
Computing and Informatics, Vol. 38, 2019, 679–700, doi: 10.31577/cai 2019 3 679

LEARNING SPARQL QUERIES FROM EXPECTED
RESULTS

Jedrzej Potoniec

Faculty of Computing
Poznan University of Technology
ul. Piotrowo 3
60-965 Poznan, Poland
e-mail: jpotoniec@cs.put.poznan.pl

Abstract. We present LSQ, an algorithm learning SPARQL queries from a subset
of expected results. The algorithm leverages grouping, aggregates and inline values
of SPARQL 1.1 in order to move most of the complex computations to a SPARQL
endpoint. It operates by building and testing hypotheses expressed as SPARQL
queries and uses active learning to collect a small number of learning examples from
the user. We provide an open-source implementation and an on-line interface to test
the algorithm. In the experimental evaluation, we use real queries posed in the past
to the official DBpedia SPARQL endpoint, and we show that the algorithm is able
to learn them, 82 % of them in less than a minute and asking the user just once.

Keywords: SPARQL, RDF, active learning

1 INTRODUCTION

Querying information with a complex structure is an inherently hard task for a user.
The user must spend a lot of time learning a vocabulary and relations used in the
data. This will become more and more important, as we develop more complex
artificial intelligence systems, using vast amount of information encoded in a complex
representation formalism. In this paper, we aim to remedy this issue in the context
of information represented as an Resource Description Framework (RDF) graph.

Consider the following use case scenario: a user has some informal criteria to
select a subset of nodes of a graph. He/she knows some of the relevant nodes in
the graph, he/she also knows some of the irrelevant nodes. Moreover, he/she can

680 J. Potoniec

distinguish a relevant node from an irrelevant one for some price, e.g. by spending
his/her time verifying if a node is a relevant one or not. He/she wants to obtain
a formal query corresponding to the informal criteria to be able to query the graph.

To address this use case, we propose an algorithm for learning a SPARQL query
corresponding to these criteria. The algorithm is designed in such a way that it moves
most of the computational work to a SPARQL endpoint by posing quite complex
queries to it. It is a reasonable decision: the RDF graph is stored there, so that is
the best place to perform any optimization.

Our contribution is as follows: we present the first algorithm for constructing
SPARQL queries from examples, which is at the same time interactive and saves
computational power of the client, by moving most of the computations to the
SPARQL server.

The rest of the paper is organized as follows: in Section 2 we present a short
overview of the most important aspects of RDF and SPARQL. Section 3 discusses
related research. The description of the algorithm, along with the required defini-
tions, is presented in Section 4, and in Section 5 we introduce a web application
implementing the presented algorithm. Section 6 presents an experimental evaluation
of the algorithm in two setups:

1. using a set of real-world SPARQL queries as a gold standard;

2. using a benchmark for the task of binary classification in the structured machine
learning.

We conclude in Section 7.

2 PRELIMINARIES

2.1 Resource Description Framework

Resource Description Framework (RDF) is a framework designed to represent infor-
mation in the Web in a way accessible for machines [33]. The core concept of RDF
is an RDF triple, which consists of a subject, a predicate and an object. A customary
meaning assigned to a triple is such that the entity represented by the subject is in
relation denoted by the predicate with the entity represented by the object.

A set of triples constitutes an RDF graph, where subjects and objects jointly
form the set of nodes of the graph and each triple represents a directed edge from
the subject of the triple to the object, labeled with the predicate.

An RDF term is either an IRI (Internationalized Resource Identifier), that serves
as a global identifier for some entity in the universe of discourse; a blank node,
that is a local identifier for some entity in the universe of discourse; a literal, that
represents a concrete value such as a string of characters or a number. Usually, the
non-unique name assumption is made, stating that a single entity may be referenced
by multiple identifiers. The subject of a triple may be either an IRI or a blank node,
the predicate must be an IRI and the object may be an arbitrary RDF term.

Learning SPARQL Queries from Expected Results 681

In formalizing RDF we follow [22] and we start by introducing three pairwise
disjoint sets: the set of all IRIs I, the set of all blank nodes B and the set of all
literals L. A subject of a triple is any element of the set I ∪ B, the predicate of
a triple is an element of the set I, while object is any element of the set I ∪B ∪ L.
An RDF graph G, being a set of triples, is thus a subset of a Cartesian product:
G ⊆ (I ∪B)× I× (I ∪B ∪ L).

Throughout this work, we use a subset of the Turtle syntax [7], where each triple
is written in the order subject, predicate, object and ends with a dot. We represent
IRIs using the prefix notation well-known from XML, i.e., prefix:localName, and
list the common prefixes used throughout this work in Table 1. A literal is represented
in quotation marks, with its datatype after ^^. For example, the triple dbr:Warsaw

dbo:populationTotal "1740119"^^xsd:integer. states that an entity denoted by
the IRI dbr:Warsaw (in full: http://dbpedia.org/resource/Warsaw) has a total
population of 1 740 119 citizens.

Prefix Corresponding IRI

dbr: http://dbpedia.org/resource/

dbo: http://dbpedia.org/ontology/

dbp: http://dbpedia.org/property/

dct: http://purl.org/dc/terms/

xsd: http://www.w3.org/2001/XMLSchema#

Table 1. The common IRI prefixes used in the paper and their corresponding IRIs

One of the most prominent applications of RDF is the Web of Data (also called
Linked Data)1, a large, distributed collection of RDF graphs concerning different
topics from life sciences, to media, to governmental data. In the center of the Web
of Data is DBpedia2, the result of a complex knowledge extraction process from
Wikipedia [1, 3, 20].

2.2 SPARQL Query Language

Every form of information representation requires a querying language and RDF is
not an exception here. SPARQL Query Language is by far the most popular query
language for RDF, built around graph pattern matching, yet having a lot in common
with SQL known from relational databases [14]. Below, we summarize the most
important aspects of SPARQL.

A SPARQL SELECT query is of form

SELECT head

WHERE { pattern }
[GROUP BY variables]

1 http://lod-cloud.net/
2 http://dbpedia.org

http://dbpedia.org/resource/Warsaw
http://dbpedia.org/resource/
http://dbpedia.org/ontology/
http://dbpedia.org/property/
http://purl.org/dc/terms/
http://www.w3.org/2001/XMLSchema#
http://lod-cloud.net/
http://dbpedia.org

682 J. Potoniec

[HAVING criterion]

[LIMIT limit]

where the square brackets denote optional parts of the query. Every time the pattern
is matched against the queried RDF graph, it yields a mapping from variables of the
query to the RDF terms.

