
Computing and Informatics, Vol. 38, 2019, 173–196, doi: 10.31577/cai 2019 1 173

CL-VIS: VISUALIZATION PLATFORM
FOR UNDERSTANDING AND CHECKING
THE OPENCL PROGRAMS

SeongKi Kim

Division of Computer Science Engineering
Keimyung University, 1095, Dalgubeol-daero, Dalseo-Gu
Daegu, Republic of Korea
e-mail: skkim9226@gmail.com

HyukSoo Han

Department of Computer Science
Sangmyung University, 20, Hongjimun 2-gil, Jongno-Gu
Seoul, Republic of Korea
e-mail: hshan@smu.ac.kr

Abstract. Due to GPU’s improved hardware performance, many researchers have
tried to utilize the GPU for computer vision, image processing, cryptography, and
artificial intelligence. As results, the GPU could successfully speed up algorithms
from tens to hundreds of times in many cases. However, GPU programming is still
known to be difficult because of its different characteristics from the traditional CPU
programming. Also, it is hard to find the root causes of software failures because
the failures are irreproducible in many cases. Our goal is to simplify the process
of verifying intended actions when debugging GPGPU programs. To achieve this
goal, we use the visualization method of executed codes because it can increase
the human’s understanding through seeing and analyzing the real actions by each
thread. We developed a platform that can visualize the running OpenCL codes and
algorithms that can identify data race, barrier divergence, and infinite loop in the
GPU. To the best of our knowledge, this is the first study on the visualizations
of OpenCL operations and detection of infinite loops in the programs. We also
suggest an algorithm for detecting data race with GPU-specific lock-step execution
and barrier function.

Keywords: Visualization, GPGPU, debug, data race, barrier divergence, infinite
loop

174 S. Kim, H. Han

1 INTRODUCTION

To meet the user’s increasing demands for realistic software and the increasing
display resolution (e.g. Full HD (1 920 × 1 080), Ultra HD (3 840 × 2 160)), the
sizes of visual data (e.g. Texture, Vertex, Color, Normal) have become larger, and
the GPU has improved. Also with the improvements, GPGPU platforms, such
as Compute Unified Device Architecture (CUDA) [13] and Open Computing Lan-
guage (OpenCL) [20], enabled the programming of the GPU for general purposes.
Many researchers have tried to use them for performance improvements in different
fields. As a result, the GPU could successfully accelerate algorithms for computer
vision [17], image processing [7], cryptography [29], and artificial intelligence [19]
fields. Furthermore, many researchers have built GPU-based supercomputers that
are ranked highly in top 500 websites [22] and used for complex calculations.

Although the GPGPU has been widespread, most of the previous studies con-
centrated on performance improvement and correctness of results, without much
focus on debugging GPGPU programs. Recently, GPGPU has started to become
widespread in safety-critical systems, and its software faults can become impor-
tant issues, shortly. For example, computer vision algorithms, deep learning within
a car [14] or medical imaging [21] can exploit the GPGPU, but the failure of these
systems can lead to a severe accident.

Regardless of the importance of error-free GPGPU programs, GPGPU is hard to
program, and the possibilities of mistakes are high because of the following reasons.
First, GPU’s characteristics are different from the CPU. Because of it, we cannot
simply convert the codes for CPU to the ones for GPU. The simple conversion
can lead to a minor performance benefit in many cases, or the conversion can be
impossible in many cases because of different characteristics. Second, the results
of GPU codes may be different if a different number of threads or thread groups is
employed. The developers can alter the number of threads for optimization cases,
and the change may cause unexpected results from the inter-thread intervention.
Third, the number of GPU threads can be huge (e.g. 10 000 000), and some failures
can be irreproducible because their causes are from the thread scheduling or status.

In addition to the programming/debugging difficulties attributed to different
characteristics, and thread intervention, data race, barrier divergence, and infinite
loop also make the GPGPU programming error-prone. The data race can be a sig-
nificant problem particularly in the GPU because a vast number of threads may
access the same memory at the same time. These simultaneous accesses can cause
an unexpected problem depending on the access orders of many threads. The barrier
divergence is a specific problem to the GPU and can cause unexpected results in
many cases. It happens when all of the GPU threads within a group do not reach
the same barrier point. Differently from the traditional CPU case, the infinite loop
can happen by GPU-specific lock-step execution.

To minimize these difficulties in GPGPU programming and help in checking the
GPGPU programs, some tools such as Nsight systems [24], Allinea DDT [25], Pro-
filer [27] and mem-check [26] have been developed for the CUDA platform. However,

CL-Vis 175

the Nsight does not support the visualization of GPU codes but the visualization of
CPU codes only. In addition, Allinea DDT, profiler, and cuda-memcheck are devel-
oped only for the CUDA platform. To make up for these limitations, we developed
the visualization platform for the OpenCL case. The contribution of this paper
is as follows. First, we suggest a visualization method of running OpenCL codes.
Second, we propose a heuristic for finding the GPU-specific infinite loop. Third, we
suggest a method for finding data races with the GPU-specific lockstep execution
and barrier function.

The rest of this paper is organized as follows. Section 2 describes the OpenCL,
Oclgrind as well as Data Race/Barrier Divergence/Infinite Loops as backgrounds
and related works. Section 3 describes the GPU-specific characteristics and issues
in more detail. Section 4 describes our visualization methods and algorithms for
finding data races, barrier divergences, and infinite loops at the GPU and their
rationales. Section 5 describes the results through our implementations, and the
conclusion is drawn in Section 6.

2 BACKGROUND AND RELATED WORKS

In this paper, we used the OpenCL as a GPGPU language because it is an open
standard regardless of vendor and platforms. For background knowledge, this section
describes OpenCL and Oclgrind. Also for related works, this section introduces the
previous works for data race, barrier divergence and infinite loop at the GPU.

2.1 OpenCL

OpenCL is an open standard for heterogeneous computing and allows the program-
ming of the CPU or GPU. Apple Inc. [1] originally developed the OpenCL, and the
Khronos Group [15] maintains it presently. The Khronos Group defines the speci-
fication [10] of OpenCL so that all vendors should support for compatibility. The
specification defines four different models in terms of platform, execution, memory,
and programming aspects.

