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Abstract. In computing, duplicate data detection refers to identifying duplicate
copies of repeating data. Identifying duplicate data items in streamed data and
eliminating them before storing, is a complex job. This paper proposes a novel data
structure for duplicate detection using a variant of stable Bloom filter named as
FingerPrint Stable Bloom Filter (FP-SBF). The proposed approach uses counting
Bloom filter with fingerprint bits along with an optimization mechanism for dupli-
cate detection. FP-SBF uses d-left hashing which reduces the computational time
and decreases the false positives as well as false negatives. FP-SBF can process un-
bounded data in single pass, using k hash functions, and successfully differentiate
between duplicate and distinct elements in O(k + 1) time, independent of the size
of incoming data. The performance of FP-SBF has been compared with various
Bloom Filters used for stream data duplication detection and it has been theoreti-
cally and experimentally proved that the proposed approach efficiently detects the
duplicates in streaming data with less memory requirements.
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1 INTRODUCTION

With the exponential increase in data generation resources, paradigm of analytics
has changed from static to dynamic processing especially in data mining applica-
tions. Advancements in application areas of IoT [4] and cloud computing [3] have
shifted the focus of big data analytics towards streaming data analytics. In appli-
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cations like network monitoring, sensor networks, data management in web appli-
cations, etc. [11], data is generated in various forms which include IP of system in
network applications, URL of web page visited, sensor readings, unique user name
used by user in social networking sites, etc. [26].

On-line monitoring of data streams and eliminating duplicates is an important
issue in stream analytics. For redundant data elimination, primary focus should
be on differentiating between duplicate and distinct element in the data stream.
Detecting duplicates in streams becomes more difficult because of unbounded nature
of data coming at high rate and necessity of processing data in one pass by using
limited amount of memory [7].

Conventional databases and traditional data mining techniques are efficient for
stored data analytics but for in-streamed data, where data is ariving continously, it
is not feasible to store the data into a database and then perform mining operations
since all such applications demand time bound query output.

In applications where efficiency is more important than accuracy, use of prob-
abilistic approaches and approximation algorithms can serve as a key ingredient in
data processing. Probabilistic methodologies provide quick answers with an allow-
able error rate compared to deterministic approaches that give exact matches, and
which are slow and memory consuming [20].

1.1 Standard Bloom Filter

Bloom Filter (BF) [8], a space efficient probabilistic data structure, is used to rep-
resent a set S of n elements from a universe U . It consists of an array of m bits,
denoted by BF [1, 2, . . . ,m], initially all set to 0. To describe the elements in the
set, the filter uses k independent hash functions h1, h2, . . . , hk with their value rang-
ing between 1 to m; assuming that these hash functions independently map each
element in the universe to a random number uniformly over the defined range. For
each element x ∈ S; the bits BF [hi(x)] are set to 1 s.t. 1 < i < k. Given an item y,
its membership is checked by examining the BF whether the bits at positions h1(y),
h2(y), . . . , hk(y) are set to 1. If all hi(y) (1 < i < k) are set to 1, then y is consid-
ered to be part of S, otherwise y is definitely not a member of S. The accuracy of
a Bloom filter, (fp) depends on the filter size m, the number of hash functions k,
and the number of elements n. User can predefine false positive error according to
application’s requirement.

fp = (1− e−kn/m)k. (1)

1.2 Application Domains

Some real time problems related to different domains are explored in this section,
where duplicate detection is required to perform analysis on the streaming data.

Duplicate item identification is a common problem faced by social networking
sites like Twitter, Facebook, Instagram, etc. where multiple copies of same event
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(tweet or post) are generated for same input by multiple users, which keep on ap-
pearing continuously from different sources on the user’s screen. In such scenarios,
the primary need is to identify duplicate events and group them together to improve
the user’s experience [21]. Another important event related to duplicate detection
is URL crawling. Search engines regularly crawl the Web to enlarge their collec-
tions of Web pages. While scanning a URL, search engine’s task is to identify the
new web pages and add them to its repository. So, the basic task in this scenario
is comparing each scanned URL with all existing URLs in its database to identify
duplicate URLs [18]. In network monitoring applications, selecting distinct IP ad-
dresses is a task associated with duplicate detection. In networks, a particular server
is checked for unique hits. This analytics facilitates in understanding the pattern of
traffic which helps in efficient allocation of network resources [13]. Web advertising
is easy and most effective way to publicize a product where advertisers pay web
site publishers for number of clicks on their advertisements. Fake clicks may be
generated (by using scripts) to increase the profit of the publisher. To detect the
duplicate users in clicks is thus associated with duplicate detection task [22].

We propose a novel duplicate detection technique using a variant of stable Bloom
filter [13] named as FingerPrint Stable Bloom Filter (FP-SBF). The proposed ap-
proach uses stable Bloom filter with fingerprint bits and optimization mechanism
which reduces the computational time and decreases the false positives as well as
false negatives using d-left hashing. Optimized deletion mechanism is used to evict
the data from Bloom filter to make more space for incoming data. It uses constant
space irrespective of the size of incoming data and accommodates more number
of elements before reaching the saturation stage. Based on above mentioned im-
provements in existing approach, the proposed Bloom filter outperforms the stable
Bloom filter in detecting the duplicates in streaming data, both theoretically and
experimentally.