A variable in SPARQL is prefixed with a question mark, e.g. ?var. A blank
node [] denotes an anonymous, existentially quantified variable. A triple pattern is
an RDF triple with an arbitrary number of components replaced by variables, e.g.
dbr:Warsaw dbo:populationTotal ?population.. A Basic Graph Pattern (BGP)
is a set of triple patterns that are matched jointly against the queried graph.

Denote by V the set of all variables. Let G be an RDF graph, P a BGP and
denote by vars(P) the set of all variables in P . We consider a mapping, i.e., partial
function µ : V 7→ I∪B∪L. We say that µ is a solution to P if the domain of µ is the
set vars(P) and there exists a function σ : B 7→ I ∪B ∪ L such that µ(σ(P)) ⊆ G.
We abuse the notation and by applying µ and σ to P we understand applying it
element-wise to each part of each triple pattern in P .

A BGP may be optionally extended with a filter expression FILTER(condition),
to the effect that if µ(condition) evaluates to false, then µ is rejected. An alternative
of two BGPs may be realized using the UNION keyword: bgp1 UNION bgp2, and
we say that µ is a solution for it if it is a solution to either one of the BGPs.
Finally, the clause VALUES ?var {allowed assignments } limits the set of allowed
assignments for the variable ?var in the solutions to the RDF terms listed in the
curly braces.

The multi-set of solutions µ can be represented as a table, which can be then
processed according to the standard SQL semantics of GROUP BY, HAVING
and LIMIT. We thus abstain from formally defining their semantics and refer the
interested reader to [14].

SPARQL is frequently employed with the SPARQL Protocol, which defines
means to use HTTP (Hypertext Transfer Protocol) to query an RDF graph [32].
A server capable of answering SPARQL queries posed using SPARQL Protocol is
called a SPARQL endpoint and is identified by its URL.

3 RELATED WORK

For the past few years, researchers proposed many approaches for querying an RDF
graph alternative to writing a formal query by hand. Roughly, they can be divided
into a few categories: faceted browsing, natural language interfaces, visual interfaces
and recommendations. In faceted browsing a user is presented with an interface
dynamically generated from an RDF graph to filter the graph according to his/her
needs, e.g. see [23]. Also variants tailored to a specific types of data were proposed,
e.g. [21] describes an interface for geospatial data. A recent system Sparklis combines
faceted browsing with natural language generation to enable a non-expert user to
query an RDF graph [11].

Learning SPARQL Queries from Expected Results 683

Natural language interfaces are concerned with answering a query specified
in a natural language, e.g. by translating it to SPARQL and then posing it to an
endpoint. These systems are frequently tailored to some specific task and/or a specific
RDF graph. For example, Xser [34] is a system for answering factual questions and
CubeQA [15] is designed to answer statistical queries requiring aggregate functions.
A recent survey [16] gives a comprehensive overview of such systems.

The visual interfaces offer a possibility of constructing a query by visual means,
e.g. by navigating over a displayed part of a graph [9] or by constructing a SPARQL
query from building blocks [4].

A system using recommendations still requires from a user knowledge of SPARQL,
but it helps to deal with an unknown vocabulary. [13] recommends predicate names
based on an inferred type of a variable in a triple pattern. [6] describes a method
for recommending query terms based on a graph summary, while [5] pushes it even
further by performing the recommendations on-line, by posing appropriate queries
to a SPARQL endpoint.

A similar idea to ours was already proposed in [19]. The main difference are the
assumptions: [19] performs all the computation on the client-side, obtaining informa-
tion about resources using an approach similar to Concise Bounded Description [27]
and then computing their intersections. Our approach leverages new features of
SPARQL 1.1, namely grouping, aggregates and providing inline values, and thus
moves most of the learning complexity directly to a SPARQL endpoint.

Methods for learning queries from a set of examples were also discussed in other
contexts. [17] uses a pattern mining approach to learn a set of SPARQL queries,
which then are used as binary patterns for a normal classification algorithm. In [24]
the authors propose a method for unsupervised mining of data mining features,
which directly correspond to SPARQL queries. [18] and [10] are methods for learning
Description Logics class expressions from a set of positive and negative examples.
The expressions can then be used as queries to an ontological knowledge base to
retrieve individuals fulfilling the class expression, e.g. using the DL Query tab of
Protégé [12].

4 LEARNING SPARQL QUERIES

4.1 Basic Concepts

Throughout this section, we use the following example: the user wants to formulate
a SPARQL query which allows him/her to query DBpedia for the capitals of states of
the European Union. He/she knows some of them: Warsaw, Berlin, Zagreb, Nicosia
and Vilnius. He/she can also recognize whether an arbitrary DBpedia IRI refers to
one of the capitals by reading a Wikipedia article corresponding to the IRI. Of course,
reading consumes his/her time, so he/she wants to limit the number of articles read.
He/she also knows that Oslo, a capital of Norway, which is not a European Union
member, should not be presented in the results.

684 J. Potoniec

Generally speaking, LSQ works by formulating a hypothesis and verifying it with
the user.

Definition 1 (hypothesis). A hypothesis, denoted H(?iri), consists of SPARQL
triple patterns and filters. Every triple pattern in the hypothesis has a fixed predicate
(i.e., the predicate is an IRI), the subject and object may be an IRI, a literal or
a variable. Every filter contains only an expression of form variable >= fixed literal
or variable <= fixed literal. The hypothesis may contain an unlimited number of
variables, but there is a single, distinguished variable ?iri, which must be present in
at least one triple pattern. We require the undirected graph corresponding to the
basic graph pattern defined by a hypothesis to be a connected graph.

An empty hypothesis is a hypothesis which contains no triple patterns or filters.

For example, the algorithm may generate the following hypothesis H(?iri):

dbr:European_Union dbo:wikiPageWikiLink ?iri .

?iri dct:subject dbr:Category:Capitals_in_Europe .

dbr:Member_state_of_the_European_Union dbo:wikiPageWikiLink ?iri.

It may be that the user already has some SPARQL query and wants to extend
it by providing examples. We allow the user to provide a BGP U(?iri), such that
it shares the distinguished variable ?iri with the hypothesis, but all the remaining
variables are separate. Some of the variables from U(?iri) may be also present in
the head of the final query obtained from the algorithm. We observe that if the user
does not know SPARQL or does not have any query to extend, it is sufficient to
assume that U(?iri) = ∅.

Definition 2 (query corresponding to a hypothesis). A query corresponding to
a hypothesis H(?iri) is a SPARQL SELECT query containing the variable ?iri
in the head, optionally with other variables coming from U(?iri). The WHERE
clause contains the hypothesis H(?iri) and the user-provided BGP U(?iri).

