
Online Appendix

for the Paper “Incorporating Stratified Negation into Query-Subquery Nets
for Evaluating Queries to Stratified Deductive Databases” [3]

This appendix contains:
− an example illustrating the QSQN-STR method (Section A),
− proofs of data complexity, soundness and completeness of the QSQN-STR method (Section B),
− experimental results (Section C), and
− the pseudocode of the QSQN-STR method (Section D).

A An Illustrative Example

The aim of this example is to illustrate how Algorithm 1 works step by step. It uses the stratified
Datalog¬ database (P, I) and the stratification P = P1 ∪ P2 given in [3, Example 2.2]. The
QSQN-STR topological structure of the program P is illustrated in Figure 1.

path(x, y)← edge(x, y)
path(x, y)← path(x, z), edge(z, y)

acyclic(x, y)← path(x, y), ∼path(y, x).

pre filter1

E8 // filter1,1
E9 // post filter1

E10

++VVVVVVVVVVVVVVVVVVVVVV

input path

E7

88pppppppppppp

E4

&&NNNNNNNNNNNN ans path
E11

xx

E15

tt

pre filter2
E5

// filter2,1
E12

//

E6
oo

filter2,2
E13

// post filter2

E14

88qqqqqqqqqqq

input acyclic
E1

// pre filter3
E2

// filter3,1
E16

//

E3

UU

filter3,2
E18

//

E17

]]

post filter3
E19

// ans acyclic

Fig. 1. The QSQN-STR topological structure of the program given in [3, Example 2.2]

Recall that the extensional instance I is specified by I(edge) = {(a, b),(a, c),(c, d),(d, a)} and
illustrated below:

?>=<89:;b
?>=<89:;a

99sssssss
//?>=<89:;c

yyttttttt

?>=<89:;d
eeKKKKKKK

We give below a trace of running Algorithm 1 for the query acyclic(x, y) on the stratified
Datalog¬ database (P, I). For convenience, we name the edges of the net by Ei with 1 ≤ i ≤ 19,

1

as shown in Figure 1. Let T (v) = false for each v = filter i,j with kind(v) = extensional. Assume
that Algorithm 1 evaluates the query acyclic(x, y) to the knowledge base (P, I) using a control
strategy that selects active edges for “firing” in the order (E1, E3, E4, E6, E7, E11, E12, E11,
E12, E11, E12, E15, E16, E17, E18), which is admissible w.r.t. strata’s stability and corresponds
to the IDFS2 control strategy specified in [1]. Recall that, by [3, Example 2.2], the set of answers
should be {(a, b), (c, b), (d, b)}. To ease the checking, the reader can use the full pseudocode
of Algorithm 1 gathered in Section D. In addition, a much more friendly presentation of this
example in the PowerPoint-like mode is available online [4].

Algorithm 1 starts with an empty QSQN-STR and then adds a fresh variant (x1, y1) of (x, y)
to the empty sets tuples(input acyclic) and unprocessed(E1). This makes the edge E1 active.

1. E1–E2

Firing the active edge E1 (by fire′), the algorithm transfers (x1, y1) through this edge and
empties the set unprocessed(E1). This produces {((x1, y1), {x/x1, y/y1})} (by transfer′3
via transfer′), which is then transferred through the edge E2 and added to the empty sets
subqueries(filter3,1), unprocessed subqueries(filter3,1) and unprocessed subqueries2 (filter3,1)
(by transfer5 via transfer′).

2. E3

Firing the active edge E3 (by fire′1 via fire′), the algorithm empties the set
unprocessed subqueries2 (filter3,1) and transfers (x2, y2), a fresh variant of (x1, y1), through
the edge E3 and adds its fresh variant (x3, y3) to the empty sets tuples(input path),
unprocessed(E4) and unprocessed(E7) (by transfer2 via transfer′).

3. E4–E5

Firing the active edge E4 (by fire′), the algorithm transfers (x3, y3) through this edge and
empties the set unprocessed(E4). This produces {((x3, y3), {x/x3, y/y3})} (by transfer′3
via transfer′), which is then transferred through the edge E5 and added to the empty sets
subqueries(filter2,1), unprocessed subqueries(filter2,1) and unprocessed subqueries2 (filter2,1)
(by transfer5 via transfer′).

4. E6

Firing the active edge E6 (by fire′1 via fire′), the algorithm empties the set
unprocessed subqueries2 (filter2,1) and transfers (x4, z4), a fresh variant of (x3, z), through
the edge E6 and adds nothing to tuples(input path) (by transfer2 via transfer′), because
there exists (x3, y3) ∈ tuples(input path), which is more general than any other tuples.

5. E7–E8–E9–E10

Firing the active edge E7 (by fire′), the algorithm transfers (x3, y3) through this
edge and empties the set unprocessed(E7). This produces {((x3, y3), {x/x3, y/y3})} (by
transfer′3 via transfer′), which is then transferred through the edge E8, producing
{((a, b), ε), ((a, c), ε), ((c, d), ε), ((d, a), ε)} (by transfer′4 via transfer′), which is then trans-
ferred through the edge E9, producing {(a, b), (a, c), (c, d), (d, a)} (by transfer′), which in
turn is then transferred through the edge E10 and added to the empty sets tuples(ans path),
unprocessed(E11) and unprocessed(E15) (by transfer1 via transfer′).