Platform Model: The platform model describes a host and a device. The host is
a central unit that executes the main program, divides works to each device,
and collects the results from each device. A device is a target unit that runs
the parallel parts of a program. A device can have many compute units, and
each compute unit can have many processing elements. Figure 1 illustrates these
relations.

In Figure 1, a host creates a context to compute device 1 and enqueues com-
mands to the device through the established context. The device schedules the
commands, delivers them to the compute units and the processing elements ac-
cording to its policy, and each processing element runs the commands. The CPU
or GPU can be one of the devices.

176 S. Kim, H. Han

Figure 1. OpenCL platform model

Execution Model: The execution model defines a host program and a kernel. The
host program is a program that runs on the host. A kernel is a function executed
on the compute device. When the host program sends the commands (kernel
execution, memory read, memory write), it also sends the number of work-groups
and work-items. Work-group is a group of threads that run the same operation
and runs on a compute unit. Work-item is a thread and executes on a processing
element. Figure 2 illustrates the decompositions of work-groups and work-items
handled by OpenCL.

Figure 2. The decomposition of work-groups and work-items

Figure 2 shows the relationship among work-groups and work-items in two di-
mensions. Work-groups are independent of each other and simultaneously run,
and work-items within the same work-group execute the same operation in the

CL-Vis 177

lock-step method. A compute unit runs a work-group, and a processing element
runs a work-item. If the number of work-groups and work-items are more than
those of the physical compute units or processing elements, the mapping of work-
group or work-item is scheduled according to the vendor’s policy. Work-items
within a single work-group can communicate through a shared buffer, and any
accesses to the buffer should be synchronized.

2.2 Oclgrind

Oclgrind [18] is an open-source simulator based on the OpenCL’s Standard Portable
Intermediate Representation (SPIR) [16]. It enables to create a development tool
for the OpenCL program and implements the OpenCL specification on the CPU.
As inputs, Oclgrind receives an OpenCL application or a kernel and runs it on the
CPU. Oclgrind can check barrier divergences and data races with additional options.
It also enables to debug the OpenCL application or kernel interactively and exports
some plugin interfaces so that any other applications can be developed.

Oclgrind can check the data race, but it can have some false positives because
it only checks whether the other work-items access the same memory address or not
and does not check the lock-step executions, which is described in detail in Section 3.

2.3 Data Race, Barrier Divergence, Infinite Loop

The data race happens when two or more threads access the same memory location
and one of the accesses is a write operation. If many threads access the same
memory, then the results are dependent on the threads’ read/write orders and are
unpredictable in some cases. This scenario has been a large problem to the CPU-
based multithreaded system; therefore, many researchers have tried to detect it
automatically with minimum false positives. FastTrack gave some idea to improve
the slow but precise vector-clock race detector [8]. Relay was a static race detector
based on the locksets that could be scaled to millions of lines of C code [28], and Pacer
was low-overhead sampling-based data race detector based on the FastTrack [6].
However, most of these approaches are inapplicable to the GPU because the GPU
programs only support the barrier function for synchronization [32].

The problem of a data race can be worse in the GPU case because thousands of
work-items (threads) can run simultaneously the same instruction, and simultane-
ously make accesses to the same memory. When these simultaneous accesses occur,
the different execution orders of the memory load or store can cause different results
or hard-to-reproduce errors depending on the situation. To detect the data race
at the GPU, many researchers have suggested static, dynamic, hybrid algorithms
or special hardware. GPUVerify is a static verifier [5], which translates a kernel
into a sequential Boogie [2] program, and proves the correctness of the sequential
program. LDetector is a static detector and uses a two-pass approach to detect
write-write/read-write races [11]. LD statically detects a race with a two-pass de-
tection algorithm that is atomic free and a memory-adaptive solution [12]. Oclgrind

178 S. Kim, H. Han

is a dynamic simulator, which can identify the race through monitoring the memory
accesses [18]. GRace [32] and GMRace [31] are hybrid mechanisms that combine the
static and the dynamic ways, reduces the number of statements, and monitors only
the survived memory accesses. HAccRG [9] and Hydra [30] designed special kinds of
hardware for this problem. However, these implementations have their limitations
for real use. If we want to use the GPUVerify, LD, LDetector, GRace or GMRace,
the compilers should be modified. If we want to use hardware-based approaches such
as HAccRG and Hydra, special hardware should be added. Furthermore, GPUVerify
and LDetector do not support the atomic operations. Oclgrind just includes a simple
access monitor and does not consider the GPU characteristics that all work-items
within the same work-group run the same instruction. Section 3 will describe this
limitation through an example in more detail.

Barrier divergence is one of the specific problems of the GPU, and can also cause
unexpected results. The results can be different from an architecture to an archi-
tecture or a vendor to a vendor because the OpenCL specification does not clarify
the results. The OpenCL 2.1 Reference Pages [3] and the OpenCL 2.2 Reference
Guide [4] only mentions that “All work-items in a work-group executing the kernel on
a processor must execute this function before any are allowed to continue execution
beyond the work group barrier.” “Work-items in a work-group must execute this
before any can continue.” and does not mention anything about the results. There-
fore, an unexpected result can happen according to the implementation. GPUVerify
and Oclgrind can detect this problem.

An infinite loop can occur at both the CPU and the GPU, but its causes can
be different from each other. One of the GPU-specific reasons of infinite loop is
that all work-items within the same work-group run the same operation in the GPU
case. Section 3 will also describe the barrier divergence and the infinite loop through
an example. To the best of our knowledge, no tools or algorithms can detect this
problem at this time.

3 SPECIFIC CHARACTERISTICS AND ISSUES
OF OPENCL PROGRAMMING

OpenCL programming is similar to the case of CPU programming in many aspects
and uses a subset of C or C++ language. However, it has different characteristics
and issues that this section describes.

