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Abstract. Discrete-Event Systems (DES) are discrete in nature. Petri Nets (PN)
are one of the most widespread tools for DES modelling, analyzing and control.
Different kinds of PN can be used for such purposes. Some of them were described
in [3], being the first part of this paper. Here, the applicability of Labelled PN
(LbPN) and Interpreted PN (IPN) for modelling and control of nondeterministic
DES, especially with uncontrollable and/or unobservable transitions in the models,
will be pointed out. Moreover, another kinds of nondeterminism in DES (errors,
failures) will be modelled, and the possibilities of the error recovery of failed system
will be presented.
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1 INTRODUCTION AND PRELIMINARIES

This paper is the Part 2 of the the paper which had started by the Part 1 published
as [3]. In the Part 1 the basic background about several crucial kinds of Petri nets
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(PN), including Place/Transition PN (P/T PN), Timed PN (TPN), Controlled PN
(CtPN), Interpreted PN (IPN) and Labelled PN (LbPN), was presented as well as
a simple application of them for modelling and control of flexible manufacturing
systems (FMS). In this paper, especially the IPN and LbPN will be used in mod-
elling and control of discrete-event systems (DES), namely some kinds of FMS and
a segment of transport systems, to tend towards the applications in practice. Two
principled kinds of uncertainties in PN models of DES will be analyzed here:

1. the effect of uncontrollable and unobservable transitions;

2. the occurrence of different kinds of errors/failures.

While resolving the former problem requires the usage of special kinds of PNs (IPN
or LbPN), resolving the latter one requires the usage of an error recovery procedure.
Both kinds of uncertainties as well as their combination will be analyzed here by
PN-based approach.

1.1 Mathematical Model of Petri Nets

At the beginning let us recall the principle definition of the basal PN – P/T PN.
As it was introduced in the Part 1 of this paper – see [3] – mathematical expression
of P/T PN consists of the (i) expression of the PN structure – PN is a bipartite
directed graph 〈P, T, F,G〉 with P = {p1, . . . , pn}, |P | = n being the set of places pi,
i = 1, . . . , n; T = {t1, . . . , tm, |T | = m} being the set of transitions tj, j = 1, . . . ,m;
F being the set of directed arcs from places to transitions; G being the set of
directed arcs from transitions to places; (ii) description of PN dynamics (the marking
development) in the form of the limited discrete linear equation

xk+1 = xk + B.uk, k = 0, 1, . . . , N, (1)

F.uk ≤ xk, (2)

with the structural matrix B = GT − F (F, GT correspond to F , G). Here,
xk = (σk

p1
, . . . , σk

pn)T with entries σk
pi
∈ {0, 1, . . . ,∞}, representing the states of

particular places, is the PN state vector in the kth step of the dynamics devel-
opment; uk = (γkt1 , . . . , γ

k
tm)T with entries γkpi ∈ {0, 1}, representing the states of

particular transitions (either enable – when 1, or disable – when 0) is the control
vector; F, GT are, respectively, incidence matrices of arcs from places to transitions
and contrariwise.

Particulars about P/T PN as well as about other kinds of Petri nets which will
be used here (IPN, LbPN) are introduced and explained in detail in the Part 1 of
the paper – i.e. in [3].

1.2 Place Invariants in Supervisor Synthesis

In order to control the PN model of a plant, a supervisor has to be proposed.
To synthesize the supervisor based on place invariants (P-invariants), where the
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invariants are defined as columns of the matrix W given as follows:

WT .B = 0, (3)

it is necessary to enforce the suitable restrictive condition on the state vectors of
the system (1) as follows:

L.x ≤ b. (4)

Here, L is a matrix of integers and b is a vector of integers representing some
restrictions on the linear combination of corresponding entries of the state vector.
To eliminate the inequality in (4) it is needful to insert there the (ns × 1) vector xs

consisting of slack variables. Thus,

L.x + xs = L.x + Is.xs = (LIs).