6. E11

Firing the active edge E11 (by fire′), the algorithm transfers {(a, b), (a, c), (c, d), (d, a)}
through this edge and empties the set unprocessed(E11). This adds those tuples to the empty
set unprocessed tuples(filter2,1) (by transfer′).

2

7. E12–E13–E14

Firing the active edge E12 (by fire′3 via fire′) and processing the sets
unprocessed subqueries(filter2,1) and unprocessed tuples(filter2,1), the algorithm empties
these sets and produces the set of subqueries {((a, y3), {y/y3, z/b}), ((a, y3), {y/y3, z/c}),
((c, y3), {y/y3, z/d}), ((d, y3), {y/y3, z/a})}, which is transferred through the edge E12, pro-
ducing {((a, d), ε), ((c, a), ε), ((d, b), ε), ((d, c), ε)} (by transfer′4 via transfer′), which is
then transferred through the edge E13, producing {(a, d), (c, a), (d, b), (d, c)} (by transfer′),
which in turn is then transferred through the edge E14 and added to the sets tuples(ans path),
unprocessed(E11) and unprocessed(E15) (by transfer′1 via transfer′). After these steps,
we have:

− tuples(ans path) = {(a, b), (a, c), (c, d), (d, a), (a, d), (c, a), (d, b), (d, c)},
− unprocessed(E11) = {(a, d), (c, a), (d, b), (d, c)},
− unprocessed(E15) = tuples(ans path).

8. E11 and E12–E13–E14

The algorithm repeatedly fires the edges E11 and E12 until no new tuple is added to
tuples(ans path), unprocessed(E11) and unprocessed(E15). This takes two rounds and after
such steps, the edges E11 and E12 become inactive and we have:

− tuples(ans path) = unprocessed(E15) = {(a, b), (a, c), (c, d), (d, a), (a, d), (c, a), (d, b),
(d, c), (a, a), (c, b), (c, c), (d, d)}.

9. E15

Firing the active edge E15 (by fire′), the algorithm transfers the aforementioned tuples of
unprocessed(E15) through this edge and empties the set unprocessed(E15). This adds those
tuples to the empty set unprocessed tuples(filter3,1) (by transfer′). After these steps, we
have:

− subqueries(filter3,1) = unprocessed subqueries(filter3,1) = {((x1, y1), {x/x1, y/y1})},
− unprocessed tuples(filter3,1) = {(a, b), (a, c), (c, d), (d, a), (a, d), (c, a), (d, b), (d, c), (a, a),

(c, b), (c, c), (d, d)}.

10. E16

Firing the active edge E16 (by fire′3 via fire′) and processing the sets
unprocessed subqueries(filter3,1) and unprocessed tuples(filter3,1), the algorithm empties
these sets and produces the set of subqueries {((a, b), {x/a, y/b}), ((a, c), {x/a, y/c}),
((c, d), {x/c, y/d}), ((d, a), {x/d, y/a}), ((a, d), {x/a, y/d}), ((c, a), {x/c, y/a}),
((d, b), {x/d, y/b}), ((d, c), {x/d, y/c}), ((a, a), {x/a, y/a}), ((c, b), {x/c, y/b}),
((c, c), {x/c, y/c}), ((d, d), {x/d, y/d})}, which is transferred through the edge E16

and added to the empty sets subqueries(filter3,2), unprocessed subqueries(filter3,2) and
unprocessed subqueries2 (filter3,2) (by transfer5 via transfer′).

11. E17

Firing the active edge E17 (by fire′1 via fire′), the algorithm empties the set
unprocessed subqueries2 (filter3,2) and transfers the set of tuples {(b, a), (c, a), (d, c), (a, d),
(d, a), (a, c), (b, d), (c, d), (a, a), (b, c), (c, c), (d, d)} through the edge E17 and adds noth-
ing to tuples(input path) (by transfer2 via transfer′), because there exists (x3, y3) ∈
tuples(input path), which is more general than any other tuples.

3

12. E18–E19

Observe that the edge E18 is active, the current net is stable up to the layer 1 (no edge
among E4–E14 is active), and the edge E17 is inactive. Thus, selecting the edge E18 (for
firing) satisfies the admissibility w.r.t. strata’s stability. Firing this edge (by fire′4 via fire′)
and processing unprocessed subqueries(filter3,2), the algorithm empties this set and produces
the set of subqueries {((a, b), {ε}), ((d, b), {ε}), ((c, b), {ε})}, which is transferred through the
edge E18, producing {(a, b), (d, b), (c, b)} (by transfer′), which, in turn, is then transferred
through the edge E19 and added to the empty set tuples(ans acyclic) (by transfer1 via
transfer′).

At this point, no edge in the net is active. The algorithm terminates and returns the set
tuples(ans acyclic) = {(a, b), (d, b), (c, b)}.

B Data Complexity, Soundness and Completeness

In this section, we prove that the QSQN-STR evaluation method for stratified Datalog¬ is sound,
complete and has a PTIME data complexity.

The following lemma states a property of Algorithm 1.

Lemma 1. For every intensional predicate r used in P , if t ∈ tuples(ans r), then t is a ground
tuple (i.e., a tuple without variables).

