
Computing and Informatics, Vol. 38, 2019, 367–389, doi: 10.31577/cai 2019 2 367

LIGHTWEIGHT FINGERPRINTS FOR FAST
APPROXIMATE KEYWORD MATCHING USING
BITWISE OPERATIONS

Aleksander Cis lak, Szymon Grabowski

Lodz University of Technology
Institute of Applied Computer Science
Al. Politechniki 11, 90–924 Lódź, Poland
e-mail: {acislak, sgrabow}@kis.p.lodz.pl

Abstract. We aim to speed up approximate keyword matching with the use of
a lightweight, fixed-size block of data for each string, called a fingerprint. These
work in a similar way to hash values; however, they can be also used for matching
with errors. They store information regarding symbol occurrences using individual
bits, and they can be compared against each other with a constant number of
bitwise operations. In this way, certain strings can be deduced to be at least within
the distance k from each other (using Hamming or Levenshtein distance) without
performing an explicit verification. We show experimentally that for a preprocessed
collection of strings, fingerprints can provide substantial speedups for k = 1, namely
over 2.5 times for the Hamming distance and over 30 times for the Levenshtein
distance. Tests were conducted on synthetic and real-world English and URL data.

Keywords: Fingerprint, keyword matching, approximate matching, bitwise

Mathematics Subject Classification 2010: 68W32

1 INTRODUCTION

This study deals with strings, that is, finite sequences of symbols. We assume that
a string S is 1-indexed, i.e., index 1 refers to the first symbol S[1], index 2 refers
to the second symbol S[2], etc. All strings are specified over the same alphabet Σ,
with alphabet size σ = |Σ|.

368 A. Cis lak, Sz. Grabowski

Exact string comparison refers to checking whether two strings S1 and S2 of equal
length n have the same characters at all corresponding positions. The strings can
store, e.g., natural language data or DNA sequences. Assuming that each character
occupies 1 byte, calculation of such a comparison takes O(n) time in the worst case;
however, the average case is O(1), using no additional memory. Specifically, the
complexity of the average case of comparing two strings depends on the alphabet
size. Assuming a uniform random symbol distribution, the chance that first two
symbols match (i.e., that S1[1] = S2[1]) is equal to 1/σ, the chance that both first
and second symbol pairs match (i.e., that S1[1] = S2[1] and S1[2] = S2[2]) is equal
to 1/σ2, etc. More generally, the probability that there is a match between all
characters up to a 1-indexed position i is equal to 1/σi.

Nonetheless, it is often faster to compare hash values for two strings (in con-
stant time) and perform an explicit verification only when these hashes are equal
to each other. This is particularly true in a situation where one would compare
a single string, that is a query (pattern), against a preprocessed collection (dictio-
nary) of strings. The hash-based approach forms the basis of, e.g., the well-known
Rabin–Karp [16] algorithm for online exact matching.

Aside from exact matching, there has been a substantial interest in approxi-
mate string comparison, for instance for spelling suggestions or matching biological
data [22, 26, 21]. Approximate string matching defines whether two strings are equal
according to a specified similarity metric, and the number of errors is denoted by k
in the following text. Two popular measures include:

• the Hamming distance [15] (later referred to as Ham), which defines the number
of mismatching characters at corresponding positions between two strings of
equal length,

• the Levenshtein distance [17] (also called edit distance, later referred to as Lev),
which determines the minimum number of edits (insertions, deletions, and sub-
stitutions) required for transforming one string into another.

Hash values cannot be easily used in the approximate context. This work has
focused on approximate matching in practice, and we introduce the concept of
lightweight fingerprints, whose goal is to speed up approximate string comparison.
The speedup can be achieved for preprocessed collections of strings, at the cost of
a fixed-sized amount of space per each word in the collection. This means that
we evaluate fingerprints for a keyword indexing problem, also known as dictionary
matching or keyword matching ; see, e.g., [3, 5, 6, 8, 9, 10]. Specifically, in this set-
ting a pattern P is compared against a string collection D = {S1, . . . , S|D|}. In the
following, the text size is generally denoted by n, and the pattern size is denoted by
m (i.e., |P | = m).

Lightweight Fingerprints 369

2 RELATED WORK

The original idea of a string fingerprint, which is also called a “sketch” in selected
publications [1], goes back to the work of Rabin and Karp [28, 16]. They used a vari-
ant of a hash function called a rolling hash, which can be quickly (incrementally)
calculated for each successive substring of the input text, in order to speed up exact
online substring matching. This technique was later used also in the context of
multiple pattern matching [20, 30] and matching over a two-dimensional text [33].
Bille et al. [4] extended this idea and demonstrated how to construct fingerprints
for substrings of a string which is compressed by a context-free grammar. Policriti
et al. [25] generalized the classical Rabin–Karp algorithm in order to be used with
the Hamming distance.

At the conceptual level, fingerprints may be perceived as a form of lossy com-
pression over the input text, nevertheless, they cannot replace the text – rather,
they can be used as additional information. Bar-Yossef et al. [1] show that it is not
possible to use only a fingerprint (reducing the text by more than a constant factor)
in order to answer a match query. Moreover, they prove that for answering decision
queries under the Hamming distance – such that the existence of the pattern in the
text with less than k Hamming errors is reported as “a match” and no such occur-
rence yields the “no match” output – the size of the fingerprint must be Ω(n/m),
where k = εm, for a fixed 0 < ε < 1.

Policriti and Prezza [24] presented a related idea called de Bruijn hash func-
tion, where shifting the substring by one character results in a corresponding one-
character shift in its hash value. Grabowski and Raniszewski [13] used fingerprints
in order to speed up verifying tentative matches in their SamSAMi (sampled suffix
array with minimizers) full-text index. Fingerprints, which are concatenations of
selected bits taken from a short string, allow them to reject most candidate matches
without accessing the indexed text and thus avoiding many cache misses. Recently,
fingerprints have been applied to the longest common extension (LCE) problem [27],
allowing to solve the LCE queries in logarithmic time in essentially the same space
as the input text (replacing the text with a data structure of the same size).

Ramaswamy et al. [29] described a technique called “approximate” fingerprint-
ing; however, it refers to exact pattern matching with false positives rather than
matching based on similarity metrics. Fingerprints have also been used for match-
ing at a larger scale, i.a., for determining similarity between audio recordings [7]
and files [19]. The term fingerprint has also been used with a different meaning
in the domain of string processing, where it refers to the set of distinct characters
contained in one of the substrings of a given string, with the ongoing recent work,
e.g., a study by Belazzougui et al. [2].

3 FINGERPRINTS

In this section we introduce the notion of a fingerprint, describe its construction and
demonstrate how to compare two fingerprints. For a given string S, a fingerprint S ′

370 A. Cis lak, Sz. Grabowski

is constructed as S ′ := f(S) using a function f which returns a fixed-sized block
of data. In particular, for two strings S1 and S2, we would like to determine that
Ham(S1, S2) > k or Lev(S1, S2) > k by comparing only fingerprints S ′1 and S ′2 for
a given k ∈ N+. In other words, fingerprints allow for a quick rejection of a candidate
for an approximate match (up to k errors) between two strings.

