closely match the requirements of the work-
load provided. They are evaluated using the cost model proposed in Section 5.
The partitioning scheme with the smallest cost is recommended.

6.2 Illustrative Example

The purpose of this section is to illustrate the working of the MaxPart approach
in the context of a single table. Consider the workload example given in Section 2.
Assume the input considerations summarized in Figures 3 a) and 3 b). Consider
that the number of tuples of the relation R to be partitioned is ||R|| = 150. The
database block size is assumed to be 100 bytes. The MaxPart approach goes through
the following steps:

Query Attributes Frequency # of Tuples

q1 A, B, E 1 2
q2 B, E 3 60
q3 A, D, F 3 20
q4 A, B, C, D, E, F 2 10
q5 A, B, C, D, E, F 1 8

a)

Attribute Size (byte)

A 1
B 4
C 8
D 2
E 1
F 2

b)

Figure 3. Characteristics of a) queries and b) attributes

1. Construction of the extraction context: Figure 4 illustrates the extraction
context for our example.

2. Generation of candidate fragments: Assuming, for example, a minimum
support value of 40 %, generated maximal frequent itemsets are {A,D, F}(6) and
{A,B,E}(4). The number in brackets represents the frequency of the itemset.
Each generated itemset corresponds to a candidate fragment.

3. Generation of possible partitioning scheme: The maximal itemset {A,D,
F}, having the highest frequency, is taken as the first fragment. Considering the
itemset {A,B,E}, we construct the fragment {B,E} that does not overlap with
the existing partition. The remaining attribute {C}, which is infrequent, is taken

932 B. Ziani, Y. Ouinten, M. Bouakkaz

Algorithm 1 MaxPart algorithm

Require: Workload W = {qf11 , q
f2
2 , . . . , q

fn
n }, predefined threshold σ.

Ensure: Optimized partitioning scheme Fopt = {F1, F2, . . . , Fk}

1: Begin
2: EC ←− ∅; . Construction of the extraction context EC
3: Row ← ””;
4: for all (qfii ∈ W) do
5: Row ← Candidate Attributes(qi);
6: for (i← 1, fi) do
7: Writeln(EC, Row);
8: end for
9: end for

10: . Mining maximal fragments using the extraction context EC
11: FW [..]← FPMAX(EC, σ); . FW Set of generated fragments

12: FW [..]← Sort(FW [..], length, frequency); . Sorting the fragments in FW
13: . FW [..] = {Fk,Fk−1, . . . ,F1}
14: . Generating possible partitioning scheme using FW [..]
15: PPS ← ∅; . PPS Set of possible partitioning scheme

16: for (i← 1, size(Fk)) do
17: P ← Fk[i];
18: Ptemp[..]← ∅;
19: for (p 6= P, p ∈ Fk,Fk−1, . . . ,F1) do
20: Ptemp[..]← p− (P ∩ p); . Construct non-overlapping fragments

21: end for
22: while Ptemp[..] 6= ∅ do
23: P1 ← Fragment ∈ Ptemp[..] with maximal size and highest support;
24: P ← P ∪ P1;
25: Ptemp[..]← Ptemp[..]− P1;
26: end while
27: PPS ← PPS ∪ P ;
28: end for
29: . Find optimal partitioning scheme

30: Fopt ← PPS[0];
31: for (i← 1, size(PPS)) do
32: if Cost(W ,Fopt) > Cost(W ,PPS[i]) then
33: Fopt ← PPS[i];
34: end if
35: end for
36: Return Fopt;
37: End.

MaxPart: An Efficient Search-Space Pruning Approach to Vertical Partitioning 933

A B E
B E
B E
B E
A D F
A D F
A D F
A B C D E F
A B C D E F
A B C D E F

Figure 4. Example of an extraction context

as a fragment, resulting in the partitioning scheme {[A,D, F], [B,E], [C]}. Sim-
ilarly, the second maximal fragment {A,B,E} leads to the partitioning scheme
{[A,B,E], [D,F], [C]}.

4. Evaluation of the generated partitioning scheme: After constructing the
possible partitioning schemes, we now apply our cost model to recommend the
one having the least cost.

• Using the partitioning scheme {[A,D, F], [B,E], [C]}: Consider the
query q1 which references the attributes A,B and E. To answer q1, we
need a join between the fragments [A,D, F] and [B,E] resulting in the final
portion [A,B,D,E, F]. We have |ABDEF | = 10. Using Equation (8), we
obtain:

Cost(q1) =
150

100

[
(3× (5 + 5)) +

(
10×

(
1−

(
1− 1

150×10
100

)2
))]

= 46.95.