The plan of this paper is as follows: Section 2 provides literature study on
Bloom filter and its variants. Section 3 states the duplicate detection problem and
challenges associated with it. In Section 4, proposed approach is discussed in detail.
Section 5 provides experimental results on both real datasets and synthetic data,
comparing existing approaches with the proposed approach. Section 6 discuses use
case scenarios for proposed approach. Finally, Section 7 concludes the paper with
possible future extensions in this area.

2 RELATED WORK

2.1 Duplicate Detection

Duplicate detection is the task of detecting unique entries in unbounded data
streams. Duplicate elimination is a crucial intermediate step in data processing and
analytics of the incoming streams. The problem of finding approximate duplicate
items has been studied in the contexts of data management and Web applications.
Data streams are generally unbounded and traditional DBMS approaches of accom-
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modating whole stream in the memory leads to very high memory utilization. We
need to provide results for the query in minimum time with less computational cost
and minimum memory requirements.

There are many solutions for the duplicate detection problem [21] but our main
focus is on the solutions based on usage of Bloom filters for efficient detection of
duplicate datasets in streaming data. In window based approaches, for every new
input arriving from the stream, an old entry is evicted by adjusting the size of
window. Recent work done in window based framework for duplicate detection using
Bloom filter is by Metwally et al. [22]. In their work three type of window based
approaches are defined: landmark window, sliding window and jumping window.
In landmark window approach, incoming data is processed as disjoint portions of
the stream, which are separated by landmarks. Landmarks can be defined either in
terms of time, e.g. on a daily or weekly basis, or in terms of the number of elements
observed. In landmark window approach, whole data from Bloom filter is deleted
upon reaching the new landmark. Since individual element deletion is not performed
in this approach, a simple Bloom filter is used. In sliding window approach size
of window is not fixed, it grows as the incoming data from stream grows. The
element deletion is also not allowed in this approach so simple Bloom filter is used in
implementation. The full size of window is maintained to query old data. Querying
process in sliding window has more computational cost as compared to landmark
window. Landmark window requires less space as compared to sliding window but
there are chances of some missed values in case of landmark window because upon
reaching new landmark previous data is deleted. The jumping window is based on
idea of dividing the individual element window into smaller sub windows and usage
of counting Bloom filter to accommodate more number of elements. The latest sub
window active for insertion is referred as jumping window or current window. As
the latest sub-window crosses its threshold, jumping window is moved to next sub-
window and oldest sub-window is deleted. So these window based approaches either
need dynamic size that leads to extra computation and expensive query process
or they remove a large chunk of data together which may lead to the higher false
negatives [27].

Another solution is use of buffering and caching methods, used in many database,
network applications, URL caching and web crawling. Some Bloom based buffering
techniques include double buffering and A2 buffering. In double buffering [10] two
different buffers of size m

2
are maintained. As one filter crosses its threshold, insertion

starts in second and when second filter is full, i.e., this filter reaches its threshold,
then whole data from the first one is drained and insertion is again started in the
first filter. For query process, first active filter, i.e., current filter in which insertion
is being done recently, is checked and if query returns false then previous filter is
scanned. In A2 buffering [28] similar approach is used, in this, when active filter
reaches its 50 % capacity, the insertion is started in both filters, and when active
filter is full, its data is evicted by resetting it to zero. In buffering approaches
element wise deletion is not allowed so a simple Bloom filter is used. Buffering
approaches store data for short time with large redundancy. Handling data streams
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with buffering leads to wastage of memory; further it is computationally costlier to
check the threshold of Bloom filter at every step.

Recently variant of Bloom filter for duplicate detection in stream named as
Stable Bloom Filter (SBF) has been proposed by Deng and Rafiei [13]. Counting
Bloom filter with c bits in counter is used as the base of its implementation. Be-
fore inserting any element in the stream, it is checked that whether the incoming
element is queried earlier in the stream or not. If query returns TRUE, i.e., val-
ues of counters corresponding to hash indexes are high, then element is marked as
duplicate and element is not inserted, but if query returns FALSE indicating that
the element is observed for the first time in the stream, element is added. Before
insertion begins, SBF makes space for incoming elements by randomly decrementing
the values of counter by one in each iteration. In insertion process, k hash func-
tions are computed and correspondingly hash value counters are set to Max , where
Max = 2c−1. The main advantage of this approach is that it provides query results
on streaming data in O(k), independent of the size of incoming data, using constant
memory.

Another technique proposed for duplicate detection is Reservoir Sampling based
Bloom Filter (RSBF), a hybrid of reservoir sampling and Bloom filter [14]. It uses
k Bloom filters, each of size s bits. Insertion of an element is performed after query
process. One hash function of each Bloom filter is reserved. If hash index associated
with each Bloom filter is found HIGH then element is considered as duplicate and
insertion is not performed. Else, insertion is performed by setting corresponding
k bits HIGH in k Bloom filters. To accommodate streaming data in fixed size
Bloom filters, random deletion is done by resetting k randomly selected bits to
LOW. RSBF uses same amount of memory as SBF, has fast convergence rate and
shows significant improvement in false negatives but it does not provide a significant
improvement in false positives.

