
Computing and Informatics, Vol. 37, 2018, 1037–1072, doi: 10.4149/cai 2018 5 1037

EVENTUAL CONSISTENCY: ORIGIN AND SUPPORT

Francesc D. Muñoz-Escóı, José-Ramón Garćıa-Escrivá
Juan Salvador Sendra-Roig, José M. Bernabéu-Aubán

Instituto Universitario Mixto Tecnológico de Informática
Universitat Politècnica de València
46022 Valencia, Spain
e-mail: {fmunyoz, rgarcia, jsendra, josep}@iti.upv.es

José Ramón González de Mend́ıvil

Departamento de Ingenieŕıa Matemática e Informática
Universidad Pública de Navarra
31006 Pamplona, Spain
e-mail: mendivil@unavarra.es

Abstract. Eventual consistency is demanded nowadays in geo-replicated services
that need to be highly scalable and available. According to the CAP constraints,
when network partitions may arise, a distributed service should choose between be-
ing strongly consistent or being highly available. Since scalable services should be
available, a relaxed consistency (while the network is partitioned) is the preferred
choice. Eventual consistency is not a common data-centric consistency model, but
only a state convergence condition to be added to a relaxed consistency model.
There are still several aspects of eventual consistency that have not been analysed
in depth in previous works: 1. which are the oldest replication proposals providing
eventual consistency, 2. which replica consistency models provide the best basis for
building eventually consistent services, 3. which mechanisms should be considered
for implementing an eventually consistent service, and 4. which are the best com-
binations of those mechanisms for achieving different concrete goals. This paper
provides some notes on these important topics.

Keywords: Eventual consistency, consistency model, CAP theorem, data replica-
tion

Mathematics Subject Classification 2010: 68-03, 68M14, 68N01, 68U35,
68W15



1038 F. D. Muñoz, J. R. Garćıa, J. S. Sendra, J. M. Bernabéu, J. R. González de Mend́ıvil

1 INTRODUCTION

Eventual consistency [64] has received a lot of attention in the last decade due
to the emergence of elastic distributed services. Elastic services [31] need to be
both scalable and adaptive, ensuring good levels of functionality, performance and
responsiveness (i.e., QoS) – combined with a low cost – to their users, and of eco-
nomical profit to their providers. In order to reach those levels of performance and
responsiveness when the incoming workload being supported is high, the consistency
among server replicas might be relaxed and this explains why eventual consistency
has become so popular.

Elastic services are commonly deployed onto multiple datacentres and they may
use thousands of computers. In those environments network partitions may arise.
According to the CAP theorem, that was first stated by Fox and Brewer (1999) [26]
and later proven by Gilbert and Lynch [28], when a network partition happens,
there is a trade-off between strong consistency and service availability. Since elas-
tic services must guarantee availability in order to comply with their QoS require-
ments, consistency needs to be relaxed in those situations. This is another reason
for the success of eventually consistent services. However, as we will see in Sec-
tion 2, the compromises stated in the CAP theorem were already known 40 years
ago.

There have been many recent research works about eventual consistency [56, 64,
60, 8, 13, 54], but some aspects of this concept have not yet been discussed in depth.
Therefore, in order to provide the missing pieces for building a complete picture on
this subject, our paper is focused on those other aspects. They will be thoroughly
analysed in the following sections that are introduced hereafter.

The first point of interest is a historical review. Although recent research works
cite a paper from Werner Vogels [64] as the most well-known reference explaining
this kind of consistency, there are many papers older than [64] which have either
explained this same concept or implemented this consistency. Indeed, the oldest
eventually consistent systems were proposed in the 70s of the past century. Those
proposals tried to solve some problems that are close to those being solved nowadays:
how to improve the performance and availability of scalable services, providing an
acceptable level of consistency among their server instances. Some of these systems
and solutions are revised in Section 2.

Section 3 sets the border between models that are inherently convergent and
those others that are too much relaxed to be convergent per se. Inherently conver-
gent replication models cannot be globally maintained when the network is parti-
tioned. Eventual consistency requires that replica convergence is achieved when no
new updates are received for a sufficiently long interval. This implies that relaxed
models (e.g., FIFO/PRAM [45] or causal [1]) must be taken as a basis to develop
eventually consistent services.

Section 4 explains how to implement an eventually consistent replicated service.
Four complementary aspects are considered:



Eventual Consistency: Origin and Support 1039

1. replication protocol,

2. operation ordering,

3. synchrony in agent interaction, and

4. state merging strategy for reaching convergence.

There are multiple alternatives in each aspect and, not surprisingly, some of the best
combinations regarding performance and convergence were already known long time
ago. However, depending on the concrete goals of an eventually consistent service,
other new approaches may be needed and Section 4.2 revises those requirements.

The principles that are needed to manage eventually consistent services had
been already used in several of the oldest distributed services. The challenges at
that time were centred in providing acceptable response times and consistency using
very limited computers and networks. Current hardware resources are much more
powerful, but current services have also much more demanding requirements; e.g.,
they should be immediately adaptive [50]. So, although those old principles may
guide our research efforts in this kind of dynamic consistency, other new contribu-
tions are still required in this area.

2 HISTORICAL REVIEW

Quoting Vogels [64], eventual consistency is “. . . a specific form of weak consistency;
the storage system guarantees that if no new updates are made to the object, eventu-
ally all accesses will return the last updated value. If no failures occur, the maximum
size of the inconsistency window can be determined based on factors such as com-
munication delays, the load on the system, and the number of replicas involved in
the replication scheme.”

That definition is informal, but clear and concise. Indeed, eventual consistency
cannot be defined in a formal way as a regular consistency condition, since it is
a liveness condition (eventual state convergence) that may be added to other con-
sistency models. Besides defining it, Vogels also mentions a widely known service
that implements eventual consistency: the domain name system [47, 48], proposed
in 1983. Because of this, the reader may realise that traditional scalable distributed
services have usually been eventually consistent. Vogels provides another pointer
to a former publication on this subject: Lindsay et al. (1979) [44]. Therefore, it
seems that eventual consistency has been a classical mechanism for achieving high
performance in the distributed systems arena.

Taking a look at Section 1.4 from [44], the reader may observe that it describes
a distributed relational database system that may use different replication proto-
cols (primary-backup or majority voting) where two kinds of consistency may be
managed. In the regular case, providing one-copy equivalence, transaction updates
are forwarded and applied to all database replicas before that transaction is ended.
On the other hand, with relaxed consistency (i.e., with eventual consistency), those
updates may be forwarded afterwards, in a lazy way. This reduces the degree of syn-



1040 F. D. Muñoz, J. R. Garćıa, J. S. Sendra, J. M. Bernabéu, J. R. González de Mend́ıvil

chronisation being demanded by transactions, allowing their fast completion. Thus,
this is one of the first examples of consistency-performance trade-off.

Assuming that the usage of relaxed consistency has been a common solution
for improving the scalability of distributed services, it will be difficult to find the
oldest research work that provided the first example of service or replication protocol
specifically intended for ensuring that kind of consistency. There had been many old
systems using replicated components and not all of them described their replication
approaches in detail. Any way, let us go on in this backward look for that possible
first eventually consistent service, analysing the challenges that were solved by each
one of those proposals.

To this end, we may start considering the first reference on primary-backup
replication [3]. In that paper, strong consistency is assumed. Both read and write
requests are served by the primary replica. Write operations, once processed, forward
their updates to the first backup replica. When this backup applies those updates,
it sends the reply to the client process plus an acknowledgement to the primary and
an update forwarding message to the next backup replica. When this algorithm
is followed, the consistency being perceived is strong (indeed, linearisable [32]). In
spite of this, Alsberg and Day also outline some variations of their basic algorithm.
Thus, they also explain what can be done in multi-master scenarios. The general rule
is to reach a consensus on the requests service order among all those master replicas
before processing their incoming requests. But that general rule admits an exception
that is described in this way in [3]: “There may be specific applications where the
nature of the service permits the out of order processing of requests. An example
is an inventory system where only increments and decrements to data fields are
permitted and where instantaneous consistency of the data base is not a requirement.”

It assumes that some applications may provide an updating interface consist-
ing of multiple commutative operations (e.g., increments and decrements in this
example). In that case, multiple master replicas are allowed, serving their requests
concurrently. Consistency is eventually achieved when every replica receives and
applies all the updates generated (in any order) in the remaining replicas. This is
a valid sample of an eventually consistent service and it was described in 1976, three
years before the relaxed algorithm found in [44].

Moreover, Alsberg and Day [3] cite two related papers to look for additional
information [12, 34]. Bunch [12] describes a preliminary version of the primary-
backup algorithm discussed in [3]. In that version, backup replicas do not need to be
linearly ordered and they do not propagate the updates following a chain forwarding
approach. Instead, updates are logically multicast to all backups, allowing any kind
of multicast implementation. Besides this first difference, there is another one: there
are two classes of read operations referred to as critical and non-critical. Critical
reads are directly managed by the primary replica. Non-critical read requests are
forwarded to the cheapest replica (e.g., the one minimising transmission delay). In
spite of their name, both read classes are strongly consistent since write operations
do not return control to their client until all existing copies have been updated
and have acknowledged the update completion. However, these non-critical reads



Eventual Consistency: Origin and Support 1041

settled the basis for the relaxed consistency algorithm described in [44], once the
synchronous update propagation was replaced with a lazy forwarding.

On the other hand, Johnson and Thomas [34] propose a replication algorithm
that is more general than that of [3]. It allows multi-master replication for a given
kind of database (a key-value store that maintains users data in a user authentication
and accounting system [16]). Each database copy is held by a database management
process (DBMP). The updates applied in a given master replica should be trans-
ferred to the remaining replicas. A list of pending replicas is maintained and the
algorithm tolerates lazy propagation. Since multiple writers may exist and they all
may concurrently apply conflicting updates in different replicas, some rules were
needed to reach a convergent state once those updates were forwarded to the re-
maining replicas. To this end, Johnson and Thomas designed a solution based on
update timestamping. In order to define that timestamping approach some local
clock is used in every server, combined with node identifiers to break ties, defining
a total order on all system events. The authors assume that those clocks could be
sufficiently synchronised by default; otherwise, they suggest the usage of event coun-
ters in every node. Indeed, this was a solution that inspired the definition of logical
clocks [41], as Lamport acknowledges at the end of his paper. This conflict resolution
rule (i.e., “the last writer wins”) was also applicable in case of network partitions.
Indeed, Johnson and Thomas mention the following regarding service continuity in
case of network partitions: “. . . a completely general system must deal with the possi-
bility of communication failures which cause the network to become partitioned into
two or more sub-networks. Any solution which relies on locking an element of the
database for synchronized modification must cope with the possibility of processes
in non-communicating sub-networks attempting to lock the same element. Either
they both must be allowed to do so (which violates the lock discipline), or they both
must wait till the partition ceases (which may take arbitrarily long), or some form
of centralized or hierarchical control must be used, with a resulting dependency of
some DBMPs on others for all modifications and perhaps accesses as well.” Thus,
they already identified in 1975 that in case of network partitions there is a trade-off
between service availability and service consistency (since locking was assumed in
that paper as a means for ensuring strong consistency); i.e., part of what is known
nowadays as the CAP theorem [26, 28].

In our humble opinion, the paper from Johnson and Thomas can be considered
the first key reference about eventual consistency. It was able to describe an efficient
way to implement that kind of consistency (combining lazy update propagation
with a general rule to reach convergence in case of conflicting updates, tolerating
disconnected operation). Besides their data convergence rule, Johnson and Thomas
defined specific mechanisms for detecting and managing delete-update and delete-
create conflicts that might be hard to manage in a distributed deployment.