(
x
xs

)
= b (5)

where Is is the (s × s)-dimensional identity matrix. To synthesize the supervisor
with a structure Bs (so far unknown), force the matrix (L, Is) into (3) instead of
WT and the matrix (BT ,BT

s )T instead of B. Hence, the structure of the supervisor
was found as

(LIs).

(
B
Bs

)
= 0; Bs = −L.B; Bs = GT

s − Fs. (6)

Here, Bs represents the interconnections of ns additional places (called monitors)
with the original PN. Fs,Gs obtained by the decomposition of Bs are the incidence
matrices of the directed arcs. The monitors together with the arcs create the su-
pervisor. The directed arcs realize interconnections of the supervisor with the PN
model of a plant in both directions:

1. from the supervisor places to a part of the PN model transitions (a set of the
model inputs) and

2. from another part of the PN model transitions (a set of the model outputs) to
the places of the supervisor.

The initial state of the supervisor follows from (5) in the form

x0
s = b− L.x0. (7)

1.3 Uncontrollable and Unobservable Transitions

When no uncontrollable and unobservable transitions occur in the PN model (it is
the ideal case), the supervisor is able to observe all transitions. Consequently, it can
either prevent a transition from firing or to fire it – i.e. to enforce a desired behavior
on it. However, in practice usually such an assumption is not valid. There are two
possibilities for transitions in PN models of realistic systems: (i) a transition tj ∈ T
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may be uncontrollable; (ii) a transition tj ∈ T may be unobservable. In the former
case the supervisor is not able to prevent the transition from firing – i.e. there is no
arc from any supervisor place to tj. In the latter case the supervisor is not able to
detect the firing of the transition – i.e. there is no arc from any transition of the PN
model of the plant to the supervisor place. In other words, the feedback from the
PN model of the plant to the supervisor is missing. It means that there are neither
arcs from an unobservable transition tj to any controller place pi, i = 1, . . . s, nor
the arc from any controller place pi, i = 1, . . . s to tj.

It appears that a transition being unobservable is also uncontrollable. Therefore,
controllability of a transition implies its observability. Consequently, three different
kinds of transitions are distinguished:

1. controllable;

2. uncontrollable, but observable; and

3. uncontrollable and unobservable.

Accordingly, the set T of transitions has three following subsets T = To,c ∪ To,uc ∪
Tuo,uc. Hence, it can be written that Tuc = To,uc ∪ Tuo,uc. Here, To,c and Tuc are,
respectively, the subsets of controllable and uncontrollable transitions. To,uc rep-
resents the set of uncontrollable but observable transitions, and Tuo,uc consists of
transitions that are both uncontrollable and unobservable.

1.4 Errors and Error Recovery

Many times errors of different kinds occur during DES operation. They bring an-
other kind of nondeterminism into DES performance. For instance, in a specific
kind of FMS like robotic cells a part may drop out (i.e. fall down) from the robot
gripper, in a simple railroad crossing the control system of crossing gate may fail
(e.g. the premature gate raising), etc. After the occurrence of the fault the system
development is different than the standard one. In such a case the system has to
detect what was wrong and recover the normal behaviour, i.e. to eliminate the in-
fluence of the error on the system behaviour. Namely, the error recovery is the set
of actions that must be performed in order to return the system to its normal state.
To do this, it is necessary

1. to synthesize the recovery sequence, and

2. to extend the scope of the controller activity in order to deal with the fault.

The problem is directly connected with reachability.

It is necessary to emphasize that errors of the mentioned kinds cannot be ex-
cluded, either in deterministic PN models or in PN models with uncontrollable/un-
observable transitions.
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1.5 The Paper Organization

The paper is organized as follows:

1. the discussion about the nondeterminism caused by unobservable/uncontrollable
transitions and unmeasurable (unobservable) places in PN models of DES and
about how to deal with it;

2. the discussion about how to model errors/failures and the dealing with the
matter of the error recovery in DES;

3. the introduction of three case studies, the first one based on the IPN model,
the second one on the LbPN model and the third one (specific one) based on
the PN model of RAS (resource allocation systems) where a special kind of
nondeterminism occurs.