Streaming Quotient Filter (SQF) is another duplicate detection algorithm based
on probabilistic data structures [15]. In proposed model, Dutta et al. use Quotient
filter for approximate membership query instead of Bloom filter. SQF maintains
a hash table and bucket associated with each element in hash table. Hashing is
done at two levels: first element is mapped to hash table and then correspond-
ing to hash table entry, hashing is done in bucket by using quotienting technique.
SQF performs efficiently in detecting false positives and false negatives but the pre-
processing time for converting data into binary form for quotienting and hashing at
two levels increases the computational time many folds. Another drawback associ-
ated with SQF is that because of clustering, operations like insertion and searching
are difficult to perform in parallel.

2.2 Counting Bloom Filter (CBF) and Its Variants

Counting Bloom filter, introduced by Fan et al. [17], uses a counter of c bits
where range of counter is {1, 2c − 1}. Based upon the hash indexes computed, i.e.
k
i=1hi(x) =k

i=1 Hi(x), insertion and deletion operations are performed on the counters.
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Whenever an element is added or deleted from the CBF, the corresponding coun-
ters are incremented or decremented, respectively. CBF is primarily used to answer
frequency queries. Although it can be efficiently used for applications where dele-
tion operation is required, the memory overhead for CBF as compared to standard
Bloom filter is significantly large and determining value of counter is a difficult pro-
cess. Number of variants of CBF have been proposed to overcome such issues and
maximize the storage of counting Bloom filter with minimum memory requirements
and less false positive and false negative rates.

Some important variants of CBF are discussed in this section. In Spectral Bloom
filter [12] value of smallest counter is increased when a new element is inserted and
query process returns minimum count for an element from the counter selected. It is
mainly used for storing the multi sets data and supports frequency query. Another
improvement in CBF was done by improving hashing technique and called d-left
counting Bloom filter [9], in which CBF with d-left hashing was used to calculate
index values of hash functions by dividing Bloom filter into sub tables. Use of this
efficient hashing in CBF leads to less number of collisions. It is used for element
lookups and fingerprint matching applications. Deletable Bloom filter [24], another
variant of CBF, optimizes the process of deletion by using probabilistic approach
for element removal. It keeps the record of regions with high collisions, i.e., the
regions where probability of deletion is quite high. The main aim of this variant is
to minimize false negatives. It finds application in source routing to avoid loops,
middle-box services like load balancer, firewalls, etc.

Recent variants of CBF include Variable Increment Counting Bloom Filter (VI-
CBF) and FingerPrint based Counting Bloom Filter (FP-CBF). In VI-CBF [25]
two different sets of hash functions are maintained, first set of hash functions, i.e.
Hk
i=1, decide the indexes on which increment is performed, and another set of hash

functions, i.e. Gk
i=1, decide the value from a set DL = {L,L + 1, . . . , 2L − 1} by

which increment is performed on the selected indexes. Same process is followed in
deletion operation. It decreases the false positives by a huge factor as compared
to standard CBF. Some limitations of VI-CBF are that implementation is more
complex, calculations for two hash functions lead to extra computational cost and
more bits are required to avoid overflow of counters.

Pontarekki et al. proposed FP-CBF [23], where each counter has some extra
bits denoted as fingerprint bits. The main idea behind the use of these bits is to
provide a second level check in querying operation and reduce false positive and false
negatives. Here each index of d bits is divided into counter bits (c) and fingerprint
bits (f = d − c). In insertion process, indexes for update are computed (based
on the k hash functions used) and corresponding to these indexes all counters are
incremented by one. A separate hash function Hfp is used to update the fingerprint
cell of all selected indexes with XOR operation. In querying process, values of
counters are checked and if all values are high then second level check is performed
by matching Hfp value of queried element with fingerprint cells. If values of Hfp

in all fingerprint cells match, query returns TRUE value. FP-CBF provides more
accurate results with minimum computational effort.
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2.3 d-Left Hashing

Hashing is another important aspect to determine the accuracy of a Bloom filter.
Variants of CBF use advance hashing techniques like double hashing [1], multiple
hashing [6], perfect hashing scheme [5], etc. Recently cuckoo hashing [16] has been
used in CBF which has shown drastic decrease in error rates. Major concern in
cuckoo hashing is that computational cost associated with swapping of elements is
quite high and pre-processing cost in insertion of each element is also quite high.
Another important hashing, d-left hashing refereed as perfect hashing technique, can
be used to reduce the collisions by great extent. Further, it is easy to implement
and requires less computational and pre-processing cost.

d-left hashing is a minimal perfect hashing approach, where a hash table of
size M is divided into d sub tables of size md, where md = M

d
. Each element in

sub table is referred as bucket Bi and b denotes the maximum capacity of bucket.
During insertion operation, k hash functions are used to compute the hash indexes
and select the buckets. New item is placed in the bucket which is least loaded.
If there is tie between two buckets then bucket on left side is selected to perform
insertion operation.