Let us now come back to our days, following a chronological order, to find
additional contributions from other relevant papers in this historical review.

A first example is the LOCUS [65] distributed file system described by Parker
et al. [52] in 1981. Its designers took care of handling network partitions, allowing



1042 F. D. Muñoz, J. R. Garćıa, J. S. Sendra, J. M. Bernabéu, J. R. González de Mend́ıvil

progress in disconnected subgroups of nodes. They also mentioned the trade-off
between strong consistency and service availability when network partitions arise.
In LOCUS, consistency was relaxed while disconnected nodes went on and version
vectors were proposed in order to detect state conflicts, applying reconciliation pro-
tocols at reconnection time. Those reconciliation protocols depend on the semantics
of the operations being applied. Note that the maintenance of version vectors at each
replica implies that the updates being propagated comply with causal consistency.

A second example is the Grapevine system developed at Xerox by Birrell
et al. [9]. Grapevine was an electronic mail service that also provided support for re-
source location, authentication and access control. The communication mechanisms
being managed by the Grapevine servers were asynchronous (i.e., the sender was able
to continue once the message was sent, without waiting for any kind of acknowl-
edgement) and persistent (i.e., the communication servers were able to maintain the
messages until their intended receivers were ready to get them). Grapevine needed
a registration database where it maintained data about its users and its groups.
A group maintained a collection of users addresses, thus allowing that a single e-
mail message could be delivered to a set of users specifying their group name. In
the Grapevine deployment (1981) described in [9], this system was spread through
the Xerox sites at USA, Canada and United Kingdom. There were five registra-
tion (and message) servers and around 1500 users defining 500 user groups. The
registration database was fully replicated in those registration servers using a multi-
master approach. Database updates were forwarded in a lazy way through the
asynchronous and persistent communication channels regularly used for electronic
mail propagation. The replication algorithms tolerated network partitions, merg-
ing any conflicting updates using timestamps and the “last writer wins” principle
already described in [34].

Fischer and Michael [25] describe an evolution of the algorithms presented in [34]
for managing a distributed directory service. In this new solution, no explicit update
operation is provided. Instead, the programmer should apply first a delete operation
followed by a new insert. Additionally, the system remembers which objects have
been inserted and which others have been deleted. With those sets, it is able to find
out whether a given object is still active or not. A criterion for purging removed
elements from both sets is also given. It is based on how many servers have already
known that information. With all these variations on the Johnson and Thomas
algorithm, the result is much simpler (indeed, no delete-update nor delete-create
conflicts may arise) and it is still able to tolerate network partitions and unreliable
communication.

Davidson (1984) [17] provides some rules for allowing service continuity in case of
network partitions in a replicated database system. This means that the consistency
among replicas is lost while the network remains partitioned, but service availability
is guaranteed. However, once the partitioned groups rejoin, Davidson proposes
several criteria for detecting serialisability violations and for choosing the set of
transactions to be rolled back in order to build a global history that respects all
serialisability requirements.



Eventual Consistency: Origin and Support 1043

Apers and Wiederhold (1985) [4] also study the network partition problem in
replicated database systems. However, instead of focusing only on serialisable order,
they also consider semantic pre- and post-conditions on each kind of transaction.
As a result, transactions are classified as:

1. unconditionally committable (UC), when their execution cannot violate any pre-
condition of other transactions run in other partitions,

2. conditionally committable (CC), when their acceptance cannot be guaranteed
but their possible afterwards rejection will not introduce other consistency prob-
lems, and

3. non-committable (NC), when their possible afterwards rejection leads to consis-
tency problems that will not be solvable.

Only UC and CC transactions are accepted in case of a network partition. NC
transactions are immediately rejected in that case. Algorithms are presented for
merging partitions and for rebuilding their serialisation graphs, applying compen-
sating transactions onto previously accepted CC transactions when needed. This
is one of the first examples, when a system is partitioned, of managing semantic
correctness criteria at partition reconnection time and of using conditional criteria
for accepting some classes of transactions.

Other semantic criteria for managing state merging at partition reconnection
time were proposed by Sarin et al. (1985) [57]. They base their solution in time-
stamping all operations that modify the application or database state, defining in
this way a total order for all those operations. However, no detail is given on how
such update propagation should be made nor on how those timestamps are globally
generated, allowing multiple kinds of implementations, even lazy propagation. When
partitions rejoin, they forward and receive any missed updates. Conceptually, when
a missed update is received in this reconnection stage, it leads to the roll back of
all the operations that had been previously accepted and applied with a higher
timestamp, reapplying them later on, in their appropriate order. However, multiple
semantic optimisations are described for avoiding both the operation rollback and
its reexecution once the missed update has been applied.

Demers et al. (1987) describe the Clearinghouse system in [21]. In that system
“the effect of every update is eventually reflected in all replicas”. The system consists
of several thousand nodes where a multi-master replication strategy is used. Each
update request may be received and processed by a different replica and its effects
will be lazily propagated to the remaining sites. The paper proposes and compares
different lazy update propagation mechanisms in order to minimise network traffic:
direct mail, anti-entropy and rumour mongering. With the latter two approaches
the resulting system becomes highly scalable.

The first computer-supported cooperative work (CSCW) applications were de-
veloped in the middle eighties. The Lotus/Iris Notes project (Kawell et al. [35])
was based on lazy update propagation and on the “last writer wins” policy for
dealing with concurrent updates. The database being managed was unconven-



1044 F. D. Muñoz, J. R. Garćıa, J. S. Sendra, J. M. Bernabéu, J. R. González de Mend́ıvil

tional: it was a collection of documents and a “transaction” consists in an update
to one of those documents (multiple documents cannot be updated using a sin-
gle action). On each update, a complete document should be transferred among
replicas. Fortunately, documents were small (usually 1 or 2 KB). Those updates
were transferred following a pull policy. Notes assumed that computers are not
continuously connected to the network. When a computer contacts others, they
exchange their documents lists with the versions and IDs for each document. When
those lists were compared, the computer that missed any update requested the
other to transfer those updates. Following this strategy, all Notes replicas became
eventually consistent, but those replicas might had been inconsistent for quite long
intervals.

Kumar and Stonebraker (1988) [37] describe how to apply the escrow [51]
method to replicated databases, assigning complementary parts of the escrow to
each replica; i.e., distributing the escrow. The original escrow mechanism allowed
the management of concurrent transactions that use commutative operations to up-
date a given relation field even when the value of such field should respect some
constraints (e.g., to be positive or exceed some minimal threshold). Escrow distri-
bution allows the management of some concurrent transactions without exchanging
messages among replicas in some cases. This enhances performance and increases
the tolerable degree of concurrency. As a result of this, inter-replica consistency
is relaxed and transactions serialisability is lost, but transaction correctness is still
preserved.

In the lazy replication (1990) approach [39] proposed by Ladin et al., client re-
quests are forwarded to a single replica that processes the operation and later prop-
agates its updates in a lazy way. The operations being processed may be ordered
according to the application semantics, selecting one of these approaches: client
ordering, server ordering or global ordering. In the client-order case, the client spec-
ifies which previously initiated operations precede the operation to be sent. To this
end, each update operation returns an update identifier (uid) when it is completed
and both queries and updates may specify as their arguments a set of precedent
uids. In the server-order case, every server-ordered operation is totally ordered by
the servers against every other server-ordered operation. Finally, in the global-order
case, each global-ordered operation must be totally ordered by the servers against
every other operation, independently on the type of the latter. This third type
may be used in case of system reconfigurations, and it defines a border for ensur-
ing that all server replicas must have delivered the same set of previous requests.
Indeed, this is placing a convergence point for eventually consistent replicated ser-
vices.

The systems to be implemented using the lazy replication technique find several
advantages when they are compared to previous works. To begin with, they are bas-
ing their eventual consistency on an explicit (instead of potential, as when a regular
causal multicast mechanism is being used for propagating updates) causal consis-
tency. This reduces the amount of dependencies to be considered among the updates
being propagated, enhancing performance and reducing delivery delays. Those de-



Eventual Consistency: Origin and Support 1045

lays may arise, e.g., when a precedent causal message is lost and is resent. A second
advantage is the careful management of application semantics for specifying how
concurrent operations should be observed by every replica.

The Coda distributed file system [58] (1990) is an example of distributed envi-
ronment allowing disconnected operation. In this case, consistency is relaxed among
clients and servers. Clients get a cache image of each demanded file and may operate
on them even when no server may be reached. Using version vectors and file update
identifiers, servers may later identify and accept the updates applied by those clients
while they were disconnected. When clients remain connected to servers, they for-
ward the updates to every reachable server in a synchronous way. Therefore, relaxed
(eventual) consistency only arises at disconnection intervals and does not depend on
the workload being supported. Note that other systems relied on lazy propagation
(and its resulting eventual consistency) in order to shorten regular operation service
time, but that was not the case in Coda. If a previously disconnected client intro-
duces conflicting updates at reconnection time, those state divergences are reported
to the user and must be manually merged. No automation is provided by default for
managing these conflicts. In spite of this, subsequent releases of Coda introduced an
automated reconciliation process when the application update semantics allows this.
Kumar and Satyanarayanan describe an example of this kind applied to directory
management [38].

In the scope of replicated relational databases, Krishnakumar and Bernstein
(1991) [36] propose a system with lazy writeset propagation (but respecting causal
order) where transactions may be accepted although up to N previous transactions
executed in other replicas may be missing in the local node. The resulting system
is not serialisable, and the resulting correctness criterion is known as N-ignorance.
This eventually consistent system ensures enough guarantees for multiple distributed
applications (e.g., a flight reservation system, with N being the overbooking tolerated
in that system) and improves concurrency and performance up to N times when it
is compared with strictly serialisable systems.

In the same field and year, Pu and Leff [55] proposed the ε-serialisability con-
cept based on asynchronous writeset propagation. The resulting executions may
be one-copy serialisable for writes but only ε-serialisable for reads, being ε a bound
on data divergence. To this end, and due to the asynchrony in write propaga-
tion, a query (i.e., read-only) transaction may tolerate to be overlapped with up
to ε conflicting concurrent update transactions without becoming aborted. Since
the value of ε is configurable, this technique ranges from strict one-copy serialis-
ability to a very relaxed system with eventual replica consistency. Four replica-
tion protocols are described in [55]: ORDUP (ordered updates, demanding a to-
tal order of updates shared by all sites), COMMU (commutative updates), RITU
(read-independent timestamped updates, allowing order freedom in non-conflicting
updates) and COMPE (optimistic service, looking later for conflicts and using
compensating transactions in order to reach convergence). Eventual replica con-
sistency might be implemented using, for instance, large values for ε combined with
a COMMU or COMPE replication protocol. Note, however, that the ORDUP repli-



1046 F. D. Muñoz, J. R. Garćıa, J. S. Sendra, J. M. Bernabéu, J. R. González de Mend́ıvil

cation protocol does not allow any divergence among the states of replicas. There-
fore, ORDUP is inherently convergent.

Bayou (1994) [62] was a replicated storage system to be used in a mobile comput-
ing environment where disconnections may frequently arise. It uses lazy propagation
of updates providing eventual consistency. However, Bayou introduced sessions in
order to give a better consistency image to its users. At the server domain the
consistency is very relaxed and only eventually convergent, but on each user session
the consistency could be stronger depending on the properties being enforced. To
this end, Bayou proposed four user-centric consistency guarantees:

Read your writes (RYW): read operations reflect previous writes from the same
process;

Monotonic reads (MR): successive reads see a non-decreasing collection of writes;

Writes follow reads (WFR): writes are propagated after the reads they depend
on; and

Monotonic writes (MW): writes are propagated after writes that precede them.