This property follows from the safety conditions of the Datalog¬ program P . Technically,
one can prove it by induction on the moment of adding t to tuples(ans r) and an inner induction
on j that, if a subquery (t

′
, δ) is transferred to a node filter i,j , where the predicate of Ai

is r, then Vars(t
′
) ⊆ Vars((Bi,j , . . . , Bi,ni)δ) and, for every x ∈ Vars((Bi,1, . . . , Bi,j−1)) ∩

Vars((Bi,j , . . . , Bi,ni)), δ(x) is a constant (i.e., δ contains a pair x/c for some constant c).
Additionally, as the next step, if a subquery (t, δ) is transferred to the node post filter i, then
δ = ε and t is a ground tuple. The proof is straightforward and omitted.

Lemma 2. Algorithm 1 runs in polynomial time in the size of I.

Proof. Let n be the size of I. Without loss of generality, we assume that all intensional predicates
of the signature are used in P . As the Datalog¬ program P is fixed, the arities of all intensional
predicates are bounded by a constant, and the number of constant symbols occurring in P is
also bounded by a constant.

For each intensional predicate p, let all tuples(input p) denote the set of all tuples that are
added to tuples(input p) during the run of the algorithm (including the ones that are deleted
from tuples(input p) at some later steps). The cardinality of all tuples(input p) is bounded by
a polynomial in n. The reasons are as follows:

− Let k be the arity of p. Before a tuple t is added to tuples(input p), t is not an instance
of a fresh variant of any t

′ ∈ tuples(input p), hence there exists a renaming substitution θt
such that dom(θt) = Vars(t), range(θt) ⊆ {x1, . . . , xk} and tθt is not an instance of a fresh
variant of any t

′ ∈ tuples(input p). When a tuple is deleted from tuples(input p), its fresh
variant must be an instance of a tuple that will be added to tuples(input p) at the next step.
Hence, if {t, t′} ⊆ all tuples(input p) and t 6= t

′
, then tθt 6= t

′
θt′ .

− The sets all tuples(input p) and {tθt | t ∈ all tuples(input p)} have the same cardinality,
which is bounded by a polynomial in n because each element of the latter set is a k-ary tuple
constructed from the variables x1, . . . , xk and the constants occurring in P ∪ I.

For each intensional predicate p, the cardinality of tuples(ans p) is also bounded by a poly-
nomial in n. This follows from Lemma 1.

4

Each “elementary operation” executed by the algorithm is related to a t ∈ all tuples(input p)
for some p and can be labeled by the pair (t, p), which is chosen so that t ∈ all tuples(input p) is
the most direct cause of the operation. Observe that, for each (t, p), the number of “elementary
operations” executed by the algorithm and labeled by (t, p) is bounded by a polynomial in n. As
the cardinality of all tuples(input p) for each intensional predicate p is bounded by a polynomial
in n, we conclude that the algorithm runs in polynomial time in n. �

We will need the well-known Lifting Lemma, whose restriction to Datalog is presented below.
Its proof can be found in [9].

Lemma 3 (Lifting Lemma). Let P be a Datalog program, G a goal and θ a substitution.
Suppose there exists an SLD-refutation of P ∪{Gθ} using mgu’s θ1, . . . , θn such that the variables
of the input program clauses are distinct from the variables in G and θ. Then, there exist
a substitution γ and an SLD-refutation of P ∪ {G} using the same sequence of input program
clauses, the same selected atoms, and mgu’s θ′1, . . . , θ

′
n such that θθ1 . . . θn = θ′1 . . . θ

′
nγ.

For each predicate p of the signature (now called the primary signature), let p′ be a new
extensional predicate (for playing the role of ∼p). For each 1 ≤ k ≤ K, let P ′k be the Datalog
program obtained from Pk by replacing every ∼ p with p′. For each 0 ≤ k ≤ K, let Mk =
MP1∪...∪Pk,I and let Ik be the instance of extensional predicates specified as follows:

− if p is an extensional predicate from the primary signature, then Ik(p) = I(p);

− if p is an h-ary predicate from the primary signature, then Ik(p′) = {t | t is an h-ary tuple of
constants from UP,I such that p(t) /∈Mk}.

Lemma 4. For every 1 ≤ k ≤ K, every intensional predicate p of the primary signature and
every tuple t of constants, p(t) ∈Mk iff p(t) ∈ TP ′1∪...∪P ′k,Ik−1

↑ω.

This lemma immediately follows from the fact that the standard semantics of stratified
Datalog¬ agrees with the stable model semantics [5].

Lemma 5. During a run of Algorithm 1, for every intensional predicate r of P with
layer(input r) = k and for every tuples t and t

′
of terms,

a) if t ∈ tuples(ans r), then r(t) ∈MP,I ,

b) if the QSQ-STR-net is stable up to the layer k, t ∈ tuples(input r), r(t
′
) ∈MP,I and t

′
is an

instance of t, then t
′ ∈ tuples(ans r).

Proof. We prove this lemma by induction on k. The base case k = 0 is trivial.

For the induction step, we first show that a run of the QSQN-STR method for the Datalog¬

program P1 ∪ . . . ∪ Pk can be treated as a run of the QSQN method for the Datalog program
P ′1 ∪ . . . ∪ P ′k by considering each ∼p as the extensional predicate p′ specified by Ik−1. For this,
we only need to show that if pred(Ai) = r, kind(filter i,j) = intensional, neg(filter i,j) = true,
pred(filter i,j) = p, layer(input p) = h and h < k, then:

(i) if t ∈ tuples(ans p), then p′(t) /∈ Ik−1,
(ii) if (tj−1, δj−1) ∈ subqueries(filter i,j), then for every tuple t of constants from UP,I such that

p(t) is an instance of atom(filter i,j)δj−1 and p′(t) /∈ Ik−1, t was added by Algorithm 1
to tuples(ans p) at some step before the subquery (tj−1, δj−1) is processed for the edge
(filter i,j , succ(filter i,j)).