The query q3, which references the attributes A,D and F , is answered using
only the fragment [A,D, F]. We have:

Cost(q3) =
150

100

[(
5×

(
1−

(
1− 1

150×5
100

)20
))]

= 7.50.

The query q2, which does not need joins, is treated in the same manner as q3
and the queries q4 and q5 are treated in the same manner as q1 because they
require additional joins. Table 3 lists the costs for all the considered queries.

• Using the partitioning scheme {[A,B,E], [D,F], [C]}: Similarly, queries
costs are summarized in Table 4. Consequently, the partitioning scheme
{[A,D, F], [B,E], [C]} is recommended.

934 B. Ziani, Y. Ouinten, M. Bouakkaz

Query Frequency Cost Cost*Frequency

q1 1 46.95 46.95
q2 3 00.46 01.38
q3 3 07.50 22.50
q4 2 134.37 268.74
q5 1 133.02 133.02

Workload cost 472.59

Table 3. Queries costs using the first partitioning scheme

Query Frequency Cost Cost*Frequency

q1 1 01.89 01.89
q2 3 08.99 26.97
q3 3 56.25 168.75
q4 2 134.37 268.74
q5 1 133.02 133.02

Workload cost 599.37

Table 4. Queries costs using the second partitioning scheme

7 EXPERIMENTAL STUDY

7.1 Description of the Experiments

The goal of the experiments is to show the efficiency of the MaxPart approach. Our
comparative analysis is quantified in terms of the number of candidate fragments
generated and the total number of comparisons needed to generate a possible parti-
tioning scheme. Obviously, the time cost of the partitioning process is proportional
to the number of needed comparisons to generate a possible partitioning scheme.
We also study the workload cost improvement using the recommended partitioning
scheme. The datasets used in our experiments are commonly found in the literature.

The proposed approach improves the one presented in [3]. In order to perform
a fair comparison with the cited work, we, naturally, conducted a set of experiments
on the same tables. However, given their relatively small size, the used tables are
unfortunately only of limited value for the experimental study. We, therefore extend
our experiments to another important context: data warehouses. Such decisional
databases often manipulate huge amount of data. This extension is used to further
demonstrate the capability and effectiveness of MaxPart in partitioning large tables.
As in [3], we generate the partitioning schemes using predefined threshold values
20 %, 30 %, 40 %, 50 % and 60 %. To generate the candidate fragments, we have
implemented the FPMAX algorithm in Java [53]. All experiments were carried out
on a PC with 3.4 GHz Intel R© XenonTM and 1 024 MB of memory running Linux
Ubuntu 12.04.

MaxPart: An Efficient Search-Space Pruning Approach to Vertical Partitioning 935

7.2 Experiments on TAE and ADULT Tables

For comparative purposes, the first experiments have been conducted using the same
tables, workloads and parameters as in the most closely related work [3].

Table # of Attributes # of Tuples Attributes

Attribute Size (byte)

TAE 6 161

A: Speaker 19
B: Cours instructor 2
C: Course 2
D: Semester 7
E: Class size 2
F: Class attribute 6

ADULT 15 30 162

A: Age 1
B: WorkClass 16
C: Final-weight 4
D: Education 12
E: Education-num 1
F: Marital-status 21
G: Occupation 17
H: Relationship 14
I: Race 18
J: Sex 6
K: Capital-gain 3
L: Capital-loss 2
M: Hours-per-week 1
N: Native-country 26
O: Class 2

Table 5. TAE and ADULT tables characteristics

The proposed approach is tested on two real datasets: Teaching Assistant Evalu-
ation (TAE) and ADULT, which were taken from the UCI Machine Learning Repos-
itory [56]. TAE and ADULT are small databases containing 161 and 30 162 tuples
respectively. Table 5 lists a summary of the two databases. The used workloads [3]
involve 12 and 20 queries for TAE and ADULT datasets respectively. In these ex-
periments, the first cost model, e.g. Equation (8), will be used as a basis to perform
our comparisons.

7.2.1 Experiment 1: Computational Study

The first experimental results concerning the number of candidate fragments are
shown in Tables 6 and 7. We can note that for most values of threshold, MaxPart
significantly reduces the space of candidate fragments. For TAE dataset, the ratio
of the number of candidate fragments generated by AllPart to the one generated

936 B. Ziani, Y. Ouinten, M. Bouakkaz

by MaxPart varies from 1.5 to 17. Using ADULT dataset the improvement is more
important. That same ratio varies from 3 to 1 638.