The combination of WFR and RYW ensures a consistency that is similar to
the data-centric causal model. When all these four guarantees are attained, the
resulting image perceived by a user session is equivalent to one-copy consistency,
but the actual data-centric consistency might still be very relaxed. Note that each
operation being executed in a given session may be forwarded to a different server
replica. Specific protocols based on version vectors were used in [62] for complying
with the consistency guarantees required in sessions.

Fekete et al. (1996) [22] provide the first formal specification of an eventually
consistent system. Their proposal formalises the algorithms described in [39]. It
tolerates that operations were executed defining a partial order, but that order pro-
gressively tends towards a total order that is needed for reaching state convergence;
i.e., operations may be reordered once run. Once the total order is decided for
a sequence of operations, those operations are considered stable and the state in all
replicas should have converged.

Yu and Vahdat (2000) [66] describe an implementation of the TACT middleware
that is able to measure the current level of divergence among service replicas and
to specify replica consistency requirements considering several aspects. This allows
a precise control of replica divergence, based on three complementary dimensions:

1. numerical error (limits the total weight of writes applied across all replicas before
being propagated to a given replica),

2. order error (limits the amount of tentative writes, subject to reordering, that
may be pending at a replica), and

3. staleness (places a real-time bound on the delay of write propagation).

When all three dimensions have a zero bound, the system ensures linearisable con-
sistency. On the other hand, when no bound is set, eventual consistency is used.



Eventual Consistency: Origin and Support 1047

TACT may use several algorithms for ensuring that the requested bounds are re-
spected. This defines a continuous space of replica consistency from which the user
may choose the adequate level for each deployed replicated service. Indeed, different
replicas from the same service may have different bounds depending, for instance, on
the characteristics of the hosting computer or on the network bandwidth and delay.

Saito and Shapiro (2005) [56] provide a survey on optimistic replication; i.e.,
replication techniques that relax their concurrency control and consistency in order
to achieve greater efficiency since synchronisation is avoided or, at least, minimised.
Section 5 of that survey discusses eventual consistency. In that part, Saito and
Shapiro provide one of the best definitions of this kind of consistency: “A replicated
object is eventually consistent when it meets the following conditions, assuming that
all replicas start from the same initial state: 1. at any moment, for each replica, there
is a (committed) prefix of the schedule that is equivalent to a prefix of the schedule of
every other replica; 2. the committed prefix of each replica grows monotonically over
time; 3. all non-aborted operations in the committed prefix satisfy their preconditions;
and 4. for every submitted operation α, either α or 6 α will eventually be included in
the committed prefix.”

The equivalence of committed prefixes among replicas allows the modelling of
state convergence when no new updates are received. Their monotonic growth ex-
presses that such convergence is (and will be) reached multiple times but it is not
continuously preserved. Precondition accomplishment models the semantic correct-
ness of these eventually consistent systems. The last condition means that in order
to reach convergence and reconciliate from existing conflicts, some of the submitted
operations may be discarded (i.e., 6 α); for instance, applying other compensating
actions that eliminate their effects.

Besides this, Saito and Shapiro classify eventually consistent systems depend-
ing on how they deal with three relevant problems related to the operations to be
executed: ordering, conflicts and commitment.

Ordering refers to the scheduling policy being used for ordering the updates
that define the committed prefix at each replica. Additionally, operations should be
ordered in a way expected by users. Five ordering alternatives exist:

1. syntactic ordering, i.e., all nodes should follow the same operation order inde-
pendently on the semantics of each operation (easy to implement but rises too
many conflicts among nodes),

2. commutative operations, allowing any execution order (no conflict appears but
it has a limited applicability),

3. canonical ordering (concurrent operations are ordered following an application-
dependent set of rules),

4. operational transformation, implying the transformation of some operations in
order to adapt their results for reaching convergence in a committed prefix (com-
plex procedure that depends on the application semantics), and

5. semantic optimisation (again, too complex).



1048 F. D. Muñoz, J. R. Garćıa, J. S. Sendra, J. M. Bernabéu, J. R. González de Mend́ıvil

Conflicts refer to how state conflicts are dealt with and resolved. Two alterna-
tives:

1. syntactic (differences – either in the state values or in the operation order – are
used for detecting conflicts and a deterministic criterion is used for resolving
them), and

2. semantic (conflicts are resolved considering the semantics of the involved oper-
ations; this is a complex and application-specific solution).

Finally, commitment refers to the protocols being used for deciding when an exe-
cuted operation can be considered stable (i.e., it has been accepted and belongs to
a common committed prefix in all replicas), or for reaching agreement on non-
deterministic decisions. There are three alternatives:

1. implicit (no operation is ever explicitly rejected; this may be supported using
the “last writer wins” approach in case of conflicts),

2. background agreement (nodes send piggybacked information about their ac-
cepted updates in their update propagation messages; e.g., using version vec-
tors), and

3. consensus (this is a complex and potentially blocking solution, usually needed
in strongly consistent systems but not recommended in eventual ones).

One of the conclusions that may be extracted from [56] is that concurrency con-
trol could be avoided in eventually consistent systems. To this end, convergent and
commutative replicated data types (CRDTs) [60] were proposed by Shapiro et al.
as a set of replicated data types able to easily converge by themselves without need-
ing any concurrency control mechanism. CRDTs are based either on commutative
operations (CmRDTs), giving some rules, advices and examples for transforming
regular operations into other commutative variants, or on a merge operation for
state-based replication protocols (CvRDTs), introducing commutativity at update
application time in those protocols. Thus, in both cases, the system achieves con-
vergence ensuring that all incoming client requests are eventually executed by every
replica.

This historical review would end here. Its goal has been to show that some
research work on eventual consistency existed before Vogels’ paper [64] was written.
We have centred our discussion on the papers written before 1994, since subsequent
papers have been thoroughly reviewed in other works; e.g., by Saito and Shapiro [56].
A summary of the contributions found in our review is given in Table 1. However, as
it has been said in Section 1, there have been many recent papers on this subject and
there is still an aspect that had not been completely dealt with before 2008: a formal
specification for eventual consistency. There have been a few papers covering that
goal [22, 13, 10] and the two latter deserve some comments since they have provided
valuable contributions.

Bouajjani et al. [10] and Burckhardt [13] criticise that almost all previous defi-
nitions of eventual consistency had been only centred in state convergence at quies-



Eventual Consistency: Origin and Support 1049

Reference Contributions Year
Johnson and
Thomas [34]

Multi-master replication as a way for implementing eventual consistency.
Description of a basis for logical clocks.
Mechanism for totally ordering the events in a system.
Network partition tolerance.
“Last writer wins” principle for reaching convergence.
Management of delete-update and delete-create conflicts.

1975

Alsberg and Day
[3]

Multi-master replication with commutable operations as a way for implementing
eventual consistency.

1976

Lindsay et al. [44] Identification of the level of update propagation synchrony as a key aspect for
replica convergence: strong consistency with synchronous propagation and eventual
consistency with lazy propagation.

1979

Parker et al. [52] Version vectors for detecting inconsistencies in disconnected operation.
Potential causal consistency as a base for implementing eventual consistency.
Need of semantic reconciliation protocols at reconnection time.

1981

Birrell et al. [9] Deployment of a WAN system supporting eventual consistency. 1982
Fischer and
Michael [25]

Avoidance of delete-update and delete-create conflicts in eventually consistent ser-
vices using multi-master replication.

1982

Davidson [17] Service continuity in partitioned databases with serialisable histories.
Criteria for choosing which transactions to roll back at reconnection time.

1984

Apers and
Wiederhold [4]

Service continuity in partitioned relational databases.
Consideration of correctness invariants (stated as pre- and post-conditions) at par-
tition reconnection time.

1985

Sarin et al. [57] Service continuity in partitioned databases.
Semantic criteria for reordering or avoiding compensating actions at partition re-
connection.

1985

Demers et al. [21] Analysis of three types of lazy update propagation. 1987
Kawell et al. [35] Proposal of a CSCW application (Lotus Notes) with eventual consistency.

Pull-based strategy for update propagation.
Document propagation for reaching convergence.

1988

Kumar and
Stonebraker [37]

Extension of the escrow method (management of commutative transactions respect-
ing value constraints) to replicated databases.
Serialisability is sacrificed and inter-replica consistency is relaxed, but transaction
correctness is maintained.

1988

Satyanarayanan
et al. [58]

Support for client disconnected operation in distributed filesystems.
Manual multi-conflict resolution may be demanded at reconnection time.

1990

Ladin et al. [39] Specification of update ordering requirements, depending on application semantics.
Explicit causal dependences as a base for building eventual consistency.
Global order for reaching convergence on the set of processed operations in every
replica.

1990

Krishnakumar
and Bernstein
[36]

N-ignorance as an eventually consistent example in replicated relational databases.
Lazy writeset propagation with causal order.

1991

Pu and Leff [55] ε-serialisability (relaxed consistency for query transactions in relational databases).
Proposal of four replication protocols using asynchronous writeset propagation.
Some protocols (COMMU and COMPE) may implement eventual consistency.

1991

Terry et al. [62] Specification of user-centric consistency conditions, instead of the traditional data-
centric ones.
Sessions for providing user-centric consistency.
Users perceive a consistency that is stronger than that maintained by servers.

1994

Fekete et al. [22] Characterisation of eventual consistency based on stable operations (that force state
convergence) and reorderable operations, using I/O automata.
First formal specification for eventual consistency.
Inspired in the replication protocols proposed in [39].

1996

Yu and Vahdat
[66]

Evaluation of replica divergence.
Selection of a per-replica level of consistency.
Specification of consistency based on three axes: (1) numerical error, (2) order error,
and (3) staleness.

2000

Saito and Shapiro
[56]

Survey on optimistic replication techniques, including eventual consistency.
Thorough classification of eventually consistent systems.

2005

Bouajjani et
al. [10]

Complete formal specification of eventual consistency.
Definition of weak eventual consistency, centred only in convergence.
Consideration of local program correctness in its consistency specification.
Proposal of verification tools for eventually consistent systems.

2014

Table 1. Contributions outlined in this historical review



1050 F. D. Muñoz, J. R. Garćıa, J. S. Sendra, J. M. Bernabéu, J. R. González de Mend́ıvil

cence intervals. However, those definitions and specifications did not state anything
about traces where no quiescent interval exists. In those cases, apparently, no state
convergence effort is required. In spite of this, most eventually consistent services
actually consider and make those efforts. Therefore, the specification given in [10]
considers both:

1. the correctness of the operations being executed by each process, and

2. the conditions to be satisfied when the arrival of new updating requests never
stops.

Additionally, that paper qualifies quiescent convergence as weak eventual consistency
and proposes some verification tools for evaluating the correctness of (both weak and
non-weak) eventually consistent systems.

3 EVENTUAL DATA-CENTRIC CONSISTENCY MODELS

Distributed shared memory (DSM) consistency models [49] assume that multiple
processors share a given memory and that processes directly run in those proces-
sors. Thus, those models are focused on how data is shared by processes. Those
classical memory consistency models are known nowadays as data-centric consis-
tency models and they are also used in distributed systems [61]. In this section, the
term consistency model will always refer to those data-centric models.