To formulate a hypothesis, LSQ uses a set of positive examples P and a set of
negative examples N. Both sets contain IRIs from the RDF graph. P is a subset of
IRIs expected in the results of the query corresponding to the final hypothesis. N is
a set of IRIs which are forbidden to appear in these results. They do not need to be
fully specified before the algorithm is run, instead it is enough that the user provides
a few IRIs in both sets, and then they are extended during the execution of the
algorithm. By n pos we denote for the number of IRIs in the set P. In our running
example, P initially consists of dbr:Warsaw, dbr:Berlin, dbr:Zagreb, dbr:Nicosia
and dbr:Vilnius, and thus n pos = 5. N contains only dbr:Oslo.

The algorithm uses well-known information retrieval measures. Denote by TP
the number of IRIs from the set P which were retrieved by the query corresponding to
a hypothesis, and by FP the number of IRIs from the set N which were retrieved by
the query corresponding to the hypothesis. Following [2], we define three measures.

Learning SPARQL Queries from Expected Results 685

Definition 3 (precision). Precision is the fraction of the number of the positive
IRIs retrieved by the query corresponding to the hypothesis over the number of both
positive and negative IRIs retrieved by the query corresponding to the hypothesis

p =
TP

TP + FP
.

Definition 4 (recall). Recall is the fraction of the number of the positive IRIs
retrieved by the query corresponding to the hypothesis over the number of known
positive IRIs n pos

r =
TP

n pos
.

Definition 5 (F1 measure). F1 measure is the harmonic mean of precision and
recall

F1 =
2

1
p

+ 1
r

.

4.2 Overview of the Algorithm

The flowchart of LSQ is presented in Figure 1 and its pseudocode in Algorithm 1. In
the beginning, the user is asked to provide a few positive and a few negative examples.
The hypothesis considered by the algorithm is set to an empty hypothesis. The
hypothesis is then refined, as described in Section 4.5. Then, the algorithm generates
a few examples that follow the hypothesis and a few examples that contradict the
hypothesis, and the user is asked to assign them to one of the two sets. If any of
the examples following the hypothesis is assigned to the set N, it means that the
hypothesis is invalid and the last refinement is retracted. If the hypothesis is good
enough w.r.t. the known examples (c.f. Section 4.3), it is presented to the user along
with the full result of posing its corresponding query to the SPARQL endpoint. The
user then must either accept the hypothesis or add at least one new positive or
negative example, e.g. by selecting an IRI from the result which should not be there,
or by adding an IRI which is missing. If the hypothesis is not good enough or the
user adds a new example, the algorithm goes back to generating a new refinement.

4.3 Measuring Quality of a Hypothesis

To compute with a SPARQL endpoint how good a hypothesis is, the query presented
in Listing 1 is used. Such a query computes the measures described above. The
variable ?s (resp. ?t) is mapped to all IRIs from the set P (resp. N) that follow
the hypothesis, thus ?tp corresponds to TP , ?fp to FP and so on. If the value of
F1 measure is high enough, the hypothesis is good enough w.r.t. to the examples
available to the algorithm, and it is presented to the user as the final answer.

686 J. Potoniec

Start

Add new examples

Refine the hypothesis

Generate new examples
and counterexamples

Label the examples
Retract the

last refinement

Evaluate the hypothesis

Verify the hypothesis

Stop

Good enough

ContradictoryOtherwise

Unsatisfied

Satisfied

Figure 1. The flowchart of LSQ. A trapezoid denotes an input from the user, a rectangle
denotes computations, a single-edged rhombus denotes a decision made by the algorithm
and a double-edged rhombus denotes a decision made by the user.

4.4 Generating New Examples and Querying the User

If the hypothesis is not good enough, the algorithm should gather more evidence,
to either confirm it or to reject it. To do so, the algorithm must generate a small
set of examples that follow the hypothesis and another small set of examples that
contradicts the hypothesis. To generate examples following the hypothesis, the
query presented in Listing 2 is used. H(?iri) in the query ensures that an ex-
ample follows the hypothesis, and FILTER ensures that it is a new example, i.e.
one that is not present in either of the sets P and N. LIMIT 3 is to ensure that we
query the user only about a small number of new examples. Recall the example

Learning SPARQL Queries from Expected Results 687

h← empty hypothesis;
fn← 0;
while h is not good enough do

if fn > 0 then h.pop back();
ready to query ← false;
while not ready to query do

while |h| > 0 do
p, n← generate new examples;
if |p| > 0 and |n| > 0 then break;
else h.pop back();

end
cand← ∅;
foreach var ∈ variables(h) do

cand← cand ∪ refinements for variable var (cf. Section 4.5);
end
sort cand according to the value of precision;
foreach c ∈ cand do

h.push back(c);
p, n← generate new examples;
if h is good enough or (|p| > 0 and |n| > 0) then

ready to query ← true;
break;

end
h.pop back();

end

end
ask the user to label examples in p and n;
fn← number of examples from p that user labeled as negative;

end

Algorithm 1: The pseudo-code of the LSQ algorithm. Deciding whether the
hypothesis is good enough is described in details in Section 4.3 and generating
new examples in Section 4.4. Function pop back removes the last element of the
array, while push back extends the array with its argument.

and let H(?iri) be dbr:European Union dbo:wikiPageWikiLink ?iri. Possi-
ble new examples are dbr:Above mean sea level, dbr:Afroasiatic languages,
dbr:Andorra, neither of them following the criteria we aim for since the hypothesis
is too broad.

Generating negative examples is more difficult. Let Hp(?iri) be a hypothesis
the hypothesis H(?iri) directly originated from, i.e. Hp(?iri) is the hypothesis
H(?iri) without the last refinement. Consider the SPARQL query presented in
Listing 3. The only common variable between Hp(?iri) and H(?iri) is ?iri, the

688 J. Potoniec

SELECT (COUNT(DISTINCT ?s) as ?tp)

(COUNT(DISTINCT ?t) AS ?fp)

(?tp/(?tp+?fp) AS ?precision)

(?tp/n_pos AS ?recall)

(2/((1/?precision)+(1/?recall)) AS ?f1)

WHERE {{

U(?s)

H(?s)

VALUES ?s { P }

} UNION {

U(?t)

H(?t)

VALUES ?t { T }

}}

Listing 1. A query used to compute how good the hypothesis H(?s)

SELECT DISTINCT ?iri

WHERE {

U(?iri)

H(?iri)

FILTER(?iri NOT IN (P N))

} LIMIT 3

Listing 2. A query used to generate new examples following the hypothesis H(?iri)

rest is uniquely renamed. The renaming is such that no variable except ?iri is
shared with the user-provided BGP U(?iri). This query provides a set of examples
that follow the hypothesis except for the last refinement. FILTER and LIMIT are
used for the same purpose as before. The process of generating new examples follows
the idea of active learning, where a learning algorithm selects unknown examples to

SELECT DISTINCT ?iri

WHERE {

U(?iri) {

{ Hp(?iri) }

MINUS

{ H(?iri) }

} FILTER(?iri NOT IN (P N))

} LIMIT 3

Listing 3. A query used to generate new negative examples following the hypothesis
H(?iri), where Hp(?iri) is the previous hypothesis

Learning SPARQL Queries from Expected Results 689

SELECT ?p ?o (COUNT(DISTINCT ?s) AS ?tp)

(COUNT(DISTINCT ?t) AS ?fp)

(?tp/(?tp+?fp) AS ?precision)

(?tp/n_pos AS ?recall)

(2/((1/?precision)+(1/?recall)) AS ?f1)

WHERE {{

U(?s)

H(?s)

?s ?p ?o .

