
Computing and Informatics, Vol. 38, 2019, 85–114, doi: 10.31577/cai 2019 1 85

A PROBABILISTIC EXTENSION OF UML-B

Mohammad Nosrati, Hassan Haghighi

Shahid Beheshti University
Evin, Tehran,Iran
e-mail: mohammad.nosrati@gmail.com, h haghighi@sbu.ac.ir

Abstract. This paper extends the graphical and formal language of UML-B to pro-
vide the ability to model probabilities. Discrete probabilities, interval probabilities,
and stochastic delays are added to the UML-B’s state-machine syntax, and their
corresponding semantics are defined in Event-B. In addition, as a secondary contri-
bution, UML-B (probabilistic) state-machine models are defined as MDP (Markov
Decision Process) models in order to provide a means of quantitative verification
in PRISM (Probabilistic Symbolic Model Checker). As an important feature of the
proposed method, it does not change the Event-B syntax or semantics. To evaluate
this work, as a case study, the Zeroconf protocol will be modeled in the extended
UML-B using the Rodin tool, and its Event-B counterpart is converted to a PRISM
model. The results of evaluations indicate that this study’s additions provide the
capability of modeling and verification of probabilistic and stochastic systems.

Keywords: UML-B, Event-B, probabilistic systems, interval probabilities, stochas-
tic delay, probabilistic model verification, MDP, PRISM

1 INTRODUCTION

To facilitate software specification and design, and to simplify the communication be-
tween software stakeholders (especially, software engineers), graphical, semi-formal
languages, such as UML, have been developed to model software artifacts.

In spite of the benefits that semi-formal languages provide, the lack of a precise
formal semantics can lead to ambiguity and inconsistency. For example, Reggio
et al. [27] have identified 31 problems concerning ambiguity, incompleteness, and in-
consistency in UML 1.3. But then, the difficulty of writing formal specifications and
understanding these specifications by software practitioners are serious problems. If

86 M. Nosrati, H. Haghighi

the priority of a modeler is to use a means for abstract communication, a less formal
language is preferred. But in case the modeler is seeking semantic correctness and
rigor, then formal method is favored.

One approach to increase formalism is to transform specifications notated in
languages like UML to an intermediate formal language, such as Fiacre (Format
Intermédiaire pour les Architectures de Composants Répartis Embarqués) [11] to
perform formal analysis and verification.

As another approach to avoid the problems with semi-formal methods such as
UML and to overcome the difficulties in applying formal methods like Event-B while
retaining their benefits, a language called UML-B has been proposed that attempts
to combine the simplicity and intuitiveness of UML and preciseness and unambiguity
of Event-B.

Probability is one of the main concepts required for expressing aspects common
in real-time, fault-tolerant, and distributed systems because it allows the designer to
specify system’s random behavior quantitatively. Due to the importance of modeling
and verification of probabilistic systems and behaviors, various programming and
modeling languages have covered this notion. Especially, there are a number of
major approaches for formally modeling and analyzing probabilistic systems in the
literature.

Probabilistic model checking is one of the commonly used techniques. In this ap-
proach, a state-based mathematical model of the probabilistic system is constructed
from its description in a high level language, and then, it is examined whether this
model satisfies a given probabilistic property. A number of tools have been de-
veloped based on this method, with PRISM being among the most notable ones.
Güdemann et al. [14] introduced SAML (Safety Analysis Modeling Language) to
unify probabilistic and logical analysis of models to decouple the model from the
actual verification tool, by converting model.

Another formal approach to model probabilities is using proof-based methods
and languages, such as Hoare Logic [8], B [18] and Event-B [15], which have been
extended with probabilistic choice. In [18], Hoang et al. have extended Abrial’s
Generalized Substitution Language (GSL) [1] to get pGSL that includes random al-
gorithms within its scope to initiate the development of probabilistic B (pB). Haller-
stede et al. [15] have extended the Event-B formalism with a qualitative probabilistic
choice operator. When extending proof-based methods, refinements or probabilistic
invariants are used to reason about the probabilistic system. One major benefit of
this approach is its automatic nature.

A third alternative approach is to use the Higher Order Logic (HOL) to formalize
random systems. In this approach, random variables are expressed formally in the
higher order logic, and probabilistic properties are verified in a theorem prover.
Hurd’s Ph.D. thesis [19] and [17] are among works in this area.

Since, despite its advantages and applications, there has been no research on
the subject of modeling probabilities in UML-B, the main objective of this research
is to provide the ability to model probabilistic requirements in UML-B. By this
contribution, it will be possible to specify discrete and interval probabilities, as well

A Probabilistic Extension of UML-B 87

as stochastic delays in UML-B and transform the resulting models to the Event-B
formal specification language. To achieve this goal, the syntax and semantics of
the mentioned notions are defined. As a secondary contribution, this paper defines
UML-B state-machines as MDP models to make it possible to convert them to
PRISM models for quantitative and probabilistic verification purposes.

Despite similarities between UML and UML-B from a syntactic viewpoint, there
are considerable differences between the semantics of these two languages. UML-B,
concerned in our work, is based on the Event-B formal methods. Therefore, our
main contribution in comparison to works like [20, 21] is our formal approach for
defining the semantics of probabilistic constructs. Relying on UML-B and Event-B,
the proposed method not only benefits from simplicity and intuitiveness of graphical
modeling languages, but also offers the advantages of formal methods, such as lack
of ambiguity in specifications, increasing accuracy and consistency, and providing
means to formal verification and reasoning. In addition, in contrast to similar works,
like [32], one of the main features of this paper is that it does not change the Event-B
syntax and semantics to achieve its goals. Therefore, the proposed method can be
directly used in the current Event-B tools.

The paper is organized as follows. In Section 2, the research background and
an overview on the most related work are briefly presented. Section 4 introduces
our extensions to UML-B. In Section 5, we show the applicability of the proposed
method by applying it to a case study. Section 6 is dedicated to the conclusions and
some directions for future work.

2 BACKGROUND

2.1 Event-B

As an evolution of B-Method developed by Jean-Raymond Abrial, Event-B [1] is
a formal method for modeling and analyzing systems. In Event-B, machines model
reactive (event-based) systems that continually execute enabled events. Event-based
systems have no interfaces or parameters. Instead, inputs are modeled as nondeter-
ministic changes. The state of the model is represented as a collection of variables.
The dynamic behavior of the system is defined by a number of events. Events modify
the system state, by executing an action [6]. An event has the following form:

e : ANY lv WHERE Ge THEN r END

where lv is a list of local variables, guard Ge is a predicate over the system state
and local variables, and action r is a multiple assignment over the system variables.
An event becomes enabled only when its corresponding guard becomes true. As a re-
sult of executing an action, one or multiple parallel assignments will be performed.
Variable assignments can be deterministic or nondeterministic. The deterministic
assignment is denoted by x := E(v) where x is a variable and E(v) is an expres-
sion over system variables. Nondeterministic assignments are denoted by x :∈ S or

88 M. Nosrati, H. Haghighi

x :| BAe(x, v, x
′). S is a set, and BAe(x, v, x

′) is a predicate over system variables.
As a result of these assignments, x is assigned any value from the set S, or it gets
a value x′ such that BAe(x, v, x

′) is true [26].
An Event-B model is a tuple (C,Σ, A, v, I, S, E, Init) where C is a set of model

constants; Σ is a set of model sets; A is a set of axioms over C and Σ; v is a set of
system variables; I is a set of invariant properties; S is a set of model states, defined
by all possible values of v; E is a set of system events; and Init is a predicate defining
the set of initial states.

The semantics of events is defined using before-after (BA) predicates [2]. A be-
fore-after predicate describes a relationship between the variable values before and
after the execution of an event. An event e ∈ E is a tuple e = (Ge, BAe) where
Ge ∈ S → BOOL is the guard and BAe ∈ S × S → BOOL is the before-after
predicate [10].

Model correctness is demonstrated by generating and discharging a collection
of Proof Obligations (POs). Every Event-B model should satisfy the event feasi-
bility ((Ge(σ) ∧ I(σ′))⇒ ∃σ′.BAe(σ, σ

′)) and invariant properties ((Ge(σ) ∧ I(σ) ∧
BAe(σ, σ

′)) ⇒ I(σ′)), where σ and σ′ are states and I is the invariant. The feasi-
bility of an event means that whenever an event is enabled, there is some reachable
after-state. Each event should also preserve the model invariant.