The state convergence assumed in eventual consistency is a liveness property [23,
13, 54]. Therefore, the conditions required in several definitions of eventual consis-
tency [56, 64] could be respected adding a convergence property to a relaxed con-
sistency model. However, there is no agreement on where to place the borderline
between strong and relaxed consistency models. Depending on the problem being
considered, that frontier separates different sets of strong and relaxed models. For
instance, the linearisable [32] and sequential [42] models are in the strong set when
database one-copy equivalence with serialisable isolation is being considered [23]. On
the other hand, Attiya [6] states that only the linearisable model is strong enough
to avoid old-new inversions in read accesses onto shared variables. The sequential
model does not avoid that kind of inconsistency in its reads.

In the scope of eventual consistency characterisation, two frontiers should be
defined separating these three sets of models [54]:

Strong models: A strong model guarantees state convergence among replicas on
each write action. This means that write actions cannot overlap. As a result of
this, no read old-new inversion is possible. The linearisable [32] (or atomic [43])
model is in this strong group [6].

Convergent models: A model is inherently convergent when the conditions that
define the model imply state convergence. In this case write actions may overlap
and read old-new inversions may happen when those read actions occur in differ-
ent replicas. However, once all value propagations for concurrent write actions
are delivered, the state in all replicas reaches convergence again.



Eventual Consistency: Origin and Support 1051

Relaxed models: A model is relaxed if it does not guarantee convergence when
all its consistency conditions are respected. FIFO consistency is an example of
relaxed model since it only requires that the writes of each process are applied in
writing order on the other replicas, allowing any interleaving of the writes made
by different processes. Because of this, different receivers may see different
values on a given set of variables when they have applied all their incoming
updates.

Section 2 has shown that eventual consistency was generated as a reaction to
the constraints of the CAP theorem [28]. Being eventually consistent, a service
may remain available to all its clients even when the network that interconnects
its replicas gets partitioned. Thus, inherently convergent models are all those on
which the CAP constraints may apply; i.e., those that require consensus on the
order of writes among all participating processes [54], since that consensus cannot
be reached in an asynchronous distributed system when its processes may fail or get
disconnected [24]. That requirement already applies to the cache [30] consistency
model and all those stricter than cache. However, no need of consensus exists in the
slow [33], FIFO/PRAM [45] and causal [1] models.

RELAXED MODELS

causal

PRAM cache

processor

sequential

CONVERGENT MODELS

STRONG MODELS

atomic

slow

Figure 1. Strong, convergent and relaxed models



1052 F. D. Muñoz, J. R. Garćıa, J. S. Sendra, J. M. Bernabéu, J. R. González de Mend́ıvil

Figure 1 shows the weaker-than (−→) relations among data-centric models.
They were already identified by Mosberger [49] in 1993. Taking those relations
as a base, it is easy to select which consistency models belong to each set, defining
in this way the intended borders.

These identified frontiers have a first consequence: all inherently convergent
models (i.e., sequential, processor, cache) are stronger than eventual consistency.
Note that a model A is stronger than another model B if all executions accepted
by model A comply with the constraints of model B and there is some execution
that respects model B but does not respect the constraints imposed by model A [63].
Inherently convergent models are eventually consistent, since they reach convergence
once a given set of write actions is known and applied by every process. However,
not all eventually consistent executions are inherently convergent. For instance, the
following execution:

W2(x)3,W1(x)2, R3(x)3, R4(x)2, R3(x)2, R2(x)2,

R4(x)3, R1(x)3,W4(x)5, R2(x)5, R3(x)5, R1(x)5 (1)

. . . is eventually consistent, since at the end all its four processes converge to
value x = 5; but it is not sequential, nor processor, nor cache. Its strongest re-
spected model is causal. Processes P2 and P3 have seen the sequence 3, 2, 5 on
x and P1 and P4 have seen the sequence 2, 3, 5. When the written values 2
and 3 had been delivered at all processes, before value 5 is written, the state
of these four processes did not converge. Therefore, it is not inherently conver-
gent.

Up to our knowledge, this relationship among inherently convergent models
and eventual consistency has not been explicitly identified yet. Indeed, Viotti and
Vukolić [63] (2016) revise many distributed consistency models, trying to identify
their relations in order to build a global hierarchy. In that hierarchy, they distinguish
multiple variants of eventual consistency: basic eventual [13], strong eventual [13],
eventual serialisability [22] and eventual linearisability. They only state that the
strong eventual and the eventual linearisability models, being the strongest in that
set, are weaker than the linearisable model. No relation is identified among all
those four variants of eventual consistency and other data-centric models (besides
linearisable consistency). However, our Execution 1 illustrates that the basic even-
tual model is weaker than cache consistency. Additionally, cache executions comply
with the requirements of the strong eventual model (to reach convergence once the
same set of update operations are delivered to all processes), and Execution 2 is an
example of execution based on commutative operations, assuming an initial value of
zero for variable x in every process, that is strong eventual but not cache consistent
(P2 and P3 have observed sequence 3, 5 since they have received the operations in
the order + 3, + 2; while P1 and P4 have observed sequence 2, 5, since they re-
ceived those operations in the order + 2, + 3). This means that the strong eventual
model is weaker than cache consistency. Therefore, these relations exist: basic even-
tual −→ strong eventual −→ cache −→ processor −→ sequential −→ linearisable



Eventual Consistency: Origin and Support 1053

(atomic). Thus, there are several models between the strong eventual to linearisable
weaker-than relation.

W2(x) + 3,W1(x) + 2, R3(x)3, R4(x)2, R3(x)5, R2(x)5, R4(x)5, R1(x)5 (2)

Regarding network partitions, our proposed frontier among convergent and re-
laxed models has another interesting consequence. Fox and Brewer [26] stated the
CAP theorem assuming that “consistency” was atomic (i.e., strong). Gilbert and
Lynch [28] proved that same theorem respecting that assumption. However, Pascual-
Miret et al. [53] have proven that even cache consistency cannot be respected by
available replicated services while the network is partitioned. Their proofs are quite
complex. A more intuitive proving argument of that fact has been already given
here for setting the borderline between convergent and relaxed models. Cache con-
sistency requires agreement on the order of writes on each variable. That agreement
requires consensus among all the processes that replicate shared variables. Consen-
sus cannot be achieved in a system where processes may fail [24] (or where they
remain unreachable due to a network partition). Therefore, the CAP theorem not
only applies to atomically consistent services but to all replicated services that are
strong or convergent according to our classification.

Depending on the consistency requirements of the service, two alternatives exist
for implementing eventual consistency in a system that tolerates network partitions:

1. to use slow or PRAM replica consistency (or even no consistency at all) when
optimal throughput is the main goal, or

2. to use causal replica consistency when at least a causal behaviour is expected,
partially sacrificing performance in this case.

Both approaches should rely on supplementary data convergence mechanisms.

4 IMPLEMENTATION APPROACHES

The problem of guaranteeing state convergence only arises when a replicated service
exists. The state being managed by that service may use an optimistic replication
technique [56] because in this way it reduces overall overhead and tolerates network
partitions. In that case, service replicas become eventually consistent.

At a glance, this means that a replication protocol should be chosen, and its op-
timism may rely on lazy update propagation, introducing some degree of asynchrony
in the interactions among replicas. However, other characteristics of inter-replica
management may be relevant. Thus, a careful evaluation of those characteristics is
needed.

In order to provide a characterisation of the existing implementation approaches,
Section 4.1 analyses which elements should be considered to define an implementa-
tion strategy for eventual consistency. With that base, Section 4.2 provides a perfor-
mance analysis of those implementation strategies. Later, Section 4.3 summarises



1054 F. D. Muñoz, J. R. Garćıa, J. S. Sendra, J. M. Bernabéu, J. R. González de Mend́ıvil

which systems were the first using each one of the implementation strategies iden-
tified in Section 4.1, complementing in this way the historical review presented in
Section 2.

4.1 Four Elements to Implement Eventual Consistency

Several aspects should be considered to implement any replication strategy. Let us
revise them, focusing on their effect on performance and replica convergence. In
each aspect, several implementation approaches are enumerated. After their name,
in parentheses, we show an abbreviation in order to refer to them later on:

Replication protocol. The replication protocol rules the steps to be followed by
the service replicas in order to manage a given operation submitted by a client
agent. Several types of replication protocols may be found:

Primary copy (PC): One of the server replicas is distinguished as the primary
replica. All update operations must be forwarded to that primary, who is
the unique replica that may process the updates. Once an operation has
been processed by the primary, its effects are collected and forwarded to
the remaining replicas that will accept and apply those updates in order to
reach convergence with the state of that primary. Primary copy replication
protocols follow the primary-backup [11] replication model.

Multi-master (MM): Each operation is processed by a single replica (also
known as master for that operation service) who later propagates the result-
ing updates (if any) to the remaining replicas. However, in this case, each
operation may be forwarded to any replica. No primary exists in this type
of protocol. Thus, operations may be served by different masters, increasing
in this way the degree of concurrency. This strategy might generate incon-
sistencies if the operations being served by different masters are conflicting.

Quorum-based (QB): Operations are classified as queries (i.e., read-only op-
erations) or updates (i.e., those operations that create, delete or modify at
least one data element). Queries need to be executed at as many replicas
as stated in their read quorum (RQ) while updates should reach at least
a write quorum (WQ). Quorum-based protocols were originally defined [27]
for achieving strong consistency. To this end, assuming that there are N
replicas in the system and that each replica has one vote, two rules should
be respected:

1. WQ > N/2, and
2. WQ + RQ > N votes.

In this way, it is guaranteed that conflicting operations will have a non-empty
intersection of replicas. These traditional quorum-based protocols may be
tagged as strict quorum protocols (QBS) [7].

Modern NoSQL scalable datastores (e.g., Cassandra [40]) admit multiple
quorum sizes, allowing varying degrees of consistency. Indeed, they are able



Eventual Consistency: Origin and Support 1055

to provide relaxed eventual consistency when quorums do not need to in-
tersect for accepting an operation [29]. This second kind of quorum-based
protocols can be tagged as partial quorum protocols (QBP ) [7].

Operation ordering. Eventually consistent services do not demand state conver-
gence after processing each operation. Instead of this, the state in different
replicas diverges at some intervals and will reach again convergence afterwards.
This state convergence may depend on the operation semantics and ordering.
Let us analyse which alternatives exist in this area:

None (NO). When all the operations in the interface of a given service are
commutative, there is a complete freedom on the order of execution of the
incoming requests. Once every replica has executed the same set (i.e., un-
ordered collection) of operations, all those replicas will be convergent. This
eliminates the need of inter-replica coordination (e.g., in MM replication
protocols), being the optimal solution for improving replication throughput.

Commutative replicated data types (CRDTs) [59, 60], also known as conflict-
free replicated data types, have been proposed by Shapiro and Preguiça in
order to eliminate operation ordering requirements in replicated data types.
They provide a useful guide for designing data types with commutative op-
erations and for avoiding conflicts when non-commutative operations exist.

Partial order (PO). At a glance, non-commutative operations need to be ex-
ecuted in order to ensure replica convergence. However, even in that case,
update operations that might seem conflicting may be executed in any order
when they are updating disjoint parts of the shared state. As a result, the
global order to be considered becomes partial and this means that concurrent
(and unordered) service is tolerated for a subset of the operation requests. In
spite of this, some degree of coordination among replicas is needed, reducing
the service throughput.

Total order (TO). In some cases all updating operations are conflicting and
they should be executed in a global total order by every replica. This is the
regular behaviour in strong consistency protocols and should be avoided if
high performance is the main goal.