VALUES ?s { P }

} UNION {

U(?t)

H(?t)

?t ?p ?o .

VALUES ?t { N }

}}

GROUP BY ?p ?o

HAVING (?recall>=.99)

Listing 4. A query used to compute the set of possible refinements of the hypothesis
H(?iri), that have a fixed predicate and object

maximize benefit from getting the correct labels for them, i.e., to remove as much
uncertainty as possible [8].

After the examples are generated, they are presented to the user. He/she must
then assign each of them either to the set P or N. After the assignment is done, the
algorithm continues, as described in Section 4.2.

4.5 Hypothesis Refinement

If the hypothesis is not good enough, the algorithm must refine it. First, the algorithm
checks whether it is possible to generate new examples using the current hypothesis.
If it is not, the most recent refinement of the hypothesis is retracted and the condition
is checked again. The process continues until it becomes possible to generate new
examples. In the worst case, it means emptying the hypothesis.

To refine the hypothesis, the algorithm must generate a set of possible refine-
ments and select the best of them. First, consider a refinement consisting of a single
triple pattern with a fixed predicate and object, and a subject being a variable
already present in the hypothesis. For example, such a refinement could be ?iri

dct:subject dbr:Category:Capitals in Europe. To generate a set of such refine-
ments the query presented in Listing 4 is used. Observe that the results are grouped
by the pair ?p ?o, so effectively what this query does is to compute the measures
for a lot of hypotheses at once, each consisting of the original hypothesis H and

690 J. Potoniec

a refinement with the subject being a variable already present in the hypothesis (?s
and ?t) and fixed values for the predicate and the object. We require for the recall
to reach at least 0.99, to ensure that all known positive examples are covered by
a new hypothesis.

Recall the example, and let H(?iri) be

dbr:European Union dbo:wikiPageWikiLink ?iri.

Consider the refinement

?iri dct:subject dbr:Category:Capitals in Europe.

Its recall is r = 1, as it matches all five elements of the set P, and its precision is
p = 1 as it does not match the negative example, i.e., Oslo. On the other hand,
the refinement ?iri dbo:utcOffset "+2" will not be considered, as its recall is 0.8
(dbr:Berlin does not occur in such a triple).

To compute refinements with a fixed subject, but a variable object, the algorithm
uses the same query, but replaces ?s ?p ?o (resp. ?t ?p ?o) with ?o ?p ?s (resp.
?o ?p ?t). Finally, to compute refinements with a fixed predicate, a new variable
as the object (resp. subject) and an existing variable as the subject (resp. object),
the query with ?o replaced with a blank node [] in the triple patterns and without
?o in the head and in the GROUP BY clause is used.

A more elaborate query, presented in Listing 5, is required to provide refinements
with FILTER. The query operates in two steps. First, the subquery extracts all the
pairs consisting of a predicate ?p and a literal ?l for the set P. Then, for every pair
?p ?l it computes the measures for a hypothesis consisting of the original hypothesis
H(?s), a triple pattern ?s ?p ?xl (?xl is a new variable), and a filter comparing
the new variable ?xl to a literal ?l from the subquery. Again, we require the recall
to be at least 0.99 to ensure appropriate coverage of positive examples. A sample
refinement obtained this way is

?iri dbo:populationTotal ?var.

FILTER(?var >= "205934"^^ xsd:nonNegativeInteger).

When the set of the possible refinements is collected from the endpoint, the
algorithm must choose the right one. The set of refinements is sorted according to
the descending values of the F1 measure and (in case of ties on F1) the precision. For
every refinement, the algorithm checks if the current hypothesis with the refinement
added is good enough. If it is, the hypothesis is displayed to the user, as described
in Section 4.2. Otherwise, the algorithm tries to generate new positive and negative
examples (c.f. Section 4.4). If it is not possible, the refinement is retracted from
the hypothesis and the refinement next in order is checked. If the examples were
generated, the algorithm proceeds as described earlier. If the algorithm fails to find
any suitable refinement, it terminates with a failure.

Learning SPARQL Queries from Expected Results 691

SELECT ?p ?l (COUNT(DISTINCT ?s) AS ?tp)

(COUNT(DISTINCT ?t) as ?fp)

(?tp/(?tp+?fp) AS ?precision)

(?tp/n_pos AS ?recall)

(2/((1/?precision)+(1/?recall)) AS ?f1)

WHERE {{

U(?s)

H(?s)

?s ?p ?xl.

FILTER(isLiteral(?xl))

VALUES ?s { P }

} UNION {

U(?t)

H(?t)

?t ?p ?xl.

FILTER(isLiteral(?xl))

VALUES ?t { N }

} FILTER(?xl <= ?l) {

SELECT DISTINCT ?p ?l

WHERE {

U(?s)

H(?s)

?s ?p ?l.

FILTER(isLiteral(?l))

VALUES ?s { P }

}}}

GROUP BY ?p ?l

HAVING (?recall >= .99)

Listing 5. A query used to compute the set of possible refinements of the hypothesis
H(?iri), that use a FILTER clause

5 IMPLEMENTATION

To make it easier to reuse the algorithm, we provide a Python implementation of the
algorithm available at: https://semantic.cs.put.poznan.pl/ltq/src.tgz. We
also developed an on-line interface to the implementation which we coupled with
Blazegraph 2.1.1 3 loaded with DBpedia 2015-04 and made publicly accessible at
https://semantic.cs.put.poznan.pl/ltq/. In the implementation, we assume
a hypothesis to be good enough if the F1 measure is at least 0.99. Screenshots of the
interface are presented in Figures 2 and 3 and the detailed description is presented
in [25].

3 https://www.blazegraph.com/

https://semantic.cs.put.poznan.pl/ltq/src.tgz
https://semantic.cs.put.poznan.pl/ltq/
https://www.blazegraph.com/

692 J. Potoniec

1

2

3 4

56

Figure 2. A screenshot of the on-line interface to the implementation of the algorithm.
It presents 1) the query corresponding to a current hypothesis, 2) a set of new examples
the user is supposed to assign to one of the two sets and already known 3) positive, and
4) negative examples. It is also possible to 5) add a new example by entering its IRI or
6) load one of the demo scenarios.