3.1 GPU-Specific Programming Model

The GPU threads within a group run code simultaneously in lock-step method,
which highlights its difference from the CPU threads. Given that the goal of a GPU
is to maximize the parallelism, it internally has thousands of processing elements.
Given this characteristic, it is hard for each processing element to run the entirely
separate parts of codes. Therefore, all work-items within the same work-group
execute the same instruction.

CL-Vis 179

If a kernel includes a conditional statement, such as if, then the condition can
be evaluated as true at some work-items, but false at the other work-items. For
this different branch case within a single work-group, the GPU uses the predicated
executions. A processing element executes the predicated instructions only if the
condition is true. Otherwise, the processing element discards the instruction or
does not commit the result according to the GPU’s internal architecture. Figure 3
illustrates the example of a conditional statement, and Figure 4 shows the generated
instructions with a predicated form after compiling Figure 3.

Figure 3. An example of a conditional statement

Figure 4. An example of predicated execution

Although the exact instructions can be different from architecture to architec-
ture or vendor to vendor, Figure 4 illustrates the fundamental idea of predicated
executions. In Figure 4, if the condition is true, the processing element runs a = 1.
Otherwise, the processing element runs a = 2. With these predicated executions,
all work-items within the same work-group can execute the same instruction at the
same time. The loops, such as for, do, and while, also use these predicated execu-
tions. In this case, some processing elements can finish the loop earlier than other
elements, but they cannot exit the loop and are still in the loop while ignoring the
results of executed statements through this predicated executions.

3.2 Data Race

Listing 1 shows an example of a data race in the GPU case. If we run Listing 1
after setting all values in the array, g, to 1, and the number of work-items and
workgroups to 128 and 8, respectively, then the work-item 15 runs the int gid =
get global id(0) and gid becomes 15 because the get global id(0) function returns
the number of work-item. The work-item 15 runs the g[15] = g[16] + g[17], and

180 S. Kim, H. Han

the work-item 16 runs the g[16] = g[17] + g[18]. Because the work-items 15 and 16
are respectively included in work-groups 0 and 1, and the memory coherency is
not guaranteed between work-groups, g[15] can be two if g[16] and g[17] are one.
g[15] can also be three if g[16] is one and g[17] is two. g[15] can also be four.
The results are unpredictable depending on the GPU’s internal implementation,
the number of work-items, and the work-groups or the memory policy. Listing 2
illustrates the example that can resolve the data race in the Listing 1.

1 k e r n e l void data race (g l o b a l i n t ∗g)
2 {
3 i n t g id = g e t g l o b a l i d (0) ;
4 g [g id] = g [g id + 1] + g [g id + 2] ;
5 }

Listing 1. An example of data race

1 k e r n e l void no da ta rac e 1 (g l o b a l i n t ∗ g)
2 {
3 i n t g id = g e t g l o b a l i d (0) ;
4
5 i n t temp1 = g [g id + 1] ;
6 i n t temp2 = g [g id + 2] ;
7
8 b a r r i e r (CLK GLOBAL MEM FENCE) ;
9

10 g [g id] = temp1 + temp2 ;
11 }

Listing 2. An example of resolved data race

If a work-item meets the barrier function in Listing 2, the work-item waits until
the other work-items within the same work-group also reach the barrier function.
Therefore, work-item 15 stores the values of g[16] and g[17] into the private variables
temp1 and temp2, respectively. The work-item 16 has the values of g[17] and g[18] in
the variables temp1 and temp2. The variables temp1 and temp2 are private to each
work-item. After the barrier function, the work-item 15 runs g[15] = temp1+temp2,
and the result will be two without any data race. The work-item 16 also runs
g[16] = temp1 + temp2, and the result will be also two.

Data race can happen or not when a GPGPU kernel is executed with the different
numbers of work-groups and work-items. Listing 3 shows an example.

If we run Listing 3 with four work-items and one work-group, all of the four work-
items are included in the same work-group. Therefore, all of the four work-items
perform the same instruction in the lock-step method, and the data race cannot

CL-Vis 181

1 k e r n e l void no da ta rac e 2 (g l o b a l i n t ∗ g)
2 {
3 i n t g id = g e t g l o b a l i d (0) ;
4
5 i n t temp1 = g [g id + 1] ;
6 i n t temp2 = g [g id + 2] ;
7
8 g [g id] = temp1 + temp2 ;
9 }

Listing 3. An example of the data race according to the number of
work-groups and work-items

happen because the private variables of each work-item, temp1 and temp2, are used
to store the values of g[gid+1] and g[gid+2], differently from the Listing 1. However,
if we run it with four work-items and four work-groups, all of the four work-items
runs separately. Therefore, the data race can occur according to the scheduling, and
we should avoid the four work-groups or use the barrier function. Oclgrind does not
consider this GPU-specific lock-step execution and report the data race even in one
work-group case.

3.3 Barrier Divergence

Listing 4 illustrates the barrier divergence at the GPU. If we run Listing 4 with
128 work-items and 8 work-groups, work-item 0 evaluates the condition as true at
line 5. Therefore, the g[0] will be zero by line 7, and work-item 0 executes the first
barrier function. Work-item 1 evaluates the condition as false; therefore, it performs
the second barrier function at line 12. If a work-item meets a barrier function, the
work-item waits until the other work-items also reach the location; therefore, work-
items 0 and 1 wait for each other at different places. In this case, the results are
unpredictable according to the implementation.