Synchronisation degrees in agent interaction. Distributed services usually
follow a client/server interaction pattern. In a strongly consistent service, when
a client agent requests an updating operation to a replicated server, five inter-
action steps may be distinguished:

1. the client sends the request to a master replica;

2. the master replica processes the request;

3. the master replica sends the state updates to every slave replica;

4. slave replicas acknowledge the completion of the application of those updates
on their local copies; and

5. the master replica replies to the client.



1056 F. D. Muñoz, J. R. Garćıa, J. S. Sendra, J. M. Bernabéu, J. R. González de Mend́ıvil

Thus, the client agent remains blocked until the reply is returned to it. The
master replica is also waiting for the acknowledgements sent by the slave repli-
cas. This means that strongly synchronous communication is needed. The first
primary-backup [3] replication protocols followed that same pattern, ensuring
linearisable consistency.

However, in eventually consistent services that level of synchrony is unneeded.
For instance, query requests only demand steps 1, 2 and 5, but they can be served
by any replica (not necessarily the primary one) and pure updating requests
(that return no result) may be completely asynchronous for the client, who will
be only involved in step 1. Additionally, in this latter case, a master replica may
only execute steps 2 and 3, without being involved in steps 4 and 5.

On the other hand, when clients expect a reply from their updates, eventual con-
sistency admits lazy update propagation. Thus, the serving replica may execute
steps 2 and 5 as soon as possible, executing later step 3 in a lazy way (either
followed by step 4 or not, depending on the reliability of the communication
channels).

Therefore, multiple degrees of agent interaction synchrony are possible in repli-
cated systems. Since query operations always demand a reply, let us centre
our attention on how updating operations may be processed. The following
alternatives exist:

Asynchronous (A): When updates do not need any reply and server state
propagation is done in a lazy way. This is the optimal solution regarding
throughput.

One synchronous interaction (1S): When either:

1. the update requires an answer and server state propagation is done in
a lazy way, or

2. the update does not need any answer but server state propagation is
synchronous.

Two synchronous interactions (2S): When the five steps described above
are done in a synchronous way. This only happens in strongly consistent
services.

State convergence strategy. The state of different replicas may become diver-
gent from time to time. In those cases, some strategy is needed in order to fix
those divergences. That strategy should be able to, first, identify the differences
among multiple replicas and, later, decide how to merge those diverging states
into a convergent one. The following alternatives exist to this end:

Unneeded (UN). In some applications, state divergences only arise while
an updating request that has been processed at a replica is not yet known
by the remaining replicas. Once the other replicas receive and process that
request, state convergence is restored. This happens, for instance, when all



Eventual Consistency: Origin and Support 1057

service operations are commutative. Note that in that case, the replication
protocol being used should be based on “operation transfer” instead of “state
transfer”.

In case of network partitions, each subgroup should remember the set of
operations that they have processed while the network was partitioned, in
order to transfer that set to the remaining subgroups when connectivity is
restored. This allows that every operation executed at every subgroup were
considered and accepted in the resulting convergent state.

This strategy does not need any divergence detection mechanism.

Overwrite (OW). Some types of simple applications (e.g., directories, calen-
dars, . . . ) may use databases that hold a collection of independent elements
that are seldom updated. Additionally, the computational effort for those
updates is minimal. In those cases, when conflicts arise, the application is
interested in the newest updating attempt. All previous ones may be over-
written by that latest one.

These applications only need to tag the updating actions with a (logical)
timestamp, as it was suggested in [34]. In case of conflicts, the merged state
will only hold the newest update. The detection and resolution of conflicts
may be easily automated with this strategy.

Reordering (RO). When the updating operations applied in a concurrent way
at different master nodes or partitions depend on the previous state and are
conflicting, only one of them might be accepted according to the application
semantics. In that scenario, those other conflicting operations should be
discarded (using backward recovery in the nodes where they had been previ-
ously applied) and restarted. This implies an operation reordering. In some
cases, the reordering may be automated if there are deterministic criteria
that rule those reordering decisions.

Manual convergence (MC). In some cases, there are no deterministic crite-
ria to schedule conflicting operations that were rejected in the state merging
procedure. Therefore a manual merging approach is needed in that case.

From the point of view of performance, the second alternative (OW) is the best
one, since it only needs to find the newest state and apply it to the remaining
replicas. Additionally, the mechanisms needed in that case may be simple (logi-
cal timestamps or version vectors). Unfortunately, that strategy is not generally
applicable.

Commutative operations also simplify the convergence approaches. Nothing
special is needed, although missing requests should be run in those nodes that
had not seen them. This might take a long time in case of prolonged network
partitions.



1058 F. D. Muñoz, J. R. Garćıa, J. S. Sendra, J. M. Bernabéu, J. R. González de Mend́ıvil

4.2 A Guide for Performance Analysis

Considering only performance, the MM-NO-A-OW (multi-master, with no ordering
requirements, asynchronous interactions and overwrite-based merging) or MM-NO-
A-UN combinations of strategies seem to be the best ones. Up to our knowledge,
no complete performance comparison, including all identified strategies, has been
made yet. In spite of this, some research papers have analysed and compared some
of the alternatives discussed in any of those aspects.

For instance, de Juan-Maŕın et al. (2007) [19] presents a performance evaluation
of different primary-copy algorithms depending on their degree of communication
synchrony. A completely asynchronous interaction (i.e., using the A case) was able
to complete an update operation in less than 2 ms (the processing time at the server
side was around 1 ms), while the same request demanded at least 25 ms in the
2S case. In the scenarios considered in [19], synchronous interactions may worsen
communication time up to 20 times.

Golab et al. (2014) [29] propose the gamma client-centric metric for benchmark-
ing consistency. To this end, the Cassandra scalable datastore is used in [29]. It
uses a QB replication protocol. In their tested configurations with a “hotspot”
distribution, only a “read one-write one” (RQ:1, WQ:1) quorum provided a higher
proportion of consistency anomalies than strict quorums (e.g., “read all-write all”
or “read a majority-write a majority”); 1.3 % vs. 0.6 %. On the other hand, with
its “latest” distribution, the “read one-write one” quorum and the “read one-write
a majority” (RQ:1, WQ>N/2) provided more anomalies than strongly consistent
quorums (1.3 % and 0.6 %, respectively, versus 0.1 %). This means that the most
relaxed QB protocols (RQ:1, WQ:1), as expected, introduce more inconsistencies
than the traditional strongly consistent QB protocols. Such difference is up to 13
times greater in the worst case, but it is only twice greater in the common case.

Bailis et al. (2014) [7] propose eventual consistency with probabilistic bounded
staleness (PBS). Like [29], PBS uses QBP protocols. Since quorum-based protocols
use a read quorum for handling their read accesses, they may obtain up to RQ
different values in each read. So, PBS provides (K,∆, p)-regular semantics [63].
Bailis et al. evaluate the effects on both response time and consistency of different
system configurations. Thus, when response time is assessed using a workload model
that represents a peak interval in the LinkedIn servers (an example of IO-bound
workload) in a system with three replicas with p = 99.9 %, the following values are
obtained for different quorum sizes:

• RQ = 1, WQ = 1: Both read and write latencies of 0.66 ms, but requiring
1.85 ms for ensuring the intended (∆,p)-regular semantics; i.e., this introduces
a non-negligible staleness interval.

• RQ = 2, WQ = 1: Read latency of 1.63 ms, with write latency of 0.65 ms, but
without any staleness interval in spite of being a QBP configuration.

• RQ = 2, WQ = 2: Read latency of 1.62 ms, with write latency of 1.64 ms, and
without staleness, since it is the smallest QBS configuration.



Eventual Consistency: Origin and Support 1059

• RQ = 1, WQ = 3: Read latency of 0.65 ms, with write latency of 4.09 ms,
without staleness. This is the standard ROWA configuration, the recommended
QBS deployment for read-intensive applications.

That evaluation shows that those QBP configurations which minimise response
time are subject to returning stale values. However, there are other QBP configura-
tions that do not read stale values and still provide better response times than the
most efficient QBS configuration. Let us call overall latency the sum of both read
and write latencies. QBP configurations have shown an overall latency between 1.32
and 2.28 ms, while QBS ones have demanded between 3.26 and 4.74 ms. This shows
that QBP has been, as a minimum, 43 % faster than QBS (and more than N times
faster in the best case) and, in some cases, they have avoided staleness in their read
values.

These partial evaluations could be extended. Section 4.1 has identified the four
aspects to consider in every implementation of eventual consistency. Each aspect
provides multiple implementation approaches (3 in the general case, but there are
4 state convergence strategies) and this provides a total of 33 ·4 = 108 combinations.

Assuming this diversity of possible implementation approaches, developers of
scalable services need some advice on the best choice in each implementation aspect.
Those advices depend on which are the main goals for that service and on the
priorities given for each objective. Although each application may have its specific
goals, there are some common objectives for all of them. They are:

Minimal response time (mRT). Services that use eventual consistency try to
optimise their service time and the response time being perceived by their clients.

Minimal convergence effort (mCE) when no disconnection arises. When no
network partition happens, this goal measures the effort being required by the
assessed mechanism in order to reach inter-replica convergence.

Minimal convergence recovery time (mCT) once a network partition is healed.
This depends on the communication rounds being needed for transferring any
missed state, and on the concrete protocol to be used for joining that missed
state with the local state on each replica.

Minimal transfer size (mTS) once a network partition is healed. The size of the
state to be transferred (or the amount of operations to be propagated) conditions
the time being needed for recovering convergence. It is a critical goal for mobile
computers; e.g., laptops using CSCW applications [35].

Depending on a given prioritised group of goals, programmers need a guide
about which combination of implementation approaches on each aspect is the best
one for achieving them. At the moment, that guide is missing but it could be written
once some prototypes of the approaches identified in Section 4.1 were deployed and
evaluated. In order to partially fill this gap, an overall evaluation of those approaches
is given in Table 2. Four levels of achievement are considered: irrelevant (×), poor
(–), moderate (+), and good (++). A mechanism is qualified as irrelevant (×) when



1060 F. D. Muñoz, J. R. Garćıa, J. S. Sendra, J. M. Bernabéu, J. R. González de Mend́ıvil

its effect is null on a given objective. This means that it is not directly related with
that goal.

Axis and Goals
Mechanism mRT mCE mCT mTS

Replication protocol

Primary copy + ++ ++ ×
Multi-master ++ –/+ + ×
Quorum-based (strict) – – × ×
Quorum-based (partial) ++ –/+ + ×

Operation ordering

None ++ + × ×
Partial order + + × ×
Total order – + × ×

Synchronisation degree

Asynchronous ++ + × ×
One-synchronous + + × ×
Two-synchronous – + × ×

Convergence strategy

Unneeded ++ ++ + –

Overwrite ++ + ++ ++

Reordering – × – –

Manual convergence – × –

Table 2. Goals achievement level for each implementation approach

Regarding the mCE goal, there is no difference among the operation ordering
and synchronisation degree variants because in both cases there are two aspects to
consider: the degree of achieved convergence and the effort being needed. Thus, in
the operation ordering axis, when the achieved convergence is considered, the marks
are: no order (–), partial order (+), total order (++), since when every replica
applies all the operations in total order, convergence is trivially achieved; but when
the needed effort is taken into account, the marks are just the contrary: no order
(++), partial order (+), total order (–), since total order requires multiple rounds
of message exchange for being achieved [18], while “no order” does not require any
effort. So, all the alternatives receive a moderate (+) global mark. The same
happens in the synchronisation degree axis.