2

1

3

4

Figure 3. After a good enough hypothesis is reached, the interface displays 1) the query
corresponding to the hypothesis and 2) results of posing it to the SPARQL endpoint. The
user can then use 3) the X buttons to remove some of the unwanted results and further
4) refine the query.

Learning SPARQL Queries from Expected Results 693

6 EXPERIMENTAL EVALUATION

6.1 Using Query Logs to Simulate the Users

To validate the algorithm, we posed the following research question: is the algorithm
able to cover the requirements of the real users of DBpedia? To answer the question,
we collected a set of SPARQL queries from the logs of the official DBpedia SPARQL
endpoint and used the queries as a gold standard. The queries and the raw results
of the experiment are available with the source code. Below, we describe the details
of the experiment.

6.1.1 Setup

The Linked SPARQL Queries dataset contains queries obtained from query logs
of SPARQL endpoints for various popular Web of Data datasets [26]. Among
others, it contains queries from the official DBpedia SPARQL endpoint, for the
period from 30. 04. 2010 to 20. 07. 2010. From this set, we selected queries that are
SELECT queries and contain only a single variable in the head or use star in the
head, but contain only a single variable. This way we obtained 415 342 queries
(415 145 character-wise distinct queries). We then randomly selected 50 queries,
which did not fail when posed to a DBpedia SPARQL endpoint and resulted in at
least 20 different IRIs. The endpoint run on Blazegraph 2.1.1 and contained DBpedia
2015-04. For the selected 50 queries, the smallest number of different IRIs retrieved
was 20, and the largest 2 060 507.

We used each of the selected queries to simulate a user. Each query was posed
to the SPARQL endpoint and its results (any duplicates removed) were used as
a gold standard, i.e. the set of all the IRIs the simulated user is interested in. Out of
the gold standard, we randomly selected 5 IRIs, which were given to the algorithm
as the initial positive examples. To provide the negative examples we randomly
selected the following six IRIs: dbr:Bydgoszcz, dbr:Murmur %28record label%29,

dbr:Julius Caesar, dbo:abstract, dbp:after, dbo:Agent. If any of these neg-
ative examples was in the gold standard, it was removed from the set of negative
examples. We used an empty user-provided BGP.

We then run the algorithm until it converged to a hypothesis that resulted in
exactly the same set of IRIs as the gold standard, or for 10 good enough hypotheses
generated by the algorithm, whichever came first. If a good enough hypothesis
was not perfect, we randomly added up to 5 new positive examples (i.e., new IRIs
which were present in the gold standard, but were not present in the results of the
hypothesis) and up to 5 new negative examples (i.e., new IRIs that were present in
the results of the hypothesis, but were not present in the gold standard). We also
counted the number of interactions of the simulated user with the algorithm and
measured the wall time.

694 J. Potoniec

6.1.2 Results

For 41 of the selected queries the first good enough hypothesis presented to the
simulated user was perfect, for 8 the second, and for 1 only the third hypothesis
was perfect. The WHERE clause of the gold standard query corresponding to this
last case was ?value dbp:subdivisionType dbr:List of counties in Montana.

The first hypothesis was too broad, consisting of a single triple pattern

?iri dbp:areaCode "406"^^xsd:integer.

Apparently, this is a correct telephone area code for the state of Montana [31], but
so it is for Gümüşhane Province in Turkey [30]. The second try was, on the other
hand, too narrow:

?iri dbp:subdivisionType

dbr:Political_divisions_of_the_United_States .

?iri dbp:subdivisionType

dbr:List_of_counties_in_Montana .

It omitted four resources from the gold standard: dbr:Browning, Montana,
dbr:Missoula, Montana, dbr:Great Falls, Montana, dbr:Helena, Montana. Af-
ter they were added as positive examples, the algorithm converged to the correct
hypothesis.

For 38 of the queries, the simulated user was asked only once to label a set of
six examples, in case of 4 queries the user was asked twice, for 3 queries thrice, for
2 queries four times, for another 2 queries five times and once six times. The user
waited on average for 56± 22 seconds (median: 41 seconds) during the whole process
for the algorithm to generate new examples or present a good enough hypothesis.
In the case of queries that achieved the gold standard with the first good enough
hypothesis, the average time was 50± 2 seconds. For 82 % of the queries the user
obtained a perfect hypothesis in less than a minute and was asked to label at most
12 examples. That means the algorithm is really able to cover requirements of the
users, it does not waste their time in waiting and we can answer positively to the
research question.

6.2 Using the Algorithm to Solve Classification Problems

To prove that LSQ is not a DBpedia-specific algorithm, we used SML-Bench, a bench-
marking framework for structured machine learning [29]. SML-Bench provides
9 datasets of varying complexity and size, and integrates a sizable number of learn-
ing systems. The authors of SML-Bench performed an extensive evaluation with
8 datasets and 15 configurations of the learning systems. We performed a similar
experiment with LSQ and report the details below, comparing to the results reported
by the authors of SML-Bench.

Learning SPARQL Queries from Expected Results 695

6.2.1 Setup

In order to perform the experiment, we had to prepare a wrapper adapting a learning
problem to our interactive approach. SML-Bench provides the wrapper with a set
of positive and negative learning examples, and an OWL file with the background
knowledge. The wrapper then runs an instance of Blazegraph, loads the provided
OWL file and initializes LSQ by randomly selecting 10 of the positive and 10 of
the negative learning examples and providing them as the initial examples to LSQ.
Next, LSQ is executed until it does not converge to a good enough hypothesis or
until the prescribed amount of time is exceeded, whichever comes first. Every time
LSQ generates a set of examples to be labeled by the user, the current hypothesis
is stored and the examples are labeled as follows: if an example is present in the
set of positive learning examples, it is labeled as positive, otherwise it is labeled as
negative. If the maximal execution time is to be exceeded, all the stored hypotheses
are reevaluated on the set of learning examples gathered so far by the algorithm and
the one with the highest score is selected as the final result. We assume that the
user-provided BGP is empty.

We used the SML-Bench framework to perform the experiment using the same
parameters as Westphal et al. [29]: 8 datasets; 5 minutes for a single execution of the
algorithm, including loading the data and the final reevaluating of the hypotheses
(enforced by the framework); 10-fold cross-validation. To execute the experiment we
used a workstation with Intel Core i7-3770 CPU with 4 cores (8 threads) clocked
at 3.40 GHz and equipped with 16 GB of RAM. It must be noted that this is
a considerably weaker configuration than the one used by Westphal et al. and thus
the limit of 5 minutes was, in fact, more strict.