The behavior of an Event-B model is given by a transition system for which
transition relations are given by this rule:

∃(Ge, BAe) ∈ E.∃σ, σ′ ∈ S.I(σ) ∧Ge(σ) ∧BAe(σ, σ
′) ∧ I(σ′)

σ → σ′
.

This rule states if there is a (Ge, BAe) pair in the set of system events, and there are
states σ and σ′ such that the invariant and guard Ge are true in state σ, before-after
predicate BAe holds for states σ and σ′, and finally, the invariant is true for state σ′,
then a transition exists from σ to σ′.

Event-B is supported by the Rodin tool [3]. The Rodin platform is an open
source Eclipse-based IDE that effectively supports refinement and mathematical
proof of models.

2.2 UML-B

UML-B [31] is a graphical formal notation based on the graphical notation of
UML [29]. It relies on Event-B semantically, although, its initial version was trans-
lated to classical B [1].

UML-B provides four kinds of diagrams. They are package, context, class and
state-machine diagrams. Package diagrams are used to describe the relationships
between top level components (machines and contexts). The context diagram defines
the static (constant) part of a model. Transitions of a state-machine represent
events. Class diagrams are used to describe the behavioral part of a model. For
further information see [30].

A Probabilistic Extension of UML-B 89

2.3 PRISM

Analysis and verification of a system involve establishing qualitative and quantita-
tive properties of the system. For example, the property that states “the system
eventually terminates” is a qualitative one. On the other hand, the property that
states “the system terminates within a given time limit with a given probability”
is a quantitative one. To perform probabilistic and quantitative verification on the
resulting models of this work, we need to use a probabilistic model checker.

PRISM [24] is a model checking tool which supports verification of probabilistic
models. This tool takes as input a description of a probabilistic system written in the
PRISM language. It constructs a model, such as Deterministic-Time Markov Chain
(DTMC), Continuous-Time Markov Chain (CTMC), or MDP from this description.
It also accepts the properties specification in languages such as PCTL (Probabilistic
Computation Tree Logic) [16] and performs model checking to determine which
states of the model satisfy the specified property and with what probabilities. Model
checking is reduced to a combination of reachability-based computation and the
solution of linear equation systems. The PRISM kernel handles these computations
using different engines [22].

The basic syntax of PCTL [23] is given by this grammar:

Φ ::= true | a | ¬Φ | Φ ∧ Φ | Φ ∨ Φ | P∼p[�Φ] | P∼p[ΦUΦ]

where a is an atomic proposition, ∼ ∈ {<,≤,≥, >}, and p ∈ [0, 1]. The operator
P∼p[Φ] means that the probability of Φ being true in a state s in a model (such as an
MDP), is ∼ p. �Φ expresses that Φ is satisfied in the next step and Φ1UΦ2 means
that Φ2 is eventually satisfied and Φ1 is true until then. Other useful operators can
be derived from the basic PCTL syntax, such as ♦Φ ≡ true UΦ, meaning Φ will be
eventually true.

2.4 Markov Decision Process (MDP)

In this paper, we use MDPs as models to which probabilistic state-machines are
converted during the translation of probabilistic UML-B to the PRISM language.
So, we give a brief overview on MDPs in this subsection. An MDP [4] is a tuple
M = (S,Act,P, ιinit, AP, L), where S is a set of states, Act is a set of actions,
P : S × Act × S → [0, 1] is the transition probability function, ιinit : S → [0, 1]
is the initial distribution, AP is a set of atomic propositions (atomic propositions
represent the basic properties that hold at some point of execution), L : S → 2AP

is a labeling function, and L(s) are atomic propositions in AP satisfied in state s.

A Markov decision process is an extension of Markov chains that allows both
probabilistic and nondeterministic choices. In any state, there is a nondeterministic
choice between several discrete probability distributions over successor states.

90 M. Nosrati, H. Haghighi

3 RELATED WORK

In this subsection, a brief overview on the most related work is given.

3.1 Probabilities and Stochastic Delays in UML

Jansen et al. [20] have introduced randomness to UML statechart diagrams via
enhanced statecharts, called probabilistic statecharts or P-statecharts. They have
based the semantics of P-statecharts on Markov decision process models. Figure 1
shows an example of P-statechart models.

start play p win
roll a die

roll a die
ignore

win
1
6
/get 6

lose
5
6
/get 1 to 5

Figure 1. An example of P-statecharts

Furthermore, Jansen et al. [21] have presented StoCharts, which model random
delays in statecharts. In these models, on entering a node with an outgoing edge la-
beled after(F), a sample is taken from distribution F and a timer is set accordingly.
The corresponding edge becomes enabled once the timer expires. The semantics of
StoCharts are defined using Stochastic I/O Automata (IOSA, for short).

3.2 Probabilities in Event-B

Hallerstede et al. [15] have extended the Event-B formalism with a new operator,
qualitative probabilistic choice, denoted as ⊕|. The assignment x ⊕| BA(v, x′)
assigns a value to x with a positive, but unknown probability. Similarly, Tarasyuk
et al. [32] augmented Event-B models with the quantitative probabilistic assignment

x ⊕| x1@p1; . . . ;xn@pn

where
∑n

i=1 pi = 1. This assignment allows for specifying exact numerical probabil-
ities for each value xi; variable x will have value xi with probability pi.

As stated before, the advantage of our approach compared to these works is that
our work does not change the syntax and semantics of Event-B.

A Probabilistic Extension of UML-B 91

3.3 Time in Event-B

In order to model probabilistic time delays, we first need a method to model time
in Event-B. In [5, 7, 28] a method for adding time to Event-B has been presented.

In this model, time is the current time, and at is the set of active times. Active
times are times in future where an event might be activated. For a simple clock,
at will be {time+ 1, time+ 2, . . .}. An event called tick tock, non-deterministically
chooses a value for the current time, and so the progress of time is achieved. Con-
straint at 6= ∅ ⇒ time ≤ min(at) in the INVARIANT part enforces that active
times are in the future, and time cannot be moved beyond the first active moment.

3.4 Probabilistic Model Checking of Event-B Models Using PRISM

Rodin [3] supports development and qualitative verification of Event-B and UML-B
models, but it lacks the tools required for quantitative reasoning and verification
of probabilistic systems. To enable quantitative analysis of Event-B models, one
can convert Event-B models to the PRISM language. Tarasyuk et al. [34] have
described the required mappings from Event-B models to the PRISM language.
For example, the assignment using Tarasyuk’s probabilistic choice operator ⊕|, (i.e.
x ⊕| x1@p1; . . . xn@pn)) [26] is expressed as the following command in PRISM:

[] true− > p1 : (x′ = x1) + . . .+ pn : (x′ = xn).

4 PROBABILISTIC UML-B

4.1 Overall Structure

In this section, in order to add abilities for modeling probabilistic and stochastic
systems through the notion of state-machines in UML-B, a number of new structures
are added to its graphical syntax. The corresponding semantics are also defined in
Event-B.

The most basic probabilistic structure that needs to be addressed is the ability
to specify discrete probabilities. This applies to scenarios where the set of possible
outcomes is discrete, such as a coin toss. We take one step further and also take
into account scenarios where the exact values of probabilities are unknown, but their
intervals are known. We introduce a solution to model interval probabilities in this
condition. Another important feature that can benefit modelers is the capability to
model discrete stochastic delays, where one can specify a random amount of time
before moving to the next state. Stochastic delays are present in many distributed
and networking systems, and even in biological processes. We cover three types
of stochastic delays: fixed time delay, uniform distribution delay and geometric
distribution delay.

For every structure that we define, its semantics is also defined in Event-B. For
discrete probabilities and interval probabilities, the overall approach is to update the

92 M. Nosrati, H. Haghighi

current state of the UML-B machine based on probabilities specified by the modeler.
A random number will be generated, and the generated number will determine the
target state. For stochastic delays, a timeout value is calculated upon entering
a state which has an outgoing transition with a delay. The outgoing transition will
have a guard to ensure a delay. The guard protects from entering the next state
without first waiting in the current state for a duration of at least the calculated
timeout.