3.4 Infinite Loop

Listing 5 illustrates the infinite loop caused by the lock-step execution. When we
run the kernel infloop in Listing 5 with 128 work-items and 8 work-groups after
setting g to zero, work-item 0 calls the lock function at line 11. In the lock function,
the atom xchg function changes the global variable g into one, and returns the old
value, zero, of g. Therefore, the local variable o will be zero. Then, work-item 0
can exit the loop. Meanwhile, work-item 1 also calls the lock function, and the
atom xchg function changes the global variable, g, into one again, and returns the
old value, one, of g because it was already modified by work-item 0. Therefore, the
local variable o will be one. Then, work-item 1 continues the loop again because it

182 S. Kim, H. Han

1 k e r n e l void b a r r i e r d i v e r g e n c e (g l o b a l i n t ∗g)
2 {
3 i n t g id = g e t g l o b a l i d (0) ;
4
5 i f (g id % 2 == 0)
6 {
7 g [g id] = gid ;
8 b a r r i e r (CLK GLOBAL MEM FENCE) ;
9 }

10 e l s e
11 {
12 b a r r i e r (CLK GLOBAL MEM FENCE) ;
13 g [g id] = gid + g [g id − 1] ;
14 }
15 }

Listing 4. An example of the barrier divergence

does not satisfy the exit condition o ≤ 0. Besides work-item 0, all work-items in
the workgroup continue the loop. Work-item 0 satisfies the exit condition, but it
cannot also exit the loop because it should run the same instruction in the lock-step
similar to other work-items. As a result, all work-items will loop forever.

1 void lock (g l o b a l i n t ∗ g)
2 {
3 i n t o ;
4
5 do {
6 o = atom xchg (g , 1) ;
7 } whi le (o > 0) ;
8 }
9

10 k e r n e l void i n f l o o p (g l o b a l i n t ∗ g)
11 {
12 lock (g) ;
13 }

Listing 5. An example of infinite loop

We checked that Listing 5 caused the infinite loop, and the system sometimes
halts at Intel’s OpenCL implementation (HD Graphics 530, Driver version 20.19.15.4
531) and NVIDIA’s implementation (GTX 960M, Driver version 378.78). This prob-
lem is quite common because this kind of codes, such as Listing 5, works well in the
CPU case as the locking codes. In the CPU case, the thread 0 (work-item) does not

CL-Vis 183

have to loop again; therefore, the CPU does not meet the infinite loop. However,
the GPU is frozen by the lock-step execution.

4 CL-VIS: VISUALIZATION PLATFORM

This section describes our platforms for the visualization of running GPGPU codes
(CL-Vis) and algorithms to find the issues described in Section 3.

4.1 Overview

When programming the GPU, it is hard to understand what each work-item is do-
ing. Without knowing what went on, it is hard to fix the problems or the bugs
within the software. If a developer can see what the work-item does, he/she can
easily understand why the problem happens in many cases and can fix the problems.
To help understand the internal operations of each work-item, we developed a visu-
alization platform based on Oclgrind. To implement it, we used the architecture in
Figure 5.

Figure 5. The overall architecture of CL-Vis

Our visualization platform, CL-Vis, largely consists of the following components:
a visualization plugin and a reporting tool. As an input, Oclgrind receives the in-
formation file that includes the running kernel/file, the number of work-items and
work-groups, and the parameter values, and runs the kernel. During the execution,
it calls our visualization plugin that implements the callback functions. Oclgrind
supports the following basic callback functions in Table 2 so that any user can de-
velop additional tools based on Oclgrind. Besides the essential functions in Table 2,
we extended Oclgrind so that we can obtain more information and added more
functions in Table 3.

Through these callback functions in Tables 2 and 3, the visualization plugin
records the information on the executed instructions and their times to thread-
specific files. The timeline of each operation is detected through Algorithm 1.

184 S. Kim, H. Han

Through Algorithm 1, the visualization plugin records the global id (the thread
id), the time difference between the current time and the kernel’s starting time,
the C-based statement, the assembly-based instructions to a buffer, and writes the
buffer to a file that includes the execution information of a work-item. It also detects
the infinite loop, the barrier, and the data race through the algorithms described in
more detail in Subsection 4.2. The reporting tool uses the file of each work-item for
the visualization. The reporting tool receives the generated files by the visualization
plugin as inputs and generates an HTML file as outputs. After these procedures,
the HTML file can be viewed through a web browser. To summarize, our platform
can visualize the codes after the execution completes. Figure 6 presents the result
of our visualization.

ALGORITHM 1: Timeline detector
1: for each work-item w do
2: for each start and end of an instruction do
3: Record the w’s id, time difference between the current time and the w’s starting

time, the statement and the executed instruction to a buffer
4: end for
5: Write the recorded buffer to a file
6: end for

In Figure 6, the horizontal axis shows the time, and the vertical axis lists the
number of work-item and workgroup. Each blue rectangle represents an operation
that a work-item performed, and the text in the box is the executed action at the
time. If we scroll down the page, we can see other threads. We can also see the other
operations if we move the page to the left or right. We can also zoom in/out the
box through a mouse wheel. In many cases, a single line of the C-based statement
consists of many lines of assembly-based statements, and many boxes can include
the same text. Therefore, our platform generates the C-based statement first, and
the assembly-based statement within a parenthesis next to avoid confusion.

Figure 6 shows that a single work-group includes 16 work-items, and the work-
items run independently. We can also see the executed action if we move the mouse
cursor on the box or horizontally increase the box. Through this visualization, we
can check that the program operates as intended. For example, we can see that the
work-item 0 runs the true case, and the other work-items run the false case at the if
statement. We can also check the number of loops that the work-items run. Besides
the checking, this visualization can also be used for the education purpose, and we
can use this platform to describe the concepts of GPGPU programming.

4.2 Detecting Algorithms

This subsection describes the algorithms used to detect the data race, the barrier
divergence, and the infinite loop included in the CL-Vis. We designed them as

CL-Vis 185

Figure 6. Visualization of the GPGPU program

a plugin of Oclgrind, and it is an event-based program. Therefore, we described
each algorithm using events.

4.2.1 Race Detector

The visualization plugin includes the race detector that detects a data race through
Algorithms 2 and 3. Algorithm 2 monitors all memory accesses of work-item w
and reports the data race if the below conditions 1, 2, 3 are evaluated as true, and
condition 4 or 5 is evaluated as true. Algorithm 3 changes the states of memory
accesses into inactive if a work-item meets a barrier.

1. The first condition is that the address space of access is global or local. Work-
items share only the global and local memories so that these types can have
a data race.