2 DEALING WITH UNCONTROLLABLE
AND UNOBSERVABLE TRANSITIONS

In case when solely controllable and observable transitions occur, the PN model (1)
may be used, and the supervisor may be synthesized by means of (6). In the opposite
case, i.e. when uncontrollable and/or unobservable transitions occur, the situation
is much more complicated.

2.1 Presence of Uncontrollable and/or Unobservable Transitions

Taking into account the previous relations concerning the PN model, the supervisor
synthesis, and the indexing the particular part of transitions described in the Sec-
tion 1.3 we have to cogitate about how to express the PN model and the supervisor
synthesis in this case. We can assume that the incidence matrix B of the PN model
of plant has the form

B = [Bo,cBuc] = [Bo,cBo,ucBuo,uc] (8)

where Buc = [Bo,ucBuo,uc]. Such a configuration of submatrices of B corresponds to
ordering the transitions:

1. t1, . . . , tmc (for controllable and observable transitions);

2. tmc+1, . . . , tmc+mo (for uncontrollable, but observable, transitions);

3. and tmc+mo+1, . . . , tm (for uncontrollable and unobservable transitions).

2.1.1 Ideal Enforceability

The ideal enforceability of control interferences occurs if there are no arcs from
controller places to transitions t ∈ Tuc and no arcs from transitions t ∈ Tuo,uc to
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controller places. It can be easily checked. The controller incidence matrix:

Bs = −LB = −L [Bo,cBuc] = −L [Bo,cBo,ucBuo,uc] . (9)

In such a case the following inequality has to be valid:

−LBo,uc ≥ 0 (10)

where the signs of the inequality are performed element by element. This relation
expresses the fact that the firing of any uncontrollable, but observable, transition
does not depend on the number of tokens in a controller place, but may increase
this number. Moreover, the following relation has to be valid:

LBuo,uc = 0. (11)

This equation expresses the fact that the firing of any uncontrollable and unobserv-
able transition will not affect the number of tokens in a controller place. Finally, for
the initial state of the supervisor, the following relation has to hold:

xs
0 = b− Lx0 ≥ 0. (12)

This inequality expresses that the initial state vector (i.e. initial marking) xs
0 of the

supervisor is a nonzero vector. Note, that it is the same relation as Lx0 ≤ b.

Supervisory control is a procedure of enforcing the external constraints on a sys-
tem to be controlled. If a desired control specification is ideally enforceable, the
supervisor respects the observability and controllability constraints. When the su-
pervisor respects the uncontrollability and unobservability constraints of the plant,
it is marked as admissible. Consequently, the presence of uncontrollable and/or un-
observable transitions does not pose any problem. However, in real conditions the
enforceability may not exist. Even, the ideal enforceability does not exist.

The specification (4) or (5) is said to be ideally enforceable, if the (ideal) super-
visor/controller represented by Bs and xs

0 can be realized (i.e., if it is feasible) – i.e.,
if in case of unobservable and uncontrollable transitions there are no arcs from con-
troller places to transitions in Tuc and no arcs from transitions in Tuo,uc to controller
places. In models of real systems it is not always possible.

2.1.2 Real Enforceability

In real conditions the ideal enforceability does not exist. In general, the solution will
not be possible in terms of the original specification. In such a case it is necessary to
find modified constrains (control specifications) in the form L′.x ≤ b′ and compute
the controller Bs = −L′B for the new specifications. Here, xs

0 = b′ − L′x0. The
problem is solved when we succeed in finding a suitable L′ an b′.
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As it was proved in [15], the specifications can have the following form:

L′ = (R1 + R2L), (13)

b′ = R2(b + 1ns×1)− 1ns×1 (14)

where 1ns×1 = (1, . . . , 1)T , R1 ∈ Zns×n satisfies R1.x ≥ 0, ∀x, R2 ∈ Zns×ns be
a diagonal matrix of natural numbers (i.e. positive-definite diagonal matrix of inte-
gers).