Assume that the premises of the main implication hold. Consider the assertion (i) and assume
that t ∈ tuples(ans p). By the inductive assumption (a), p(t) ∈ MP,I . Thus, p(t) ∈ Mk−1 and
hence p(t) /∈ Ik−1. For the assertion (ii), assume that (tj−1, δj−1) ∈ subqueries(filter i,j), t is
a tuple of constants from UP,I such that p(t) is an instance of atom(filter i,j)δj−1 and p′(t) /∈ Ik−1.
We have that p(t) ∈Mk−1, and hence p(t) ∈MP,I . Since the used control strategy is admissible

5

w.r.t. strata’s stability, before calling fire′(filter i,j , succ(filter i,j)), the subquery (tj−1, δj−1) has
already been processed for the edge (filter i,j , input p) and, as a consequence, tuples(input p)

contains a tuple t
′′

such that a fresh variant of atom(filter i,j)δj−1 is an instance of p(t
′′
). Thus,

t is an instance of t
′′
. Furthermore, at that moment the QSQ-STR-net is stable up to the layer h.

By the inductive assumption (b) for h instead of k and p, t
′′
, t instead of r, t, t

′
, respectively, we

have that t ∈ tuples(ans p), which completes the proof of the assertion (ii).
By the assertions (i) and (ii), we can now treat a run of Algorithm 1 on the part consisting

of the layers up to k of the QSQ-STR-net as a run of the QSQN method on a QSQ-net by
considering each ∼p as the extensional predicate p′ specified by Ik−1.

1

Consider the assertion (a) and assume that the premise of the implication holds. Since
t ∈ tuples(ans r), by the soundness of the QSQN method for Datalog (see [1, Lemma 4.2] for
the case when l = 0 and T (p) = false for every intensional predicate p), t is a correct answer for
(P ′1 ∪ . . . ∪ P ′k) ∪ Ik−1 ∪ {← r(t)}. By the correctness of the fixpoint semantics of positive logic
program (see, e.g., [6, Theorems 6.5 and 6.6]), it follows that r(t) ∈ TP ′1∪...∪P ′k,Ik−1

↑ω. Hence, by

Lemma 4, r(t) ∈Mk, which implies r(t) ∈MP,I . This completes the proof of the assertion (a).
Consider the assertion (b) and assume that the premises of the implication hold. Since

r(t
′
) ∈ MP,I , we have that r(t

′
) ∈ Mk, and by Lemma 4, r(t

′
) ∈ TP ′1∪...∪P ′k,Ik−1

↑ω. By the

correctness of the fixpoint semantics of positive logic program (see, e.g., [6, Theorems 6.5
and 6.6]) and the completeness of SLD-resolution (see, e.g., [6, Theorems 8.6]), there exists

an SLD-refutation of (P ′1 ∪ . . . ∪ P ′k) ∪ Ik−1 ∪ {← r(t
′
)} with mgu’s θ1, . . . , θn. Since t

′
is an

instance of t, there exists a substitution θ such that t
′

= tθ. By the Lifting Lemma 3, there
exists an SLD-refutation of (P ′1 ∪ . . . ∪ P ′k) ∪ Ik−1 ∪ {← r(t)} with mgu’s θ′1, . . . , θ

′
n such that

θθ1 . . . θn = θ′1 . . . θ
′
nδ for some substitution δ. By the completeness of the QSQN method for

Datalog (see [1, Lemma 4.3] for the case when l = 0 and T (p) = false for every intensional

predicate p), tθ′1 . . . θ
′
n is an instance of a fresh variant of some tuple t

′′ ∈ tuples(ans r). Since

t
′

= t
′
θ1 . . . θn = tθθ1 . . . θn = tθ′1 . . . θ

′
nδ is an instance of tθ′1 . . . θ

′
n, t
′

is also an instance of t
′′
.

Since t
′′

is a ground tuple (by Lemma 1), it follows that t
′
= t
′′
. This completes the proof of the

assertion (b). �

Corollary 1. After a run of Algorithm 1 for a query q(x) to a stratified Datalog¬ database
(P, I), for every tuple of terms t, t ∈ tuples(ans q) iff q(t) ∈MP,I .

This corollary immediately follows from Lemma 5. Together with Lemma 2, it implies the
following theorem.

Theorem 1. The QSQN-STR method formulated by Algorithm 1 for evaluating queries to
stratified Datalog¬ databases is sound, complete and has a PTIME data complexity.

C Preliminary Experiments

We have implemented a prototype of QSQN-STR in Java, using a control strategy named IDFS2,
which is specified in [1]. We have made a comparison between our prototype of QSQN-STR
and Datalog Educational System (DES – a deductive database system) [7] w.r.t. the number
of generated tuples in the answer relations that correspond to intensional predicates. The
experimental results given in [1, Section 6.5] show that the number of generated tuples in the
answer relations that correspond to negated intensional predicates in the case of QSQN-STR is
often smaller than the one in the case of DES.