2. The second condition is that the access to memory is active. If a work-item meets
a barrier, all of the previous memory accesses are guaranteed to be committed.
Therefore, the memory accesses become inactive in this case.

186 S. Kim, H. Han

3. The third condition is that another thread accesses the same memory, and one
of the access is the write. The data race can happen only in this case.

4. The fourth condition is that the accessing statement is the same in the case
that the current work-item and the work-item of the previously access are in
the same group. The work-items in the same work-group run an operation in
lock-step; therefore, the data race will happen only if the accessing statements
are the same.

5. The fifth condition is that the memory type is global if the work-items are
in different groups. The work-items in different groups can be simultaneously
executed based on the GPU’s internal policy; therefore, the data race can hap-
pen.

ALGORITHM 2: Race detector
1: for each work-item w do
2: for each memory access m do
3: if address space of m is global or local then
4: for each access entry e ∈ access table do
5: if e is active, another thread also accesses m’s address, and one of the

accesses is the write operation then
6: if w and the work-item of e are in the same group then
7: if the accessing statement is the same then
8: Mark the access m as a data race
9: end if

10: else
11: if address space of m is global then
12: Mark the access m as a data race
13: end if
14: end if
15: end if
16: end for
17: end if
18: Record m’s address, size, statement, memory type (global/local), access type

(read/write) and group number into the access table
19: end for
20: end for

ALGORITHM 3: Access clearing

1: for each work-item w do
2: if w meets a barrier then
3: Change the all access states of w in the access table to inactive
4: end if
5: end for

CL-Vis 187

Most of the previous dynamic algorithms for detecting the data race do not
include conditions 4 and 5. They just check conditions 1, 2 and 3, so have more
false positives. To decrease the false positives, we added condition 4 utilizing that
the work-items in a work-group run the code in lock-step. We also added condition 5
because the data race can happen in the global memory case even if the accessing
statements are different.

4.2.2 Divergence Detector

The visualization plugin includes the divergence detector that detects a barrier diver-
gence through Algorithms 4 and 5. Whenever a work-item meets a barrier function,
Algorithm 4 records the global id (the thread id), the finishing time and statement.
We record the statement because a kernel can have many barrier functions and
barrier divergence, and we need to identify the barrier function. We also record
the finishing time because our visualization platform should find the most recently
cleared barrier function. Then, when Oclgrind clears the barrier function, Algo-
rithm 4 marks the latest time among the met work-items as a barrier time because
Oclgrind is a simulator based on the CPU, which sequentially executes a kernel dif-
ferently from the GPU. Algorithm 5 uses the most recent time because all work-items
should wait for the last finished work-item.

ALGORITHM 4: Barrier recording at the divergence detector

1: for each work-item w do
2: if w meets a barrier then
3: Record the w’s id, the finishing time and the statement
4: end if
5: end for

ALGORITHM 5: Barrier clearing at the divergence detector

1: for each barrier b do
2: Mark the last finished work-item’s time among the met work-items as a barrier

time
3: end for

Algorithms 4 and 5 can find all of the barrier divergences without a false pos-
itive because Algorithm 4 records all of the work-items that meet a barrier, and
Algorithm 5 marks to all of the met work-items when a barrier is cleared.

4.2.3 Loop Detector

The visualization plugin includes the loop detector that detects a possible infinite
loop through Algorithm 6. In Algorithm 6, whenever a work-item w meets a loop l,
our visualization plugin records the used variables if they are global and modified

188 S. Kim, H. Han

within the loop. Our plugin also records the affected variable by a global variable.
Then, our plugin checks that the changed or affected variables are used at the exit
condition of the loop.

ALGORITHM 6: Loop detector

1: for each work-item w do
2: for each loop l do
3: Record the used variables if they are global and modified within the loop l
4: Record the affected variables by a global variable if they are private or local,

and modified within the loop l
5: if the global or affected variables are used as an exit condition then
6: Mark the exit condition as an infinite loop
7: end if
8: end for
9: end for

If a work-item changes the global variable and uses the variable at the exit
condition, then other work-items can also be affected because the exit condition
can also be modified. The count of a loop can be shorter, longer or even infinite.
In Listing 5, the global variable, g, is modified within the loop and affects the
private variable o. The other work-items are also affected by the modification of g,
and the exit condition is also affected by the change of o. The infinite loop at
the GPU happens in this case; therefore, our plugin detects the changes of an exit
condition.

Algorithm 6 may have a false positive if a global variable is modified or a lo-
cal/private variable is modified by a global variable within a loop, and the variable
is used as an exit condition. But, we have never met such case in many kernels until
now.

4.3 Detailed Implementation

To verify our architecture and algorithms, we implement the visualization plugin
and the reporting tool. Besides the function additions in Table 3, we also disabled
the optimization of a GPGPU kernel code because we should obtain the statement
information in our algorithms.

We implemented the algorithms in Section 4 at our visualization plugin and the
reporting tool in the Linux environment (Ubuntu 14.04), and verified the results
using Firefox 52.0. To visualize the results, we used a timeline within the vis.js
library [23] that supports powerful display functions for the web browser. To deter-
mine whether two statements are the same or not in Algorithm 2, we used their line
numbers as statement information.

CL-Vis 189

5 RESULTS OF DETECTING ALGORITHMS

This section presents the results of suggested architecture and algorithms.

5.1 Data Race

We run Listing 1 with 128 work-items and 8 work-groups. Figure 7 presents the
results. In Figure 7, our Algorithm 2 detects the data race at the g[gid] = g[gid +
1] + g[gid+ 2] statement in Listing 1, and marks them with yellow color (Red box).
Therefore, any researcher or developer can easily notice it. We also run Listing 2
with 128 work-items and 8 work-groups. Our Algorithms 2 and 3 did not detect
the race because the barrier function cleared all of the previous memory accesses.
However, Oclgrind reports some data races.

Figure 7. The result of detecting data race at Listing 1. Algorithm 2 detects the data
race at the g[gid] = g[gid + 1] + g[gid + 2] statement in Listing 1, and marks them with
yellow color (red box).