TAE Dataset

Threshold (%) AllPart MaxPart Reduction Rate

20 51 3 94.11%
30 29 4 86.20%
40 16 5 68.75%
50 7 5 28.57%
60 2 2 00.00%

Table 6. Number of candidate fragments

Table 8 and Table 9 illustrate the number of comparisons between the fragments
to be processed. The performed comparisons are required to generate possible par-
titioning schemes. As predictable, it could be seen that AllPart needs to perform
much more comparisons to achieve this task. In summary, MaxPart shows better
performances in terms of computational complexity for low threshold values. The
performance rate decreases along with the increase of the threshold value. The rea-
son is that for high values of threshold there are very few or no generated fragments
for both AllPart and MaxPart. This leads to almost the same number of candi-
date fragments. As discussed in Section 2, AllPart is a computationally expensive
approach.

ADULT Dataset

Threshold (%) AllPart MaxPart Reduction Rate

20 32 767 20 99.94%
30 269 17 93.68%
40 21 7 66.66%
50 5 5 00.00%
60 3 3 00.00%

Table 7. Number of candidate fragments

TAE Dataset

Threshold (%) AllPart MaxPart Reduction Rate

20 100 4 96.00%
30 56 6 89.29%
40 30 8 73.33%
50 6 4 33.33%
60 2 2 00.00%

Table 8. Number of comparisons for generating possible partitioning schemes

MaxPart: An Efficient Search-Space Pruning Approach to Vertical Partitioning 937

ADULT Dataset

Threshold (%) AllPart MaxPart Reduction Rate

20 622 554 19 99.99%
30 268 16 94.03%
40 40 12 70.00%
50 4 4 00.00%
60 2 2 00.00%

Table 9. Number of comparisons for generating possible partitioning schemes

7.2.2 Experiment 2: Performance Study

The costs of the workload exploiting the produced partitioning schemes compared
with the baseline case where no partitioning is performed are shown in Tables 10
and 11, respectively. From Table 10, it could be observed that the best partitioning
scheme for TAE dataset is obtained at a threshold of 30 % resulting in an im-
provement of 11.60 % over unpartitioned scheme. The best partitioning scheme for
ADULT dataset is obtained at threshold of 40 % (Table 11) resulting in an improve-
ment of 36.05 % over unpartitioned scheme. It could be seen that, for both datasets,
as the threshold value increases, there are many more small fragments. This can be
explained by the fact that higher threshold values result in fewer maximal (largest)
fragments. In such a case, queries require many fragments, what multiplies join
operations resulting in a high workload cost.

Threshold (%) Partitioning Scheme Cost Reduction Rate

20 ABDEF C 2 448 0.32
30 ACDF BE 2 171 11.60
40 ACF BE D 2 420 1.46
50 AF B C D E 2 600 −5.86
60 A B C D E F 2 720 −10.74

Without partitions ABCDEF 2 456

Table 10. Best partitioning scheme (TAE dataset)

Threshold (%) Partitioning Scheme Cost Reduction Rate

20 ABCDEFGHIJKLMNO 454 236 0.00
30 ABCEIKM FO DH G J L N 331 520 27.01
40 ABO EFK M G D N C H I J L 290 451 36.05
50 A B C D E F G H I J K L M N O 501 283 −10.35
60 A B C D E F G H I J K L M N O 501 283 −10.35

Without partitions ABCDEFGHIJKLMNO 454 236

Table 11. Best partitioning scheme (ADULT dataset)

938 B. Ziani, Y. Ouinten, M. Bouakkaz

7.3 Experiments on TPC-H Benchmark

In order to evaluate our approach in data warehouse context, we use as experimental
data the TPC-H benchmark with a sequence of 21 queries [57]. The decision-support
benchmark TPC-H contains a fact table Lineitem (6 000 000 tuples) and 7 dimen-
sions tables: Orders (1 500 000 tuples), Part (200 000 tuples), Partsupp (800 000
tuples) Supplier (10 000 tuples), Customer (150 000 tuples), Nation (25 tuples)
and Region (5 tuples). Table 12 lists a summary of the fact table attributes.