The ability to generate random sequences of numbers which are uniformly dis-
tributed is essential in any work related to probabilities. Event-B does not have
built-in support for generating random numbers. Therefore, we need to use an algo-
rithm that generates sequences of numbers that are close enough to a true sequence
of random numbers. Section 4.2 discusses our approach to define a random genera-
tor in Event-B. This random generator is one of the core elements of the semantics
defined for most structures in this work.

Section 4.3 discusses adding discrete probabilities to the state-machine diagrams.
Section 4.4 presents how to add interval probabilities to state-machines. Section 4.5
outlines stochastic delays and discusses Fixed-time, Uniform Distribution, and Ge-
ometric Distribution delays. Section 4.6 defines UML-B state-machines as MDPs to
provide a theoretical basis for translating UML-B state-machines to PRISM mod-
els. Using this basis, we present the translation method in Section 4.7. The result-
ing PRISM models make it possible to verify probabilistic properties in the initial
UML-B models, quantitatively.

4.2 The random Function

Throughout this section, we use the function random to generate uniform random
numbers in the range [l, u]. This function can be defined using any common pseudo-
random generators such as a linear congruential generator, which uses the recurrence

Xn = l + (aXn−1 + c) mod (u− l + 1) (1)

where Xn and Xn−1 are respectively the next and current pseudo-random numbers,
and a and c are large integer numbers. X0 is called the seed or start value. Axioms in
Figure 2 define a basic pseudo-random generator. seed can be a machine variable to
store the last generated random value as a seed to the next iteration of the function.

4.3 Adding Discrete Probabilities to the State-Machine Diagram

We first introduce a structure for specifying discrete probabilities in UML-B. It is
worth noting that only probabilities that have rational values are supported.

4.3.1 Discrete Probabilities Syntax

We propose to specify discrete probabilities using a new notion which we call pseudo-
states. The difference between a pseudo-state and a normal state is that state-

A Probabilistic Extension of UML-B 93

AXIOMS
random ∈ N×N×N→ N
∀l, u, seed, r.
l ∈ N ∧ u ∈ N ∧ seed ∈ N ∧ r ∈ N⇒

(l 7→ u 7→ seed 7→ r ∈ random⇔
r = l + (a× seed + c) mod (u− l + 1))

END

Figure 2. The random function

machines will not stay in pseudo-states; the role of pseudo-state is only to determine
how the transitions from previous states to next states are done. Figure 3 shows the
new structure to specify discrete probabilities using a pseudo-state p.

s0 p

s1

sn

evt[g]

p1/action1

pn/actionn

. . .

Figure 3. Discrete probabilities in UML-B

In Figure 3, if the edge with probability pi is selected, actioni will be performed.
For each i ∈ 1 . . . n, there exist numbers mi and d, where pi = mi

d
, and

d 6= 0 ∧ (mi ∈ N1) ∧
n∑

i=1

mi = d. (2)

Probabilities are defined by rational fractions, in form of natural numerators
and denominators. If the model’s probabilities are in form of p1 = q1/d1, . . . , pn =
qn/dn, the positive number d is the least common multiple of these denominators
(d = lcm(d1, . . . , dn)) and mi = qi

d
di

.

4.3.2 Discrete Probabilities Semantics

Intuitively, semantics of the given structure in Figure 3 can be described as follows.
When the state-machine is in state s0, if the event evt is selected, and its guard g
holds, the machine will enter into state si and will perform the correspondent actioni

with the probability pi (i ∈ 1 . . . n).

94 M. Nosrati, H. Haghighi

Formally, the semantics of the given structure in Event-B is defined as in Fig-
ure 4.

evt :
WHERE

STATE = s0 ∧ g
THEN

STATE, seed :| ∃r.r = random(1 7→ d 7→ seed) ∧
seed′ = r∧
((r ≤ m1 ⇒ STATE′ = s1 ∧ action1) ∧
(r > m1 ∧ r ≤ m1 + m2 ⇒ STATE′ = s2 ∧ action2) ∧
. . .

(r >
∑i−1

j=1mj ∧ r ≤
∑i

j=1mj ⇒ STATE′ = si ∧ actioni) ∧
. . .

(r >
∑n−1

j=1 mj ∧ r ≤
∑n

j=1mj ⇒ STATE′ = sn ∧ actionn))

END

Figure 4. Discrete probabilities in Event-B

Number r is randomly selected from numbers 1 to d. The next state will be
selected as follows: If the random number r is less than or equal to m1, the next
state is s1; if r is greater than m1 and is less than or equal to m1 + m2, the next
state is s2 and so on.

Theorem 1. The semantics for discrete probabilities, given in Figure 4, provides
the expected probabilities for the corresponding actions.

Proof. Variable r is randomly chosen from one of d numbers (1 . . . d) with equal
probabilities. Now, whenever the condition:

r >

i−1∑
j=1

mj ∧ r ≤
i∑

j=1

mj (3)

holds, the assignment STATE := si will be made. So, the probability of transition
to si is:

Pr{STATE := si} =

∑i
j=1mj −

∑i−1
j=1mj

d
=
mi

d
(4)

which is equal to the expected probability pi. �

4.4 Interval Probabilities

Interval probabilities are used when the probabilistic design is abstract and under-
specified [9, 12]. It is assumed that in the specification stage, the exact values of

A Probabilistic Extension of UML-B 95

probabilities are unknown, but their intervals are known, and will probably become
exact in the next stages of the refinement.

4.4.1 Interval Probabilities Syntax

Similar to the discrete case, interval probabilities are specified here via a pseudo-
state p. Figure 5 shows the structure we propose to model interval probabilities.

s0 p

s1

sn

evt[g]

[l1/d, u1/d]/action1

[ln/d, un/d]/actionn

. . .

Figure 5. Interval probabilities in UML-B

In Figure 5, ui and li (i ∈ 1 . . . n) are positive integers less than or equal to d.
Intervals that the modeler chooses must allow for selecting a number from each
interval such that the sum of the selected numbers is equal to 1. For example,
suppose there are two branches in Figure 5. If the modeler chooses interval [0, 0.3]
for the first branch and interval [0.2, 0.8] for the other branch, since the number 0.2
can be chosen from the first interval and 0.8 from the second one, and 0.2 + 0.8 = 1,
the selected intervals are allowed. But for I1 = [0, 0.3] and I2 = [0.2, 0.6], there are
no two numbers p1 ∈ I1, p2 ∈ I2 such that p1 + p2 = 1 and therefore, these intervals
are not allowed.

4.4.2 Interval Probabilities Semantics

The semantics of the structure given in Figure 5 is defined as in Figure 6. Number r
is chosen from 1 to d, and each mi (i ∈ 1 . . . n) is chosen from its respective interval.
r will fall into one of the intervals formed by mis and its value determines the next
value for STATE.

Theorem 2. The semantics for interval probabilities, given in Figure 6, provides
the expected probabilities for the corresponding actions.

Proof. We prove that the probability of moving to the state si will be within the
specified interval.

Since there exists the condition mi ∈ li . . . ui, the inequality

li
d
≤ mi

d
≤ ui

d
(5)

96 M. Nosrati, H. Haghighi

evt :
WHERE

STATE = s0 ∧ g
THEN

STATE :| ∃r,m1, . . . ,mn. r = random(1 7→ d 7→ seed) ∧
seed′ = r ∧
m1 ∈ l1 . . . u1 ∧
. . .
mn ∈ ln . . . un ∧∑n

j=1mj = d ∧

((r ≤ m1 ⇒ STATE′ = s1 ∧ action1) ∧
(r > m1 ∧ r ≤ m1 + m2 ⇒ STATE′ = s2 ∧ action2) ∧
. . .

(r >
∑i−1

j=1mj ∧ r ≤
∑i

j=1mj ⇒ STATE′ = si ∧ actioni) ∧
. . .