Fingerprint comparison might be indecisive, i.e., it might not be sufficient to
indicate that the above stated inequalities hold. In that case (we explain later when
this occurs), we still have to perform an explicit verification on S1 and S2, but
fingerprints allow for reducing the overall number of such operations. There exists
a similarity between fingerprints and hash functions; nonetheless, hash comparison
works only in the context of exact matching. Let us clarify that in this work the
term fingerprint refers to a short (having at most a few bytes in length) block of
data which can be used for the aforementioned approximate matching.

As far as the complexity of a single verification (string comparison) is concerned,
the worst case is equal to O(n) for the Hamming distance (considering two strings of
equal size n) and O(kmin(|S1|, |S2|)) for the Levenshtein distance, using Ukkonen’s
algorithm [32]. Assuming a uniform random alphabet distribution, the average case
complexity is equal to O(k) for both metrics.

In our proposal, fingerprints use individual bits in order to store information
about symbol frequencies or positions in the string S[1, n]. Let Σ′ ⊆ Σ be a subset
of the original alphabet with σ′ = |Σ′| denoting its size. We propose the following
approaches.

• Occurrence (occ in short): we store information in each bit that indicates
whether a certain symbol from Σ′occ occurs in a string using σ′occ bits in total.

• Occurrence halved: the fingerprint refers to occurrences in the first and second
halves of S, that is, S[1, bn/2c] and S[bn/2c + 1, n], respectively. We store
information whether each of the σ′occh symbols occurs in the first half of S using
the first σ′occh bits of the fingerprint, and we store information whether each of
the same σ′occh symbols occurs in the second half of S using the second σ′occh bits
of the fingerprint. The occurrence halved scheme works only for the Hamming
distance.

• Count: we store a count (i.e., the number of occurrences) of each symbol us-
ing b bits per symbol. The count can be in the range [0, 2b − 1], where 2b − 1
indicates that there are 2b − 1 or more occurrences of a given symbol. We use
σ′count symbols from Σ′count.

• Position (pos in short): we can encode information regarding the first (leftmost,
i.e., the one with the lowest index) position in S of each symbol from Σ′pos using
p bits per symbol, where p ≤ dlog2ne. This position can be in the range [1, 2p−1]
encoded in the fingerprint as 0-indexed, where index 0 refers to the first symbol,
index 1 refers to the second symbol, etc, and the value of 2p − 1 indicates that
the first occurrence is either at one of the positions from the range [2p, n] or
the symbol does not occur in S (we do not know which one is true). We use

Lightweight Fingerprints 371

σ′pos · p bits in order to encode positions of σ′pos symbols. The remaining bits,
e.g., 1 bit for σ′pos = 5, p = 3 and 16 bits per fingerprint, are used in order
to store information about the occurrences of additional symbols, in the same
fashion as in the occurrence fingerprint which was introduced previously. The
position-based scheme works only for the Hamming distance.

Fingerprints can be also differentiated based on the symbols which they refer
to. The choice of the specific symbol set is important when it comes to an empirical
evaluation and it is discussed in more detail in Section 4. We have identified the
following possibilities.

• Common: A set of symbols which appear most commonly in a given collection.

• Rare: A set of symbols which appear least commonly in a given collection.

• Mixed: A mixed set where half of the symbols comes from the common set
while the other half comes from the rare set.

3.1 Fingerprint Examples

In the following examples, we constrain ourselves to the variant of 2-byte (16-bit)
fingerprints with common letters. Fingerprints could in principle have any size, and
the longer the fingerprint, the more information we can store about the character
distribution in the string. Still, we regard 2 bytes, which correspond to the size of
2 characters in the original string, to be a desirable compromise between size and
performance (consult the following section for experimental results). The choice
of common letters is arbitrary at this point and it only serves the purpose of idea
illustration.

In the following examples, occurrence fingerprint is constructed using selected
16 most common letters of the English alphabet, namely {e, t, a, o, i, n, s, h, r, d, l, c,
u, m, w, f} [18, p. 36]. For the occurrence halved and count fingerprints (with b = 2
bits per count), we use the first 8 letters from this set. In the case of a position
fingerprint (with p = 3 bits per letter), we use the first 5 letters for storing their
positions and the sixth letter n for the last (single) occurrence bit.

Each fingerprint type would be as follows for the word instance (spaces are
added only for visual presentation):

• Occurrence:
1 1 1 0 1 1 1 0 0 0 0 1 0 0 0 0

The first (leftmost) bit corresponds to the occurrence of the letter e (which
does occur in the word, hence it is set to 1), the second bit corresponds to the
occurrence of the letter t, etc.

• Occurrence halved:
01 10 01 00 10 11 10 00

The first (leftmost) bit corresponds to the occurrence of the letter e in the first
half of the word, that is inst; the second bit corresponds to the occurrence of the

372 A. Cis lak, Sz. Grabowski

letter e in the second half of the word, that is ance; the third bit corresponds
to the occurrence of the letter t in the first half of the word, the fourth bit
corresponds to the occurrence of the letter t in the second half of the word, etc.

• Count:
01 01 01 00 01 11 01 00

For reasons which will become clear later (see proof of Theorem 1), we use
a Gray code [12], in which the 2-bit encodings of numbers {0, 1, 2, 3} are 00, 01,
11, and 10, respectively. The first two (leftmost) bits correspond to the count
of the letter e (it occurs once, hence the count is 01, that is 1), the second two
bits correspond to the count of the letter t (it occurs once, hence the count is
01, that is 1), etc.

• Position:
111 011 100 111 000 1

The first three (leftmost) bits correspond to the position of the first occurrence
of the letter e (this 0-indexed position is equal to 7, hence it is set to 111),
the second three bits correspond to the position of the first occurrence of the
letter t (this 0-indexed position is equal to 3, hence it is set to 011), etc. The
last (rightmost) occurrence bit indicates the occurrence of n, and since this letter
does occur in the input string, this bit is set to 1.

3.2 Construction

The construction of various fingerprint types is described below. For the description
of symbols and types, consult preceding subsections. At the beginning, each bit of
the fingerprint is always set to 0.

• Occurrence: Let us remind the reader that the length of the fingerprint is
equal to σ′occ for a selected alphabet Σ′occ of letters whose occurrences are stored.
A string is iterated characterwise. For each character c, a mask 0x1 is shifted
q times to the left, where q ∈ {0, . . . , σ′occ − 1} is a corresponding shift for the
character c. In other words, there exists a mapping c → q for each character
c ∈ Σ′occ. A natural approach to this mapping is to take the position of a symbol
in the alphabet Σ′occ (assuming that the alphabet is ordered). The fingerprint is
then or-ed with the mask in order to set the bit which corresponds to character
c to 1. For a string of length n, time complexity of this operation is equal to
O(n).

• Occurrence halved: The fingerprint is constructed in an analogous way to the
occurrence approach described above. We start with iterating the first half of
the string, setting corresponding bits depending on letter occurrences, and then
we iterate the second half of the string, again setting corresponding bits, which
are shifted by 1 position with respect to bits set while iterating the first half of
the string. Character mapping is adapted accordingly.