Table # of Attributes # of Tuples Attributes

Attribute Size(byte)

Lineitem 13 6 000 000

A: LineNumber 4
B: Quantity 8
C: ExtendedPrice 8
D: Discount 8
E: Tax 8
F: ReturnFlag 1
G: LineStatus 1
H: ShipDate 7
I: CommiDate 7
J: ReceipDate 7
K: ShipInStruct 25
L: ShipMode 10
M: Comment 44

Table 12. TPC-H fact table characteristics

7.3.1 Experiment 1: Computational Study

Table 13 and Table 14 show respectively the number of candidate fragments and
the number of comparisons required to generate possible partitioning schemes for
different values of threshold. As it is predictable, we can note that MaxPart signifi-
cantly reduces the space of candidate fragments. This can be explained by the fact
that MaxPart minimizes the cost of enumerating candidate fragments by restricting
the output set to only the most relevant fragments. As a consequence (Table 14),
AllPart needs to perform much more comparisons to generate possible partitioning
schemes.

7.3.2 Experiment 2: Performance Study

In these experiments, the second cost model, e.g. Equation (18), is used as a basis
to perform our comparisons. The workload cost using the produced partitioning
schemes can be seen in Table 15. The best partitioning scheme is obtained at
a threshold value of 30 %. The results clearly show that the performance of queries

MaxPart: An Efficient Search-Space Pruning Approach to Vertical Partitioning 939

TPC-H

Threshold (%) AllPart MaxPart Reduction Rate

20 2 621 23 99.12%
30 251 19 92.43%
40 32 6 81.25%
50 7 4 42.85%
60 2 2 00.00%

Table 13. Number of candidate fragments

TPC-H

Threshold (%) AllPart MaxPart Reduction Rate

20 100 4 96.00%
30 56 6 89.29%
40 30 8 73.33%
50 6 4 33.33%
60 2 2 00.00%

Table 14. Number of comparisons for generating possible partitioning schemes

is greatly enhanced. The workload cost in approximately half the cost where no
partitioning is performed.

Threshold (%) Partitioning Scheme Cost Reduction Rate

20 BCD AEFGHIJKLM 172 849 442.32 39.59
30 BCD FG AEHIJKLM 145 251 636.64 49.23
40 CD ABEFGHIJKLM 306 179 690.01 −6.99
50 CD ABEFGHIJKLM 306 179 690.01 −6.99
60 CD ABEFGHIJKLO 306 179 690.01 −6.99

Without partitions ABCDEFGHIJKLO 286 149 243.01

Table 15. Best partitioning scheme (TPC-H)

8 CONCLUSIONS AND PERSPECTIVES

Partitioning is a common method used for improving the performance and the scala-
bility of data bases systems. The database is divided into smaller pieces called parti-
tions. Partitions are then managed independently increasing the system throughput.
For a given workload, vertical partitioning in databases is highly dependent on the
number of attributes. The number of choices that can be made is very large making
the partitioning process quite tedious and difficult even for skilled DBAs. Therefore,
there is a practical need for strategies that assist the DBAs in this process.

In this paper we have proposed a maximal frequent itemsets based approach to
vertical partitioning. We believe that the input data, available as a workload, can
be turned into useful information and knowledge that are previously unknown. In

940 B. Ziani, Y. Ouinten, M. Bouakkaz

particular, in this work we are dealing with knowledge in the form of maximal fre-
quent itemsets. The information and knowledge gained can be used for identifying
an optimized partitioning scheme. We have particularly optimized the partitioning
process by the means of the downward-closure property of the set of maximal fre-
quent itemsets which are inherently scalable and far less numerous. We use only
an extremely small percentage of the possibly huge search space required by similar
approaches.

Experimental study have shown that our approach does not only reduce the
search space of the studied problem, but it also improves the system performance.
The experiments confirm the theoretical prediction, showing that the performance
improvement increases along with the increase of the volume of the data. The work-
load cost improvement is less noticeable for the smaller dataset (having 161 tuples),
but for the other datasets (having 30 162 and 6 000 000 tuples, respectively), the
improvement is more important.

The work presented in this paper can be extended in the two following directions.
First, the system performance can be improved by coupling vertical partitioning with
other optimization techniques such as indexing. It will be interesting to study the
impact of combining the two optimization techniques on the system performances.
Second, due to the interdependencies between partitioning and distributed query
optimization, our approach can easily be extended to distributed, or cloud, context
design according to their special requirements. The technique presented in this
work would also be beneficial for those systems. Each compute node exploits our
technique to split the data that are locally stored. In such cases, our cost model will
be updated including network transit fees.

REFERENCES

[1] Agrawal, S.—Narasayya, V.—Yang, B.: Integrating Vertical and Horizontal
Partitioning into Automated Physical Database Design. Proceedings of the 2004 ACM
SIGMOD International Conference on Management of Data, Paris, France, 2004,
pp. 359–370, doi: 10.1145/1007568.1007609.