Our prototype of QSQN-STR [2] has not yet been optimized. So, in general, it cannot compete
with highly optimized engines like XSB [8]. Nevertheless, we have performed experiments and

1 The edge (filter i,j , input p) may cause adding more tuples to tuples(input p), but they do not affect the soundness
and completeness of the QSQN method ([1, Lemmas 4.2 and 4.3] for the case when l = 0 and T (p) = false for
every intensional predicate p).

6

made a comparison between our prototype of QSQN-STR, DES-DBMS2 (version 5.0.1) and
SWI-Prolog3 (version 6.4) w.r.t. the execution time by using a number of tests. Comparing our
prototype of QSQN-STR with other existing engines is time-consuming and left as future work.4

In this section, we present the mentioned comparison between our prototype of QSQN-STR,
DES-DBMS and SWI-Prolog. In general, such a comparison does not reveal much about
advantages of the used evaluation methods, because these systems use different programming
styles and/or languages. Besides, QSQN-STR is a framework that allows every control strategy
admissible w.r.t. strata’s stability, and our prototype of QSQN-STR adopts the control strategy
IDFS2 [1], which may be further improved. The point is not the efficiency of our prototype
of QSQN-STR. The aim of our experiments and comparison is only to support the claim that
QSQN-STR is a useful evaluation framework for stratified Datalog¬.

Our prototype of QSQN-STR uses extensional relations stored in a MySQL database. DES-
DBMS was also implemented in Java using SQL DBMS’. SWI-Prolog is a well-known logic
programming software, which can easily be connected to a MySQL database through an ODBC
driver. Without using a MySQL database for storing extensional relations, SWI-Prolog runs
very fast. For a fair comparison, however, we performed tests with SWI-Prolog using extensional
relations stored in the same MySQL database as for QSQN-STR. For the tests with QSQN-STR,
we set T (v) = false for each v = filter i,j ∈ V with pred(v) = extensional.

Let P1 be the stratified Datalog¬ program consisting of the following clauses, where link1,
link2, origin and destination are extensional predicates, reachable1, reachable2, reachable, query1

and query2 are intensional predicates, x, y and z are variables:

reachable1(x, y)← link1(x, y), (1)

reachable1(x, y)← link1(x, z), reachable1(z, y), (2)

reachable2(x, y)← link2(x, y), (3)

reachable2(x, y)← link2(x, z), reachable2(z, y), (4)

reachable(x, y)← reachable1(x, y), (5)

reachable(x, y)← reachable2(x, y), (6)

query1(x, y)← origin(x), destination(y),∼reachable(x, y), (7)

query2(x, y)← origin(x), destination(y), reachable(x, y),∼reachable(y, x). (8)

Let P2 be the stratified Datalog¬ program that differs from P1 in that the clauses (2) and (4)
are replaced by the following one, with i being 1 or 2, respectively:

reachablei(x, y)← reachablei(x, z), link i(z, y).

Similarly, let P3 be the stratified Datalog¬ program that differs from P1 in that the clauses (2)
and (4) are replaced by the following one, with i being 1 or 2, respectively:

reachablei(x, y)← reachablei(x, z), reachablei(z, y).

2 The Datalog Education System (DES) with a DBMS via ODBC, available at http://des.sourceforge.net

(see also, e.g., [7]).
3 Available at http://www.swi-prolog.org/
4 XSB is known as an efficient engine for in-memory Datalog¬ databases due to the suspension-resumption

mechanism, advantages of WAM (Warren Abstract Machine) and other optimizations. We think that our
prototype of QSQN-STR cannot compete with XSB when the computation can totally be done in the memory
without accessing to the secondary storage. For a comparison with XSB, at least we want to run XSB using
very large extensional relations stored on disk. However, at the moment we have a technical problem with
connecting XSB to a MySQL DBMS via an ODBC driver. We could not find time for comparing our prototype
of QSQN-STR with other engines like DLV [29], NP Datalog [24] and clasp [19]. In general, we think that those
systems were designed and implemented to deal, among others, with answer set programming (ASP) and, as
the main aim of ASP engines is to find an answer set (i.e., a stable model) for a given logic program, they
are not goal-driven and, in general, not as efficient as expected for answering queries to stratified Datalog¬

databases. Of course, without performing experiments and comparisons, nothing can be formally stated.

7

http://des.sourceforge.net
http://www.swi-prolog.org/

Let I1 be the extensional instance specified as follows, where n is a parameter and elements
like ai,j , ok and dk are constant symbols:

I1(origin) = {ok | 1 ≤ k ≤ n},
I1(destination) = {dk | 1 ≤ k ≤ n},

I1(link1) = {(ok, a1,1), (ai,1, ai+1,1), (an,1, dk) | 1 ≤ k ≤ n, 1 ≤ i < n},
I1(link2) = {(ok, a1,j), (ai,j , ai+1,j), (an,j , dk) | 1 ≤ k ≤ n, 1 ≤ i < n, 1 ≤ j ≤ n}.

Let I2 be the extensional instance specified as follows:

I2(origin) = I1(origin),

I2(destination) = I1(destination),

I2(link1) = I1(link1) ∪ {(ai+1,1, ai,1) | 1 ≤ i < n},
I2(link2) = I1(link2) ∪ {(ai+1,j , ai,j) | 1 ≤ i < n, 1 ≤ j ≤ n}.

The extensional instances I1 and I2 are illustrated in Figures 2 and 3, respectively.

We consider the tests specified as follows.