Choose the entries for R1 and R2 to ensure the ideal enforceability. According
to conditions (10)–(12) concerning the ideal enforceability introduced and described
above, the following relations have to hold:

(R1 + R2L)Bo,uc ≤ 0, (15)

(R1 + R2L)Buo,uc = 0, (16)

(R1 + R2L)x0 ≤ R2(b + 1ns×1)− 1ns×1. (17)

In [15] it was proved that when

[R1R2] .

[
Buc Buo −Buo x0

L.Buc L.Buo −L.Buo L.x0 − b− 1nc×1

]
≤
[
0 0 0 −1nc×1

]
,

(18)
then the controller

Bs = −(R1 + R2L)B = −L′B, (19)

x0
s = R2(b + 1nc×1)− 1nc×1 − (R1 + R2L)x0 = b′ − L′x0 (20)

exists. Moreover, it causes that all subsequent markings of the closed loop system
satisfy the constraint Lx ≤ b. This is achieved without any attempt to inhibit
uncontrollable transitions and without detecting unobservable transitions. The ad-
vantage of such an approach is that the matrices R1, R2 can be generated.

2.1.3 Example – Comparison of Ideal and Real Enforceability

To illustrate the difference between the ideal and real enforceability of control in-
terferences let us introduce the simple PN given in Figure 1 where the transition t4
is uncontrollable. Namely, the matrix B consists of two submatrices (Bo,c,Bo,uc) as
follows:

B = (Bo,c,Bo,uc) =


0 −1 0 | 0
1 0 −1 | 0
0 1 0 | −1
0 0 0 | 1

. (21)

Suppose, that in each step k of the system evolution the condition

σp2 + 3.σp4 ≤ 3, k = 0, 1, . . . (22)
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Figure 1. The given uncontrolled PN model

Figure 2. The trial to apply the ideal enforceability

has to be met. Consequently,

L = (0, 1, 0, 3), b = 3. (23)

Because x0 = (1, 0, 0, 0)T , with respect to (4)–(7) we can obtain the supervisor
(corresponding to the ideal enforcing) given in Figure 2 where the structure of the
supervisor and its initial state are the following:

Bs = −L.B = (−1, 0, 1,−3); x0
s = b− L.x0 = 3. (24)

However, the condition (10) is not satisfied, because

−L.Bo,uc = −(0, 1, 0, 3).(0, 0,−1, 1)T = −3 � 0. (25)

It means that the ideal enforceability is impossible. Consequently, the real enforce-
ability approach has to be applied. Therefore, consider

R1 = (0, 0, 3, 0); R2 = 1. (26)

Then, because of (13), (14),

L′ = (0, 1, 3, 3); b′ = 3, (27)

B′s = −L′.B = (−1,−3, 1, 0); x0
s = b′ − L′.x0 = 3. (28)

The supervised system is given in Figure 3. Here, the inequality (15) is fulfilled
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because

(R1 + R2L)Bo,uc = L′.Bo,uc = (0, 1, 3, 3).(0, 0,−1, 1)T = 0 (29)

and it should be ≤ 0.

Figure 3. The real enforceability

The reachability trees of the three versions of the PN model structure are given
in Figure 4.

Figure 4. The reachability trees corresponding (from the left to the right) with the PN
models in Figures 1, 2 and 3, respectively, with the corresponding reachability matrices
Xa, Xb, Xc
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Corresponding nodes of these trees are represented by the columns of the reach-
ability matrices as follows:

Xa =


1 1 0 0 0 0
0 ω 0 ω 0 ω
0 0 1 1 0 0
0 0 0 0 1 1

 (30)

where ω means unlimited number of tokens in the place p2 in three reachable states,
namely x1, x3 and x5, because of the self-loops in the RT nodes x1 and x3, and

Xb =


1 1 0 1 0 0 1 0 0
0 1 0 2 1 0 3 2 3
0 0 1 0 1 0 0 1 1
0 0 0 0 0 1 0 0 0
3 2 3 1 2 0 0 1 0

, (31)

Xc =


1 1 0 1 0 1
0 1 0 2 0 3
0 0 1 0 0 0
0 0 0 0 1 0
3 2 0 1 0 0

. (32)

2.1.4 Local Summary

In case where no uncontrollable and unobservable transitions occur, the controller
can directly observe and prevent all transitions of PN model of the plant. However,
it is much more realistic to abandon such an assumption in PN models of DES
working in practice. Namely:

1. Transition tj may be uncontrollable. It means, that the controller will not be
able to directly prevent the transition from firing. In such a case, there will be
no arc from any controller place to tj ∈ T .