Lightweight Fingerprints 373

• Count: A string is again iterated characterwise. The length of the fingerprint
is equal to b · σ′count for a selected alphabet Σ′count of letters whose counts are
stored. Similarly to the occurrence fingerprint, there exists a mapping c → q
for each character c ∈ Σ′count. However, since we need b bits in order to store
a count, it holds that q ∈ {0, b, . . . , σ′count − b}, assuming that b divides σ′count.
A selected bit mask is set and the fingerprint is then or-ed with the mask in
order to increase the current count of character c which is stored using b bits at
positions {q, q + 1, . . . , q + b− 1}.
Instead of a natural binary encoding, we however use a Gray code, in which the
encodings for any pair of successive values (e.g., 1 and 2) differ at a single bit
position. To increment a b-bit field, from value i to i+ 1 (where 0 ≤ i < i+ 1 <
2b), it is sufficient to extract this Gray-encoded field into a machine word W ,
and perform the operation W := W ⊕ (W � 1). The lowest b bits of W will
then store the Gray-encoded value i + 1. Naturally, we subsequently need to
overwrite the original field with the obtained value from W . All of the above
steps can be realized using a few simple bitwise operations. Assuming fixed b,
for a string of length n, the time complexity of this operation is equal to O(n).

• Position: In the case of position fingerprints, the length of the fingerprint is
equal to σ′pos · p for a selected alphabet Σ′pos of letters whose positions are stored
and a chosen constant p which indicates the number of bits per position. Here,
we iterate the alphabet, and for each character c ∈ Σ′pos we search for the first
(leftmost) occurrence of c in the string. Each position of such an occurrence is
then successively encoded in the fingerprint, or the position pos is set to all 1s
if pos ≥ 2p − 1. For a string of length n, the time complexity of this operation
is equal to O(n · σ′pos).

3.3 Comparison

We can quickly compare two occurrence (or occurrence halved) fingerprints by per-
forming a binary xor operation and counting the number of bits which are set in
the result (that is, calculating the Hamming weight, HW). Let us note that HW

can be determined in constant time using a lookup table with 28|S′| entries, where
|S ′| is the fingerprint size in bytes. We denote the fingerprint distance with FD, and
for occurrence fingerprints FD(S ′1, S

′
2) = HW (S ′1 ⊕ S ′2). In other words, we count

the number of mismatching character occurrences which are stored in individual
bits.

However, let us note that FD does not determine the true number of errors.
For instance, for S1 = run and S2 = ran, FD might be equal to 2 (occurrence
differences for a and u) but there is still only one mismatch. On the other extreme,
for two strings of length n, where each string consists of a repeated occurrence of one
different symbol, FD might be equal to 1 (or even 0, if the symbols are not included
in the fingerprints), but the number of mismatches is n. In general, FD can be used
in order to provide a lower bound on the true number of errors, and the following

374 A. Cis lak, Sz. Grabowski

relation holds (the right-hand side can be calculated quickly using a lookup table,
since 0 ≤ FD ≤ 8|S ′|):

D(S1, S2) ≥ dFD(S ′1, S
′
2)/2e, D ∈ {Ham,Lev}. (1)

This formula also holds for the count fingerprint. Let us observe that with the
use of a Gray code, the value of FD might be underestimated, e.g., for comparing two
4-bit counters storing values 4 and 7, we have HW (0110⊕ 0100) = HW (0010) = 1,
however, it is not overestimated. As far as the position fingerprint (which is relevant
only to the Hamming metric) is concerned, after calculating the xor value, we do not
compute the Hamming weight, rather, we compare each set of bits (p-gram) which
describes a single position. The value of FD is equal to the number of mismatching
p-grams. Similarly to other fingerprint types, these values can be preprocessed and
stored in a lookup table in order to reduce calculation time.

The relationship between the fingerprint error and the true number of errors
is further explored in Theorem 1 and Theorem 2. In plain words, manipulating
a single symbol in either string makes the fingerprint distance grow by at most 2.
Let us note that Formula (1) follows as a direct consequence of this statement, with
the round-up on the right-hand side resulting from the fact that fingerprint distance
might be odd.

Theorem 1. Consider F = {occ, count} and assume a distance function D ∈
{Ham,Lev}. For any two strings S1 and S2, with their fingerprints S ′1 and S ′2,
respectively, and the fingerprint distance between them FD(S ′1, S

′
2) = f(S ′1, S

′
2),

where f ∈ F , we have that for any string S3 such that D(S2, S3) = 1, the following
relation holds: FD(S ′1, S

′
3) ≤ FD(S ′1, S

′
2) + 2.

Proof. Let us first consider the occurrence fingerprints and Hamming distance (that
is D = Ham). For this distance, two strings must be of equal length (otherwise the
distance is infinite), and we set |S1| = |S2| = n. The string S2 can be obtained from
S1 by changing some of its k = D(S1, S2) symbols, at positions 1 ≤ i1 < i2 < . . . <
ik ≤ n. Let V0 be an initial copy of S1 and in k successive steps we transform it
into V1, V2, . . . , Vk = S2, by changing one of its symbols at a time. For clarity, we
shall modify the symbols in the order of their occurrence in the strings (from left
to right). We shall observe how the changes affect the value of FD(S ′1, V

′
j), which is

initially (i.e., for j = 0) equal to zero.
Consider a jth step, for any 1 ≤ j ≤ k. We have four cases:

(i) both Vj−1[ij] ∈ Σ′ and Vj[ij] ∈ Σ′,

(ii) both Vj−1[ij] 6∈ Σ′ and Vj[ij] 6∈ Σ′,

(iii) Vj−1[ij] ∈ Σ′ but Vj[ij] 6∈ Σ′,

(iv) Vj−1[ij] 6∈ Σ′ but Vj[ij] ∈ Σ′.

Let us notice that:

Lightweight Fingerprints 375

• in case (i) HW (V ′j) − HW (V ′j−1) ∈ {−1, 0, 1}, yet since Vj−1[ij] 6= Vj[ij], we
may obtain new mismatches at (at most) two positions of the fingerprints, i.e.,
FD(S ′1, V

′
j)− FD(S ′1, V

′
j−1) ≤ 2,

• in case (ii) V ′j = V ′j−1 and thus FD(S ′1, V
′
j) = FD(S ′1, V

′
j−1),

• in case (iii) HW (V ′j−1)−HW (V ′j) ∈ {0, 1} and FD(S ′1, V
′
j)− FD(S ′1, V

′
j−1) ≤ 1,

• in case (iv) HW (V ′j)−HW (V ′j−1) ∈ {0, 1} and FD(S ′1, V
′
j)− FD(S ′1, V

′
j−1) ≤ 1.

From the shown cases and by the triangle inequality we conclude that replacing
a symbol with another makes the fingerprint distance grow by at most 2.

Now we change the distance measure to the Levenshtein metric (i.e., we set
D = Lev). Note that the set of available operations transforming one string into
another is extended; not only substitutions are allowed, but also insertions and
deletions. The overall reasoning follows the case of Hamming distance, yet we need
to consider all three operations. A single substitution in Vj, for a jth step, makes
the fingerprint distance grow by at most 2, in the same manner as shown above for
the Hamming distance. Inserting a symbol c into Vj (at any position) implies one
of three following cases:

(i) c 6∈ Σ′, where the fingerprint distance remains unchanged,

(ii) c ∈ Σ′ and c ∈ S1, where again the fingerprint distance does not change, or

(iii) c ∈ Σ′ and c 6∈ S1, where the fingerprint distance grows by 1.