For an element ui ∈ U , hash functions are calculated as:

∀ki=1 (κi(ui) = `1(ui) + i× `2(ui) mod m). (2)

Each hash function κi(.) selects ith bucket from a sub array. Double hashing
is used for hash function generation, where two independent hash functions `1(x)
and `2(x) are used to generate k hash functions such that ∀i|i < k. To get best
results of this scheme, m should be prime, so size of array and number of buckets
should be choosen in such a way that m

d
returns a prime number. This technique

leads to less inter-hash function collision; further, usage of only two hash functions
to generate all k hash functions decreases the computational overhead. Theoretical
and experimental evidences prove that it helps in reduction of collision as a huge
factor [9, 19].

3 PROBLEM STATEMENT

The main emphasis of the paper is to detect duplicate data sets in the data stream.
The problem can be summarized as: Given an input stream S = {x1, x2, . . . , xi, . . . ,
xn} with N elements; where N → ∞, i.e. unbounded stream of data, identify
whether xi appears in S or not in a given space M , where (M << N). Challenges
associated with duplicate detection include:

1. Preprocessing effort for each element should be minimum for fast results.

2. Eviction of stale data is necessary as the memory size of the filter is fixed.

3. Response time for query should be minimum and independent of the size of
data.
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4 PROPOSED WORK

Figure 1. Structure of FP-SBF

To solve the duplicate detection task efficiently using minimum memory some
approximation based processing techniques need to be applied on streaming data.
A variant of Stable Bloom filter (SBF) named as FingerPrint Stable Bloom filter
(FP-SBF) is proposed to detect duplicates in streaming data. FP-SBF is an array
of indexing [1, . . . ,m] of size M where each element of array is represented by d bits
(i.e. M = m×d). d bits of each element are further divided into two parts: c bits for
buckets and f bits for fingerprint as indicated in Figure 5. Bucket bits (c bits) are
used as counter, where range of counter values is <c ← {1, {Max = (2c − 1)}} and
f = (d − c) bits are fingerprint bits, also called FingerPrint Cell (FPC). FP-SBF
uses d-left hashing with (k + 1) hash functions, where k hash functions are used to
select the appropriate index from m elements and update bucket’s counter to Max
and one hash function Hfp is used to update fingerprint cell of each selected index.
Since available memory space is fixed, old data should be evicted to make room for
new data. Parameter ξ called Eviction Rate (ER) is used to control the eviction of
stored data in Bloom filter.

The task of detecting duplicate from the streams using FP-SBF consists of fol-
lowing steps (Algorithm 1):

1. Detection: Query the existing data to find whether current data element xi
exists in the filter or not.

2. Deletion: Remove the data randomly by decrementing the values of buckets to
make spaces for new incoming elements.

3. Insertion: Insert the data in the filter by updating the corresponding bucket
and fingerprint cells, if the element is not present in the array.
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Algorithm 1 Duplicate Detection in Streams (DDS) using FP-SBF

1: procedure DDS(FP-SBF[], S,Hk, Hfp) . Check whether xi element is present
in the stream or not

2: for ∀xi ∈ S do
3: if Detection(xi) == TRUE then . Duplicate detected
4: Element appeared previously in the filter, no insertion

required

5: else
6: if Random(ξ) > Threshold then . Check for threshold and then

insertion is performed
7: Delete()
8: end if
9: Insert(xi)

10: end if
11: end for
12: end procedure

4.1 Detection

To detect an element xi in FP-SBF, k+1 hash functions Hk
1 and Hfp are used. Cor-

responding to k hash functions, indexes are generated, i.e. hk1 ← Hk
1 , and following

checks are performed (Algorithm 2):

1. If any of the bucket corresponding to hk1 is set to zero, duplicate detection
mechanism returns false, i.e. xi /∈ (x1, . . . , xi−1).

2. If all buckets are non-zero, Hfp(xi) is computed for xi and all fingerprint cells of
indexes hk1 are checked. If Hfp(xi) is not found in any FPC, duplicate detection
mechanism returns FALSE, i.e. xi ∈ (x1, . . . , xi−1).

3. If step 1. and 2. (mentioned above) are false then xi is duplicate, i.e., it is
previously seen in the stream (x1, . . . , xi−1), hence no need to perform further
operations.

Deletion and insertion operations are invoked when detection process fails, i.e.,
element is not found in the stored stream. False positives may occur in the detection
due to hash function collision of two different elements, i.e., bucket set high by xi
returns detection results as TRUE, resulting in identification of a distinct element
as duplicate element.

A false negative in duplicate detection on streamed data occurs when a duplicate
element (xi) is wrongly reported as a distinct element. Eviction process in FP-SBF
leads to decrement the value of buckets to zero, i.e., for an element which is present
in stream, the value of bucket is decremented to zero and this element is regarded
as a distinct element although it is a duplicate element.
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Figure 2. Flowchart of detection process in FP-SBF

4.2 Deletion or Eviction of Data

To accommodate unbound data in constant memory, it is necessary to evict the data
at regular intervals. FP-SBF applies an optimized deletion approach which evicts
the data quickly and decreases false positives (Algorithm 3).