Figure 8 illustrates the results of no race and barrier.

Figure 8. The result of detecting data race at Listing 2. Algorithms 2 and 3 did not detect
the race at the statement that Oclgrind reports some data races but they cannot happen
in the real scenario (red box in the right side).

In Figure 8, our CL-Vis platform does not report any data races with yellow
color (the right red box) because the barrier function cleared all of the previous
memory accesses and correctly marks the barrier function with magenta color (the
left red box).

190 S. Kim, H. Han

We also run Listing 3 with one work-group and four work-groups. Our Algo-
rithms 2 and 3 can correctly detect the race from the lock-step execution only in
the four work-group, as shown in Figures 7 and 8.

Figure 9. The result of detecting data race with one work-group at Listing 3. Given that
the accessing statements are at different locations, Algorithm 2 does not report it as a data
race (red box).

Figure 10. The result of detecting data race with four work-groups at Listing 3. The
work-item can run the separate instruction in the different work-group case; therefore, our
algorithm reports the data race (red box).

In the one work-group case, such as Figure 9, all work-items in the same work-
group run the same instruction, and our Algorithm 2 checks that the accessing
statement is the same. Given that the accessing statements are at different locations,
our Algorithm 2 does not report it as a data race. However, in the different work-
group case, such as Figure 10, the work-item can run the separate instruction;
therefore, our algorithm reports the data race (red box).

5.2 Barrier Divergence

We run Listing 4 with four work-items and four work-groups, detect the barrier
divergence through Algorithms 4 and 5, and mark it with magenta as shown in
Figure 11 (red box). In Figure 11, the bar with magenta color shows that work-
items 0 and 2 run the first barrier in Listing 4, but work-items 1 and 3 execute
the second barrier in Listing 4. If all of the work-items meet the same barrier
function, then only one bar with a magenta color exists. Therefore, any researcher
or developer can see that the barrier divergence happened.

CL-Vis 191

Figure 11. The result of detecting barrier divergence at Listing 4. Algorithms 4 and 5
mark the barrier divergence with magenta in the case of four work-items and four work-
groups.

5.3 Infinite Loop

We run Listing 5 with 128 work-items and 8 work-groups as shown in Figure 12. In
Figure 12, our Algorithm 6 detects the infinite loop and marks it with red color (red
box). It records the global or the affected variables within a loop, then checks that
the exit condition uses the variables. Through this algorithm, our platform detects
the infinite loop, and shows it at the statement while(o > 0) in Listing 5.

Figure 12. The result of detecting infinite loop at Listing 5. Algorithm 6 records the
global or the affected variables within a loop, and checks that the exit condition uses the
variables. It also marks the infinite loop with red color.

5.4 Others

Besides these primary results through the kernels in this paper, we also verify
that our architecture and algorithms can successfully visualize 15 kernels within
Oclgrind. Table 1 summarizes the tested kernels and their sizes of global/local
works. Among the kernels in Table 1, Oclgrind wrongly reports the data races in
the global only fence, intragroup hidden race, local read write race cases because it
does not check the lock-step execution at the GPU. Furthermore, Oclgrind reports
the data races in the local only fence because it does not clear the memory access

192 S. Kim, H. Han

before the barrier function. However, our algorithm correctly finds no data race in
all of those cases.

Group File Global Size Local Size

Barrier
Divergence

barrier different instructions 4, 1, 1 4, 1, 1
barrier divergence 4, 1, 1 4, 1, 1

Data Race

broadcast 4, 1, 1 1, 1, 1
global fence 16, 1, 1 4, 1, 1
global only fence 4, 1, 1 4, 1, 1
global read write race 4, 1, 1 4, 1, 1
global write write race 4, 1, 1 1, 1, 1
increment 4, 1, 1 1, 1, 1
intergroup hidden race 2, 1, 1 1, 1, 1
intergroup race 8, 1, 1 4, 1, 1
intragroup hidden race 2, 1, 1 2, 1, 1
local only fence 16, 1, 1 4, 1, 1
local read write race 4, 1, 1 4, 1, 1
local write write race 4, 1, 1 4, 1, 1
uniform write race 4, 1, 1 4, 1, 1

Table 1. Tested kernels

6 CONCLUSIONS

GPU programming is known to be difficult due to several reasons: difficulty in un-
derstanding the GPU characteristics, which are different from the CPU, and few
of debugging tools compared to the CPU. To reduce these problems and help in
checking the GPGPU programs, we developed the CL-Vis based on Oclgrind. We
also suggest the algorithms for automatic detection of data race with lock-step exe-
cution and barrier function, barrier divergence, and infinite loop. These algorithms
are included in the CL-Vis and verified through various kernels. To the best of our
knowledge, our paper is the first research that visualizes the executed functions of
GPU and suggests an algorithm for detecting infinite loops automatically. Further-
more, our paper suggests the algorithm for detecting data races at the GPU-specific
executions.

However, our CL-Vis and algorithms can be improved more in the following
aspects: our plugin is based on Oclgrind, which is an OpenCL simulator run on the
CPU. However, the real working environment with the GPU can be different. For
example, the actual execution time can be different. If the GPU vendor develops its
simulator that is more similar to its internal operations, then we can visualize the
running codes based on it and see the instructions more correctly. Furthermore, our
race detection algorithm is not aware of the barrier function with a local memory
option. If a work-item meets a barrier function, only the local memory accesses
within the same group should be cleared. The current implementation makes all

CL-Vis 193

of the global/local memory accesses inactive. Also, our visualization platform has
a limitation in the number of threads due to the restricted memory. Finally, if we
can see the result of each action by a work-item, it can also be helpful to check the
OpenCL program. We have plans to improve these aspects and find other ways to
relieve the burden of GPU users.

Acknowledgements

This research was supported by the MSIT (Ministry of Science, ICT), Korea, un-
der the ITRC (Information Technology Research Center) support program (IITP-
2015-0-0445) supervised by the IITP(Institute for Information and communications
Technology Promotion). SeongKi Kim was supported by NRF in Korea (NRF-
2017R1A1A1A05069806).