6.2.2 Results

Following Westphal et al. we report the accuracy and the F1 score in, respectively,
Table 2 and Table 3. The measures were averaged over all the folds of the cross-
validation. For comparison, we report the four best systems from the experiment
by Westphal et al.: Aleph4 and DLLearner [18] in three configurations. It must be
noted that there was no clear winner in the experiment: different systems were the
best on different learning problems.

In one case (the learning problem nctrer/1) LSQ achieved results far better than
the remaining systems. In all the folds of the cross-validation LSQ generated exactly
the same hypothesis consisting of a single triple pattern:

?s <http://dl-learner.org/ont/ActivityOutcome NCTRER>

"active"^^xsd:string .

Our suspicion is that the true label is encoded in the background knowledge, and
thus the obtained result is not credible.

4 http://www.cs.ox.ac.uk/activities/machinelearning/Aleph/aleph.html

http://www.cs.ox.ac.uk/activities/machinelearning/Aleph/aleph.html

696 J. Potoniec

For the remaining 8 datasets, we used Welch’s unequal variances t-test [28] to
compare the average accuracy values between the values achieved by LSQ and the
highest average accuracy of the remaining systems. The null hypothesis was that
both averages are equal. In two cases (pyrimidine/1 and carcinog./1) it was not
possible to reject the null hypothesis (p-values, respectively, 0.234 and 0.263), in the
five remaining cases the null hypothesis was rejected (p-value below 0.01).

Comparing LSQ with the best algorithm is unfavourable for LSQ, because its
hypothesis space is limited to a single SPARQL BGP, and is considerably smaller
those of Aleph, DLLearner (CELOE) and DLLearner (OCEL). We thus performed
additional analysis comparing LSQ with DLLearner (ELTL). ELTL stands for the
EL Tree Learner algorithm, that has the target language restricted to OWL EL,
similar in its expressivity to the expressivity of SPARQL BGPs.

In the case of four learning problems (carcinog./1, hepatitis/1, lymphogr./1,
mutag./42), it was not possible to reject the null hypothesis (p-values, respectively,
0.263, 1.0, 0.071, 0.753). Comparison for the learning problem pyrimidine/1 was
not possible due to the missing results for ELTL, and for the learning problems
mammogr./1 and prem.leag./1 we rejected the null hypotheses (p-values below 10−4).
In both cases we observe that the average accuracy of LSQ is higher than this of
ELTL.

From the performed comparison we conclude that the performance of LSQ is at
least as good as the performance of ELTL. Moreover, we observe that in some cases
LSQ is on a par with the best of the remaining algorithms.

Learning LSQ Aleph DLLearner DLLearner DLLearner
Problem (CELOE) (OCEL) (ELTL)

carcinog./1 0.53± 0.05 0.48± 0.10 0.55± 0.02 no results 0.55± 0.02
hepatitis/1 0.43± 0.03 0.67± 0.05 0.47± 0.05 0.66± 0.14 0.41± 0.01
lymphogr./1 0.54± 0.03 0.83± 0.10 0.83± 0.11 0.73± 0.12 0.54± 0.03
mammogr./1 0.52± 0.03 0.65± 0.04 0.49± 0.02 0.82± 0.05 0.46± 0.01
mutag./42 0.31± 0.07 0.72± 0.25 0.94± 0.13 0.53± 0.29 0.30± 0.07
nctrer/1 1.00± 0.00 0.72± 0.14 0.59± 0.02 0.81± 0.09 0.58± 0.02
prem.leag./1 0.89± 0.09 0.95± 0.09 0.99± 0.04 0.85± 0.10 0.49± 0.02
pyrimidine/1 0.85± 0.20 0.95± 0.16 0.83± 0.17 0.85± 0.24 no results

Table 2. The average accuracy and its standard deviation over the 10-folds cross-validation
for LSQ, and for the other systems, their values reported from [29]

7 CONCLUSIONS

We presented an algorithm for learning SPARQL queries using examples provided
by the user. The algorithm uses active learning to minimize the required number of
learning examples. It is also suitable for any RDF graph accessible through a SPARQL
endpoint and does not require any preprocessing or initialization phase. By using
aggregates, grouping and inline values from SPARQL 1.1, the algorithm is able to

Learning SPARQL Queries from Expected Results 697

Learning Learning Aleph DLLearner DLLearner DLLearner
problem SPARQL (CELOE) (OCEL) (ELTL)

Queries

carcinog./1 0.69± 0.04 0.46± 0.12 0.71± 0.01 no results 0.71± 0.01
hepatitis/1 0.59± 0.01 0.38± 0.12 0.60± 0.02 0.64± 0.07 0.58± 0.01
lymphogr./1 0.70± 0.03 0.84± 0.09 0.87± 0.07 0.76± 0.10 0.70± 0.03
mammogr./1 0.64± 0.02 0.48± 0.08 0.64± 0.01 0.78± 0.08 0.63± 0.00
mutag./42 0.47± 0.08 0.43± 0.47 0.93± 0.14 0.29± 0.42 0.46± 0.08
nctrer/1 1.00± 0.00 0.71± 0.18 0.73± 0.02 0.85± 0.06 0.73± 0.02
prem.leag./1 0.86± 0.12 0.94± 0.11 0.99± 0.04 0.97± 0.06 0.66± 0.02
pyrimidine/1 0.81± 0.30 0.90± 0.32 0.84± 0.15 0.80± 0.13 no results

Table 3. The average F1 score and its standard deviation over the 10-folds cross-validation
for LSQ, and the other algorithms, their values reported from [29]

move most of the complex computations to the SPARQL endpoint. Contemporary
RDF stores (e.g. Blazegraph) are very sophisticated and are able to deal with such
queries without any problem. To prove that the algorithm works, we provide an on-
line interface for testing, available at https://semantic.cs.put.poznan.pl/ltq/.
To prove the usability of the algorithm, we performed two experiments: one using real
queries from the Linked SPARQL Queries and DBpedia; the other using 8 datasets
from the structured machine learning benchmark SML-Bench. In the first case,
we showed that the algorithm is able to converge to the gold standard with only
a minimal amount of interaction with the user. In the second case, the algorithms
performance was similar to those algorithms with similarly restricted hypothesis
space.

In the future, we would like to analyze whether using a different measure may
provide even faster convergence to a correct hypothesis. We would also like to extend
the algorithm with a possibility of obtaining some prior knowledge from the user.

Acknowledgements

Jedrzej Potoniec acknowledges the support of the Polish National Science Center,
grant DEC-2013/11/N/ST6/03065 and the support of grant 09/91/DSMK/0659.