(r >
∑n−1

j=1 mj ∧ r ≤
∑n

j=1mj ⇒ STATE′ = sn ∧ actionn))

END

Figure 6. Interval probabilities in Event-B

holds. Variable r is randomly chosen from one of d numbers (1 . . . d) with equal
probabilities. Now, whenever the condition:

r >

i−1∑
j=1

mj ∧ r ≤
i∑

j=1

mj (6)

holds, the assignment STATE′ = si will be made. Therefore, for the probability of
the transition to si, the following holds:

li
d
≤ Pr{STATE′ = si} =

∑i
j=1mj −

∑i−1
j=1mj

d
=
mi

d
≤ ui

d
. (7)

Therefore, the probability of moving to the destination state is within the desired
interval. �

4.4.3 An Alternative Method to Define the Semantics

In this subsection, one alternative semantics that can be used instead of the se-
mantics presented in Section 4.4.2 is introduced. In Section 4.7.5, we will need this
semantics to translate the probabilistic UML-B constructs to PRISM, because in
PRISM it is not possible to resolve both the non-determinism and probabilities in
one transition. This new semantics is defined using an additional state. We consider

A Probabilistic Extension of UML-B 97

an additional real state P INTERVAL for resolving the non-determinism in prob-
abilities, and computing discrete probabilities based on interval probabilities, and
then, determining the next state by using these computed probabilities. In this way,
the state-machine in Figure 5 is defined as the structure in Figure 7. The proof that
the semantics given in Figure 8 provides the expected probabilities for the corre-
sponding actions, is similar to the proof given in Theorem 2 with minor differences;
so, we do not present this proof anymore. It should be noted that because of the
introduction of a new real state, and the possibility of a delay, the definition given
in Figure 8 is not exactly equivalent to the definition provided in Figure 6.

s0 P INTERVAL p

s1

sn

evt[g]/
Select m1, . . . ,mn

such that
m1 ∈ l1 . . . u1∧

. . .
mn ∈ ln . . . un ∧∑n

j=1mj = d

m1/d

mn/d
. . .

Figure 7. The semantics of interval probabilities by using an additional state

The pseudo-code for event evt is composed of evt1 and evt2 as shown in Figure 8;
for each outgoing edge with label mi/d, a machine variable mi is defined.

evt =̂ evt1 ; evt2

evt1 :
WHERE
STATE = s0 ∧ g

THEN
m1, . . . ,mn :| m′1 ∈ l1 . . . u1 ∧ . . .
∧m′n ∈ ln . . . un ∧

∑n
j=1 mj = d

STATE := P INTERVAL
END

evt2 :
WHERE
STATE = P INTERVAL

THEN
STATE :| ∃r.r = random(1 7→ d 7→ seed) ∧
seed′ = r ∧
((r > 0 ∧ r ≤ m1 ⇒ STATE′ = s1 ∧ action1) ∧
(r > m1 ∧ r ≤ m1 +m2 ⇒ STATE′ = s2 ∧ action2) ∧
. . .

(r >
∑i−1

j=1 mj ∧ r ≤
∑i

j=1 mj ⇒ STATE′ = si ∧ actioni) ∧
. . .
(r >

∑n−1
j=1 mj ∧ r ≤

∑n
j=1 mj ⇒ STATE′ = sn ∧ actionn))

END

Figure 8. The pseudo-code for evt as a composition of evt1 and evt2

4.5 Discrete Stochastic Delay

In some systems, an action may be performed when a specific amount of time is
passed after reaching to a state. The duration of this delay can be fixed or can

98 M. Nosrati, H. Haghighi

be probabilistically selected based on a distribution function. In this subsection,
the delay structure is added to UML-B. We restrict our work to discrete times and
delays.

To indicate the activation of a transition after time t, guard after(t) is added
to the UML-B syntax. In addition, for specifying the notion of probabilistic time,
time t can be specified randomly. In other words, instead of after(t), after(F)
is used where F : N → [0, 1] is the distribution function of timeout. For delays
corresponding to the geometric distribution with parameter p = m

d
, and for delays

with the uniform distribution, after(G(m/d)) and after(UNIF(tmin, tmax)) are re-
spectively used, where, tmin and tmax are minimum and maximum values of delay.
We restrict our work to the uniform and geometric distributions. We also consider
distributions that have a random generator function. After passing the delay time,
one of the output edges will be activated and the machine will transit to one of the
target nodes.

Since Event-B does not have the notion of time, the method presented in [28]
and reviewed in Section 3.3, is used to express the concept of time. The auxiliary
variables and events in Figure 9 are added to the Event-B model to handle the
notion of time:

VARIABLES
time, at

INVARIANT
time ∈ 0 . . .MAX TIME ∧
at ⊆ MAX TIME ∧
(at 6= ∅⇒ time ≤ min(at))

INITIALISATION
time := 0
at := 0 . . .MAX TIME

EVENTS
tick tock :
ANY
tm

WHERE

tm ∈ MAX TIME ∧
tm > time ∧
(at 6= ∅⇒ tm ≤ min(at))

THEN
time := tm

END

process time :
WHERE
time ∈ at

THEN
at := at− time

END
END

Figure 9. Auxiliary variables and events for handling time in Event-B

In Figure 9, variable time is the current value of time, and at is the remaining
active times at which the process time event will be triggered. The tick tock event
increases the value of time, and the process time event removes the current value
of time from active times. To avoid state explosion and keeping the model finite,
times are restricted by constant MAX TIME.

A Probabilistic Extension of UML-B 99

In the next subsections, we will use variable time to compute the timeout mo-
ment and also to obtain the time at which an event with a guard containing a delay
can be executed.

4.5.1 Fixed Time Delay

In this subsection, at first the syntax of the fixed time delay is introduced in UML-B,
and then, its semantics is presented.

a. Fixed Time Delay Syntax. The structure specified in Figure 10 is added to
UML-B. The parameter t ∈ N is the amount of delay before actions of evt can
be executed.

s1 s2
evt[after(t)]

Figure 10. The fixed time delay in UML-B

b. Fixed Time Delay Semantics. The structure specified in Figure 10 is trans-
lated to the structure in Figure 11. We define T as the set of all transitions
that their destinations are the starting state s1 (e.g. STATE := s1) in the ma-
chine. Every such statement must be accompanied by a parallel assignment
timeout := time+ t to specify the amount of timeout.

For every transition, starting from the state s1 that has an after condition, the
guard time ≥ timeout must be added. If there are more than one after con-
dition, different timeout variables must be defined (i.e. timeout0, timeout1, . . .),
and for each after condition, the corresponding variable must be used. All these
timeout variables should be initialized at the moment that STATE := s0 is being
done.

src0

srcn

s1 s2
timeout := time+ t

timeout := time+ t

evt[time ≥ timeout]

. . .

Figure 11. The structure equivalent to the syntax in Figure 10

The events in Figure 11 are defined as in Figure 12.

Theorem 3. The semantics for fixed time delay, given in Figure 12, provides the
expected delays for the corresponding actions.

100 M. Nosrati, H. Haghighi

Proof. We prove that the lower bound of the delay for the transition STATE := s2
is the constant t. If at any moment in the interval [t0, t0 + t) (t0 is the moment
that the timeout is set), the event evt is chosen for execution, the guard time ≥
timeout = t0 + t, which is necessary for moving to the state s2, will not hold and
the transition will not be done. At the time t0 + t, the evaluation of this guard will
change to true. Therefore, the lower bound of the transition to the destination state
is t0 + t− t0 = t. �

All transitions STATE := s1 in T will be accompanied
by an assignment setting the timeout:

STATE := s1
timeout := time + t

evt :
WHERE

STATE = s1 ∧ time ≥ timeout
THEN

STATE := s2
END

Figure 12. The fixed time delay in Event-B

4.5.2 Uniform Distribution Delay

In this subsection, at first the syntax of the uniform distribution time delay is
introduced in UML-B, and then, its semantics is presented.

a. Uniform Distribution Delay Syntax. The structure in Figure 13 is added
to UML-B. The parameters U,L ∈ N are the lower and upper bounds of delay
before actions of evt can be executed.

s1 s2
evt[after(UNIF(L,U))]

Figure 13. The uniform distribution delay in UML-B

b. Uniform Distribution Delay Semantics. Intuitively, the diagram in Fig-
ure 13 expresses that when the state-machine is in s1, it will move to s2 with
a delay which equals to a random time selected uniformly in the interval L to U .

A Probabilistic Extension of UML-B 101

For defining the semantics formally, the action timeout := time+ t in Figure 12
is changed to the following action:

timeout, seed :| ∃r.r = random(L 7→ U 7→ seed) ∧

timeout′ = time + r ∧ seed′ = r.
(8)

Theorem 4. The semantics for uniform distribution delay, given in Figure 11 with
the change mentioned in Equation (8), provides the expected delays for the corre-
sponding actions.