[2] Hammer, M.— Niamir, B.: A Heuristic Approach to Attribute Partitioning. Pro-
ceedings of the 1979 ACM SIGMOD International Conference on Management of
Data, Boston, Massachusetts, 1979, pp. 93–101, doi: 10.1145/582095.582110.

[3] Gorla, N.—Pang, W. Y. B.: Vertical Fragmentation in Databases Using Data-
Mining Technique. In: Taniar, D., Rusu, L. I. (Eds.): Strategic Advancements in
Utilizing Data Mining and Warehousing Technologies: New Concepts and Develop-
ments. IGI Global, 2010, pp. 178–197.

[4] Ramakrishnan, R.—Gehrke, J.: Database Management Systems. McGraw-Hill,
Inc., New York, NY, USA, 2003.

[5] Hoffer, J. A.—Severance, D. G.: The Use of Cluster Analysis in Physi-
cal Data Base Design. Proceedings of the 1st International Conference on Very

https://doi.org/10.1145/1007568.1007609
https://doi.org/10.1145/582095.582110

MaxPart: An Efficient Search-Space Pruning Approach to Vertical Partitioning 941

Large Data Bases (VLDB ’75), Framingham, Massachusetts, 1975, pp. 69–86, doi:
10.1145/1282480.1282486.

[6] Navathe, S.—Ceri, S.—Wiederhold, G.—Dou, J.: Vertical Partitioning Al-
gorithms for Database Design. ACM Transactions on Database Systems (TODS),
Vol. 9, 1984, No. 4, pp. 680–710, doi: 10.1145/1994.2209.

[7] Cornell, D. W.—Yu, P. S.: A Vertical Partitioning Algorithm for Relational
Databases. Proceedings of the Third International Conference on Data Engineering
(ICDE), IEEE Computer Society, 1987, pp. 30–35.

[8] Cornell, D. W.—Yu, P. S.: An Effective Approach to Vertical Partitioning for
Physical Design of Relational Databases. IEEE Transactions on Software Engineering,
Vol. 16, 1990, No. 2, pp. 248–258, doi: 10.1109/32.44388.

[9] Navathe, S. B.—Ra, M.: Vertical Partitioning for Database Design: A Graph-
ical Algorithm. ACM SIGMOD Record, Vol. 18, 1989, No. 2, pp. 440–450, doi:
10.1145/67544.66966.

[10] Song, S. K.—Gorla, N.: A Genetic Algorithm for Vertical Fragmentation and
Access Path Selection. The Computer Journal, Vol. 43, 2000, No. 1, pp. 81-93.

[11] Cheng, C. H.—Lee, W. K.—Wong, K. F.: A Genetic Algorithm-Based Cluster-
ing Approach for Database Partitioning. IEEE Transactions on Systems, Man, and
Cybernetics, Part C (Applications and Reviews), Vol. 32, 2002, No. 3, pp. 215–230.

[12] Muthuraj, J.—Chakravarthy, S.—Varadarajan, R.—Navathe, S. B.:
A Formal Approach to the Vertical Partitioning Problem in Distributed Database
Design. Proceedings of the Second International Conference on Parallel and Dis-
tributed Information Systems, San Diego, California, USA, 1993, pp. 26–35, doi:
10.1109/PDIS.1993.253076.

[13] March, S. T.—Rho, S.: Allocating Data and Operations to Nodes in Distributed
Database Design. IEEE Transactions on Knowledge and Data Engineering, Vol. 7,
1995, No. 2, pp. 305–317.

[14] Bellatreche, L.—Simonet, A.—Simonet, M.: Vertical Fragmentation in Dis-
tributed Object Database Systems with Complex Attributes and Methods. Proceed-
ings of 7th International Conference and Workshop on Database and Expert Systems
Applications (DEXA 96), 1996, pp. 15–21, doi: 10.1109/DEXA.1996.558266.

[15] Özsu, M.—Valduriez, P.: Principles of Distributed Database Systems. Prentice-
Hall, 1999.

[16] Ezeife, C. I.—Barker, K.: Distributed Object Based Design: Vertical Fragmenta-
tion of Classes. Distributed and Parallel Databases, Vol. 6, 1998, No. 4, pp. 317–350.

[17] Barker, K.—Bhar, S.: A Graphical Approach to Allocating Class Fragments in
Distributed Object Base Systems. Distributed and Parallel Databases, Vol. 10, 2001,
No. 3, pp. 207–239.