REFERENCES

[1] Auer, S.—Bizer, C.—Kobilarov, G.—Lehmann, J.—Cyganiak, R.—
Ives, Z. G.: DBpedia: A Nucleus for a Web of Open Data. In: Aberer, K. et al.
(Eds.): The Semantic Web (ISWC 2007, ASWC 2007). Springer, Berlin, Heidelberg,
Lecture Notes in Computer Science, Vol. 4825, 2007, pp. 722–735, doi: 10.1007/978-3-
540-76298-0 52.

[2] Baeza-Yates, R.—Ribeiro-Neto, B.: Modern Information Retrieval. 2nd ed.
Addison-Wesley Professional, 2011.

https://semantic.cs.put.poznan.pl/ltq/
https://doi.org/10.1007/978-3-540-76298-0_52
https://doi.org/10.1007/978-3-540-76298-0_52

698 J. Potoniec

[3] Bizer, C.—Lehmann, J.—Kobilarov, G.—Auer, S.—Becker, C.—Cy-
ganiak, R.—Hellmann, S.: DBpedia – A Crystallization Point for the Web
of Data. Journal of Web Semantics, Vol. 7, 2009, No. 3, pp. 154–165, doi:
10.1016/j.websem.2009.07.002.

[4] Bottoni, P.—Ceriani, M.: SPARQL Playground: A Block Programming Tool to
Experiment with SPARQL. In: Ivanova, V., Lambrix, P., Lohmann, S., Pesquita, C.
(Eds.): Proceedings of the International Workshop on Visualizations and User Inter-
faces for Ontologies and Linked Data (VOILA! 2015). CEUR Workshop Proceedings,
Vol. 1456, 2015, pp. 103–108.

[5] Campinas, S.: Live SPARQL Auto-Completion. In: Horridge, M., Rospocher, M.,
van Ossenbruggen, J. (Eds.): Proceedings of the ISWC 2014 Posters and Demon-
strations Track, a Track within the 13th International Semantic Web Conference
(ISWC 2014). CEUR Workshop Proceedings, 2014, Vol. 1272, pp. 477–480.

[6] Campinas, S.—Perry, T. E.—Ceccarelli, D.—Delbru, R.—Tummarel-
lo, G.: Introducing RDF Graph Summary with Application to Assisted SPARQL
Formulation. In: Hameurlain, Q., Min Tjoa, A., Wagner, R. (Eds.): 23rd Interna-
tional Workshop on Database and Expert Systems Applications (DEXA 2012). IEEE
Computer Society, 2012, pp. 261–266, doi: 10.1109/dexa.2012.38.

[7] Carothers, G.—Prud’hommeaux, E.: RDF 1.1 Turtle. W3C Recommendation,
W3C, February 2014, http://www.w3.org/TR/2014/REC-turtle-20140225/.

[8] Cohn, D.: Active Learning. In: Sammut, C., Webb, G. I. (Eds.): Encyclopedia of
Machine Learning. Springer US, Boston, MA, 2010, pp. 10–14, doi: 10.1007/978-0-
387-30164-8 6.

[9] Sana e Zainab, S.—Hasnain, A.—Saleem, M.—Mehmood, Q.—Zehra, D.—
Decker, S.: FedViz: A Visual Interface for SPARQL Queries Formulation and
Execution. In: Ivanova, V., Lambrix, P., Lohmann, S., Pesquita, C. (Eds.): Proceedings
of the International Workshop on Visualizations and User Interfaces for Ontologies
and Linked Data (VOILA! 2015). CEUR Workshop Proceedings, Vol. 1456, 2015,
pp. 49–60.

[10] Fanizzi, N.—d’Amato, C.—Esposito, F.: DL-FOIL Concept Learning in Descrip-
tion Logics. In: Železný, F., Lavrač, N. (Eds.): Inductive Logic Programming (ILP
2008). Springer, Berlin, Heidelberg, Lecture Notes in Computer Science, Vol. 5194,
2008, pp. 107–121, doi: 10.1007/978-3-540-85928-4 12.

[11] Ferré, S.: Sparklis: An Expressive Query Builder for SPARQL Endpoints with
Guidance in Natural Language. Semantic Web, Vol. 8, 2017, No. 3, pp. 405–418, doi:
10.3233/sw-150208.

[12] Gennari, J. H.—Musen, M. A.—Fergerson, R. W.—Grosso, W. E.—
Crubézy, M.—Eriksson, H.—Noy, N. F.—Tu, S. W.: The Evolution of Protégé:
An Environment for Knowledge-Based Systems Development. International Journal
of Human-Computer Studies, Vol. 58, 2003, No. 1, pp. 89–123, doi: 10.1016/s1071-
5819(02)00127-1.

[13] Gombos, G.—Kiss, A.: SPARQL Query Writing with Recommendations Based
on Datasets. In: Yamamoto, S. (Ed.): Human Interface and the Management of
Information. Information and Knowledge Design and Evaluation (HIMI 2014). Pro-

https://doi.org/10.1016/j.websem.2009.07.002
https://doi.org/10.1109/dexa.2012.38
http://www.w3.org/TR/2014/REC-turtle-20140225/
https://doi.org/10.1007/978-0-387-30164-8_6
https://doi.org/10.1007/978-0-387-30164-8_6
https://doi.org/10.1007/978-3-540-85928-4_12
https://doi.org/10.3233/sw-150208
https://doi.org/10.1016/s1071-5819(02)00127-1
https://doi.org/10.1016/s1071-5819(02)00127-1

Learning SPARQL Queries from Expected Results 699

ceedings, Part I. Springer, Cham, Lecture Notes in Computer Science, Vol. 8521, 2014,
pp. 310–319, doi: 10.1007/978-3-319-07731-4 32.

[14] Harris, S.—Seaborne, A.: SPARQL 1.1 Query Language. W3C Recommendation,
W3C, March 2013, http://www.w3.org/TR/2013/REC-sparql11-query-20130321/.

[15] Höffner, K.—Lehmann, J.: Towards Question Answering on Statistical Linked
Data. In: Sack, H., Filipowska, A., Lehmann, J., Hellmann, S. (Eds.): Proceedings of
the 10th International Conference on Semantic Systems (SEMANTICS 2014). ACM,
2014, pp. 61–64, doi: 10.1145/2660517.2660521.

[16] Höfner, K.—Walter, S.—Marx, E.—Usbeck, R.—Lehmann, J.—Ngonga
Ngomo, A.-C.: Survey on Challenges of Question Answering in the Semantic Web.
Semantic Web, Vol. 8, 2017, No. 6, pp. 895–920, doi: 10.3233/sw-160247.