Deleting a symbol c from Vj (at any position) implies one of three following
cases:

(i) c 6∈ Σ′, where the fingerprint distance remains unchanged (same as for the insert
operation),

(ii) c ∈ Σ′ and c ∈ S1, where the fingerprint distance might not change (if Vj
contains at least two copies of c) or it might grow by 1, or

(iii) c ∈ Σ′ and c 6∈ S1, where the fingerprint distance might not change or it might
decrease by 1. Note, however, that the last case for the delete operation never
occurs in an edit script transforming S1 into S2 using a minimum number of
Levenshtein operations.

Handling f = count is analogous to the presented reasoning for f = occ, both for
the Hamming and the Levenshtein distance. Note that changing a symbol’s count
by 1, where the count is stored in a b-bit field, may change up to b bits in natural
binary encoding while it changes only 1 bit in Gray encoding, which is why we use
the latter representation. �

Theorem 2. Consider FD = pos and assume a distance function D = Ham.
For any two strings S1 and S2, with their fingerprints S ′1 and S ′2, respectively, we
have that for any string S3 such that D(S2, S3) = 1, the following relation holds:
FD(S ′1, S

′
3) ≤ FD(S ′1, S

′
2) + 2.

376 A. Cis lak, Sz. Grabowski

Proof. For the Hamming distance, two strings must be of equal length and let us
set |S1| = |S2| = n. Similarly to the case of occurrence and count fingerprints, the
string S2 can be obtained from S1 by changing some of its k = D(S1, S2) symbols.
This proof follows the same logic as presented in proof for Theorem 1. Let us note
that the only difference lies in the fact that we compare the first position of a given
letter rather than its occurrence. We deal with the same four cases depending on
whether a modified letter belongs to Σ′, and modifying a single letter may change:
in case (i) at most two p-grams (which describe the position of the first occurrence
of a given letter), in case (ii) 0 p-grams, in case (iii) at most one p-gram, and
in case (iv) at most one p-gram (that is, the result of these two latter cases is
equivalent). Again, as before, the number of modified p-grams corresponds directly
to the maximum change in fingerprint distance. �

3.4 Storage

Even though the true distance is higher than the fingerprint distance FD, finger-
prints can still be used in order to speed up comparisons because certain strings
will be compared (and rejected) in constant time using only a fixed number of fast
bitwise operations and array lookups. As mentioned before, we consider a scenario
where a number of strings is preprocessed and stored in a collection. Since the con-
struction of a fingerprint for the query string might be time-consuming, fingerprints
are useful when the number of strings in a collection is relatively high. When it
comes to the space overhead incurred by the fingerprints, for a dictionary D con-
taining |D| keywords, it is equal to O(|D||S ′| + 2|S

′| + σ), |S ′| being the (constant)
fingerprint size in bytes. This holds since we have to store one constant size finger-
print per keyword together with the lookup tables which are used in order to speed
up fingerprint comparison. These tables include one for determining the number
of mismatches between two fingerprints (depending on fingerprint type: between
occurrences, between counts, etc.) and one for the resulting number of errors (see
Formula (1)). Let us note that this overhead is relatively small, especially when the
size of each string is large (this is further discussed in the next section).

4 EMPIRICAL STUDY

Experimental results were obtained on the machine equipped with the Intel i7-4930K
processor running at 3.4 GHz and 64 GB DDR3 RAM (1.6 GHz, latency timing 9-9-
9-27). The source code and a compiled Linux binary executable (using gcc 64-bit
version 5.4.0) are publicly available under the following link: https://github.com/
MrAlexSee/Fingerprints. Consult Appendix A for more information regarding the
usage of this tool.

The following data sets were used in order to obtain the experimental results.

• Synthetic data: 9.0 MB, generated based on English language letter frequen-
cies [18, p. 36], 500 000 words.

https://github.com/MrAlexSee/Fingerprints
https://github.com/MrAlexSee/Fingerprints

Lightweight Fingerprints 377

• English insane (real-world data): 3.18 MB, American English language dictio-
nary, 350 518 words.

• English 200 (real-world data): 7.41 MB, words extracted from the English
200 collection from the Pizza&Chili index (http://pizzachili.dcc.uchile.
cl/texts/nlang/english.200MB.gz), 815 935 words. This might be regarded
as a kind of a middle-ground between synthetic and real-world data. Sequences
were split on any white space and they included only printable characters. These
words are usually not actual English language words (they contain, e.g., punc-
tuation marks), however, they appear as part of the English text (hence they
might be searched for in practice).

• URLs (real-world URL data): 95.02 MB of web addresses, available online:
http://data.law.di.unimi.it/webdata/in-2004/, 1 382 908 words.

All dictionaries were filtered in order to contain only ASCII characters (given
sizes pertain to dictionaries after said filtering, not counting duplicate words or de-
limiters, 1 MB = 106 B). All dictionaries and query collections are available directly
from the Github repository mentioned above, with the exception of URLs, owing to
size limitations.

The number of queries of a given size (letter count) was equal to 10 000, and
the number of iterations was set to 100. Each iteration consisted in a single search
for each query within the dictionary. All presented results, including searching
and construction, refer to single-thread performance, measured as elapsed CPU
time. For the calculation of the Hamming distance, a regular loop which compares
each consecutive character until k mismatches are found was used. It turned out
that this implementation was faster than any other low-level approach (e.g., di-
rectly using certain processor instructions from the SSE extension set) when full
compiler optimization (level O3) was used. For the Levenshtein distance, we used
our own implementation based on the optimal calculation of the 2k + 1 strip and
the 2-row window [14]. It turned out to be faster than publicly available im-
plementations, for instance the version from the Edlib library [31] or the SeqAn
library [11]. This was probably caused by the fact that we could use the most
lightweight solution and thus omit certain layers of abstractions from the libraries,
especially since the comparison function was invoked multiple times for relatively
short strings.

Queries were extracted randomly from the dictionary and compared against this
dictionary. We have also tried distorting the queries by inserting a number of errors.
For each query, the number of errors was uniformly sampled in the range [1, e], and
the timing results were consistent for any e in the [1, . . . , 4] range. In the case of
English language dictionaries, we have also tested queries which consisted of the
most common words extracted from a large corpus of the English language, and
identical behavior was observed as in the case of queries which were sampled from
the dictionary. This test was performed in order to check whether the words which
are more likely to be searched for in practice exhibit the same behavior as other
words.

http://pizzachili.dcc.uchile.cl/texts/nlang/english.200MB.gz
http://pizzachili.dcc.uchile.cl/texts/nlang/english.200MB.gz
http://data.law.di.unimi.it/webdata/in-2004/

378 A. Cis lak, Sz. Grabowski

Each fingerprint occupied 2 bytes, since 1-byte fingerprints turned out to be
ineffective, and we regarded this as the optimal value with respect to a reasonable
keyword size. The mode length in English dictionaries was equal to 8, which means
that each fingerprint roughly incurred a 25 % storage penalty on average; however,
the mode length in the URL collection was equal to 69, which means that each fin-
gerprint roughly incurred only a 3 % storage penalty on average. Count fingerprints
used 2 bits per count, that is, we set b = 2 and a natural binary encoding (i.e., not
a Gray code). For correctness, in the case of the count variant, multiple mismatches
between 2-bit counters were treated as a single mismatch. This was the case since,
e.g., the difference between 1 and 2 is equal to 1, but 01⊕ 10 = 11 (the Hamming
weight of such result is equal to 2 and not to 1). Position fingerprints used 3 bits
per position, that is, we set p = 3 (consult Section 3 for details). Given the selected
fingerprint size of 2 bytes (16 bits), these values allow for the use of 8 letters for
count fingerprints and 5 letters for position fingerprints, with an extra occurrence
bit in the latter case.