Algorithm 2 Detection

1: procedure Detection(FP-SBF[], xj, Hk, Hfp)
2: ∀i|(1 < i < k) Calculate hash hki=1(xj)← Hk

i=1(xj)
3: if (∀i|(1 < i < k)), [hki=1(xj) > 0] then
4: hfp(xj)← Hfp(xj)
5: if (∀i|(1 < i < k)), [FPCi = hfp(xj)] then
6: Return TRUE
7: else
8: Return FALSE
9: end if

10: else
11: Return FALSE
12: end if
13: end procedure



FingerPrint Based Duplicate Detection in Streamed Data 1323

k indexes are selected randomly with probability p and decremented by a value z,
s.t. z ∈ (1, 2, . . . , 2c − 1). Deletion process is invoked after i iterations where i is
selcted randomly. This process is controlled by Evicting Rate (ER) parameter ξ()
<ξ → {0, 1}). Steps followed to accomodate incoming data are:

1. In every iteration, check if Random(ξ) returns a value more then defined thresh-
old, where Random(ξ) is a function which generates random values as per the
value of ξ provided to it. If Random(ξ) is greater than defined threshold then
deletion is performed else steps 2. to 4. are skipped

2. If step 1. is false, i.e., threshold is not reached, select k index, i.e., hk1(D) for
deletion where probability of any cell being selected is ( p

m
).

3. Select a random value of z for each selected index hk1(D) from a given range
<z → {1, 2c − 1}.

4. For each index selected in step 3. decrement the value of bucket by z.

Deletion frequency can be increased by increasing value of ξ. Fingerprint cell of
selected indexes remains unaffected in the deletion process.

Figure 3. Flowchart of eviction process in FP-SBF

4.3 Insertion

To insert an element xi, k + 1 hash functions are used. Steps followed for insertion
of an element are (Algorithm 4):
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Algorithm 3 Deletion Process

1: procedure Delete(FP-SBF[], pd,<z)
2: Select k cells from m with probability p
3: Lki=1 are the selected cells for decrement operation.
4: Select a value to be decremented from each bucket

5: z ← Random(<z)
6: (∀i|(1 < i < k)) Bucket [Li] = (Bucket [Li]− z)
7: end procedure

1. Hashing is done to get the indexes, i.e. hk1(xi)← Hk
1 (xi).

2. Buckets are updated:
Set(hk1(xi)) = Max

where Max = (2c − 1).

3. Fingerprint cell is updated:

hfp(xi)← Hfp(xi).

hfp(xi) is used to update the corresponding FPC of selected indexes. FPCi ←
(FPCi) XOR (hfp(xi)).

Figure 4. Flowchart of insertion in FP-SBF

4.4 Stable Property (SP)

Stable property assures that after ` iterations, the fraction of zeros in SBF/FP-SBF
will be fixed, i.e., they will not depend on any parameter. In FP-SBF number of
iterations ` required to achieve SP is depended on eviction rate ξ. It has been proved
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Algorithm 4 Insertion in FP-SBF

1: procedure Insert(FP-SBF[], xj, Hk, Hfp)
2: (∀i|(1 < i < k)) Calculate hash hki=1(xj)← Hk

i=1(xj)
3: (∀i|(1 < i < k))Set(Bucket [hi]← Max )
4: hfp(xi)← hfp(xj)
5: (∀i|(1 < i < k)) do
6: FPCi ← (FPCi) XOR hfp(xj)
7: end procedure

theoretically and experimentally that SP plays an important role in determining false
positive rate.

Theorem 1. In FP-SBF with m cells, each cell is updated to Max with a prob-
ability pi = ( k

m
) and each cell is decremented by a value z ∈ (1, . . . , 2c − 1) with

a probability pd = ( p
m

). The probability that cells become zero after N iterations as
N →∞ is constant. i.e.

lim
N→∞

N∑
i=1

Pr(ASBFi = 0)⇒ Constant

where ASBFN is value of cell at the end of N iterations.

Proof. For each element of stream, three possible operations are detection, deletion
and insertion. Only deletion and insertion will effect the values of buckets. After
N operations, a bucket can be set to Max ≤ N times and decremented with certain
value < N times. Let pi be probability of a bucket to be selected for insertion given
by pi = k

m
; pd be probability of a bucket to be selected for deletion, i.e. pd = p

m
, and

ξ be Evicting rate for FP-SBF. Al denotes that no insertion has been performed in
the bucket in recent l iterations (l < N); probability of event Al is given by:

Pr(Al) = (1− pi)lpi. (3)

AN denotes that no insertion is performed in any bucket in N iterations, its
probability is:

Pr(AN) = (1− pi)N . (4)

Since no insertion operation is performed in a particular bucket for N iterations,
probability of having value zero in that bucket following event AN is:

Pr(ASBFN = 0|AN) = 1. (5)

P0, probability that after deletion operation value of bucket is zero is:

P0 = ξ × pd × Pr(Pi = 0|(FP − SBF [i] = x)) (6)
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where value of Pr(Pi = 0|(FP − SBF [i] = x)) is dependent on the current value in
the bucket and z value selected from Deletion Value Set (1, 2c − 1) is given by:

Pr(Pi = 0|(FP − SBF [i] = x)) =
∆[(z ≥ x)&(z ∈ DVS )]

∆(z ∈ DVS )
. (7)

∆() is function which counts the number of values of z ∈ DVS , to calculate the
sample space and favorable events for deletion.