[18] Son, J. H.—Kim, M. H.: An Adaptable Vertical Partitioning Method in Distributed
Systems. Journal of Systems and Software, Vol. 73, 2004, No. 3, pp. 551–561.

[19] Gorla, N.: An Object-Oriented Database Design for Improved Performance. Data
and Knowledge Engineering, Vol. 37, 2001, No. 2, pp. 117–138.

https://doi.org/10.1145/1282480.1282486
https://doi.org/10.1145/1994.2209
https://doi.org/10.1109/32.44388
https://doi.org/10.1145/67544.66966
https://doi.org/10.1109/PDIS.1993.253076
https://doi.org/10.1109/DEXA.1996.558266

942 B. Ziani, Y. Ouinten, M. Bouakkaz

[20] Fung, C. W.—Karlapalem, K.—Li, Q.: An Evaluation of Vertical Class Parti-
tioning for Query Processing in Object-Oriented Databases. IEEE Transactions on
Knowledge and Data Engineering, Vol. 14, 2002, No. 5, pp. 1095–1118.

[21] Fung, C. W.—Karlapalem, K.—Li, Q.: Cost-Driven Vertical Class Partitioning
for Methods in Object Oriented Databases. The VLDB Journal, Vol. 12, 2003, No. 3,
pp. 187–210.

[22] Schewe, K. D.: Fragmentation of Object Oriented and Semistructured Data. Pro-
ceedings of the Baltic Conference, BalticDB & IS, 2002, Vol. 1, 2002, pp. 253–266.

[23] Labio, W.—Quass, D.—Adelberg, B.: Physical Database Design for Data Ware-
houses. Proceedings of the Thirteenth International Conference on Data Engineering,
Birmingham, U.K., 1997, pp. 277–288, doi: 10.1109/ICDE.1997.581802.

[24] Golfarelli, M.—Maio, D.—Rizzi, S.: Vertical Fragmentation of Views in Rela-
tional Data Warehouses. SEBD, 1999, pp. 19–33.

[25] Furtado, C.—Lima, A. B.—Pacitti, E.—Valduriez, P.—Mattoso, M.:
Physical and Virtual Partitioning in OLAP Database Clusters. 17th International
Symposium on Computer Architecture and High Performance Computing (SBAC-
PAD ’05), Rio de Janeiro, Brazil, 2005, pp. 143–150, doi: 10.1109/CAHPC.2005.32.

[26] Kling, P.—Özsu, M. T.—Daudjee, K.: Generating Efficient Execution Plans for
Vertically Partitioned XML Databases. Proceedings of the VLDB Endowment, Vol. 4,
2010, No. 1, pp. 1–11, doi: 10.14778/1880172.1880173.

[27] Andrade, A.—Ruberg, G.—Baião, F. A.—Braganholo, V. P.—Matto-
so, M.: Efficiently Processing XML Queries over Fragmented Repositories with
PartiX. Proceedings of the 2006 International Conference on Current Trends in
Database Technology (EDBT ’06), Munich, Germany, 2006, pp. 150–163, doi:
10.1007/11896548 15.

[28] Mahboubi, H.—Darmont, J.: Data Mining-Based Fragmentation of XML
Data Warehouses. Proceedings of the ACM 11th International Workshop on Data
Warehousing and OLAP, Napa Valley, California, USA, 2008, pp. 9–16, doi:
10.1145/1458432.1458435.

[29] Bose, S.—Fegaras, L.: XFrag: A Query Processing Framework for Fragmented
XML Data. Proceedings of the Eighth International Workshop on the Web and
Databases (WebDB 2005), Baltimore, Maryland, USA, collocated with ACM SIG-
MOD/PODS, 2005, pp. 97–102.

[30] McCormick, W. T.—Schweitzer, P. J.—White, T. W.: Problem Decompo-
sition and Data Reorganisation by a Clustering Technique. Journal of Operations
Research, Vol. 20, 1972, No. 5, pp. 993–1009.

[31] Agrawal, R.—Imieliński, T.—Swami, A.: Mining Association Rules Between
Sets of Items in Large Databases. ACM SIGMOD Record, Vol. 22, 1993, No. 2,
pp. 207–216, doi: 10.1145/170035.170072.

[32] Agrawal, R.—Srikant, R.: Fast Algorithms for Mining Association Rules in
Large Databases. Proceedings of the 20th International Conference on Very Large
Data Bases (VLDB ’94), San Francisco, CA, USA, 1994, pp. 487–499.