In our implementation, fingerprint comparison requires performing one bitwise
operation and 2 array lookups, that is, 3 constant operations in total. We analyze
the comparison time between two strings using various fingerprint types versus an
explicit verification. When the fingerprint comparison was not decisive (i.e., we
could not reject the match based solely on the use of fingerprints), a verification
consisting in distance calculation was performed and it contributed to the elapsed
time. The fingerprint is calculated once per query and it is then reused for the
comparison with consecutive keywords. This means that we examine the situation
where a single query is compared against a set (dictionary) of keywords.

4.1 Results

Figure 1 demonstrates the results for synthetic English data, which allowed us to
check a wide range of word sizes (which occur infrequently or not at all in natural lan-
guage corpora) for occurrence, count, and position fingerprints. Hamming distance
was used as a similarity metric in this case. As described in the previous section,
common, mixed, and rare letter sets were selected based on English alphabet letter
frequencies. We can observe that the effectiveness of various approaches depends
substantially on the word size, and the performance of letter sets also depends on
the fingerprint type. The highest speedup was provided by occurrence fingerprints
for common letters in the case of words of 10 characters, and it was equal to over
2.5 times with respect to the naive comparison.

In Tables 1 and 2 we present the speedup for k = 1 that was achieved for two
English dictionaries and the URL data. Word lengths of 8 (in total 48 636 words
for English insane and 104 753 words for English 200) and 69 (in total 34 044 words
for URLs) were used, which corresponded to mode length values in the tested dic-
tionaries. The speedup S was calculated using the following formula: S = Tn/Tf ,
where Tn refers to the average time required for a naive comparison (i.e., not using
fingerprints), and Tf refers to the average time required for comparison using fin-

Lightweight Fingerprints 379

0 5 10 15 20 25 30 35
Word size

0

1

2

3

4

5

6
Ti
m
e
pe

r w
or
d
(n
s)

No fingerprints
Common letters
Mixed letters
Rare letters

0 5 10 15 20 25 30 35
Word size

0

1

2

3

4

5

6

Ti
m
e
pe

r w
or
d
(n
s)

0 5 10 15 20 25 30 35
Word size

0

1

2

3

4

5

6

Ti
m
e
pe

r w
or
d
(n
s)

Figure 1. Comparison time vs. word size for 1 mismatch (Hamming distance) for syn-
thetic data. Words were generated over the English alphabet. Time refers to average
comparison time between a single pair of words. The upper figure shows results for oc-
currence fingerprints, the middle figure shows results for count fingerprints, and the
bottom figure shows results for position fingerprints.

380 A. Cis lak, Sz. Grabowski

gerprints. For instance, 2.0 means that the time required for comparison decreased
twofold when fingerprints were used.

A higher speedup in certain cases for the URL data was caused by a higher
level of similarity between the data. In particular, the data set comprised some
URLs which referred to different resources that were located on the same server.
This resulted in certain words sharing a common prefix, requiring a naive algo-
rithm to proceed with checking at least several first characters of each word. Pre-
sented results also demonstrate a limitation of our technique, which is apparent in
the case of shorter words, where using fingerprints may increase the comparison
time. Position fingerprints are not listed for the URL data, since they were com-
pletely ineffective due to multiple common prefixes between words and a large word
length (almost no words were rejected). Let us also note that Hamming distance
results for the English words are consistent with those reported for synthetic English
data.

English Insane Common Mixed Rare

Occurrence 2.66 1.45 0.72
Occurrence halved 2.05 0.97 0.69
Count 1.26 0.64 0.72
Position 1.03 0.55 0.80

English 200 Common Mixed Rare

Occurrence 2.12 1.03 0.54
Occurrence halved 1.35 0.61 0.75
Count 0.88 0.50 0.77
Position 0.71 0.52 0.82

URLs Common Mixed Rare

Occurrence 1.46 1.19 2.27
Occurrence halved 1.78 1.93 1.53
Count 1.82 1.78 1.38

Table 1. Speedup for various fingerprint types relative to a naive comparison for k = 1
using Hamming distance for real-world data (English and URL dictionaries). Values
smaller than 1.0 indicate that there was no speedup and the time required for comparison
increased. The results in upper and middle table were calculated for the set of English
language words of length 8, and the results in the lower table were calculated for the set
of URLs of length 69 (both length values were modes of the word lengths in the respective
dictionaries).

In Table 3 we list percentages of words that were rejected for the same data sets
for k = 1 as a hardware-independent method of comparing our approaches. The
rejection rate is naturally positively correlated with the speedup in comparison time.
Table 4 presents the construction speed. Time measured during the construction
covered (i) creating fingerprints, (ii) storing fingerprints in our custom dynamic

Lightweight Fingerprints 381

container, (iii) storing words from the input dictionary (not counting disk I/O) in
the same container. It is assumed that the words in the dictionary are already sorted,
a stage which can be easily performed as preprocessing (most available dictionaries
are already sorted anyway).

English Insane Common Mixed Rare

Occurrence 33.38 10.19 3.44
Count 8.34 2.95 1.05

English 200 Common Mixed Rare

Occurrence 22.62 6.50 1.98
Count 5.11 1.98 1.01

URLs Common Mixed Rare

Occurrence 3.60 2.19 14.35
Count 5.52 5.87 3.06

Table 2. Speedup for various fingerprint types relative to a naive comparison for k = 1
using Levenshtein distance for real-world data (English and URL dictionaries). The
results in upper and middle table were calculated for the set of English language words of
length 8, and the results in the lower table were calculated for the set of URLs of length 69.

Let us also discuss a related method, namely neighborhood (permutation) gen-
eration [23]. For a given pattern P , it consists in constructing all combinations of
perturbed words derived from P , whose presence in the dictionary is then checked in
an exact manner (using, e.g., a hash table). For instance, using Hamming distance
for a word cat and English alphabet, one would first check a perturbation using
letter a: aat, cat (can be ignored, since it is the same as the pattern), and caa,
then using letter b: bat, cbt, cab, etc.

If the neighborhood size (that is, the count of generated candidates), which
depends on the pattern length and the alphabet size, is relatively small and the
dictionary size (that is, the total word count) is relatively large, this might turn out
to be a promising approach. On the other hand, fingerprints are a more versatile
method, which can be used for speeding up a comparison of any two strings. This
stands in contrast to only checking for the presence of a string in a dictionary (as is
the case for the neighborhood method), and fingerprints can be used for augmenting
another data structure (see Section 5 for more information).

For the comparison of neighborhood generation and a fingerprint-based search
when querying a dictionary, consult Figure 2. The search was performed for Ham-
ming and Levenshtein metrics with k = 1. Time refers to average comparison
time between a single pair of words, in the same manner as for fingerprint com-
parison presented in Figure 1. Both dictionaries were subsampled in order to con-
tain the tested number of words, namely [26, 27, . . . , 216]. This consisted in ran-
domly selecting words of size 8, which was the mode length in both dictionaries.