Proof. We prove that the lower bound of the delay for the transition STATE := s2
is a random number from the interval [L,U]. We designate t0 to the moment the
variable timeout is evaluated. At t0, timeout will be assigned a random value in the
interval [t0+L, t0+U]. If at any moment in the interval [t0, timeout), the event evt is
chosen for execution, the guard time ≥ timeout, which is necessary for moving to the
state s2, will not hold and the transition will not be done. At the time t0 + timeout,
the evaluation of this guard will change to true. Therefore, the lower bound of the
delay is an integer number in [L,U]. �

4.5.3 Geometric Distribution Delay

Many continuous-time systems exhibit delays with exponential distribution. The
exponential distribution describes the time for a continuous process to change state
or an event to occur. The discrete analog for exponential distribution is the geomet-
ric distribution. This distribution describes the number of Bernoulli trials needed
for the first success. Therefore, the geometric distribution can be seen as describing
the number of steps a discrete process needs to change state. If X is a geometrically
distributed random variable, and the probability of success on each trial is p, the
probability of X = k, k ∈ N1 is (1− p)k−1p. In this subsection we propose a syntax
and semantics for the geometric delay.

a. Geometric Distribution Delay Syntax. Figure 14 shows the geometric dis-
tribution delay structure in UML-B. The fraction m/d is the parameter of the
geometric distribution.

s1 s2
evt[G(m/d)]

Figure 14. Geometric distribution delay in UML-B

b. Geometric Distribution Delay Semantics. The semantics for the geometric
distribution is similar to the one for the uniform distribution except that it uses
the function geometric instead of random. The main difficulty lies in the problem
of generating numbers from the geometric distribution. We define the function

102 M. Nosrati, H. Haghighi

geometric as an axiom to generate numbers from the geometric distribution.
Since the seed for the random function needs to be different for each iteration of
random, we use recursion and ideas from dynamic programming for storing the
previous values of the random function in the function rand. Figure 15 shows
the definition of the function geometric.

The semantics is defined by changing the action timeout := time+t in Figure 12
to the following action:

timeout, seed :| ∃r, g.g 7→ r = geometric(m 7→ d 7→ seed)∧

timeout′ = time + g ∧ seed′ = r.
(9)

AXIOMS
∀n,X, rand,m, d, seed, g,newSeed.
n ∈ 0 . . .MAX TIME ∧X ∈ N→ 0 . . . 1 ∧m ∈ N ∧ d ∈ N ∧
rand ∈ N→ N ∧ seed ∈ N ∧ newSeed ∈ N ∧ g ∈ 0 . . .MAX TIME⇒
rand(0) = random(1 7→ d 7→ seed) ∧
rand(n) = random(1 7→ d 7→ rand(n− 1)) ∧
((rand(n) ≤ m⇔ X(n) = 0) ∧
(rand(n) > m⇔ X(n) = 1)) ∧
g = min({j|j ∈ 0 . . .MAX TIME ∧ j 7→ 1 ∈ X})∧
newSeed = rand(g) ∧
g 7→ newSeed = geometric(m 7→ d 7→ seed)

END

Figure 15. The definition of the geometric function

Theorem 5. The function geometric generates numbers from the geometric distri-
bution.

Proof. The function rand is a sequence of randomly generated numbers. The
function X is a sequence of 0 or 1s, with success probability p = m

d
. X can be

considered as a sequence of results of independent Bernoulli trials. The set S =
{j|j ∈ 0 . . .MAX TIME∧ j 7→ 1 ∈ X} is the set of indices of all successful Bernoulli
trials, and g = min(S) is the index of the first successful Bernoulli trial. For any
j (j ∈ 0 . . .MAX TIME), the probability of g = j equals to (1 − p)jp. Therefore,
geometric generates numbers with geometric distribution with parameter p = m

d
.

�

Theorem 6. The semantics for geometric distribution delay, given in Figure 11
with the change mentioned in Equation (9), provides the expected delays for the
corresponding actions.

A Probabilistic Extension of UML-B 103

Proof. We prove that the lower bound of the delay for the transition STATE :=
s2 is a random number with the geometric distribution. We designate t0 to the
moment the variable timeout is evaluated. At t0, timeout will be assigned the value
t0 +geometric(m

d
). As mentioned above, values of geometric(m

d
) have the geometric

distribution with parameter p = m
d

. If at any moment in the interval [t0, timeout),
the event evt is chosen for execution, the guard time ≥ timeout, which is necessary
for moving to the state s2, will not hold and the transition will not be done. At the
time t0 + timeout, the evaluation of this guard will change to true. Therefore, the
lower bound of the delay for the transition to the destination state is a number with
the geometric distribution. �

4.5.4 Generalization – Arbitrary Discrete Distribution

For random delays with arbitrary distributions, if the generator function F is avail-
able, one can model the delay through a method similar to that of the previous
subsection. It is sufficient to replace the timeout assignment in Figure 12 with the
appropriate assignment.

4.6 UML-B State-Machine as a Probabilistic Transition System

In this subsection, the state-machine models are defined as MDPs. The objective
is to have a theoretical ground for translating UML-B state-machines to PRISM
models for quantitative and probabilistic model checking. The provided definition
is similar to the definitions in [10] and [33] in which Event-B models are defined as
Transition Systems. In addition to standard Event-B structures and assignments,
defined in [10] and [33], our definition takes into account probabilities and the current
state in UML-B state-machines.

In order to define UML-B state-machines as MDPs, we need to slightly change
the definition of the projection operator π [13] to extract a component of a tuple by
its name, not its index.

Definition 1. Let A1, . . . , An be sets, and i ∈ 1 . . . n. If T ⊆ A1 × . . . × An, then
function πi : T → Ai is defined by πi(a1, . . . , an) = ai. If the ith component of tuple
(a1, . . . , an) is denoted by variable v, we define πv(a1, . . . , an) = ai.

Definition 2. Every UML-B state-machine model is defined as tuple M = (S,E,P,
ιinit, AP, L) where:

• S is the set of states of the state-machine. Let v1, . . . , vn be the variables of
the machine. We define Vi to be the type of variable vi (i ∈ 1 . . . n). Therefore,
S = V1 × . . . × Vn. The state-machine has at least one variable STATE which
specifies the current state of the state-machine.

• E ⊆ S × S is the set of all events of the state-machine. Any event evt(s) is
defined as:

evt(s) : WHERE Gevt(s) THEN Revt(s) END

104 M. Nosrati, H. Haghighi

where s is the current state of the state-machine, Gevt : S → BOOL is the
event guard, and Revt ⊆ S × S determines the relationship between the current
state and the next state (by one or multiple assignments). For example, for the
following event:

evt : WHERE x = 1 THEN x := 0 END.

We have:
∀s.s ∈ S ⇒ (πx(s) = 1⇔ Gevt(s) = true),

∀s, s′.s, s′ ∈ S ⇒ (πx(s′) = 0⇔ (s, s′) ∈ Revt).

In a state-machine, there is an edge from SM STATE to SM STATE ′ (which
are two states in the state-machine) if and only if:

∃s, s′.Gevt(s) ∧ I(s) ∧ SM STATE = πSTATE(s) ∧
(s, s′) ∈ Revt ∧ SM STATE ′ = πSTATE(s′) ∧ I(s′)

(10)

where I : S → BOOL is the machine invariant. This predicate means there ex-
ists a transition from SM STATE to SM STATE ′, if and only if the invariant
holds in states s and s′, STATE is equal to SM STATE, and s is Revt-related
to s′.

• P : S × E × S → [0, 1] is the transition probability function:

P(s, evt, s′) =

0, ¬(I(s) ∧Gevt(s) ∧ I(s′) ∧ (s, s′) ∈ Revt),

pevt(s, s
′), I(s) ∧Gevt(s) ∧ I(s′) ∧ (s, s′) ∈ Revt

(11)

where pevt(s, s
′) is the probability of going from state s to s′.

• ιinit : S → [0, 1] is the initial distribution. This is determined using the INI-
TIALIZATION statements of the machine and determines the probability of
being at various states of the machine at time 0.

• AP = ∅ is the set of atomic propositions. Since we are not labeling our MDP
states, the set of atomic propositions is empty.