Considering what is shown in Table 2, the most recommendable implementation
approaches for covering each goal are:

1. Minimal response time (mRT): MM-NO-A-UN, MM-NO-A-OW, QBP -NO-A-
UN, QBP -NO-A-OW.

Regarding the replication protocol, MM and QBP are the best approaches since
they do not require any coordination among concurrently served requests. Thus,
they tolerate high concurrency without introducing any inter-request blocking.



Eventual Consistency: Origin and Support 1061

Therefore, their mark is good (++). To this end [3], the operations being man-
aged should be commutative. PC may be also combined with lazy replication
but compel every operation request to be forwarded to the same primary replica.
In the end, with heavy workloads, this might collapse such single replica, while
that same workload could be shared out among multiple masters in MM. This
explains why the PC mark is lower (+) than the MM and QBP ones. QBS

totally order conflicting write operations, using to this end its quorum-based
concurrency control algorithm. Those algorithms provide higher response time
than QBP (as shown in [7]) and are prone to deadlocks that may be avoided
using some kind of priority management among the competing concurrent lock
requestors. However, that management introduces either:

(a) the need of additional communication [46] for deciding whether a given low
priority vote may still be changed or not, or

(b) the abortion of low priority requests in case of conflict [14].

In the end, this introduces a non-negligible overhead that penalises the response
time being perceived by client processes.

The NO and A convenience in the second and third axes has already been
explained.

Finally, considering the convergence strategy, both RO and MC have a poor (–)
mark since the former needs to cancel and reapply operations to implement its
reordering and the latter requires human intervention. In both cases, the time
interval needed for those tasks becomes long, although RO automates its tasks,
being slightly better than MC. On the other hand, UN is based on non-conflicting
operations. So, no concurrency control mechanism is needed and no operation
abortion or rollback may arise [59, 60, 2]. This deserves a good (++) mark.
Such mark is shared by OW in case of objects of small size, since it also avoids
operation re-execution and immediately determines whether an incoming state
propagation should be applied or rejected in a receiver replica. The timestamps
needed for handling this can be built without problems [34].

2. Minimal convergence effort (mCE): There is a tie between all alternatives in both
the operation ordering and synchronisation degree axes. So, all their alternatives
seem to be equally adequate in this goal. The other two axes do not have ties
among their best choices, but it is worth noting that convergence strategy is the
main axis to be considered regarding this mCE goal. The replication protocol
to be used has a low impact in the final effort.

PC is able to guarantee convergence without much effort, since all replicas ac-
cept what the primary propagates and no conflicts arise. It obtains a good (++)
mark. QBS also guarantees convergence, but requires a careful voting manage-
ment that may lead to deadlocks in case of conflicts. Its mark is poor (–).
Finally, both MM and QBP do not take care of conflicts in their default proto-
cols. This guarantees a very good performance and a minimal effort. However,



1062 F. D. Muñoz, J. R. Garćıa, J. S. Sendra, J. M. Bernabéu, J. R. González de Mend́ıvil

they do not guarantee convergence by default if any pair of conflicting concur-
rent update operations exist. Thus, they also receive a poor (–) mark, although
it becomes moderate (+) if conflicts are rare.

Regarding convergence strategies, RO and MC are mechanisms needed to re-
cover convergence once it has been lost due to a network partition when every
resulting service subgroup may go on, maintaining their availability. Those
techniques are not regularly applied when no disconnection has arised. UN
is based on defining conflict-free data types. The effort should be applied at
object definition time. Once its feasibility is confirmed, there are no implemen-
tation nor execution overheads. On the other hand, OW demands operation
timestamping. Such timestamping may be based on global logical counters [34]
that are trivially built, but introduce a non-negligible overhead on message
size. This explains why the UN mark (++) is better than the OW one (+)
in this goal. As a result, every *-*-*-UN combination is worth to be considered
here.

3. Minimal convergence recovery time (mCT): This goal considers the time spent
in replica state reconciliation once a network partition is healed. The synchro-
nisation degree axis is irrelevant since it deals with inter-requests ordering and
recovery messages do not participate in that order. For the same reason, oper-
ation ordering is also irrelevant.

Regarding replication protocols, QBS should be discarded, since it was defined
for achieving strong consistency and adopts the primary partition model [15] in
case of disconnection. Apparently, PC shares the same problem, but it has an
important difference: the primary copy is an inherent leader process and be-
haves as a group representative for state transference once the network partition
disappears [20], assuming that there is a primary process per partition [5]. Thus,
PC becomes the best choice in this regard. On the other hand, MM and QBP

may need some intra-group coordination among their server processes in order
to find out which are the set of updates to be transferred. That knowledge is
immediately achieved in PC.

Finally, among the existing convergence strategies, OW is the best since it
selects the newest value in case of conflict. This means that once the net-
work connectivity is recovered a single version of each updated object needs
to be transferred. This minimises the amount of needed messages and their
size. UN needs to transfer all missed operations among process groups. This
demands more time and space than in OW. So, its mark (+) is worse than
that of OW. Finally, RO demands operation cancellation and re-execution for
merging the missed updates in order to define an agreed history sequence.
This is still more time demanding than in UN. MC demands human inter-
vention and this implies larger intervals than every other (automated) solu-
tion.



Eventual Consistency: Origin and Support 1063

Taking into account all these aspects, every PC-*-*-OW combination is worth
considering in this goal.

4. Minimal transfer size (mTS): This goal is highly related with the previous one,
but the replication protocol is unimportant in this case, since that protocol
does not condition what data needs to be transferred. As a result, only the
convergence strategy should be assessed.

OW provides an immediate criterion for reducing the size of the data to be trans-
ferred in the reconciliation stage. It only propagates the latest known version of
each modified object. This deserves a good mark (++).

UN and RO need to transfer to the reconnected system groups either their
missed operations or their effects, since convergence is usually recovered once
every operation is known by every system process. This usually means a larger
transfer size than in OW, since OW has a clear criterion for selecting a single
value per element, while these two other approaches have no transfer minimis-
ing criterion. This is the worst possible behaviour in this regard and it explains
their poor mark (–).

MC requires human intervention to solve conflicts. The amount of data to be
applied may be minimal (the user decides, and such decision may be better than
other automated ones, since users may consider many more aspects than those
included in a program). However, human conflict resolution needs to manage
at least a summary of the conflicting operations. That information should be
transferred to the computer that manages user interaction for conflict resolution.
Thus, in the end, this alternative needs two data transfer phases, since later on,
such decision should be announced and the results or the code of the accepted
operations should be propagated to the participating nodes that had missed
their effects. The overall size and cost of these approaches strongly depend on
the concrete mechanisms being used in each phase. Thus, its mark is left blank
since it is system-dependent, but it could not be better than moderate (+) since
it requires two data transfer phases.

The best combinations in this goal are those that match the *-*-*-OW pattern.
Although UN, RO and MC are not recommended, they only need some crite-
rion to reduce the size of missed updates before transferring them in order to
improve their mark. Some criteria examples have been proposed elsewhere. For
instance, delta-state CRDTs [2] reduce the amount of elements to be modified
by each pending operation, improving in this way the behaviour of UN. Also,
they transfer only the latest value of the updated elements in case of long lasting
partitions. With those extensions, the mark differences between OW and other
mechanisms may vanish.

An exhaustive experimental evaluation of all existing alternatives for implement-
ing eventual consistency is unapproachable, since there are too many combinations
to be considered. Table 2 has shown a high level assessment of all those alternatives,
providing a first guide for choosing the best basic approaches in each concrete goal.



1064 F. D. Muñoz, J. R. Garćıa, J. S. Sendra, J. M. Bernabéu, J. R. González de Mend́ıvil

No single combination is the best for all possible goals. In some proposals [2], this
has led to the implementation of several mechanisms in a particular axis, using the
best of them in each particular scenario.

4.3 Strategies along Time

With the aim of complementing our historical revision started in Section 2, Ta-
ble 3 shows which papers were the first using some combinations of implementation
strategies discussed in this section. In order to have a wider variety, some strongly
consistent protocols are also in the table.

The table shows how each protocol deals with the CAP theorem when a network
partition occurs. In that case, each protocol needs to decide whether consistency
is relaxed or availability is sacrificed. In the A column, a Y (yes) means that
availability is maintained in every replica, while an N (no) means that some replicas
remain unavailable. The C column shows which is the strongest consistency model
being supported by the available replicas while the network remains partitioned.
The “relaxed” value means that any of the relaxed models identified in Section 3,
or even none at all, is enough in that proposal since it is assuming commutative
operations.

The entry for Alsberg and Day shows the information about the variant of their
protocol that admits multi-master management with commutative operations. The
2PC abbreviation represents the two phase commit protocol explained in [44] in
order to decide the fate of distributed transactions. That final protocol introduces
two synchronous communication stages at the end of each distributed transaction.
Despite tolerating lazy propagation, the algorithms described by Lindsay et al. do
not admit progress in all subgroups when the network is partitioned.

Repl. CAP mgmnt.
Paper prot. Order Sync. Converg. C A Year

Johnson and Thomas [34] MM NO, PO A, 1S OW FIFO Y 1975

Bunch [12] PC TO 2S N/A strong N 1975

Alsberg and Day [3] MM NO 1S UN relaxed Y 1976

Lindsay et al. [44] PC, QB PO 2S 2PC strong N 1979

Parker et al. [52] MM PO 1S MC causal Y 1981

Apers and Wiederhold [4] – PO 1S RO strong N 1985

Ladin et al. [39] MM PO, TO 1S UN causal Y 1990

Shapiro and Preguiça [59] MM NO,PO A UN relaxed Y 2007

Almeida et al. [2] MM NO A UN relaxed Y 2015

Table 3. Implementation strategies used in several proposals

Table 3 shows that one of the first implementations of eventual consistency,
that of Johnson and Thomas (1975) [34], already provided one of the best com-
binations of implementation approaches regarding response time: MM-NO-A-OW.



Eventual Consistency: Origin and Support 1065

However, its OW strategy for state convergence cannot be used in every applica-
tion; it is adequate for small objects like those assumed in [34]. Until 2007, with
the proposal of CRDTs [59], we were not able to find a solution of similar quality
(MM-NO-A-UN). However, its NO approach for operation ordering and UN strat-
egy for state convergence is based on commutative operations, that require their
re-execution at every replica. Besides, CRDTs require partial order (causal propa-
gation) in case of using their state-based variant. Delta-based CRDTs [2] fix that
problem, since they use the same solution (MM-NO-A-UN) but relying on partial
delta state transfers, avoiding in this way potentially costly re-executions at recep-
tion time. This guarantees an excellent performance. Due to this, delta-CRDTs
are used in the implementation of some modern NoSQL databases, like Riak and
Cassandra.

5 CONCLUSIONS

A discussion on several aspects of eventual consistency has been provided. Even-
tual consistency is basically a liveness property (data convergence) to be added
to relaxed consistency models. Due to this, it had not had a formal specification
similar to other consistency conditions since they have been usually specified as
safety constraints. However, Bouajjani et al. [10] and Burckhardt [13] have recently
proposed specifications that carefully characterise safety (program correctness) and
liveness (eventual state convergence) correctness conditions for eventually consistent
services.

Although eventual consistency has received a lot of attention nowadays when
elastic and geo-replicated distributed services have been developed, it was already
suggested in several papers 40 years ago. Therefore, it is not a new concept. A short
historical review has been presented, describing some of the oldest although relevant
works in this subject.