382 A. Cis lak, Sz. Grabowski

English Insane Common Mixed Rare

Occurrence (Ham, Lev) 98.45 % 92.53 % 75.84 %
Occurrence halved (Ham) 96.72 % 85.30 % 10.12 %
Count (Ham, Lev) 90.55 % 71.37 % 7.01 %
Position (Ham) 87.80 % 50.30 % 0.65 %

English 200 Common Mixed Rare

Occurrence (Ham, Lev) 97.22 % 87.73 % 55.07 %
Occurrence halved (Ham) 92.34 % 71.39 % 3.17 %
Count (Ham, Lev) 84.02 % 55.30 % 2.19 %
Position (Ham) 78.47 % 39 42 % 0.23 %

URLs Common Mixed Rare

Occurrence (Ham, Lev) 71.00 % 55.72 % 89.39 %
Occurrence halved (Ham) 80.33 % 84.03 % 73.41 %
Count (Ham, Lev) 80.87 % 80.55 % 67.33 %

Table 3. Percentage of rejected words for various fingerprint types for k = 1 for real-
world data (English and URL dictionaries). Rejection means that the true error was
determined to be more than k based only on fingerprint comparison. The results in upper
and middle table were calculated for the set of English language words of length 8, and
the results in the lower table were calculated for the set of URLs of length 69.

English Insane Common Mixed Rare

Occurrence 498.56 499.10 497.62
Occurrence halved 475.70 475.18 474.26
Count 155.14 165.36 316.29
Position 154.35 167.62 196.97

English 200 Common Mixed Rare

Occurrence 485.61 485.76 485.61
Occurrence halved 458.59 458.68 461.25
Count 165.13 190.57 335.54
Position 160.57 170.90 198.26

URLs Common Mixed Rare

Occurrence 418.75 419.07 419.05
Occurrence halved 405.91 406.03 405.93
Count 244.99 270.82 357.00

Table 4. Construction speed given in MB/s (1 MB = 106 B) for various fingerprint
types for real-world data (English and URL dictionaries). The results in upper and
middle table were calculated for the set of English language words of length 8, and the
results in the lower table were calculated for the set of URLs of length 69.

Lightweight Fingerprints 383

The largest value (216 = 65 536) was used only for the English 200 dictionary,
since the English insane dictionary did not contain such number of words having
8 characters. The alphabet size is equal to 53 and 94 for English insane and En-
glish 200, respectively, and it was accordingly smaller for subsampled dictionaries
(e.g., 33 and 56 characters for English dictionaries with 64 words, respectively).
All these dictionaries can be inspected at the Github repository. The number of
iterations for neighborhood generation was equal to 100 (the same as for the finger-
prints).

We can see that fingerprints outperform the neighborhood generation method
for smaller dictionaries, up to around 2 orders of magnitude for the smallest one
(which is, admittedly, not likely to be used in a real-world scenario). As the dictio-
nary size increases, the gap becomes smaller, with neighborhood generation being
faster for the largest subsampled dictionaries. In regard to the Levenshtein distance,
on the one hand there exist more combinations which need to be checked by the per-
mutation algorithm (insertions, deletions), on the other hand, Levenshtein distance
is also more expensive to calculate when the fingerprint comparison is not decisive.
Nevertheless, the neighborhood generation algorithm was slower for the Levenshtein
metric when compared to the Hamming metric very roughly by a factor of 5, and
fingerprints were relatively slower very roughly by a factor of 2. This meant that
for dictionaries where the fingerprint-based approach turned out to be faster, it out-
performed neighborhood generation by a wider margin for the Levenshtein than for
the Hamming distance.

Let us note that the time required to extract the alphabet from the dictio-
nary (which was needed for generating the neighborhood) did not contribute to the
measured elapsed time. The tested implementation of the neighborhood generation
method can be also found in the Github repository referenced previously.

In general, the choice of the optimal strategy, viz. fingerprint type, letters data
set, and how many bits are used per single counter or position in a fingerprint, de-
pends chiefly on the input data. Larger fingerprints would allow for obtaining a bet-
ter rejection rate, but this would come at the cost of increased space usage. Once
the rejection rate is close to the optimal 100 %, larger fingerprints would provide
only a negligible reduction in processing time. In our case, the simplest approach,
that is, occurrence fingerprints with common letters, seemed to offer the best per-
formance. Still, we would like to point out that a practical evaluation on a specific
data set would be advised in a real-world scenario.

5 CONCLUSIONS

We have evaluated fingerprints in the context of dictionary matching. Still, we
would like to emphasize the fact that fingerprints are not a data structure in it-
self, rather, they are a string augmentation technique which we believe may prove
useful in various applications. For instance, they can be used in any data struc-
ture which performs multiple internal approximate string comparisons, providing

384 A. Cis lak, Sz. Grabowski

0 5000 10000 15000 20000 25000 30000
Dictionary size (words)

100

101

102

103
Ti
m
e
pe

r w
or
d
(n
s)

Occ. common (Ham)
Neighborhood (Ham)
Occ. common (Lev)
Neighborhood (Lev)

0 10000 20000 30000 40000 50000 60000
Dictionary size (words)

100

101

102

103

Ti
m
e
pe

r w
or
d
(n
s)

Figure 2. Comparison time vs. dictionary size for 1 error using fingerprints (occurrence
common variant, which turned out to be the fastest one) and the related neighborhood
generation method. Results for the English insane dictionary (upper figure) and the
English 200 dictionary (lower figure) are presented, both for words of size 8. Note the
logarithmic y-scale.

substantial speedups at a modest increase in the occupied space. In particular, for
longer strings such as URL sequences the space overhead can be considered negligi-
ble.

Fingerprints take advantage of the letter distribution, and for this reason they
were not effective for strings sampled over the alphabet with a uniform random
distribution. They are also not recommended for the DNA data due to the small
size of the alphabet and a large average word size. These two combined properties
result in a scenario where each word contains multiple occurrences of each possible
letter with a high probability.

Lightweight Fingerprints 385

In the future, we would like to extend the notion of a fingerprint by encoding
information regarding not only single symbol distributions, but rather q-gram dis-
tributions. The set of q-grams could be determined either heuristically or using an
exhaustive search, and their use might provide a speedup for any real-world data set
(possibly including DNA sequences). We believe that it may be also beneficial for
processing larger k values. Another possibility lies in combining different fingerprint
types for a single word in order to further decrease comparison time at the cost of
increased space usage. We also plan to employ fingerprints in order to speed up
internal substring comparison in another data structure which we have previously
created, namely the split index [9].

Acknowledgement

We thank the anonymous reviewers for their constructive comments which helped
us improve the initial version of the manuscript.

A TOOL USAGE

The source code and a compiled Linux binary executable of the fingerprints tool
are publicly available under the following link: https://github.com/MrAlexSee/

Fingerprints. This description refers to the release version v1.3.0 (in order to di-
rectly obtain the binary executable use the link: https://github.com/MrAlexSee/
Fingerprints/releases/download/v1.3.0/fingerprints).