2. Transition tj ∈ T may be unobservable. It means, that the controller will not be
able to directly detect the firing of the transition. Thus, the firing of tj cannot
affect the number of tokens in any controller place (i.e. the feedback from the
plant to the controller is missing).

This implies that there are neither arcs from an unobservable transition tj to
any controller place pi, i = 1, . . . s, j = 1, . . .m nor the arc from any controller
place pi to tj.

Hence, a transition being unobservable implies that it is also uncontrollable.
Therefore, controllability of a transition implies its observability. Three different
kinds of transitions are distinguished:
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1. controllable;

2. uncontrollable but observable; and

3. uncontrollable and unobservable.

In such a case the enforceability of control interferences needs not always be ideal
and the supervisor synthesis has to by modified – compare the pair (6), (7) with the
pair (19), (20).

3 ERROR RECOVERY

As it was mentioned in the Section 1.4, many times errors (failures) occur during
DES operation. For example in FMS a part may drop out from the robot gripper.
The system has to detect what was wrong and recover the normal behaviour – i.e.,
to eliminate the influence of the error on the system behaviour. The error recovery
is a set of actions that must be performed in order to return the system to its normal
state. It is necessary

1. to synthesize the recovery sequence, and

2. to extend the scope of the controller activity in order to deal with the fault.

The problem is directly connected with reachability.
After the occurrence of the fault the system development is different than

the standard one. Consider the situation after the occurrence of the fault fj =
(0, . . . , 0, 1, 0, . . . , 0)T being the unit vector with dimensionality m (the number of
transitions). Here xk = xj + Bf .fj, where Bf is the structural matrix of the faulty
system submodel.

In practice, there are many areas where it comes toward errors of different kinds.
Let us illustrate two such areas – FMS and a transport system – namely, the robo-
tized cell and the railroad crossing.

3.1 Error Recovery of a Kind of FMS

Figure 5. The scheme of the robotized assembly cell
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Consider the robotized cell schematically displayed in Figure 5. Here, C1 rep-
resents a conveyor feeding parts of a kind A into the cell, C2 expresses a conveyor
feeding parts of a kind B into the cell, and C3 pictures a conveyor carrying away
the final product – i.e. the assembled part C (i.e. A + B) prepared in the assembly
place AP – from the cell. The robot R plays the central role in the cell, because it
serves all other devices inside the cell (i.e. C1–C3 and AP).

Figure 6. The PN model of the fragment of the plant (left), its full RT including firing
of t5 (middle) and the RT of the model without firing of t5, i.e. without the occurrence of
the error event (right)

The fragment of the global PN model of the robotized cell, displayed in Figure 6
left, models the handling of first two belts by R. The robot consecutively takes away
parts A, B from two transport belts C1 and C2, respectively. In the PN model the
supplying is realized by means of the places p1 and p4, respectively. The operations
of taking parts are modelled by p2, p5, respectively. The parts A, B prepared to
be inserted into the assembly place are modelled by places p3, p6, respectively. The
robot puts them subsequently into AP modelled by p8. Although the process is
deterministic a fault can occur. The transition t5 represents the error event – i.e.
the fault when a part A drops out from the robot gripper. The fault itself is modelled
by firing the transition t5. The corresponding RT of the model segment, where the
fault occurs, is displayed in the middle of the Figure 6. The RT corresponding to
the normal situation, when no fault occur, is given in Figure 6 right. The state
space of the system (the nodes of the full RT) are represented by the columns of the
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matrix (33):