REFERENCES

[1] Apple Coporation. Availaible at: https://www.apple.com/.

[2] Barnett, M.—Chang, B.-Y. E.—DeLine, R.—Jacobs, B.—Leino, K.R.M.:
Boogie: A Modular Reusable Verifier for Object-Oriented Programs. In:
de Boer, F. S., Bonsangue, M. M., Graf, S., de Roever, W. P. (Eds.): Formal Methods
for Components and Objects (FMCO 2005). Springer, Berlin, Heidelberg, Lecture
Notes in Computer Science, Vol. 4111, 2006, pp. 364–387, doi: 10.1007/11804192 17.

[3] OpenCL 2.1 Reference Pages. Availaible at: https://www.khronos.org/registry/
OpenCL/sdk/2.1/docs/man/xhtml/.

[4] OpenCL 2.2 Reference Guide. Availaible at: https://www.khronos.org/files/

opencl22-reference-guide.pdf.

[5] Betts, A.—Chong, N.—Donaldson, A.—Qadeer, S.—Thomson, P.:
GPUVerify: A Verifier for GPU Kernels. ACM SIGPLAN Notices – OOPSLA ’12,
Vol. 47, 2012, No. 10, pp. 113–132, doi: 10.1145/2398857.2384625.

[6] Bond, M.D.—Coons, K. E.—McKinley, K. S.: PACER: Proportional Detection
of Data Races. ACM SIGPLAN Notices – PLDI ’10, Vol. 45, 2010, No. 6, pp. 255–268,
doi: 10.1145/1809028.1806626.

[7] Fernando, R.: GPU Gems: Programming Techniques, Tips and Tricks for Real-
Time Graphics. Pearson Higher Education, 2004.

[8] Flanagan, C.—Freund, S.N.: FastTrack: Efficient and Precise Dynamic Race
Detection. ACM SIGPLAN Notices – PLDI ’09, Vol. 44, 2009, No. 6, pp. 121–133,
doi: 10.1145/1543135.1542490.

[9] Holey, A.—Mekkat, V.—Zhai, A.: HAccRG:: Hardware-Accelerated Data Race
Detection in GPUs. Proceedings of the 2013 42nd International Conference on Parallel
Processing (ICPP ’13), 2013, pp. 60–69, doi: 10.1109/icpp.2013.15.

[10] Howes, L. (Ed.): The OpenCL Specification Version: 2.1. Document Revision: 24,
2018. https://www.khronos.org/registry/OpenCL/specs/opencl-2.1.pdf.

https://www.apple.com/
https://doi.org/10.1007/11804192_17
https://www.khronos.org/registry/OpenCL/sdk/2.1/docs/man/xhtml/
https://www.khronos.org/registry/OpenCL/sdk/2.1/docs/man/xhtml/
https://www.khronos.org/files/opencl22-reference-guide.pdf
https://www.khronos.org/files/opencl22-reference-guide.pdf
https://doi.org/10.1145/2398857.2384625
https://doi.org/10.1145/1809028.1806626
https://doi.org/10.1145/1543135.1542490
https://doi.org/10.1109/icpp.2013.15
https://www.khronos.org/registry/OpenCL/specs/opencl-2.1.pdf

194 S. Kim, H. Han

[11] Li, P.—Ding, C.—Hu, X.—Soyata, T.: LDetector: A Low Overhead Race De-
tector for GPU Programs. 5th Workshop on Determinism and Correctness in Parallel
Programming (WoDET 2014), Salt Lake City, UT, March 2014.

[12] Li, P.—Hu, X.—Chen, D.—Brock, J.—Luo, H.—Zhang, E. Z.—Ding, C.:
LD: Low-Overhead GPU Race Detection Without Access Monitoring. ACM Transac-
tions on Architecture and Code Optimization, Vol. 14, 2017, No. 1, Art. No. 9, 25 pp.,
doi: 10.1145/3046678.

[13] Nickolls, J.—Buck, I.—Garland, M.—Skadron, K.: Scalable Parallel Pro-
gramming with CUDA. Queue – GPU Computing, Vol. 6, 2008, No. 2, pp. 40–53,
doi: 10.1145/1365490.1365500.

[14] NVIDIA Corporation. Driving Innovation. Availaible at: http://www.nvidia.com/

object/drive-automotive-technology.html.

[15] Khronos Group. Availaible at: https://www.khronos.org/.

[16] Ouril, B. (Ed.): The SPIR Specification Version 2.0 – Provision. 2014.

[17] Pharr, M.—Fernando, R.: GPU Gems 2: Programming Techniques for High-
Performance Graphics and General-Purpose Computation (GPU Gems). Addison-
Wesley Professional, 2005.

[18] Price, J.—McIntosh-Smith, S.: Oclgrind: An Extensible OpenCL Device Simu-
lator. Proceedings of the 3rd International Workshop on OpenCL (IWOCL ’15), New
York, NY, USA, 2015, Art. No. 12, doi: 10.1145/2791321.2791333.

[19] Silver, D.—Huang, A.—Maddison, C. J.—Guez, A.—Sifre, L.—
van den Driessche, G.—Schrittwieser, J.—Antonoglou, I.—Pan-
neershelvam, V.—Lanctot, M.—Dieleman, S.—Grewe, D.—Nham, J.—
Kalchbrenner, N.—Sutskever, I.—Lillicrap, T.—Leach, M.—Kavu-
kcuoglu, K.—Graepel, T.—Hassabis, D.: Mastering the Game of Go
with Deep Neural Networks and Tree Search. Nature, Vol. 529, 2016, No. 7587,
pp. 484–489, doi: 10.1038/nature16961.

[20] Stone, J. E.—Gohara, D.—Shi, G.: OpenCL: A Parallel Programming Stan-
dard for Heterogeneous Computing Systems. Computing in Science and Engineering,
Vol. 12, 2010, No. 3, pp. 66–73, doi: 10.1109/MCSE.2010.69.