Test Program Extensional Instance

Test 1 P1 I1

Test 2 P1 I2

Test 3 P2 I1

Test 4 P2 I2

Test 5 P3 I1

Test 6 P3 I2

For each of the tests, we consider the following values of n:

1) n = 20, 2) n = 40, 3) n = 60, 4) n = 80, 5) n = 100

and the following queries (cf. [3, Remark 2.3]):

a) query1(x, y), b) query1(o1, d1), c) query2(x, y), d) query2(o1, d1).

Our experiments were done using a computer with Windows 10 (64-bit), Intel R©
CoreTM i5-6500 CPU 3.20 GHz and 8 GB RAM. Figures 4–9 show a comparison between
our prototype of QSQN-STR, SWI-Prolog and DES-DBMS w.r.t. the execution time for the
mentioned tests. The experimental results of SWI-Prolog are shown only for the tests for which
SWI-Prolog can terminate properly.5 For each of the mentioned engines, each test was executed
10 times and the average value of execution time in milliseconds was taken. To give a better data
visualization, the execution times are shown after being converted by log10. Detailed instructions
for verifying our experiments are included in [2].

The results presented in Figures 4–9 show that our prototype of QSQN-STR outperforms
DES-DBMS by a few orders of magnitude in term of execution time for all of the tests. It is
competitive with SWI-Prolog for the tests for which SWI-Prolog can terminate properly.

5 SWI-Prolog uses SLDNF-resolution, which can have infinite derivations even for Datalog, and for such cases
SWI-Prolog terminates with the communication “out of local stack”.

8

o1

��:::::::: o2

��

. . .

���
�

�
�

�
on

yysssssssssssss

a1,1

��
a2,1

��. . .

��
an,1

���������

��
��:

:
:

:
:

%%KKKKKKKKKKKK

d1 d2 . . . dn
(a)

o1

�� !!CCCCCCCCC

((PPPPPPPPP

**UUUUUUUUUUUUUUUUUUUUUUUUU o2

}}{{{{{{{{{

�� A
A

A
A

A

((PPPPPPPPPPPPPPPP . . . on

ttiiiiiiiiiiiiiiiiiiiiiiiii

wwnnnnnnnnnnnnnnnn

~~}
}

}
}

}

��
a1,1

��

a1,2

��

. . . a1,n

��
a2,1

��

a2,2

��

. . . a2,n

��. . .

��

. . .

��

.

��
an,1

�� BBBBBBBB

''PPPPPPPPP

**UUUUUUUUUUUUUUUUUUUUUUUUU

��

an,2

~~||||||||

��
��@

@
@

@
@

''PPPPPPPPPPPPPPPP . . . an,n

ttiiiiiiiiiiiiiiiiiiiiiiiii

wwoooooooooooooooo

~~~
~

~
~

~

��
d1 d2 . . . dn

(b)

Fig. 2. The extensional instance I1: (a) I1(link1), and (b) I1(link2)

o1

��:::::::: o2

��

. . .

���
�

�
�

�
on

yysssssssssssss

a1,1

��
a2,1

��

OO

. . .

��

OO

an,1

���������

��
��:

:
:

:
:

%%KKKKKKKKKKKK

OO

d1 d2 . . . dn
(a)

o1

�� !!CCCCCCCCC

((PPPPPPPPP

**UUUUUUUUUUUUUUUUUUUUUUUUU o2

}}{{{{{{{{{

��   A
A

A
A

A

((PPPPPPPPPPPPPPPP . . . on

ttiiiiiiiiiiiiiiiiiiiiiiiii

wwnnnnnnnnnnnnnnnn

~~}
}

}
}

}

��
a1,1

��

a1,2

��

. . . a1,n

��
a2,1

��

OO

a2,2

��

OO

. . . a2,n

��

OO

. . .

��

OO

. . .

��

OO

. . . . . .

��

OO

an,1

��   BBBBBBBB

''PPPPPPPPP

**UUUUUUUUUUUUUUUUUUUUUUUUU

��

OO

an,2

~~||||||||

��
��@

@
@

@
@

''PPPPPPPPPPPPPPPP

OO

. . . an,n

ttiiiiiiiiiiiiiiiiiiiiiiiii

wwoooooooooooooooo

~~~
~

~
~

~

��

OO

d1 d2 . . . dn
(b)

Fig. 3. The extensional instance I2: (a) I2(link1), and (b) I2(link2)

9

Fig. 4. Experimental results for Test 1

Fig. 5. Experimental results for Test 2

10

Fig. 6. Experimental results for Test 3

Fig. 7. Experimental results for Test 4

11

Fig. 8. Experimental results for Test 5

Fig. 9. Experimental results for Test 6

12

References

1. Cao, S. T.: Methods for Evaluating Queries to Horn Knowledge Bases in First-Order Logic. Ph.D. thesis,
University of Warsaw, 2016.

2. Cao, S. T.: An Implementation in Java of the QSQN-STR Evaluation Method. Available at: http://mimuw.
edu.pl/~sonct/QSQN-STR18.zip, 2018.

3. Cao, S. T.—Nguyen, L. A.: Incorporating Stratified Negation into Query-Subquery Nets for Evaluating Queries
to Stratified Deductive Databases. To appear in Computing and Informatics, 2018, doi: 10.1007/978-3-319-
17996-4 32.