Xr =



1 0 1 0 0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 1 0 0 1 0 0
1 1 0 1 1 0 0 0 0 0 0 0
0 0 1 0 0 0 1 1 0 0 0 0
0 0 0 0 0 1 0 0 1 1 1 0
1 0 0 1 1 1 0 0 0 1 1 1
0 0 0 0 0 0 0 0 0 0 0 1


. (33)

Because the fault event is spontaneous, it cannot be prevented. There is only
a possibility (if any) for trying to recover the system operation after occurring the
fault, i.e. to remove the effects of the fault on the system operation. We must
watch the consecutive states of the system after occurring the fault – i.e. the states
x4 = (0 0 0 1 0 0 1 0)T and x10 = (0 0 0 0 0 1 1 0)T . From these states the recovery
procedure has to be evolved. Note, that the first column of the matrix (33) is x0.
Consequenly, x4 and x10 are displayed, respectively, as 5th and 11th columns of the
matrix). However, the state x10 is inadmissible. Moreover, no further development
is allowed from it, i.e. x10 has a form of a deadlock. Instead of x10 the recovered
state x9 = (0 0 1 0 0 1 1 0)T is expected. Also the states of PN without the fault –
i.e. without firing t5 – has to be taken into account in order to see the correct devel-
opment. The form of the PN is the same like that on the left side of Figure 6, only
the transition t5 is not firing (i.e. as if missing). RT of such a PN model is given on
the right side of the Figure 6. Its nodes are the columns of the matrix

Xr =



1 0 1 0 1 0 0 0 0
0 1 0 0 0 0 1 0 0
0 0 0 1 0 1 0 1 0
1 1 0 1 0 0 0 0 0
0 0 1 0 0 1 0 0 0
0 0 0 0 1 0 1 1 0
1 0 0 1 1 0 0 1 1
0 0 0 0 0 0 0 0 1


. (34)

A trial how the fault can be recovered in order to normalize the system behaviour
is expressed by amending the PN model. The PN model able to recover the fault
is given in Figure 7. The model covers both the normal behaviour and the recovery
of the fault behaviour. Its RT is given in Figure 8. The trajectory of the system
development when the fault occurred (i.e. when t5 was fired) and then its entail was

recovered is the following: x0
t1→ x1

t5→ x5
t3→ x11

t4→ x18
t7→ x25

t8→ x31
t1→ x35

t2→
x38

t6→ x39. Of course, also the sideways branch starting from x5: x5
t7→ x12 . . .

t4→ x38

may be taken into account. However, the RT expresses also the trajectories of the
system development where the firing of t5 does not occur (i.e. when no fault occurs),
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Figure 7. The PN model of the recovered system

e.g.: x0
t1→ x1

t2→ x4
t3→ x9

t4→ x15
t6→ x22 . . .

t2→ x37 (together with its sideways
branches). The RT nodes are represented by the columns of the matrix

Xr =



1 0 1 2 0 0 1 1 2 0 1 0 0 0 2 0 0 1 0 0 1 1 0 1 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 1 1 1 0 0 0 0 0 1 2 0 0 0 0 1 2 0 1 0 2 0 1 1 1 0
1 1 0 1 1 1 0 1 0 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 1 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 0 0 1 0 0 1 0 1 0 1 0 0 0 1 0 1 0 0 1 1 0 0 1 0
1 0 0 1 1 1 1 0 0 0 1 0 1 0 1 1 0 0 1 0 1 0 1 1 1 1 0 0 1 0 0 1 1 0 1 0 0 1 1 1
0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 1 0 1 0 0 1 0 0 1 1 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 1


. (35)

3.2 Error Recovery in a Segment of Transport Systems

Consider an example of the simple railroad crossing (RC). The RC gate prevents
a direct contact of trains with vehicles on the road. The global PN model of RC
given in Figure 9 consists of three cooperating sub-models expressing the behaviour
of the

1. train,

2. crossing gate, and

3. control system.

The firing of the transition tf5 models the occurrence of the failure(s). In general,
the failure can occur more times. Thus, the marking of the place p14 (i.e. the
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Figure 8. The RT of the PN model of the recovered system

number of its tokens) represents the number of the failure occurrences. What is
very dangerous in doing so is that the firing of tf5 involves an erroneous generation
of a token in pl0 which directly influences the position of the barrier. Such an error
may cause accidents. Many accidents allover the world has been caused due to such
errors.