[21] Stone, S. S.—Haldar, J. P.—Tsao, S. C.—Hwu, W.-M.W.—
Sutton, B. P.—Liang, Z.-P.: Accelerating Advanced MRI Reconstructions
on GPUs. Journal of Parallel and Distributed Computing, Vol. 68, 2008, No. 10,
pp. 1307–1318, doi: 10.1016/j.jpdc.2008.05.013.

[22] TOP 500 The List. Availaible at: https://www.top500.org/.

[23] vis.js. Availaible at: http://http://visjs.org/.

[24] NVIDIA Nsight Visual Studio Edition. https://developer.nvidia.com/

nsight-visual-studio-edition.

[25] Allinea DDT. https://developer.nvidia.com/allinea-ddt.

[26] CUDA-MEMCHECK. https://docs.nvidia.com/cuda/cuda-memcheck/index.

html.

[27] Profiler. https://docs.nvidia.com/cuda/profiler-users-guide/index.html.

[28] Voung, J.W.—Jhala, R.—Lerner, S.: RELAY: Static Race Detection on Mil-
lions of Lines of Code. Proceedings of the the 6th Joint Meeting of the Euro-

https://doi.org/10.1145/3046678
https://doi.org/10.1145/1365490.1365500
http://www.nvidia.com/object/drive-automotive-technology.html
http://www.nvidia.com/object/drive-automotive-technology.html
https://www.khronos.org/
https://doi.org/10.1145/2791321.2791333
https://doi.org/10.1038/nature16961
https://doi.org/10.1109/MCSE.2010.69
https://doi.org/10.1016/j.jpdc.2008.05.013
https://www.top500.org/
http://http://visjs.org/
https://developer.nvidia.com/nsight-visual-studio-edition
https://developer.nvidia.com/nsight-visual-studio-edition
https://developer.nvidia.com/allinea-ddt
https://docs.nvidia.com/cuda/cuda-memcheck/index.html
https://docs.nvidia.com/cuda/cuda-memcheck/index.html
https://docs.nvidia.com/cuda/profiler-users-guide/index.html

CL-Vis 195

pean Software Engineering Conference and the ACM SIGSOFT Symposium on the
Foundations of Software Engineering (ESEC-FSE ’07), New York, NY, USA, 2007,
pp. 205–214, doi: 10.1145/1287624.1287654.

[29] Yang, J.—Goodman, J.: Symmetric Key Cryptography on Modern Graphics
Hardware. In: Kurosawa, K. (Ed.): Advances in Cryptology – ASIACRYPT 2007.
Springer, Berlin, Heidelberg, Lecture Notes in Computer Science, Vol. 4833, 2007,
pp. 249–264, doi: 10.1007/978-3-540-76900-2 15.

[30] Zhang, W.—Yu, S.—Wang, H.—Dai, Z.—Chen, H.: Hardware Support for
Concurrent Detection of Multiple Concurrency Bugs on Fused CPU-GPU Architec-
tures. IEEE Transactions on Computers, Vol. 65, 2016, No. 10, pp. 3083–3095, doi:
10.1109/TC.2015.2512860.

[31] Zheng, M.—Ravi, V.T.—Qin, F.—Agrawal, G.: GMRace: Detecting Data
Races in GPU Programs via a Low-Overhead Scheme. IEEE Transactions on Par-
allel and Distributed Systems, Vol. 25, 2014, No. 1, pp. 104–115, doi: 10.1109/T-
PDS.2013.44.

[32] Zheng, M.—Ravi, V.T.—Qin, F.—Agrawal, G.: GRace: A Low-Overhead
Mechanism for Detecting Data Races in GPU Programs. ACM SIGPLAN Notices –
PPoPP ’11, Vol. 46, 2011, No. 8, pp. 135–146, doi: 10.1145/2038037.1941574.

SeongKi Kim is Assistant Professor at Keimyung University.
He received his Ph.D. degree in computer science and engineer-
ing from Seoul National University in 2009. He researched and
developed software for the GPU, the GPGPU and dynamic volt-
age and frequency scaling (DVFS) at the Samsung Electronics
from 2009 to 2014. He also worked at the Ewha Womans Uni-
versity and SangMyung University from 2014 to 2017. His cur-
rent research interests include the areas of graphics/game algo-
rithms, an algorithm optimization through the GPU, and high-
performance computing with CPU and GPU.

HyukSoo Han is Professor of computer science at SangMyung
University. He received his M.Sc. degree in computer science and
statistics from Seoul National University in 1987 and his Ph.D.
degree in computer engineering from South Florida University
in 1992. His current research interests include software process,
software quality, software safety, software education and human
computer interaction.

https://doi.org/10.1145/1287624.1287654
https://doi.org/10.1007/978-3-540-76900-2_15
https://doi.org/10.1109/TC.2015.2512860
https://doi.org/10.1109/TPDS.2013.44
https://doi.org/10.1109/TPDS.2013.44
https://doi.org/10.1145/2038037.1941574

196 S. Kim, H. Han

Appendices

Name Description

hostMemoryLoad Called when a host memory is loaded
hostMemoryStore Called when a host memory is stored
instructionExecuted Called when an instruction is executed
kernelBegin Called when a kernel starts
kernelEnd Called when a kernel ends
log Called when a log message is outputted
memoryAllocated Called when a memory is allocated
memoryAtomicLoad Called when an atomic memory is loaded
memoryAtomicStore Called when an atomic memory is stored
memoryDeallocated Called when a memory is deallocated
memoryLoad Called when a memory is loaded
memoryMap Called when a memory is mapped
memoryStore Called when a memory is stored
memoryUnmap Called when a memory is unmapped
workGroupBarrier Called when a barrier is cleared
workGroupBegin Called when a work-group begins
workGroupComplete Called when a work-group completes
workItemBegin Called when a work-item begins
workItemComplete Called when a work-item completes

Table 2. Callback functions

Name Description

instructionBeforeExecuted Called before an instruction is executed
workGroupBarrierBeforeClear Called before a barrier is cleared
workItemBarrier Called when a work-item clears a barrier

Table 3. Added Callback functions