4. Cao, S. T.—Nguyen, L. A.: Online Appendix: A Demonstration of the QSQN-STR Method for evaluating
Queries to Stratified Datalog¬. Available at: http://mimuw.edu.pl/~nguyen/QSQN-STR-demonstration.pdf,
2018.

5. Gelfond, M.—Lifschitz, V.: The Stable Model Semantics for Logic Programming. Proceedings of ICLP/SLP
1988, pp. 1070–1080, MIT Press, 1988.

6. Lloyd, J. W.: Foundations of Logic Programming. 2nd edition, Springer, 1987, doi: 10.1007/978-3-642-83189-8.
7. Sáenz-Pérez, F.: DES: A Deductive Database System. Electronic Notes in Theoretical Computer Science,

Vol. 271, 2011, pp. 63–78, doi: 10.1016/j.entcs.2011.02.011.
8. Sagonas, K. F.—Swift, T.—Warren, D. S.: XSB as an Efficient Deductive Database Engine. Proceedings of

SIGMOD Conference 1994, pp. 442–453, ACM Press, 1994.
9. Staab, S.: Completeness of the SLD-Resolution. Slides of a Course on Advanced Data Modeling. Available at:

https://west.uni-koblenz.de/files/SS08/adm08/db2-ss08-slides9.ppt, 2008.

D Pseudocode of the QSQN-STR Method for Stratified Datalog¬

Algorithm 1: evaluating a query q(x) to a stratified Datalog¬ database (P, I).

Input: a stratified Datalog¬ database (P, I), a stratification P = P1 ∪ . . . ∪ PK of P and
a query q(x).

Output: the set of all correct answers for the query q(x) on (P, I).

1 let (V,E, T) be a QSQN-STR structure of P ;
// T can be chosen arbitrarily or appropriately

2 set C so that (V,E, T,C) is an empty QSQ-STR-net of P ;

3 let x′ be a fresh variant of x;
4 tuples(input q) := {x′};
5 foreach (input q, v) ∈ E do unprocessed(input q, v) := {x′};
6 while there exists (u, v) ∈ E such that active-edge(u, v) holds do
7 select any edge (u, v) ∈ E such that active-edge(u, v) holds and the

selection satisfies the admissibility w.r.t. strata’s stability;

8 fire′(u, v);

9 return tuples(ans q);

13

http://mimuw.edu.pl/~sonct/QSQN-STR18.zip
http://mimuw.edu.pl/~sonct/QSQN-STR18.zip
http://mimuw.edu.pl/~nguyen/QSQN-STR-demonstration.pdf
https://west.uni-koblenz.de/files/SS08/adm08/db2-ss08-slides9.ppt

Function active-edge(u, v)

Global data: a QSQ-STR-net (V,E, T,C) of P .
Input: an edge (u, v) ∈ E.
Output: true if there are data to transfer through the edge (u, v), and false otherwise.

1 if u is pre filter i or post filter i then return false;
2 else if u is input p or ans p then return unprocessed(u, v) 6= ∅;
3 else if u is filter i,j and kind(u) = extensional then

4 return T (u) = true ∧ unprocessed subqueries(u) 6= ∅;
5 else // u is of the form filter i,j and kind(u) = intensional

6 let p = pred(u);
7 if v = input p then return unprocessed subqueries2 (u) 6= ∅;
8 else return unprocessed subqueries(u) 6= ∅ ∨ unprocessed tuples(u) 6= ∅;

Procedure add-subquery(t, δ, Γ, v)

Purpose: add the subquery (t, δ) to Γ , but keep in Γ only the most general subqueries
w.r.t. v.

1 if no subquery in Γ is more general than (t, δ) w.r.t. v then
2 delete from Γ all subqueries less general than (t, δ) w.r.t. v;
3 add (t, δ) to Γ ;

Procedure add-tuple(t, Γ)

Purpose: add a fresh variant of the tuple t to Γ , but keep in Γ only the most general
tuples.

1 let t
′

be a fresh variant of t;

2 if t
′

is not an instance of any tuple from Γ then

3 delete from Γ all tuples that are instances of t
′
;

4 add t
′

to Γ ;

Procedure transfer′(D,u, v)

Global data: a stratified Datalog¬ database (P, I) and a QSQ-STR-net (V,E, T,C) of
P .

Input: data D to transfer through the edge (u, v) ∈ E.

1 if D = ∅ then return;
2 else if v is post filter i then transfer′({t | (t, ε) ∈ D}, v, succ(v));
3 else if u is ans p then unprocessed tuples(v) := unprocessed tuples(v) ∪D;
4 else if v is ans p then transfer1(D,u, v);
5 else if v is input p then transfer2(D,u, v);
6 else if u is input p then transfer′3(D,u, v);
7 else if v is filter i,j, kind(v) = extensional and T (v) = false then

8 if neg(v) = false then transfer′4(D,u, v);
9 else transfer′4b(D,u, v);

10 else transfer5(D,u, v);

14

Procedure transfer1(D,u, v)

// v = ans p, u = post filter i, D is a set of tuples of constants

1 foreach t ∈ D − tuples(v) do
2 add t to tuples(v);
3 foreach (v, w) ∈ E do add t to unprocessed(v, w);

Procedure transfer2(D,u, v)

// v = input p, u = filter i,j and kind(u) = intensional

1 foreach t ∈ D do

2 let t
′

be a fresh variant of t;