The following depicts the purport of places in the failure-free cases: As to the
train, its states regarding the crossing are: p1 = approaching; p2 = being before;
p3 = being within; p4 = being after. The states of the barrier are: p11 = up;
p12 = down. The transitions t6 and t7 model, respectively, the events of raising and
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Figure 9. The PN model of the RC with the failure expressed by firing tf5

Figure 10. The RT of the PN model of RC with only one possible occurrence of the failure
represented by tf5 (left), and the corresponding RG (right)
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lowering the barrier. The states of the control system are: p5 − p10. The place p13
models the interlock. Being active (having token) it gives the warning signal for the
train – the alert that the barrier is still up.

Very dangerous (critical as to safety reasons) is the situation when the barrier is
going up, and simultaneously, the failure tf5 occurs. For detection of such situation
the redundant information is needed. The control system must issue such informa-
tion. It can be seen that the places p6 and p7 in the control system correspond to p11
and p12 in the real crossing gate. If p7 and p11 are active simultaneously, a contra-
diction between the fault situation (real) and the standard situation (normal, error
free) is detected. For the error recovery it is necessary to set what state is accepted
to be the true one. Supposing that the barrier is up and drops down, the recovery
is realized by means of the transition tr1 .

Considerably simpler situation occurs when the barrier is up and none train is
approaching. Namely, by means of the transition tr2 the fail signal p10 from the
control system in a close touch with the activity of the place p11 ensures that the
fail signal can be practically ignored.

The RT and RG of the failed system are given in Figure 10. The particular
nodes of RT/RG are the columns of the reachability matrix

Xreach =



1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 1 1 1 0 1 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 1 1 1
0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 1 0 0 0 0 0 0 0 1 0 0 1 1 0 1
0 0 0 1 0 1 1 1 1 1 1 1 0 1 1 0 0 1 0
0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 1 0 1 0 1 0 1 0 1 1 0 0 2 0 1
1 1 1 1 1 0 1 0 0 0 0 1 0 0 1 1 0 1 1
0 0 0 0 0 1 0 1 1 1 1 0 1 1 0 0 1 0 0
0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 1 0 0 1 0 0 1 0 0 0



. (36)

The PN model of the system with the recovered error is given in Figure 11, while
the RT and RG are displayed in Figure 12.
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Figure 11. The PN model of the system with the recovered failure and with the supervisor
removing the deadlock occurring during the process of the failure recovery

The RT/RG nodes corresponding to such model are represented by the columns
of the reachability matrix

Xs
reach =



1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 1 0 1 1 1 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 1 1 1 1 1 1
0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 1 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 1 1
0 0 0 1 0 0 1 1 0 1 1 1 1 1 1 1 0 1 1 1 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 1 0 0 0 2 0 0 1 1 0
1 1 1 1 1 1 0 1 1 0 0 1 0 0 1 0 0 0 1 0 1 0 1 0 1 0 1
0 0 0 0 0 0 1 0 0 1 1 0 1 1 0 1 1 1 0 1 0 1 0 1 0 1 0
0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0
−−−−−−−−−−−−−−−−−−−−−−−−−−−
3 2 3 0 2 3 0 0 2 1 0 0 1 1 1 0 2 1 2 1 3 2 2 1 3 2 3



(37)

where the last row represents the states (marking) of the supervisor in particular
RT/RG nodes. More details concerning the multiplicity of the error occurrence are
discussed in [4].
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Figure 12. The RT of the recovered system with removed deadlock by means of the su-
pervisor (left) and the corresponding RG (right)

4 CASE STUDY ON CONTROL OF COMPLETE FMS
BY MEANS OF IPN

Having resolved the error recovery of the FMS fragment in Section 3.1, let us apply
the IPN-based approach to control the complete FMS including the error. The
uncontrolled PN model of the plant is the expanded form of the fragment given in
Figure 6 with the same fault, of course. The IPN-based control of it (before the
error recovering) is presented in Figure 13.