• ∀s ∈ S. L(s) = ∅. We simply choose not to label any MDP state.

In state s, event evt is selected according to the transition probability function P,
and the machine is transited to state s′ according to pevt(s, s

′).

By this definition, every UML-B state-machine model can be described as a Mar-
kov Decision Process.

4.7 Translating Probabilistic UML-B State-Machines to PRISM

The PRISM tool can receive its inputs as MDP models. As indicated in Section 4.6,
a state-machine in UML-B can be interpreted as an MDP. In this subsection, we

A Probabilistic Extension of UML-B 105

use this correspondence to present a method for translating a UML-B state-machine
model to a PRISM model for the purpose of quantitative model checking. To au-
tomate the process of translating from UML-B state-machines to PRISM models,
a number of straightforward conversions are presented. The proposed method is
similar to the method presented in [34], in which a number of conversions from
Event-B to PRISM are shown, including translating actions containing the ⊕| oper-
ator. The conversions proposed in this section can be performed indirectly through
the methods of the aforementioned work to translate models to PRISM models.
But, we adapt the conversions to the specific structures present in UML-B and
our probabilistic extension of it, to achieve a more readable and clear final PRISM
model.

In what follows, we present the needed translation for each UML-B construct in
order to translate a UML-B model to a PRISM model.

4.7.1 State-Machine and Its States

Let STATEMACHINE be the name of the state-machine, and its states be S1 to
Sn; now, variable SM STATE of type [0 . . . n − 1] is defined in PRISM. Constants
s1 to sn with values 0 to n − 1 are also defined to specify the different states of
the machine. The initial state of the state-machine is defined in the init section
(Figure 16).

const int s1 = 0;
. . .
const int sn = n− 1;
global SM STATE [s1 . . . sn] init s1;

Figure 16. State-machine states in PRISM

For each state-machine, a module with the name of that state-machine is defined
to model its transitions (i.e. module statemachine . . . endmodule). The body of
a module will be the transitions taking place in the module.

4.7.2 State Transition

Figure 17 indicates a state transition in UML-B and its translation in PRISM. Guard
SM STATE = s1 determines if the model is in s1. Transition SM STATE′ = s2
changes the current state.

When a transition also has guards and actions, they will be included, too (Fig-
ure 18).

106 M. Nosrati, H. Haghighi

s1 s2 [] SM STATE = s1→ (SM STATE′ = s2)

Figure 17. Left: A state transition in UML-B. Right: Its translation in PRISM.

s1 s2
[g]/a := 0||b := 1 [] SM STATE = s1 & g →

(a′ = 0) & (b′ = 1) & (SM STATE′ = s2)

Figure 18. Left: A state transition with guards and actions. Right: Its translation in
PRISM.

4.7.3 Nondeterministic Transition

Nondeterministic transitions which have the same guards are translated as shown
in Figure 19.

s0 s1

sn

. . .

[] SM STATE = s0→ (SM STATE′ = s1);
. . .
[] SM STATE = s0→ (SM STATE′ = sn);

Figure 19. Left: Nondeterministic transitions. Right: Their translation in PRISM.

4.7.4 Discrete Probabilities

In order to translate the structure shown in Figure 20, the probabilistic selection in
PRISM is used.

4.7.5 Interval Probabilities

We take the approach discussed in Section 4.4.3 and Figure 7 to perform the transla-
tion of interval probabilities to PRISM. Variable INTERVALP is used for maintain-
ing the state to which the state-machine will move after the probabilistic selection.
Variables m1 to mn are defined to keep each transition probability’s fraction’s numer-
ator. Every combination of m1+. . .+mn, where L1 ≤ m1 ≤ U1, . . . , Ln ≤ mn ≤ Un,
is considered; and m1,. . . ,mn are assigned non-deterministically. d is the denomina-
tor of probabilities fractions.

In order to generate all valid transitions, for each numerator variable mi (i ∈
1 . . . n), a value is taken from its corresponding interval Li . . . Ui. For example, the
first transition shown in Figure 21 takes the lower bound of each numerator variable

A Probabilistic Extension of UML-B 107

s0 p s1

sn

evt[g] (m1/d)

(mn/d)
. . .

[] SM STATE = s0 & g →
m1/d : (SM STATE′ = s1)+
. . .+
mn/d : (SM STATE′ = sn);

Figure 20. Left: A probabilistic transition in UML-B. Right: Its PRISM counterpart.

[] SM STATE = s0 & (L1 + . . . + Ln = d)→
(m1′ = L1)& . . .&(mn′ = Ln)&
(SM STATE′ = INTERVALP);

[] SM STATE = s0 & ((L1 + 1) + . . . + Ln = d)→
(m1′ = L1 + 1) & . . .& (mn′ = Ln)&
(SM STATE′ = INTERVALP);
. . .

[] SM STATE = s0 & (U1 + . . . + Un = d)→
(m1′ = U1) & . . .& (mn′ = Un) &
(SM STATE′ = INTERVALP);

[] SM STATE = INTERVALP & m1 + . . . + mn = d→
m1/d : (SM STATE′ = s0)+
. . .
mn/d : (SM STATE′ = sn);

Figure 21. Interval probabilities in PRISM

as its value, and adds a guard to check if
∑

imi equals to d. From those transitions
for which this guard is true, one is chosen non-deterministically and SM STATE will
move to INTERVALP. The last transition in Figure 21 computes the probability of
moving to every state and performs the transition of SM STATE.

4.7.6 Time

A module named tick tock is defined for advancing the integer variable time. The
transition [] time < MAX TIME− > (time′ = time+ 1); is used for advancing time.
Constant MAX TIME is used to limit the possible values of variable time to avoid
state explosion.

108 M. Nosrati, H. Haghighi

4.7.7 Fixed Time Delay

In every ingoing transition to a state in which a fixed time delay exists, the integer
variable after time is set to time + t, where t is the fixed delay. In the ongoing
transitions that include guard after(t), condition time >= after time is added to
make sure those transitions are activated only when the specified time has passed.

4.7.8 Uniform Distribution Delay

This case is similar to the fixed time delay, but the after time variable is set ran-
domly. In the ingoing transitions to the state in which condition after(UNIF(L,U))
exists, after time is set to one of the values time +L, time + (L+ 1), . . . , time +U ,
with equal probability.

4.7.9 Geometric Distribution Delay

Because of the lack of recursive function support in the current version of PRISM,
the translation is not yet possible.

5 CASE STUDY

In this section the applicability of the probabilistic extension of UML-B is illustrated
through a case study.

5.1 Zeroconf Configuration Protocol

In this case study, we consider the Zeroconf configuration protocol for local ad-
dresses [25]. This protocol configures an IP address for a newly joined device to
the local network. When a host connects to the network, it first randomly selects
an IP address from a pool of 65 024 available addresses in the range of 169.254.1.0
to 169.254.254.255. The host waits for a random time between 0 and 2 seconds be-
fore starting to send four Address Resolution Protocol (ARP) packets, called probes,
to all other hosts. These probes contain the IP address selected by the host, and are
sent at 2 seconds intervals. A host which is already using this address will respond
with an ARP reply packet, and the original host will restart reconfiguration. If the
host encounters 10 IP conflicts, it remains idle for 1 minute. If the host sends four
probes without receiving any ARP reply packet, then it starts to use the chosen IP
address. This host sends two further messages, called gratuitous ARPs, at 2 seconds
intervals. A host that has started using an IP address must reply to ARP packets
containing the same IP address. It continues to use the address unless it receives
a gratuitous ARP containing the same IP address. In this case, the host can either
defend its IP address, or defer to the conflicting host. The host may only defend its
address if it has not received a previous conflicting packet within the previous ten
seconds; otherwise, it must defer. A defending host sends an ARP packet containing
the IP address. A deferring host restarts the protocol and reconfigures.

A Probabilistic Extension of UML-B 109

5.2 Modeling the Zeroconf Protocol in UML-B

We consider one host, which is trying to configure its IP address in a network of N
other hosts. If the number of all available IP addresses is IP , then the probability
of the host choosing a fresh IP address is (IP − N)/IP . Possible values for IP
addresses are abstracted to values 1 and 2. Value 1 represents an IP address already
assigned to a host in the network. Value 2 represents a fresh IP address. Also, the
delay over the interval [0, 2] is abstracted to a choice over {0, 1, 2}.