The border between inherently convergent and relaxed models has been set.
Those relaxed models (e.g., PRAM and causal) may be taken as a basis for im-
plementing eventually consistent services. This shows that eventual consistency is
quite a relaxed condition, and allows us to extend the classical CAP theorem con-
straints, since CAP’s consistency not only encompasses the atomic model but also
every consistency based on consensus.

Finally, four complementary aspects have been identified for implementing even-
tual consistency. In each aspect, several alternatives exist, and this means that there
are many implementation strategies for developing eventually consistent services.
A performance evaluation guide for assessing those strategies has been given, iden-
tifying the best combination of mechanisms for achieving some concrete application
goals.



1066 F. D. Muñoz, J. R. Garćıa, J. S. Sendra, J. M. Bernabéu, J. R. González de Mend́ıvil

REFERENCES

[1] Ahamad, M.—Burns, J. E.—Hutto, P. W.—Neiger, G.: Causal Memory. Pro-
ceedings of the 5th International Workshop on Distributed Algorithms and Graphs
(WDAG ’91), Delphi, Greece, 1991, pp. 9–30.

[2] Almeida, P. S.—Shoker, A.—Baquero, C.: Efficient State-Based CRDTs by
Delta-Mutation. In: Bouajjani, A., Fauconnier, H. (Eds.): Networked Systems (NE-
TYS 2015). Springer, Cham, Lecture Notes in Computer Science, Vol. 9466, 2015,
pp. 62–76.

[3] Alsberg, P.—Day, J. D.: A Principle for Resilient Sharing of Distributed Re-
sources. Proceedings of the 2nd International Conference on Software Engineering
(ICSE ’76), San Francisco, CA, USA, 1976, pp. 562–570.

[4] Apers, P. M. G.—Wiederhold, G.: Transaction Classification to Survive a Net-
work Partition. Technical report, STAN-CS-85-1053, Department of Computer Scien-
ce, Stanford University, Stanford, CA, USA, 1985.

[5] Asplund, M.—Nadjm-Tehrani, S.—Beyer, S.—Galdámez, P.: Measuring
Availability in Optimistic Partition-Tolerant Systems with Data Constraints. 37th

Annual IEEE/IFIP International Conference on Dependable Systems and Networks
(DSN ’07), Edinburgh, UK, 2007, pp. 656–665, doi: 10.1109/DSN.2007.62.

[6] Attiya, H.: Robust Simulation of Shared Memory: 20 Years After. Bulletin of the
EATCS, Vol. 100, 2010, pp. 99–113.

[7] Bailis, P.—Venkataraman, S.—Franklin, M. J.—Hellerstein, J. M.—
Stoica, I.: Quantifying Eventual Consistency with PBS. The VLDB Journal,
Vol. 23, 2014, No. 2, pp. 279–302.

[8] Bernstein, P. A.—Das, S.: Rethinking Eventual Consistency. Proceedings of
the 2013 ACM SIGMOD International Conference on Management of Data (SIG-
MOD ’13), New York, NY, USA, 2013, pp. 923–928, doi: 10.1145/2463676.2465339.

[9] Birrell, A. D.—Levin, R.—Needham, R. M.—Schroeder, M. D.: Grapevine:
An Exercise in Distributed Computing. Communications of the ACM, Vol. 25, 1982,
No. 4, pp. 260–274, doi: 10.1145/358468.358487.

[10] Bouajjani, A.—Enea, C.—Hamza, J.: Verifying Eventual Consistency of Opti-
mistic Replication Systems. Proceedings of the 41st ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages (POPL ’14), San Diego, CA, USA,
2014, pp. 285–296, doi: 10.1145/2535838.2535877.

[11] Budhiraja, N.—Marzullo, K.—Schneider, F. B.—Toueg, S.: Optimal
Primary-Backup Protocols. In: Segall, A., Zaks, S. (Eds.): Distributed Algorithms
(WDAG ’92). Springer, Berlin, Heidelberg, Lecture Notes in Computer Science,
Vol. 647, 1992, pp. 362–378.

[12] Bunch, S. R.: Automated Backup. In: Alsberg, P. (Ed.): Research in Network
Data Management and Resource Sharing. Preliminary Research Study Report, CAC
Document Number 162, University of Illinois at Urbana-Champaign, USA, 1975,
pp. 71–106.

[13] Burckhardt, S.: Principles of Eventual Consistency. Foundations and Trends in
Programming Languages, Vol. 1, 2014, No. 1–2, pp. 1–150, doi: 10.1561/2500000011.

https://doi.org/10.1109/DSN.2007.62
https://doi.org/10.1145/2463676.2465339
https://doi.org/10.1145/358468.358487
https://doi.org/10.1145/2535838.2535877
https://doi.org/10.1561/2500000011


Eventual Consistency: Origin and Support 1067

[14] Carey, M. J.—Livny, M.: Distributed Concurrency Control Performance: A Study
of Algorithms, Distribution, and Replication. Proceedings of the 14th International
Conference on Very Large Data Bases (VLDB ’88), Los Angeles, CA, USA, 1988,
pp. 13–25.

[15] Chockler, G. V.—Keidar, I.—Vitenberg, R.: Group Communication Specifi-
cations: A Comprehensive Study. ACM Computing Surveys, Vol. 33, 2001, No. 4,
pp. 427–469, doi: 10.1145/503112.503113.

[16] Cosell, B. P.—Johnson, P. R.—Malman, J. H.—Schantz, R. E.—
Sussman, J.—Thomas, R. H.—Walden, D. C.: An Operational System for
Computer Resource Sharing. Proceedings of the 5th ACM Symposium on Oper-
ating Systems Principles (SOSP ’75), Austin, Texas, USA, 1975, pp. 75–81, doi:
10.1145/800213.806524.

[17] Davidson, S. B.: Optimism and Consistency in Partitioned Distributed Database
Systems. ACM Transactions on Database Systems, Vol. 9, 1984, No. 3, pp. 456–481,
doi: 10.1145/1270.1499.

[18] Défago, X.—Schiper, A.—Urbán, P.: Total Order Broadcast and Multicast
Algorithms: Taxonomy and Survey. ACM Computing Surveys, Vol. 36, 2004, No. 4,
pp. 372–421, doi: 10.1145/1041680.1041682.

[19] de Juan-Maŕın, R.—Decker, H.—Muñoz-Escóı, F. D.: Revisiting Hot Passive
Replication. Proceedings of the 2nd International Conference on Availability, Relia-
bility and Security (ARES ’07), Vienna, Austria, 2007, pp. 93–102.

[20] de Juan-Maŕın, R.—Decker, H.—Armendáriz-́Iñigo, J. E.—Bernabéu-
Aubán, J. M.—Muñoz-Escóı, F. D.: Scalability Approaches for Causal Multicast:
A Survey. Computing, Vol. 98, 2016, No. 9, pp. 923–947.

[21] Demers, A. J.—Greene, D. H.—Hauser, C.—Irish, W.—Larson, J.—
Shenker, S.—Sturgis, H. E.—Swinehart, D. C.—Terry, D. B.: Epidemic Al-
gorithms for Replicated Database Maintenance. Proceedings of the 6th Annual ACM
Symposium on Principles of Distributed Computing (PODC ’87), Vancouver, BC,
Canada, 1987, pp. 1–12, doi: 10.1145/41840.41841.

[22] Fekete, A.—Gupta, D.—Luchangco, V.—Lynch, N. A.—Shvarts-
man, A. A.: Eventually-Serializable Data Services. Proceedings of the 15th

Annual ACM Symposium on Principles of Distributed Computing (PODC ’96),
Philadelphia, PA, USA, 1996, pp. 300–309, doi: 10.1145/248052.248113.

[23] Fekete, A. D.—Ramamritham, K.: Consistency Models for Replicated Data. In:
Charron-Bost, B., Pedone, F., Schiper, A. (Eds.): Replication: Theory and Prac-
tice. Chapter 1. Springer, Berlin, Heidelberg, Lecture Notes in Computer Science,
Vol. 5959, 2010, pp. 1–17.

[24] Fischer, M. J.—Lynch, N. A.—Patterson, M. S.: Impossibility of Distributed
Consensus with One Faulty Process. Journal of the ACM, Vol. 32, 1985, No. 2,
pp. 374–382, doi: 10.1145/3149.214121.

[25] Fischer, M. J.—Michael, A.: Sacrificing Serializability to Attain High Availabil-
ity of Data. Proceedings of the 1st ACM SIGACT-SIGMOD Symposium on Princi-
ples of Database Systems (PODS ’82), Los Angeles, CA, USA, 1982, pp. 70–75, doi:
10.1145/588111.588124.

https://doi.org/10.1145/503112.503113
https://doi.org/10.1145/800213.806524
https://doi.org/10.1145/1270.1499
https://doi.org/10.1145/1041680.1041682
https://doi.org/10.1145/41840.41841
https://doi.org/10.1145/248052.248113
https://doi.org/10.1145/3149.214121
https://doi.org/10.1145/588111.588124


1068 F. D. Muñoz, J. R. Garćıa, J. S. Sendra, J. M. Bernabéu, J. R. González de Mend́ıvil

[26] Fox, A.—Brewer, E. A.: Harvest, Yield and Scalable Tolerant Systems. Proceed-
ings of The Seventh Workshop on Hot Topics in Operating Systems (HotOS ’99), Rio
Rico, Arizona, USA, 1999, pp. 174–178, doi: 10.1109/HOTOS.1999.798396.

[27] Gifford, D. K.: Weighted Voting for Replicated Data. Proceedings of the 7th ACM
Symposium on Operating Systems Principles (SOSP ’79), Pacific Grove, CA, USA,
1979, pp. 150–162, doi: 10.1145/800215.806583.

[28] Gilbert, S.—Lynch, N.: Brewer’s Conjecture and the Feasibility of Consistent,
Available, Partition-Tolerant Web Services. ACM SIGACT News, Vol. 33, 2002,
No. 2, pp. 51–59, doi: 10.1145/564585.564601.

[29] Golab, W. M.—Rahman, M. R.—Auyoung, A.—Keeton, K.—Gupta, I.:
Client-Centric Benchmarking of Eventual Consistency for Cloud Storage Sys-
tems. 2014 34th IEEE International Conference on Distributed Computing Systems
(ICDCS), Madrid, Spain, 2014, pp. 493–502.

[30] Goodman, J. R.: Cache Consistency and Sequential Consistency. Technical report,
No. 61, IEEE Scalable Coherent Interface Working Group, 1989.

[31] Herbst, N. R.—Kounev, S.—Reussner, R. H.: Elasticity in Cloud Computing:
What It Is, and What It Is Not. 10th International Conference on Autonomic Com-
puting (ICAC), San Jose, CA, USA, 2013, pp. 23–27.

[32] Herlihy, M. P.—Wing, J. M.: Linearizability: A Correctness Condition for
Concurrent Objects. ACM Transactions on Programming Languages and Systems,
Vol. 12, 1990, No. 3, pp. 463–492, doi: 10.1145/78969.78972.

[33] Hutto, P. W.—Ahamad, M.: Slow Memory: Weakening Consistency to Enchance
Concurrency in Distributed Shared Memories. Proceedings of the 10th IEEE Interna-
tional Conference on Distributed Computing Systems (ICDCS), Paris, France, 1990,
pp. 302–309, doi: 10.1109/ICDCS.1990.89297.

[34] Johnson, P. R.—Thomas, R. H.: The Maintenance of Duplicate Databases.
RFC 677, Network Working Group, Internet Engineering Task Force, 1975, doi:
10.17487/rfc0677.