In order to reproduce experiments described in this paper, download the source
code, set the path to Boost library in the makefile (variable BOOST DIR) and is-
sue a command make in the main directory. Alternatively, download directly the
aforementioned compiled executable for the Linux operating system.

As mentioned in the chapter on empirical study, dictionaries and corresponding
queries can be found in the data folder, with the exception of the URLs dictionary,
which should be downloaded separately due to size restrictions (the relevant link is
provided in Section 4).

In order to test the synthetic data, use the test synth.sh script, and in order
to test the real-world data, use the test real.sh script. Both scripts automatically
examine all fingerprint and letters type combinations. In order to compare finger-
prints performance with a related neighborhood generation method, refer to the
folder related. A complete list of command-line parameters which can be provided
to the executable is located in Table 5.

https://github.com/MrAlexSee/Fingerprints
https://github.com/MrAlexSee/Fingerprints
https://github.com/MrAlexSee/Fingerprints/releases/download/v1.3.0/fingerprints
https://github.com/MrAlexSee/Fingerprints/releases/download/v1.3.0/fingerprints

386 A. Cis lak, Sz. Grabowski

Short Name Long Name Parameter Description

--calc-rejection
calculate percentages of rejected words in-
stead of measuring time

-d --dump

dump input files and parameters info with
elapsed time and throughput to output file
(useful for testing)

--dump-construction dump fingerprint construction time

-D --distance arg
distance metric: ham (Hamming), lev

(Levenshtein) (default = ham)

-f --fingerprint-type arg
fingerprint type: none, occ (occurrence),
occhalved (occurrence halved), count,
pos (position) (default = occ)

-h --help display help message

-i --in-dict-file arg
input dictionary file path (positional argu-
ment 1)

-I --in-pattern-file arg
input pattern file path (positional argu-
ment 2)

--iter arg
number of iterations per pattern lookup
(default = 1)

-k --approx arg
perform approximate search (Hamming or
Levenshtein) for k errors

-l --letters-type arg
letters type: common, mixed, rare (default
= common)

-o --out-file arg output file path (default = res.txt)

-p --pattern-count arg
maximum number of patterns read from
top of the pattern file

--pattern-size arg
if set, only patterns of this size (letter
count) will be read from the pattern file

-s --separator arg input data (dictionary and patterns) sep-
arator (default = newline)

-v --version display version info

-w --word-count arg
maximum number of words read from top
of the dictionary file

Table 5. A complete list of command-line parameters for the fingerprints tool

Lightweight Fingerprints 387

REFERENCES

[1] Bar-Yossef, Z.—Jayram, T. S.—Krauthgamer, R.—Kumar, R.: The
Sketching Complexity of Pattern Matching. In: Jansen, K., Khanna, S.,
Rolim, J. D. P., Ron, D. (Eds.): Approximation, Randomization, and Combinato-
rial Optimization. Algorithms and Techniques (RANDOM 2004, APPROX 2004).
Springer, Berlin, Heidelberg, Lecture Notes in Computer Science, Vol. 3122, 2004,
pp. 261–272, doi: 10.1007/978-3-540-27821-4 24.

[2] Belazzougui, D.—Kolpakov, R.—Raffinot, M.: Various Improvements to
Text Fingerprinting. Journal of Discrete Algorithms, Vol. 22, 2013, pp. 1–18, doi:
10.1016/j.jda.2013.06.004.

[3] Belazzougui, D.—Venturini, R.: Compressed String Dictionary Look-Up with
Edit Distance One. In: Kärkkäinen, J., Stoye, J. (Eds.): Combinatorial Pattern
Matching (CPM 2012). Springer, Berlin, Heidelberg, Lecture Notes in Computer
Science, Vol. 7354, 2012, pp. 280–292, doi: 10.1007/978-3-642-31265-6 23.

[4] Bille, P.—Cording, P. H.—Gørtz, I. L.—Sach, B.—Vildhøj, H. W.—
Vind, S.: Fingerprints in Compressed Strings. In: Dehne, F., Solis-Oba, R.,
Sack, J. R. (Eds.): Algorithms and Data Structures (WADS 2013). Springer, Berlin,
Heidelberg, Lecture Notes in Computer Science, Vol. 8037, 2013, pp. 146–157, doi:
10.1007/978-3-642-40104-6 13.

[5] Bocek, T.—Hunt, E.—Stiller, B.: Fast Similarity Search in Large Dictionaries.
Technical Report No. ifi-2007.02, Department of Informatics, University of Zurich,
2007.

[6] Brodal, G. S.—Gasieniec, L.: Approximate Dictionary Queries. In:
Hirschberg, D., Myers, G. (Eds.): Combinatorial Pattern Matching (CPM 1996).
Springer, Berlin, Heidelberg, Lecture Notes in Computer Science, Vol. 1075, 1996,
pp. 65–74, doi: 10.1007/3-540-61258-0 6.

[7] Cano, P.—Batlle, E.—Kalker, T.—Haitsma, J.: A Review of Audio Finger-
printing. Journal of VLSI Signal Processing Systems for Signal, Image and Video
Technology, Vol. 41, 2005, No. 3, pp. 271–284, doi: 10.1007/s11265-005-4151-3.

[8] Chan, T. M.—Lewenstein, M.: Fast String Dictionary Lookup with One Error.
In: Cicalese, F., Porat, E., Vaccaro, U. (Eds.): Combinatorial Pattern Matching
(CPM 2015). Springer, Cham, Lecture Notes in Computer Science, Vol. 9133, 2015,
pp. 114–123, doi: 10.1007/978-3-319-19929-0 10.

[9] Cis lak, A.—Grabowski, Sz.: A Practical Index for Approximate Dictio-
nary Matching with Few Mismatches. Computing and Informatics, Vol. 36, 2017,
pp. 1088–1106, doi: 10.4149/cai 2017 5 1088.

[10] Cole, R.—Gottlieb, L.-A.—Lewenstein, M.: Dictionary Matching and Index-
ing with Errors and Don’t Cares. Proceedings of the Thirty-sixth Annual ACM Sym-
posium on Theory of Computing, 2004, pp. 91–100, doi: 10.1145/1007352.1007374.

[11] Döring, A.—Weese, D.—Rausch, T.—Reinert, K.: SeqAn an Efficient,
Generic C++ Library for Sequence Analysis. BMC Bioinformatics, Vol. 9, 2008, doi:
10.1186/1471-2105-9-11.

https://doi.org/10.1007/978-3-540-27821-4_24
https://doi.org/10.1016/j.jda.2013.06.004
https://doi.org/10.1007/978-3-642-31265-6_23
https://doi.org/10.1007/978-3-642-40104-6_13
https://doi.org/10.1007/3-540-61258-0_6
https://doi.org/10.1007/s11265-005-4151-3
https://doi.org/10.1007/978-3-319-19929-0_10
https://doi.org/10.4149/cai_2017_5_1088
https://doi.org/10.1145/1007352.1007374
https://doi.org/10.1186/1471-2105-9-11

388 A. Cis lak, Sz. Grabowski

[12] Gray, F.: Pulse Code Communication. United States Patent Office Application,
Serial No. US785697A, 1953.