3 if t
′

is not an instance of any tuple from tuples(v) then

4 delete from tuples(v) all tuples that are instances of t
′
;

5 add t
′

to tuples(v);
6 foreach (v, w) ∈ E do

7 delete from unprocessed(v, w) all tuples that are instances of t
′
;

8 add t
′

to unprocessed(v, w);

Procedure transfer′3(D,u, v)

// u is input p and v = pre filter i

1 Γ := ∅;
2 foreach t ∈ D do
3 if p(t) and atom(v) are unifiable by an mgu γ then
4 add-subquery(tγ, γ|post vars(v), Γ, succ(v));

5 transfer′(Γ, v, succ(v));

Procedure transfer′4(D,u, v)

// v = filter i,j, kind(v) = extensional, T (v) = false and neg(v) = false

1 let p = pred(v) and set Γ := ∅;
2 foreach (t, δ) ∈ D and t

′ ∈ I(p) do

3 if atom(v)δ and p(t
′
) are unifiable by an mgu γ then

4 add-subquery(tγ, (δγ)|post vars(v), Γ, succ(v));

5 transfer′(Γ, v, succ(v));

Procedure transfer′4b(D,u, v)

// v = filter i,j, kind(v) = extensional, T (v) = false, neg(v) = true

1 let p = pred(v) and set Γ := ∅;
2 foreach (t, δ) ∈ D do

3 if atom(v)δ /∈ {p(t′) | t′ ∈ I(p)} then
4 add-subquery(t, δ|post vars(u), Γ, succ(v));

5 transfer′(Γ, v, succ(v));

15

Procedure transfer5(D,u, v)

/* v = filter i,j, (kind(v) = extensional and T (v) = true or kind(v) = intensional)

and u is not of the form ans p */

1 foreach (t, δ) ∈ D do
2 if no subquery in subqueries(v) is more general than (t, δ) w.r.t. v then
3 delete from subqueries(v) and unprocessed subqueries(v) all subqueries less

general than (t, δ) w.r.t. v;
4 add (t, δ) to both subqueries(v) and unprocessed subqueries(v);
5 if kind(v) = intensional then
6 delete from unprocessed subqueries2 (v) all subqueries less general than (t, δ)

w.r.t. v;
7 add (t, δ) to unprocessed subqueries2 (v);

Procedure fire′(u, v)

Global data: a stratified Datalog¬ database (P, I) and a QSQ-STR-net (V,E, T,C) of
P .

Input: an edge (u, v) ∈ E such that active-edge(u, v) holds.

1 if u is ans p then
2 transfer′(unprocessed(u, v), u, v);
3 unprocessed(u, v) := ∅;
4 else if u is input p then
5 transfer′(unprocessed(u, v)− tuples(ans p), u, v);
6 unprocessed(u, v) := ∅;
7 else if v is input p then fire′1(u, v);
8 else if u is filter i,j and neg(u) = false then

9 if kind(u) = extensional then fire′2(u, v);
10 else fire′3(u, v);

11 else if u is filter i,j and neg(u) = true then fire′4(u, v);

Procedure fire′1(u, v)

// v = input p, u = filter i,j and kind(u) = intensional

1 let p = pred(u) and set Γ := ∅;
2 foreach (t, δ) ∈ unprocessed subqueries2 (u) do

3 let p(t
′
) = atom(u)δ;

4 add-tuple(t
′
, Γ);

5 unprocessed subqueries2 (u) := ∅;
6 transfer′(Γ, u, v);

16

Procedure fire′2(u, v)

// u = filter i,j, neg(u) = false, kind(u) = extensional and T (u) = true

1 let p = pred(u) and set Γ := ∅;
2 foreach (t, δ) ∈ unprocessed subqueries(u) and t

′ ∈ I(p) do

3 if atom(u)δ and p(t
′
) are unifiable by an mgu γ then

4 add-subquery(tγ, (δγ)|post vars(u), Γ, v);

5 unprocessed subqueries(u) := ∅;
6 transfer′(Γ, u, v);

Procedure fire′3(u, v)

// u = filter i,j, neg(u) = false, kind = intensional and v = succ(u)

1 let p = pred(u) and set Γ := ∅;
2 foreach (t, δ) ∈ unprocessed subqueries(u) and t

′ ∈ tuples(ans p) do

3 if atom(u)δ and p(t
′
) are unifiable by an mgu γ then

4 add-subquery(tγ, (δγ)|post vars(u), Γ, v);

5 unprocessed subqueries(u) := ∅;
6 foreach (t, δ) ∈ subqueries(u) and t

′ ∈ unprocessed tuples(u) do

7 if atom(u)δ and p(t
′
) are unifiable by an mgu γ then

8 add-subquery(tγ, (δγ)|post vars(u), Γ, v);

9 unprocessed tuples(u) := ∅;
10 transfer′(Γ, u, v);

Procedure fire′4(u, v)

// u = filter i,j, neg(u) = true and v = succ(u)

1 let p = pred(u) and set Γ := ∅;
2 let R be I(p) if kind(u) = extensional, and tuples(ans p) otherwise;
3 foreach (t, δ) ∈ unprocessed subqueries(u) do

4 if atom(u)δ /∈ {p(t′) | t′ ∈ R} then
5 add-subquery(t, δ|post vars(u), Γ, v);

6 unprocessed subqueries(u) := ∅;
7 transfer′(Γ, u, v);

17