[17] Lawrynowicz, A.—Potoniec, J.: Pattern Based Feature Construction in Semantic
Data Mining. International Journal on Semantic Web and Information Systems
(IJSWIS), Vol. 10, 2014, No. 1, pp. 27–65, doi: 10.4018/ijswis.2014010102.

[18] Lehmann, J.: DL-Learner: Learning Concepts in Description Logics. Journal of
Machine Learning Research, Vol. 10, 2009, pp. 2639–2642.

[19] Lehmann, J.—Bühmann, L.: AutoSPARQL: Let Users Query Your Knowledge
Base. In: Antoniou, G., Grobelnik, M. et al. (Eds.): The Semantic Web: Research and
Applications (ESWC 2011). Springer, Berlin, Heidelberg, Lecture Notes in Computer
Science, Vol. 6643, 2011, pp. 63–79, doi: 10.1007/978-3-642-21034-1 5.

[20] Lehmann, J.—Isele, R.—Jakob, M.—Jentzsch, A.—Kontokostas, D.—
Mendes, P. N.—Hellmann, S.—Morsey, M.—van Kleef, P.—Auer, S.—
Bizer, C.: DBpedia – A Large-Scale, Multilingual Knowledge Base Extracted from
Wikipedia. Semantic Web, Vol. 6, 2015, No. 2, pp. 167–195, doi: 10.3233/SW-140134.

[21] de Leon, A.—Wisniewki, F.—Villazón-Terrazas, B.—Corcho, O.: Map4rdf –
Faceted Browser for Geospatial Datasets. PMOD Workshop, USING OPEN DATA:
Policy Modeling, Citizen Empowerment, Data Journalism, 2012.

[22] Muñoz, S.—Pérez, J.—Gutierrez, C.: Minimal Deductive Systems for RDF.
In: Franconi, E., Kifer, M., May, W. (Eds.): The Semantic Web: Research and
Applications (ESWC 2007). Springer, Berlin, Heidelberg, Lecture Notes in Computer
Science, Vol. 4519, 2007, pp. 53–67, doi: 10.1007/978-3-540-72667-8 6.

[23] Oren, E.—Delbru, R.—Decker, S.: Extending Faceted Navigation for RDF
Data. In: Cruz, I. F. et al. (Eds.): The Semantic Web – ISWC 2006. Springer, Berlin,
Heidelberg, Lecture Notes in Computer Science, Vol. 4273, 2006, pp. 559–572, doi:
10.1007/11926078 40.

[24] Paulheim, H.—Fürnkranz, J.: Unsupervised Generation of Data Mining Features
from Linked Open Data. In: Burdescu, D. D., Akerkar, R., Badica, C. (Eds.): 2nd In-
ternational Conference on Web Intelligence, Mining and Semantics (WIMS ’12). ACM,
2012, Art. No. 31, doi: 10.1145/2254129.2254168.

[25] Potoniec, J.: An On-Line Learning to Query System. In: Kawamura, T., Paul-
heim, H. (Eds.): Proceedings of the ISWC 2016 Posters and Demonstrations Track.
CEUR Workshop Proceedings, Vol. 1690, 2016, 4 pp.

[26] Saleem, M.—Ali, M. I.—Hogan, A.—Mehmood, Q.—Ngonga Ngomo, A.-C.:
LSQ: The Linked SPARQL Queries Dataset. In: Arenas, M. et al. (Eds.): The

https://doi.org/10.1007/978-3-319-07731-4_32
http://www.w3.org/TR/2013/REC-sparql11-query-20130321/
https://doi.org/10.1145/2660517.2660521
https://doi.org/10.3233/sw-160247
https://doi.org/10.4018/ijswis.2014010102
https://doi.org/10.1007/978-3-642-21034-1_5
https://doi.org/10.3233/SW-140134
https://doi.org/10.1007/978-3-540-72667-8_6
https://doi.org/10.1007/11926078_40
https://doi.org/10.1145/2254129.2254168

700 J. Potoniec

Semantic Web – ISWC 2015. Proceedings, Part II. Springer, Cham, Lecture Notes in
Computer Science, Vol. 9367, 2015, pp. 261–269, doi: 10.1007/978-3-319-25010-6 15.

[27] Stickler, P.: CBD – Concise Bounded Description. W3C Member Submission,
W3C, June 2005, https://www.w3.org/Submission/CBD/.

[28] Welch, B. L.: The Generalization of ‘Student’s’ Problem When Several Different
Population Variances Are Involved. Biometrika, Vol. 34, 1947, No. 1-2, pp. 28–35, doi:
10.1093/biomet/34.1-2.28.

[29] Westphal, P.—Bühmann, L.—Bin, S.—Jabeen, H.—Lehmann, J.: SML-
Bench – A Benchmarking Framework for Structured Machine Learning. Semantic
Web, Vol. 10, 2019, No. 2, pp. 231–245, doi: 10.3233/sw-180308.

[30] Wikipedia. Gümüşhane Province – Wikipedia, the Free Encyclopedia, 2015. [Online,
accessed 22-June-2016].

[31] Wikipedia. Area Code 406 – Wikipedia, the Free Encyclopedia, 2016. Online, accessed
24-June-2016.

[32] Williams, G.—Feigenbaum, L.—Clark, K.—Torres, E.: SPARQL 1.1 Pro-
tocol. W3C Recommendation, W3C, March 2013, http://www.w3.org/TR/2013/

REC-sparql11-protocol-20130321/.

[33] Wood, D.—Lanthaler, M.—Cyganiak, R.: RDF 1.1 Concepts and Abstract
Syntax. W3C Recommendation, W3C, February 2014, http://www.w3.org/TR/2014/
REC-rdf11-concepts-20140225/.

[34] Xu, K.—Feng, Y.—Zhao, D.: Xser@QALD-4: Answering Natural Language
Questions via Phrasal Semantic Parsing. In: Cappellato, L., Ferro, N., Halvey, M.,
Kraaij, W. (Eds.): Working Notes for CLEF 2014 Conference. CEUR Workshop
Proceedings, Vol. 1180, 2014, pp. 1260–1274.

Jedrzej Potoniec is a postdoctoral researcher at Poznan Uni-
versity of Technology (PUT), Poland. He received his Ph.D. from
PUT in 2018 for research on learning ontologies from Linked
Data. His research interest concentrates on machine learning
with structured data, especially with the Semantic Web data.

https://doi.org/10.1007/978-3-319-25010-6_15
https://www.w3.org/Submission/CBD/
https://doi.org/10.1093/biomet/34.1-2.28
https://doi.org/10.3233/sw-180308
http://www.w3.org/TR/2013/REC-sparql11-protocol-20130321/
http://www.w3.org/TR/2013/REC-sparql11-protocol-20130321/
http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/