Figure 22 shows the UML-B state-machine model for the host. In the RECONF
state, the host chooses a new IP address denoted by iph, by moving to the CHOOSE
state. If it has encountered 10 address conflicts, it moves to the CHOOSEWAIT
state and chooses a new address after waiting for one minute. In states CHOOSE
and CHOOSEWAIT, the host probabilistically selects an address. The random
delay before sending probes is modeled using the after structure. In order to model
probabilities and random delays, the methods discussed in Section 4 are used. In
state WAITSP, the host sends K probes before moving to the WAITSG state. In
this state, the host sends two more ARPs before moving to the USE state and using
the selected IP address. If, while in WAITSG, the host receives a packet with the
same IP address, the host moves to RESPOND. For further details refer to [25].

The model for the network is shown in Figure 23. If the network is in the
IDLE state, it moves to the NET SEND state after a delay of 0 or 1 second and
probabilistically selects the value 0 or 1 for the IP address sent by one of the hosts
of the network, denoted by ip.

Figure 23 shows the model for time. This is a simplified model that only advances
time by one. At any time, the action time := time+1 is chosen nondeterministically
among other active UML-B events.

5.3 Translating the Model to PRISM

Using the method presented in Section 4.7, the created UML-B model was trans-
lated to a PRISM model. The resulting model is an MDP with three modules,
namely host, network and time. A number of constants have been defined to repre-
sent different states. In each module, a variable holds the current state. Different
transitions start with a guard checking the current state.

The resulting PRISM model can be used to verify a number of probabilistic
properties about our model. For instance, the property saying “the maximum prob-
ability that the host finally chooses value 2 for iph and moves to state USE” is
expressed in PCTL as Pmax(♦((host state = USE) ∧ iph = 2))).

6 CONCLUSION AND FUTURE WORK

We have added abilities for modeling probabilistic and random systems in UML-B.
A number of new structures have been added to the graphical syntax of UML-B, and

110 M. Nosrati, H. Haghighi

RECONF

CHOOSE CHOOSEWAIT

p p

WAITSP

WAITSG

RESPOND USE

[coll < 10] [coll = 10]

[after(60)]

p/
probes := 0||iph := 1

1− p/
probes := 0||iph := 2

p/
probes :=
0||iph := 1

1− p/
probes := 0||iph := 2

[ip = iph]/
coll :=

min({coll + 1, 10})

[after(2) ∧ probes = K]/
coll := 0||probes := 0||y :=
0

[after(2) ∧
probes ≥
1∧probes < K]/
probes :=
probes+ 1

[ip 6= iph]

[after((UNIF)(0, 2))∧
probes = 0]/
probes := 1

[after(2) ∧ probes = 1][ip = iph]

[after(2) ∧
probes <
1]/probes :=
probes+ 1

[ip 6= iph]

[defend = 0 ∨ time ≥ y +
10]/defend := 1||y := time

defend := 0

Figure 22. The UML-B state-machine model for the host component of the Zeroconf
protocol

A Probabilistic Extension of UML-B 111

IDLE

p

NET SEND

[after(UNIF(0, 1))]

1− p/ip := 0

p/ip := 1

START PROGRESS
time := 1

time := time+ 1

Figure 23. The UML-B state-machine model for the network and time components of the
Zeroconf protocol

their semantics has been defined in Event-B. In addition, a method for translating
UML-B models into PRISM language has been presented in order to perform quan-
titative and probabilistic model checking. To show the applicability of the proposed
method, a case study on Zeroconf protocol was presented.

In future work, to increase the mathematical rigor of the proposed extensions,
we would like to introduce rules and proof obligations for refinement of the proposed
probabilistic structures. Furthermore, the proposed methods for translations and
conversions need an automatic tool.

REFERENCES

[1] Abrial, J.-R.: The B-Book: Assigning Programs to Meanings. Cambridge Univer-
sity Press, 2005.

[2] Abrial, J.-R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press, 2010, doi: 10.1017/cbo9781139195881.

[3] Abrial, J.-R.—Butler, M.—Hallerstede, S.—Hoang, T. S.—Mehta, F.—
Voisin, L.: Rodin: An Open Toolset for Modelling and Reasoning in Event-B.
International Journal on Software Tools for Technology Transfer (STTT), Vol. 12,
2010, No. 6, pp. 447–466, doi: 10.1007/s10009-010-0145-y.

[4] Baier, C.—Katoen, J.-P.—Larsen, K. G.: Principles of Model Checking. MIT
Press, 2008.

[5] Butler, M.—Falampin, J.: An Approach to Modelling and Refining Timing Prop-
erties in B. Refinement of Critical Systems (RCS), 2002.

[6] Cansell, D.—Méry, D.: The Event-B Modeling Method: Concepts and Case
Studies. In: Bjørner, D., Henson, M. C. (Eds.): Logics of Specification Languages.
Monographs in Theoretical Computer Science. An EATCS Series. Springer, 2008,
pp. 47–152.

[7] Cansell, D.—Méry, D.—Rehm, J.: Time Constraint Patterns for Event B Devel-
opment. In: Julliand, J., Kouchnarenko, O. (Eds.): B 2007: Formal Specification and

https://doi.org/10.1017/cbo9781139195881
https://doi.org/10.1007/s10009-010-0145-y

112 M. Nosrati, H. Haghighi

Development in B (B 2007). Springer, Berlin, Heidelberg, Lecture Notes in Computer
Science, Vol. 4355, 2006, pp. 140–154, doi: 10.1007/11955757 13.

[8] Corin, R.—Den Hartog, J.: A Probabilistic Hoare-Style Logic for Game-Based
Cryptographic Proofs. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I.
(Eds.): Automata, Languages and Programming (ICALP 2006). Springer, Berlin,
Heidelberg, Lecture Notes in Computer Science, Vol. 4052, 2006, pp. 252–263, doi:
10.1007/11787006 22.

[9] Delahaye, B.—Larsen, K. G.—Legay, A.—Pedersen, M. L.—Wa̧sow-
ski, A.: Decision Problems for Interval Markov Chains. In: Dediu, A. H., Inenaga, S.,
Mart́ın-Vide, C. (Eds.): Language and Automata Theory and Applications (LATA
2011). Springer, Berlin, Heidelberg, Lecture Notes in Computer Science, Vol. 6638,
2011, pp. 274–285, doi: 10.1007/978-3-642-21254-3 21.

[10] Dotti, F. L.—Iliasov, A.—Ribeiro, L.—Romanovsky, A.: Modal Systems:
Specification, Refinement and Realisation. In: Breitman, K., Cavalcanti, A. (Eds.):
Formal Methods and Software Engineering (ICFEM 2009). Springer, Berlin, Hei-
delberg, Lecture Notes in Computer Science, Vol. 5885, 2009, pp. 601–619, doi:
10.1007/978-3-642-10373-5 31.

[11] Berthomieu, B.—Bodeveix, J.-P.—Farail, P.—Filali, M.—Garavel, H.—
Gaufillet, P.—Lang, F.—Vernadat, F.: Fiacre: An Intermediate Language
for Model Verification in the TOPCASED Environment. European Congress on Em-
bedded Real-Time Software (ERTS), 2008.

[12] Fecher, H.—Leucker, M.—Wolf, V.: Don’t Know in Probabilistic Systems.
In: Valmari, A. (Ed.): Model Checking of Software (SPIN 2006). Springer, Berlin,
Heidelberg, Lecture Notes in Computer Science, Vol. 3925, 2006, pp. 71–88, doi:
10.1007/11691617 5.

[13] Grimaldi, R. P.: Discrete and Combinatorial Mathematics: An Applied Introduc-
tion. 5th ed. Pearson, 2003.

[14] Güdemann, M.—Lipaczewski, M.—Struck, S.—Ortmeier, F.: Unifying
Probabilistic and Traditional Formal Model Based Analysis. 8th Dagstuhl-Workshop
MBEES 2012 – Model-Based Development of Embedded Systems, 2012.

[15] Hallerstede, S.—Hoang, T. S.: Qualitative Probabilistic Modelling in Event-B.
In: Davies, J., Gibbons, J. (Eds.): Integrated Formal Methods (IFM 2007). Springer,
Berlin, Heidelberg, Lecture Notes in Computer Science, Vol. 4591, 2007, pp. 293–312,
doi: 10.1007/978-3-540-73210-5 16.