[35] Kawell Jr., L.—Beckhardt, S.—Halvorsen, T.—Ozzie, R.—Greif, I.:
Replicated Document Management in a Group Communication System. Proceedings
of the 1988 ACM Conference on Computer-Supported Cooperative Work (CSCW),
Portland, Oregon, USA, 1988, p. 395, doi: 10.1145/62266.1024798.

[36] Krishnakumar, N.—Bernstein, A. J.: Bounded Ignorance in Replicated Sys-
tems. Proceedings of the 10th ACM SIGACT-SIGMOD-SIGART Symposium on Prin-
ciples of Database Systems (PODS ’91), Denver, Colorado, USA, 1991, pp. 63–74, doi:
10.1145/113413.113419.

[37] Kumar, A.—Stonebraker, M.: Semantics Based Transaction Management Tech-
niques for Replicated Data. Proceedings of the 1988 ACM SIGMOD International
Conference on Management of Data (SIGMOD ’88), Chicago, Illinois, USA, 1988,
pp. 117–125, doi: 10.1145/50202.50215.

[38] Kumar, P.—Satyanarayanan, M.: Log-Based Directory Resolution in the Coda
File System. Proceedings of the 2nd International Conference on Parallel and Dis-
tributed Information Systems (PDIS ’93), San Diego, CA, USA, 1993, pp. 202–213,
doi: 10.1109/PDIS.1993.253092.

https://doi.org/10.1109/HOTOS.1999.798396
https://doi.org/10.1145/800215.806583
https://doi.org/10.1145/564585.564601
https://doi.org/10.1145/78969.78972
https://doi.org/10.1109/ICDCS.1990.89297
https://doi.org/10.17487/rfc0677
https://doi.org/10.1145/62266.1024798
https://doi.org/10.1145/113413.113419
https://doi.org/10.1145/50202.50215
https://doi.org/10.1109/PDIS.1993.253092


Eventual Consistency: Origin and Support 1069

[39] Ladin, R.—Liskov, B.—Shrira, L.: Lazy Replication: Exploiting the Semantics
of Distributed Services. Proceedings of the 9th Annual ACM Symposium on Prin-
ciples of Distributed Computing (PODC ’90), Quebec City, Quebec, Canada, 1990,
pp. 43–57, doi: 10.1145/93385.93399.

[40] Lakshman, A.—Malik, P.: Cassandra: A Decentralized Structured Storage Sys-
tem. ACM SIGOPS Operating Systems Review, Vol. 44, 2010, No. 2, pp. 35–40, doi:
10.1145/1773912.1773922.

[41] Lamport, L.: Time, Clocks, and the Ordering of Events in a Distributed Sys-
tem. Communications of the ACM, Vol. 21, 1978, No. 7, pp. 558–565, doi:
10.1145/359545.359563.

[42] Lamport, L.: How to Make a Multiprocessor Computer That Correctly Executes
Multiprocess Programs. IEEE Transactions on Computers, Vol. 28, 1979, No. 9,
pp. 690–691, doi: 10.1109/TC.1979.1675439.

[43] Lamport, L.: On Interprocess Communication. Distributed Computing, Vol. 1,
1986, No. 2, pp. 77–101.

[44] Lindsay, B. G.—Selinger, P. G.—Galtieri, C. A.—Gray, J. N.—
Lorie, R. A.—Price, T. G.—Putzolu, F.—Traiger, I. L.—Wade, B. W.:
Notes on Distributed Databases. Technical report, RJ2571 (33471), IBM Research
Laboratory, San Jose, CA, USA, 1979.

[45] Lipton, R. J.—Sandberg, J. S.: PRAM: A Scalable Shared Memory. Technical
report, CS-TR-180-88, Princeton University, USA, 1988.

[46] Maekawa, M.: A
√
N Algorithm for Mutual Exclusion in Decentralized Systems.

ACM Transactions on Computer Systems, Vol. 3, 1985, No. 2, pp. 145–159.

[47] Mockapetris, P. V.: Domain Names – Concepts and Facilities. RFC 882, Network
Working Group, Internet Engineering Task Force, 1983, doi: 10.17487/rfc0882.

[48] Mockapetris, P. V.: Domain Names – Implementation and Specification. RFC
883, Network Working Group, Internet Engineering Task Force, 1983, doi:
10.17487/rfc0883.

[49] Mosberger, D.: Memory Consistency Models. ACM SIGOPS Operating Systems
Review, Vol. 27, 1993, No. 1, pp. 18–26, doi: 10.1145/160551.160553.

[50] Muñoz-Escóı, F. D.—Bernabéu-Aubán, J. M.: A Survey on Elasticity Manage-
ment in PaaS Systems. Computing, Vol. 99, 2017, No. 7, pp. 617–656.

[51] O’Neil, P. E.: The Escrow Transactional Method. ACM Transactions on Database
Systems, Vol. 11, 1986, No. 4, pp. 405–430.

[52] Parker, D. S.—Popek, G. J.—Rudisin, G.—Stoughton, A.—
Walker, B. J.—Walton, E.—Chow, J. M.—Edwards, D. A.—Kiser, S.—
Kline, C. S.: Detection of Mutual Inconsistency in Distributed Systems. In:
Berkeley Workshop, 1981, pp. 172–184.

[53] Pascual-Miret, L.—González de Mend́ıvil, J. R.—Bernabéu-
Aubán, J. M.—Muñoz-Escóı, F. D.: Widening CAP Consistency. Technical
report, IUMTI-SIDI-2015/003, Universitat Politècnica de València, Valencia, Spain,
2015.

https://doi.org/10.1145/93385.93399
https://doi.org/10.1145/1773912.1773922
https://doi.org/10.1145/359545.359563
https://doi.org/10.1109/TC.1979.1675439
https://doi.org/10.17487/rfc0882
https://doi.org/10.17487/rfc0883
https://doi.org/10.1145/160551.160553


1070 F. D. Muñoz, J. R. Garćıa, J. S. Sendra, J. M. Bernabéu, J. R. González de Mend́ıvil

[54] Pascual-Miret, L.—Muñoz-Escóı, F. D.: Replica Divergence in Data-Centric
Consistency Models. 2016 27th International Workshop on Database and Expert Sys-
tems Applications (DEXA Workshops), Porto, Portugal, 2016, pp. 109–112.

[55] Pu, C.—Leff, A.: Replica Control in Distributed Systems: An Asynchronous Ap-
proach. Proceedings of the 1991 ACM SIGMOD International Conference on Man-
agement of Data (SIGMOD ’91), Denver, Colorado, USA, 1991, pp. 377–386, doi:
10.1145/115790.115856.

[56] Saito, Y.—Shapiro, M.: Optimistic Replication. ACM Computing Surveys,
Vol. 37, 2005, No. 1, pp. 42–81.

[57] Sarin, S. K.—Blaustein, B. T.—Kaufman, C. W.: System Architecture
for Partition-Tolerant Distributed Databases. IEEE Transactions on Computers,
Vol. C-34, 1985, No. 12, pp. 1158–1163.

[58] Satyanarayanan, M.—Kistler, J. J.—Kumar, P.—Okasaki, M. E.—
Siegel, E. H.—Steere, D. C.: Coda: A Highly Available File System for a Dis-
tributed Workstation Environment. IEEE Transactions on Computers, Vol. 39, 1990,
No. 4, pp. 447–459, doi: 10.1109/12.54838.

[59] Shapiro, M.—Preguiça, N. M.: Designing a Commutative Replicated Data Type.
Technical report RR-6320, INRIA, Rocquencourt, France, 2007.

[60] Shapiro, M.—Preguiça, N. M.—Baquero, C.—Zawirski, M.: Convergent
and Commutative Replicated Data Types. Bulletion of the EATCS, Vol. 104, 2011,
pp. 67–88.

[61] Tanenbaum, A. S.—van Steen, M.: Distributed Systems – Principles and
Paradigms. 2nd edition, Pearson Education, 2007.

[62] Terry, D. B.—Demers, A. J.—Petersen, K.—Spreitzer, M. J.—
Theimer, M. M.—Welch, B. B.: Session Guarantees for Weakly Consistent
Replicated Data. Proceedings of the 3rd International Conference on Parallel and
Distributed Information Systems (PDIS ’94), Austin, Texas, USA, 1994, Art. No. 19.

[63] Viotti, P.—Vukolić, M.: Consistency in Non-Transactional Distributed Storage
Systems. ACM Computing Surveys, Vol. 49, 2016, No. 1, Art. No. 19.

[64] Vogels, W.: Eventually Consistent. ACM Queue, Vol. 6, 2008, No. 6, pp. 14–19,
doi: 10.1145/1466443.1466448.

[65] Walker, B. J.—Popek, G. J.—English, R.—Kline, C. S.—Thiel, G.: The
LOCUS Distributed Operating System. Proceedings of the 9th ACM Symposium on
Operating Systems Principles (SOSP ’83), Bretton Woods, New Hampshire, USA,
1983, pp. 49–70, doi: 10.1145/800217.806615.

[66] Yu, H.—Vahdat, A.: Design and Evaluation of a Continuous Consistency Model
for Replicated Services. Proceedings of the 4th Symposium on Operating Systems
Design and Implementation (OSDI ’00), San Diego, CA, USA, 2000, pp. 305–318.

https://doi.org/10.1145/115790.115856
https://doi.org/10.1109/12.54838
https://doi.org/10.1145/1466443.1466448
https://doi.org/10.1145/800217.806615


Eventual Consistency: Origin and Support 1071

Francesc D. Mu~noz-Esco�� received his Ph.D. in computer
science from Universitat Politècnica de València (UPV) in 2001.
He currently works as Associate Professor at UPV. He has pub-
lished more than 100 papers in international conferences and
journals. His research interests cover multiple distributed system
areas: group communication services, distributed algorithms,
replication protocols, recovery approaches, distributed data ma-
nagement, elastic services and cloud computing.

José-Ramón Garc��a-Escriv�a received his final degree in
computer science from UPV in 1987, where he currently works as
Associate Professor. He has been involved as researcher in more
than 20 projects. His interests cover both web technologies and
distributed system areas.

Juan Salvador Sendra-Roig currently works as Associate
Professor at UPV. His research interests cover string algorithms
and several distributed system areas: distributed algorithms,
replication protocols, distributed data management, and index-
ing and pre-processing of massive text data.

José M. Bernab�eu-Aub�an received his Ph.D. in computer
science from Georgia Institute of Technology (USA) and cur-
rently works as Full Professor at UPV where he leads the Dis-
tributed Systems Research Group. He has led the Instituto Uni-
versitario Mixto Tecnológico de Informática at UPV from 1994
to 2004 and since 2014 up to now. From 2004 to 2011, he joined
Microsoft Corp. working actively in the architecture, design and
development of the Windows Azure platform, co-authoring some
of its patents. He has written multiple papers in journals and
conferences in different distributed system areas. He has led

more than 30 research projects in those fields.



1072 F. D. Muñoz, J. R. Garćıa, J. S. Sendra, J. M. Bernabéu, J. R. González de Mend́ıvil

José Ramón Gonz�alez de Mend��vil received his Ph.D. in
sciences from the University of the Basque Country (Spain)
in 1993 and currently works as Full Professor at Universidad
Pública de Navarra where he leads the Distributed Systems re-
search group. He has written several papers in journals and
conferences in different distributed system areas: distributed
algorithms, deadlock detection, deadlock resolution, replicated
databases, and replication protocols. His current interest is de-
signing elastic services for PaaS using fuzzy performance models.