[33] Fayyad, U. M.—Piatetsky-Shapiro, G.—Smyth, P.: Knowledge Discovery and
Data Mining: Towards a Unifying Framework. Proceedings of the Second Interna-

https://doi.org/10.1109/ICDE.1997.581802
https://doi.org/10.1109/CAHPC.2005.32
https://doi.org/10.14778/1880172.1880173
https://doi.org/10.1007/11896548_15
https://doi.org/10.1145/1458432.1458435
https://doi.org/10.1145/170035.170072

MaxPart: An Efficient Search-Space Pruning Approach to Vertical Partitioning 943

tional Conference on Knowledge Discovery and Data Mining (KDD ’96), AAAI Press,
1996, pp. 82–88.

[34] Yang, Q.—Wu, X.: 10 Challenging Problems in Data Mining Research. Interna-
tional Journal of Information Technology and Decision Making, Vol. 5, 2006, No. 4,
pp. 597–604.

[35] Glover, F. W.—Kochnberger, G.: New Optimization Models for Data Mining.
International Journal of Information Technology and Decision Making, Vol. 5, 2006,
No. 4, pp. 605–609, doi: 10.1142/S0219622006002143.

[36] Han, J.—Cheng, H.—Xin, D.—Yan, X.: Frequent Pattern Mining: Current
Status and Future Directions. Data Mining and Knowledge Discovery, Vol. 15, 2007,
No. 1, pp. 55–86.

[37] Ganter, B.—Wille, R.: Formal Concept Analysis: Mathematical Foundations.
Springer-Verlag New York, Inc., 1999.

[38] Martin, B.—Eklund, P. W.: From Concepts to Concept Lattice: A Border Al-
gorithm for Making Covers Explicit. In: Medina, R., Obiedkov, S. (Eds.): Formal
Concept Analysis (ICFCA 2008). Springer, Berlin, Heidelberg, Lecture Notes in Com-
puter Science, Vol. 4933, 2008, pp. 78–89.

[39] Pisková, L.—Horváth, T.: Comparing Performance of Formal Concept Analysis
and Closed Frequent Itemset Mining Algorithms on Real Data. Proceedings of the
Tenth International Conference on Concept Lattices and Their Applications, 2013,
pp. 299–304.

[40] Pasquier, N.—Bastide, Y.—Taouil, R.—Lakhal, L.: Efficient Mining of As-
sociation Rules Using Closed Itemset Lattices. Information Systems, Vol. 24, 1999,
No. 1, pp. 25–46, doi: 10.1016/S0306-4379(99)00003-4.

[41] Zaki, M. J.—Ogihara, M.: Theoretical Foundations of Association Rules. Pro-
ceedings of SIGMOD Workshop on Research Issues in Data Mining and Knowledge
Discovery, 1998, pp. 1–8.

[42] Kuznetsov, S. O.—Obiedkov, S. A.: Comparing Performance of Algorithms for
Generating Concept Lattices. Journal of Experimental and Theoretical Artificial In-
telligence, Vol. 14, 2002, No. 2-3, pp. 189–216, doi: 10.1080/09528130210164170.

[43] Poelmans, J.—Ignatov, D. I.—Viaene, S.—Dedene, G.—Kuznetsov, S. O.:
Text Mining Scientific Papers: A Survey on FCA-Based Information Retrieval Re-
search. In: Perner, P. (Ed.): Advances in Data Mining. Applications and Theoreti-
cal Aspects (ICDM 2012). Springer, Berlin, Heidelberg, Lecture Notes in Computer
Science, Vol. 7377, 2012, pp. 273–287.

[44] Kuznetsov, S. O.—Poelmans, J.: Knowledge Representation and Processing with
Formal Concept Analysis. Wiley Interdisciplinary Reviews: Data Mining and Know-
ledge Discovery, Vol. 3, 2013, No. 3, pp. 200–215.

[45] Andrews, S.: A ‘Best-of-Breed’ Approach for Designing a Fast Algorithm for
Computing Fixpoints of Galois Connections. Information Science, Vol. 295, 2015,
pp. 633–649, doi: 10.1016/j.ins.2014.10.011.