When a bucket follows event Al, the probability that after N iterations where
N > l the decrement operation will reset the bucket value to zero is given by:

Pr(ASBFN = 0|Al) =
l∑

j=Max

(
l

j

)
P j
0 (1− P0)

l−j. (8)

Thus, for a random element, probability Pr(ASBFN = 0) that the bucket is
zero after N iterations is given by:

Pr(ASBFN = 0) =
N−1∑
l=Max

[Pr(ASBFN = 0|Al)Pr(Al)]

+ Pr(ASBFN = 0|AN)Pr(AN).

(9)

In FP-SBF, if bucket is not set to Max in l iterations, more then one oper-
ations are required to decrement its value to zero, i.e., for l ≤ Max cell can be
decreased to zero and for l = N AN event occurs. So from Equation (9) it is proved
that limN→∞ Pr(ASBFN = 0). Hence, proposed FP-SBF follows stable property
principle of standard SBF efficiently and with less computational complexity. 2

Definition 1 (Convergence Rate (CR)). From the stable point property, each
bucket has fixed probability of being set to Max and constant probability of being
reset to zero after certain iterations. P0, probability that a cell becomes zero is same
for all buckets. Thus, expected number of zeros in FP-SBF converges exponentially
and Convergence Rate (CR) can be derived using Equation (9):

CR = Pr(ASBFN = 0)− Pr(ASBFN−1 = 0). (10)

Definition 2 (Stable point). It is the expected fraction of zeros in SBF, when data
is unbounded. Using Theorem 1 probability of values in bucket being set to zero is
constant, i.e.

Pr(ASBFN = 0) =
N−1∑
l=Max

[Pr(ASBFN = 0|Al)Pr(Al)]

+ Pr(ASBFN = 0|AN)Pr(AN).

(11)
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Let H be the number of cells that are set to Max and L be the number of cells
that are decremented to zero after certain number of iterations (from Theorem 1),
then expected number of zeros in FP-SBF, i.e. stable point property of FP-SBF, is
given by (ZSP ):

ZSP =

(
1

1 + 1
L( 1

H
− 1

m
)

)Max

. (12)

The optimization in the decrement operation will help to achieve stable point in
FP-SBF in less number of iterations with less computational complexity, which will
further help to detect parameters like false positives and negatives at earlier stage.

4.5 False Positives (FPs) Analysis

Theorem 2. When SBF reaches a stable point, the FPs is given by:

FP = FFP-SBF −RFFPC

where FFP-SBF is error due to collision in buckets of FP-SBF and RFFPC denotes
the reduction factor in FPs due to fingerprint cells.

Proof. False positives are generated when distinct element in the stream is wrongly
reported as duplicate. FPs are directly dependent on number of zeros at particular
point in FP-SBF, i.e., when stable point is reached FPs can be estimated. Change
in fingerprint cell of each bucket helps to improve FPs by providing a second level
check. In case of collision in the buckets, FFP-SBF is dependent on the number zeros
in the filter. More the number of zeros, less the collisions and less FPs. When stable
point is reached, number of zeros becomes constant and after certain iterations,
H buckets are set to Max and L are decremented to zero; FFP-SBF is given:

FFP-SBF =

(
1

1 + 1
L( 1

H
− 1

m
)

)Max

. (13)

RFFPC is the reduction factor in detection procedure due to fingerprint cells
when all buckets corresponding to hash indexes are high. It acts like a second level
check on these f bits. Since the possibility of FPs is one out of 2f cases in finger-
print cells, it helps in reducing the FPs by a fixed factor. Assuming that insertion
operation is performed I times on k indexes (equal to number of hash functions)
and fingerprint cells are updated by XOR operation; RFFPC , the probability of not
having collision in f bits in m FPC’s is:

RFFPC =

[(
2f − 1

2f

)(
1

m

)(
I

1

)(
1− 1

f

)I−1]k
. (14)
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From Equations (13) and (14), FPs in FP-SBF are given by:

FPs =

(
1

1 + 1
L( 1

H
− 1

m
)

)Max

−

[(
2f − 1

2f

)(
1

m

)(
I

1

)(
1− 1

f

)I−1]k
. (15)

Thus, the use of fingerprint cell helps to reduce the FPs by a significant factor
and improve the accuracy of the duplicate detection system. 2

4.6 False Negative Rate (FNs) Analysis

Theorem 3. At stable point FNs for FP-SBF are given by:

FNs = FRFP-SBF + EFPC

where FFP-SBF is error due to deletion operation on buckets of FP-SBF and EFPC
denotes the error in fingerprint cell due to the collision of Hfp function.

Proof. A false negative in duplicate detection on streamed data occurs when a du-
plicate element (xi) is wrongly reported as distinct element. This happens during
decrement operation when some buckets associated with hashed indexes of xi are
decremented to zero, before appearing in the stream or there is a mismatch in fin-
gerprint cells when all the buckets have high value corresponding to xi.