[13] Grabowski, Sz.—Raniszewski, M.: Sampling the Suffix Array with Minimizers.
In: Iliopoulos, C., Puglisi, S., Yilmaz, E. (Eds.): String Processing and Informa-
tion Retrieval (SPIRE 2015). Springer, Cham, Lecture Notes in Computer Science,
Vol. 9309, 2015, pp. 287–298, doi: 10.1007/978-3-319-23826-5 28.

[14] Gusfield, D.: Algorithms on Strings, Trees, and Sequences. Cambridge University
Press, 1997, doi: 10.1017/CBO9780511574931.

[15] Hamming, R. W.: Error Detecting and Error Correcting Codes. The Bell Sys-
tem Technical Journal, Vol. 29, 1950, No. 2, pp. 147–160, doi: 10.1002/j.1538-
7305.1950.tb00463.x.

[16] Karp, R. M.—Rabin, M. O.: Efficient Randomized Pattern-Matching Algorithms.
IBM Journal of Research and Development, Vol. 31, 1987, No. 2, pp. 249–260, doi:
10.1147/rd.312.0249.

[17] Levenshtein, V. I.: Binary Codes Capable of Correcting Deletions, Insertions, and
Reversals. Soviet Physics Doklady, Vol. 10, 1966, No. 8, pp. 707–710.

[18] Lewand, R. E.: Cryptological Mathematics. Mathematical Association of America,
UK edition, 2000.

[19] Manber, U.: Finding Similar Files in a Large File System. Proceedings of the
USENIX Winter 1994 Technical Conference (WTEC ’94), San Francisco, California,
1994, pp. 1–10.

[20] Muth, R.—Manber, U.: Approximate Multiple Strings Search. In: Hirschberg, D.,
Myers, G. (Eds.): Combinatorial Pattern Matching (CPM 1996). Springer, Berlin,
Heidelberg, Lecture Notes in Computer Science, Vol. 1075, 1996, pp. 75–86, doi:
10.1007/3-540-61258-0 7.

[21] Myers, E. W.: A Sublinear Algorithm for Approximate Keyword Searching. Algo-
rithmica, Vol. 12, 1994, No. 4-5, pp. 345–374, doi: 10.1007/BF01185432.

[22] Navarro, G.: A Guided Tour to Approximate String Matching. ACM Computing
Surveys (CSUR), Vol. 33, 2001, No. 1, pp. 31–88, doi: 10.1145/375360.375365.

[23] Navarro, G.—Baeza-Yates, R. A.—Sutinen, E.—Tarhio, J.: Indexing Meth-
ods for Approximate String Matching. IEEE Data Engineering Bulletin, Vol. 24, 2001,
No. 4, pp. 19–27.

[24] Policriti, A.—Prezza, N.: Hashing and Indexing: Succinct DataStructures and
Smoothed Analysis. In: Ahn, H. K., Shin, C. S. (Eds.): Algorithms and Computation
(ISAAC 2014). Springer, Cham, Lecture Notes in Computer Science, Vol. 8889, 2014,
pp. 157–168, doi: 10.1007/978-3-319-13075-0 13.

[25] Policriti, A.—Tomescu, A. I.—Vezzi, F.: A Randomized Numerical Aligner
(rNA). Journal of Computer and System Sciences, Vol. 78, 2012, No. 6, pp. 1868–
1882, doi: 10.1016/j.jcss.2011.12.007.

[26] Pollock, J. J.—Zamora, A.: Automatic Spelling Correction in Scientific and
Scholarly Text. Communications of the ACM, Vol. 27, 1984, No. 4, pp. 358–368,
doi: 10.1145/358027.358048.

https://doi.org/10.1007/978-3-319-23826-5_28
https://doi.org/10.1017/CBO9780511574931
https://doi.org/10.1002/j.1538-7305.1950.tb00463.x
https://doi.org/10.1002/j.1538-7305.1950.tb00463.x
https://doi.org/10.1147/rd.312.0249
https://doi.org/10.1007/3-540-61258-0_7
https://doi.org/10.1007/BF01185432
https://doi.org/10.1145/375360.375365
https://doi.org/10.1007/978-3-319-13075-0_13
https://doi.org/10.1016/j.jcss.2011.12.007
https://doi.org/10.1145/358027.358048

Lightweight Fingerprints 389

[27] Prezza, N.: In-Place Sparse Suffix Sorting. Proceedings of the 29th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA ’18), SIAM, 2018, pp. 1496–1508,
doi: 10.1137/1.9781611975031.98.

[28] Rabin, M. O.: Fingerprinting by Random Polynomials. Technical Report TR-15-81,
Department of Computer Science, Harvard University, 1981.

[29] Ramaswamy, R.—Kencl, L.—Iannaccone, G.: Approximate Fingerprinting to
Accelerate Pattern Matching. 6th ACM SIGCOMM Conference on Internet Measure-
ment (IMC ’06), ACM, 2006, pp. 301–306, doi: 10.1145/1177080.1177120.

[30] Salmela, L.—Tarhio, J.—Kytöjoki, J.: Multipattern String Matching with
Q-Grams. Journal of Experimental Algorithmics, Vol. 11, 2006, Art. No. 1.1, doi:
10.1145/1187436.1187438.

[31] Šošić, M.—Šikić, M.: Edlib: A C/C++ Library for Fast, Exact Sequence Align-
ment Using Edit Distance. Bioinformatics, Vol. 33, 2017, No. 9, pp. 1394–1395, doi:
10.1093/bioinformatics/btw753.

[32] Ukkonen, E.: Algorithms for Approximate String Matching. Information and Con-
trol, Vol. 64, 1985, No. 1-3, pp. 100–118, doi: 10.1016/S0019-9958(85)80046-2.

[33] Zhu, R. F.—Takaoka, T.: A Technique for Two-Dimensional Pattern Match-
ing. Communications of the ACM, Vol. 32, 1989, No. 9, pp. 1110–1120, doi:
10.1145/66451.66459.

Aleksander Cis lak received his B.Sc. degree in computer
science from Lodz University of Technology in 2014, M.Sc. de-
gree in informatics from TU München in 2015, and Ph.D. de-
gree in computer science from Warsaw University of Technology
in 2019. His research interests include string matching algo-
rithms and applied graph theory. He worked as Assistant at TU
München, conducting research in the area of graph-based be-
havioral malware detection, and he currently works as Assistant
at Warsaw University of Technology, with the main focus of his
work being the fuzzy cognitive maps (FCMs).

Szymon Grabowski received his M.Sc. degree from the Uni-
versity of Lodz in 1996, Ph.D. degree from AGH-UST in Cracow
in 2003, and Habilitation degree from Systems Research Institute
in Warsaw in 2011, all in computer science. His former research,
including his Ph.D. dissertation, involved nearest neighbor clas-
sification methods in pattern recognition, also with applications
in image processing. Currently, his main interests are focused
on string matching and text indexing algorithms, and data com-
pression. Some of his particular research topics include various
approximate string matching problems, compressed text indexes,

and XML compression. He has published about 100 papers in journals and conferences.
He is currently Professor at the Institute of Applied Computer Science of Lodz University
of Technology.

https://doi.org/10.1137/1.9781611975031.98
https://doi.org/10.1145/1177080.1177120
https://doi.org/10.1145/1187436.1187438
https://doi.org/10.1093/bioinformatics/btw753
https://doi.org/10.1016/S0019-9958(85)80046-2
https://doi.org/10.1145/66451.66459