[46] Goethals, B.—Zaki, M.: An Introduction to Workshop on Frequent Itemset Min-
ing Implementations. Proceeding of the ICDM 03 International Workshop on Frequent
Itemset Mining Implementations, 2003, pp. 1–13.

https://doi.org/10.1142/S0219622006002143
https://doi.org/10.1016/S0306-4379(99)00003-4
https://doi.org/10.1080/09528130210164170
https://doi.org/10.1016/j.ins.2014.10.011

944 B. Ziani, Y. Ouinten, M. Bouakkaz

[47] Bayardo Jr., R. J.: Efficiently Mining Long Patterns from Databases. ACM SIG-
MOD Record, Vol. 27, 1998, No. 2, pp. 85–93.

[48] Agarwal, R. C.—Aggarwal, C. C.—Prasad, V. V. V.: Depth First Generation
of Long Patterns. Proceedings of the Sixth ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining (KDD ’00), 2000, pp. 108–118, doi:
10.1145/347090.347114.

[49] Burdick, D.—Calimlim, M.—Flannick, J.—Gehrke, J.—Yiu, T.: MAFIA:
A Maximal Frequent Itemset Algorithm. IEEE Transactions on Knowledge and Data
Engineering, Vol. 17, 2005, No. 11, pp. 1490–1504, doi: 10.1109/TKDE.2005.183.

[50] Gouda, K.—Zaki, M. J.: Efficiently Mining Maximal Frequent Itemsets. IEEE
International Conference on Data Mining, IEEE Computer Society, 2001.

[51] Grahne, G.—Zhu, J.: High Performance Mining of Maximal Frequent Itemsets.
Sixth SIAM International Workshop on High Performance Data Mining, 2003.

[52] Han, J.—Pei, J.—Yin, Y.: Mining Frequent Patterns Without Candidate Gener-
ation. ACM SIGMOD Record, Vol. 29, 2000, No. 2, pp. 1–12.

[53] Ziani, B.—Ouinten, Y.: Mining Maximal Frequent Itemsets: A Java Implemen-
tation of FPMAX Algorithm. Proceedings of the 6th International Conference on
Innovations in Information Technology (IIT), IEEE Press, Piscataway, NJ, USA,
2009, pp. 11–15, doi: 10.1109/IIT.2009.5413790.

[54] Mishra, P.—Eich, M. H.: Join Processing in Relational Databases. ACM Comput-
ing Surveys (CSUR), Vol. 24, 1992, No. 1, pp. 63–113, doi: 10.1145/128762.128764.

[55] Yao, S. B.: Approximating Block Accesses in Database Organizations. Communica-
tions of the ACM, Vol. 20, 1977, No. 4, pp. 260–261.

[56] UCI (Machine Learning Repository) Web Site. Available at: http://archive.ics.

uci.edu/ml, University of California, Irvine, School of Information and Computer
Sciences.

[57] TPC (Transaction Performance Council) Web Site. Available at: http://www.tpc.

org.

https://doi.org/10.1145/347090.347114
https://doi.org/10.1109/TKDE.2005.183
https://doi.org/10.1109/IIT.2009.5413790
https://doi.org/10.1145/128762.128764
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://www.tpc.org
http://www.tpc.org

MaxPart: An Efficient Search-Space Pruning Approach to Vertical Partitioning 945

Benameur Ziani received his Engineer degree in computer
science from Sidi Belabbes University (Algeria) and Ph.D. degree
in computer science from the University of Laghouat (Algeria).
He is currently Associate Professor in computer science at the
Department of Computer Science of the University of Laghouat.
Prior to joining the Department of Computer Science he served
as Engineer in computer science at the computing center of the
University of Laghouat during 1992–2012. His current research
interests include knowledge discovery, data mining and machine
learning with applications in various areas: database and data

warehouse design optimisation, big data and data networks analytics.

Youcef Ouinten received his M.Sc. degree and Ph.D. degree in
operational research from the University of Southampton (UK),
in 1984 and 1988, respectively. He received his graduation degree
(Diplôme d’Etudes Superieures) in mathematics, option opera-
tional research, from the University of Science and Technology
– Houari Boumediene of Algiers, Algeria, in 1981. He served as
Head of the Computing Center at the University Amar Telidji
of Laghouat, from 1999 to 2012. He is currently Senior Lecturer
at the Department of Mathematics and Computer Science of
the University Amar Telidji of Laghouat, Algeria. His research

interests include data mining, text mining, information retrieval and optimization.

Mustapha Bouakkaz is Associate Professor in computer
science at the Department of Computer Science of the University
of Laghouat Algeria. He received his Ph.D. degree in computer
science from the University of Laghouat in 2017. He carries out
research on OLAP and Data Mining. He is more interested about
data coming from documents or social networks. His current
work focuses on graph OLAP, text mining and social networks
analysis.