Suppose xi appears second time in the stream after δ iterations and hj=kj=1(xi)
denotes the corresponding hash indexes and pij is probability that a particular cell Cj
is set to Max. In δ iterations, some bucket from hj=kj=1(xi) are reduced to zero. The
probability of error due to buckets resetting (FRFP-SBF) is same as in Equation (9);
given by:

FRFP-SBF = 1−
k∏
j=1

(1− Pr(ASBFδ = 0)) (16)

and probability that after δ iterations a particular bit of FP-SBF is zero, i.e.
Pr(ASBFδ = 0), is given by:

Pr(ASBFδ = 0) =
δ−1∑

l=Max

[Pr(ASBFN = 0|Al)Pr(Al)]

+ Pr(ASBFN = 0|AN)Pr(AN).

(17)

So FN is function of δ and pij given by:

FRFP-SBF = 1−
k∏
j=1

(1− Pr(δj, pij)). (18)
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EFPC , chance of false negatives due to error in Hfp hash function in fingerprint
cell is due to the collision in changing bits because of XOR operation in δ itera-
tions. In m size array, selected k FPCs are checked and mismatch in any of them
leads to failure in detection process, i.e., a duplicate is reported as distinct element.
After f iterations, chances that erroneously reported elements are 1 out of 2f for δ
iterations using k hash function is given by:

EFPC =

[(
1

2f

)(
1

m

)(
δ

1

)(
1− 1

f

)δ−1]k
. (19)

FNs for FP-SBF is given by:

FNs =

(
1−

k∏
j=1

(1− Pr(ASBFδ = 0))

)
+

[(
1

2f

)(
1

m

)(
δ

1

)(
1− 1

f

)δ−1]k
.

(20)
Use of FPCs shows great improvement in decreasing the FPs of FP-SBF in all

cases. 2

Theorem 4. For given inputs k, Max , f , FPs and Hfp; processing each data item
of the stream requires O(k+ 1) time which is independent of the size of Bloom filter
and the incoming data stream.

Proof. In duplicate detection, the primary goal is minimization of error rates while
using constant space, and time complexity in the detection process should be inde-
pendent of the nature and size of data stream, i.e., there should be constant pro-
cessing time for each element. First step in duplicate detection is to check whether
an element is seen previously in the stream or not. For this first k hash functions
are computed for buckets and then one hash function is calculated for fingerprint
cell. For given parameters k, Max , f , FPs with constant values, there is no effect of
element and the detection process is also independent of the size of Bloom filter (m)
(Algorithm 1).

From Algorithm 1 and analysis performed above it is concluded that processing
time in duplicate detection is only dependent on number of hash functions, i.e.
O(k + 1). 2

5 OBSERVATIONS AND ANALYSIS

The theoretical analysis has been provided in previous sections for some important
parameters, i.e. Max , H, L, m, ξ, false negatives (FN ) and false positives (FP);
where H is number of cells set to Max in insertion operation (i.e. equal to number
of hash functions), L denotes the number of cells selected for the decrement operation
and m is fixed amount of memory used for the Bloom filter.

False positives can be bounded according to user specified requirements. Since
the false negatives in the fixed amount of memory are depended on deletion operation
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they cannot be bounded in specified limits. Two parameters, desired false positive
(FP) rate and size of the Bloom filter (m) are taken as input from user and other
parameters like Max , H, L are selected in such a way that false negatives are
minimal. The parameter ξ is also user defined and helps to control the frequency of
deletion operation.

For user defined FPs , m and for constant values of Max and H; L is defined as:

L =

 1(
1

(1−FPs1/H)
1/Max − 1

)
(1/H − 1/m)

 . (21)

Equation (21) helps to find value of L, i.e. number of cells selected for decrement
operation. From the value of L (calculated in Equation (21)) pd, the probability
of selecting cells for decrement, and P0, probability that after certain decrement
operations value of cell is zero, can be derived.

Parameter H is equal to the number of hash functions used (k). E(FN) denotes
the expected number of false negatives in the stream. Optimal value of H should be
selected to minimize the FNs. With Ñ as the number of false negatives in a stream
of N elements, E(FN) is:

E(FN) =
Ñ∑
i=1

(Pr(FNRi)) , (22)

E(FN) =
Ñ∑
i=1

((
1−

k∏
j=1

(1− Pr(ASBFδ = 0))

)

+

[(
1

2f

)(
1

m

)(
δ

1

)(
1− 1

f

)δ−1]k . (23)

The value of Max is dependent on size of input data and the number of hash func-
tions used. Optimal value of Max can be derived from Equation (23) by minimizing
FNs . For efficient memory utilization Max should be set 2c− 1. The remaining bits
that are not allocated to counter are used as fingerprint bits. For fixed amount of
cells when value of Max is increased, the effectiveness of fingerprint cell is reduced.

The optimization in deletion process is controlled by user defined parameter ξ
and Rand(ξ) function is used to set the frequency of deletion operation; larger the
value of ξ more frequently the deletion operation is performed and vise versa.