[16] Hansson, H.—Jonsson, B.: A Logic for Reasoning about Time and Reliability. For-
mal Aspects of Computing, Vol. 6, 1994, No. 5, pp. 512–535, doi: 10.1007/bf01211866.

[17] Hasan, O.—Tahar, S.: Formal Probabilistic Analysis: A Higher-Order Logic
Based Approach. In: Frappier, M., Glässer, U., Khurshid, S., Laleau, R., Reeves, S.
(Eds.): Abstract State Machines, Alloy, B and Z (ABZ 2010). Springer, Berlin, Heidel-
berg, Lecture Notes in Computer Science, Vol. 5977, 2010, pp. 2–19, doi: 10.1007/978-
3-642-11811-1 2.

[18] Hoang, T. S.: The Development of a Probabilistic B-Method and a Supporting
Toolkit. Ph.D. thesis, The University of New South Wales, 2005.

https://doi.org/10.1007/11955757_13
https://doi.org/10.1007/11787006_22
https://doi.org/10.1007/978-3-642-21254-3_21
https://doi.org/10.1007/978-3-642-10373-5_31
https://doi.org/10.1007/11691617_5
https://doi.org/10.1007/978-3-540-73210-5_16
https://doi.org/10.1007/bf01211866
https://doi.org/10.1007/978-3-642-11811-1_2
https://doi.org/10.1007/978-3-642-11811-1_2

A Probabilistic Extension of UML-B 113

[19] Hurd, J.: Formal Verification of Probabilistic Algorithms. Technical Report UCAM-
CL-TR-566, University of Cambridge, Computer Laboratory, 2003.

[20] Jansen, D. N.—Hermanns, H.—Katoen, J.-P.: A Probabilistic Extension of
UML Statecharts. In: Damm, W., Olderog, E. R. (Eds.): Formal Techniques in Real-
Time and Fault-Tolerant Systems (FTRTFT 2002). Springer, Berlin, Heidelberg, Lec-
ture Notes in Computer Science, Vol. 2469, 2002, pp. 355–374, doi: 10.1007/3-540-
45739-9 21.

[21] Jansen, D. N.—Hermanns, H.—Katoen, J.-P.: A QoS-Oriented Extension of
UML Statecharts. In: Stevens, P., Whittle, J., Booch, G. (Eds.): “UML” 2003 –
The Unified Modeling Language. Modeling Languages and Applications (UML 2003).
Springer, Berlin, Heidelberg, Lecture Notes in Computer Science, Vol. 2863, 2003,
pp. 76–91, doi: 10.1007/978-3-540-45221-8 7.

[22] Kwiatkowska, M.—Norman, G.—Parker, D.: Probabilistic Symbolic Model
Checking with PRISM: A Hybrid Approach. In: Katoen, J. P., Stevens, P. (Eds.):
Tools and Algorithms for the Construction and Analysis of Systems (TACAS 2002).
Springer, Berlin, Heidelberg, Lecture Notes in Computer Science, Vol. 2280, 2002,
pp. 52–66, doi: 10.1007/3-540-46002-0 5.

[23] Kwiatkowska, M.—Norman, G.—Parker, D.: Advances and Challenges of
Probabilistic Model Checking. 2010 48th Annual Allerton Conference on Commu-
nication, Control, and Computing (Allerton), IEEE, 2010, pp. 1691–1698, doi:
10.1109/allerton.2010.5707120.

[24] Kwiatkowska, M.—Norman, G.—Parker, D.: Prism 4.0: Verification of Prob-
abilistic Real-Time Systems. In: Gopalakrishnan, G., Qadeer, S. (Eds.): Computer
Aided Verification (CAV 2011). Springer, Berlin, Heidelberg, Lecture Notes in Com-
puter Science, Vol. 6806, 2011, pp. 585–591, doi: 10.1007/978-3-642-22110-1 47.

[25] Kwiatkowska, M.—Norman, G.—Parker, D.—Sproston, J.: Performance
Analysis of Probabilistic Timed Automata Using Digital Clocks. Formal Methods in
System Design, Vol. 29, 2006, No. 1, pp. 33–78, doi: 10.1007/978-3-540-40903-8 9.

[26] Lopatkin, I.—Iliasov, A.—Romanovsky, A.—Prokhorova, Y.—Troubit-
syna, E.: Patterns for Representing FMEA in Formal Specification of Control Sys-
tems. 2011 IEEE 13th International Symposium on High-Assurance Systems Engi-
neering (HASE), IEEE, 2011, pp. 146–151, doi: 10.1109/hase.2011.10.

[27] Reggio, G.—Wieringa, R. J.: Thirty One Problems in the Semantics of UML 1.3
Dynamics. Conference on Object-Oriented Programming, Systems, Languages and
Applications (OOPSLA ’99), 1999.

[28] Rehm, J.: A Method to Refine Time Constraints in Event B Framework. Automatic
Verification of Critical Systems (AVoCS 2006), 2006, pp. 173–177.

[29] Rumbaugh, J.—Jacobson, I.—Booch, G.: Unified Modeling Language Reference
Manual. Pearson Higher Education, 2004.

[30] Said, M. Y.—Butler, M.—Snook, C.: Class and State Machine Refinement in
UML-B. Proceedings of Workshop on Integration of Model-Based Formal Methods
and Tools (associated with IFM 2009), 2009.

https://doi.org/10.1007/3-540-45739-9_21
https://doi.org/10.1007/3-540-45739-9_21
https://doi.org/10.1007/978-3-540-45221-8_7
https://doi.org/10.1007/3-540-46002-0_5
https://doi.org/10.1109/allerton.2010.5707120
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-540-40903-8_9
https://doi.org/10.1109/hase.2011.10

114 M. Nosrati, H. Haghighi

[31] Snook, C.—Butler, M.: UML-B and Event-B: An Integration of Languages and
Tools. Proceedings of the IASTED International Conference on Software Engineering,
2008, pp. 336–341, doi: 10.1145/1125808.1125811.

[32] Tarasyuk, A.—Troubitsyna, E.—Laibinis, L.: Towards Probabilistic Mod-
elling in Event-B. In: Méry, D., Merz, S. (Eds.): Integrated Formal Methods (IFM
2010). Springer, Berlin, Heidelberg, Lecture Notes in Computer Science, Vol. 6396,
2010, pp. 275–289, doi: 10.1007/978-3-642-16265-7 20.

[33] Tarasyuk, A.—Troubitsyna, E.—Laibinis, L.: Formal Modelling and Verifica-
tion of Service-Oriented Systems in Probabilistic Event-B. In: Derrick, J., Gnesi, S.,
Latella, D., Treharne, H. (Eds.): Integrated Formal Methods, 2012 (IFM 2012).
Springer, Berlin, Heidelberg, Lecture Notes in Computer Science, Vol. 7321, pp. 237–
252, doi: 10.1007/978-3-642-30729-4 17.

[34] Tarasyuk, A.—Troubitsyna, E.—Laibinis, L.: Quantitative Reasoning about
Dependability in Event-B: Probabilistic Model Checking Approach. In: Petre, L.,
Sere, K., Troubitsyna, E. (Eds.): Dependability and Computer Engineering:
Concepts for Software-Intensive Systems. IGI Global, 2012, pp. 459–472, doi:
10.4018/978-1-60960-747-0.ch019.

Mohammad Nosrati is a Ph.D. student in software engineer-
ing at Shahid Beheshti University, Tehran, Iran. He holds a mas-
ter’s degree in software engineering from Shahid Beheshti Uni-
versity. His research interests are software testing, formal meth-
ods, machine learning and image processing.

Hassan Haghighi received his Ph.D. in computer engineering
from Sharif University of Technology. He is Associate Professor
at the Faculty of Computer Science and Engineering in Shahid
Beheshti University, Tehran, Iran. His research focus is on soft-
ware testing, formal methods, and software architecture.

https://doi.org/10.1145/1125808.1125811
https://doi.org/10.1007/978-3-642-16265-7_20
https://doi.org/10.1007/978-3-642-30729-4_17
https://doi.org/10.4018/978-1-60960-747-0.ch019