All the experiments have been performed on i7-3612QM CPU @ 2.10 GHz with
8 GB of RAM. To maintain the uniformity in the results CityHash 64 bit library [2]
is used to calculate two hash functions in double hashing. Data set of 100 k el-
ements with 70 % distinct entires and 30 % duplicate entires has been generated
using R-studio.
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a) b)

c) d)

e) f)

Figure 5. False negatives variation with different parameters
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Figure 6. Stable point

Comparative analysis has been performed between SBF, RSBF and FP-SBF. All
the experiments indicate that the proposed approach outperforms SBF and RSBF;
both the approaches used for duplicate detection in the streamed data using Bloom
filters.

Figure 5 shows the impact on false negatives with variations in size of Bloom
filter (m), size of counter in bucket (Max ), number of fingerprint bits (f), number
of hash functions (k) and false positives (FP). All results have been evaluated using
fixed values for the required parameters.

As shown in Figure 5 a), false negatives decrease with the increase in size of
Bloom filter; the more the space, the less the effect of deletion operation and
the less the false negatives. Figure 5 b) indicates the change in false negatives
with respect to fingerprint bits in FP-SBF; since the results of SBF and RSBF
are not effected by value of f , so false negatives remain the same. In FP-SBF
first false negative increases when f is small; for f = 3, the accuracy is same
as in the RSBF, but as the value of f increases, the acurracy of the proposed
scheme increases. Figure 5 c) indicates that as the number of hash functions in-
creases more positions need to be checked, increasing the chances of false nega-
tives. With the change in predefined false positives the changes in false negatives
are indicated by Figure 5 d) showing that the more the FPs , the bigger error is
allowed; the less deletion operations, the less false negatives appear. δ denotes
the average number of iterations between two similar items in the stream, effect
of δ on false negatives is shown in Figure 5 e) which clearly shows that as the



FingerPrint Based Duplicate Detection in Streamed Data 1333

a) b)

c) d)

Figure 7. False positives variation with different parameters

value of δ increases, duplicates are detected after more iterations, hence more dele-
tion operations are performed between two similar elements, so chances are high
that a duplicate is detected as a distinct element. Figure 5 f) shows the change
in false negatives with respect to bucket size Max ; the larger the bucket size, the
more operations are required to reset it to zero and the less false negatives ap-
pear.

Figure 6 depicts the number of iterations required to achieve stable point,
i.e. constant fraction of zeros in the Bloom filter. Initially, the filter is empty
so number of zero is 100 %. As the number of iterations increases, more inser-
tion operations are performed and number of zeros is reduced; after some time
deletion operation is also performed and later number of zeros becomes constant.
Both RSBF and FP-SBF perform efficiently in achieving the stable point but FP-
SBF has the advantage of controlling the deletion operation by using optimized
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deletion process which reduces the number of iterations required to reach stable
point.

Figure 7 provides the false positives analysis which shows that with the use of
finger print bits false positives are drastically reduced in the FP-SBF, as compared
to RSBF and SBF. In Figure 7 a) false positives increase with the size of counter in
bucket, but the use of fingerprint bits in the FP-SBF helps to reduce it to a great
extent. Figure 7 b) shows that the more the number of fingerprint bits used the
less false positives appear in duplicate detection task. Figure 7 c) indicates that the
larger the size of Bloom filter used, the less false positives appear. Number of hash
functions is always a critical factor in the Bloom filter, Figure 7 d) shows that the
more hash functions used, the less false positives appear.

6 DISCUSSION

FP-SBF uses fingerprint bits to improve the accuracy of the task and there are cases
when false negatives increase with the reduction in false positives. Few use cases
are discussed below to analyse the output in various scenarios.

• Parameter tunning in FP-SBF which can decrease the false positives to minimum
level is:

MFP ((Max > 3), (f > 3), (m > 5× 105), (k > 5)). (24)

Case I – where FP-SBF can be used successfully – includes:

– IoT data streams, where data is coming from number of sensors, FP-SBF
can be used to check the identity of the sensors.

– Detection of the first time user in real time data streams of online shop-
ping platforms for promotional strategies.

– Detection of the active users in social networking websites like Twitter,
Facebook, etc., from the number of posts registered in the given time
span t.

• Parameter tunning in FP-SBF which can decrease the false negatives to mini-
mum level is:

MFN((δ < 1 000), (Max > 4), (f > 4), (m > 4× 106), (2 < k < 5)). (25)

Case II – where FP-SBF might not be the best option – includes:

– Medical domain, where life saving critical decisions need to be taken.
– Surveillance and monitoring of real time data for security and safety

purposes.
– Online detection of financial frauds like credit card fraud, money laun-

dering activities, illegal betting, etc.
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7 CONCLUSION

Duplicate detection task on streaming data in one pass is among the most impor-
tant tasks associated with in-stream analytics. To accommodate unbounded data
and detect the duplicate in stream, the proposed framework FP-SBF uses advanced
stable Bloom filter with fingerprint bits to decrease error rate. d-left hashing has
been used which leads to less collisions and update minimum number of counters in
insertion operation. Further d-left hashing improves the accommodation capacity
of Bloom filter and improve accuracy in results. A randomized approach in dele-
tion process is used to reduce the computational overhead as compared to existing
technique. Results achieved clearly indicate that the proposed framework performs
efficiently for duplicate detection problem and further parameters can be tunned
according to specific application’s requirement.
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