Figure 13. The PN model of the controlled system
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The RT of the PN model is given in Figure 14. To save a space, it is turned by
90 degrees to the left.

Figure 14. RT of the PN model of the controlled system

The reachability set, i.e. the particular nodes of the RT in the form of the state
vectors are represented by means of the columns of the following matrix

Xr =



0 1 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 0 0 0
0 0 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 0 0 0 0 0 0
1 1 1 1 1 0 0 1 1 1 0 0 0 1 1 1 1 1 0 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1



. (38)

4.1 Error Recovery

Let us recover the fault analogically to the approach presented in Figure 7. As we can
see in Figure 14, the occurrence of the fault represented by the transition t16 (when
it is firing) tends to the deadlock state x14 (see the column 15 of the matrix (38)
because RT node N1 corresponds to x0) presented by active places p2, p6, p8, p9,
p14, p16, all of them with marking equal to 1. To prevent such situation the recovery
must tend to the elimination of the deadlock state x14 (caused by firing t16) and
simultaneously recover the system operation.

A trial directed towards the error recovery proposal is given in Figure 15. The
RT of the system is given in Figure 16 while the corresponding complete RG of the
recovered system representing all system trajectories is displayed in Figure 17.
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There exist four production cycles – i.e. the trajectories/paths starting from x0

and ending also in x0 – in the RG of the recovered system displayed in Figure 17.
Their lengths are 15, 22, 29, and 30 steps (a step represents the firing of a transition).
They can be analyzed separately. These cycles include the internal sub-cycles (sub-
trajectories).

Figure 15. The PN model of the controlled system able to recover the failure

Figure 16. The RT of the PN model of the controlled system with the recovered failure

Let us analyze in detail the shortest cycle with 15 steps – it is given in Figure 18.
It contains four sub-cycles (sub-trajectories). None of them contains a deadlock.
Particular steps in the trajectories are realized by successive firing of transitions in
corresponding sequences. They realize the transition from a state to another (next)
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Figure 17. The corresponding RG of the recovered system

state in the trajectories.

Xr =



0 1 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0
1 0 1 0 0 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1 1 1
0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 1 1 0 1 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0
1 1 0 0 0 0 1 0 0 1 1 1 0 1 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1
0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 1 1 0 0 0 1 0 0 0 1 0 0 1 0 0 0
1 1 1 1 1 0 0 1 1 1 0 0 1 0 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 1 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 1 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 0 1 1 0 0 1 1 0 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0



(39)

Let as analyze the shortest path in details. As we can see from the RT/RG, as
a matter of fact the trajectory (path) aggregates four sub-trajectories:
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Figure 18. The 15 steps cycle in the RG of the recovered system

1. x0
t4−→ x2

t1−→ x3
t12−→ x4

t5−→ x6
t6−→ x9

t2−→ x13
t3−→ x14

t13−→ x18
t7−→ x22

t8−→
x26

t9−→ x29
t10−→ x31

t14−→ x32
t11−→ x33

t15−→ x0;

2. x0
t4−→ x2

t1−→ x3
t12−→ x4

t2−→ x5
t3−→ x7

t5−→ x10
t4−→ x14

t13−→ x18
t7−→ x22

t8−→
x26

t9−→ x29
t10−→ x31

t14−→ x32
t11−→ x33

t15−→ x0;

3. x0
t1−→ x1

t4−→ x3
t12−→ x4

t5−→ x6
t6−→ x9

t2−→ x13
t3−→ x14

t13−→ x18
t7−→ x22

t8−→
x26

t9−→ x29
t10−→ x31

t14−→ x32
t11−→ x33

t15−→ x0;

4. x0
t1−→ x1

t4−→ x3
t12−→ x4

t2−→ x5
t3−→ x7

t5−→ x10
t4−→ x14

t13−→ x18
t7−→ x22

t8−→
x26

t9−→ x29
t10−→ x31

t14−→ x32
t11−→ x33

t15−→ x0.

Other longer cycles have 22 (with 18 sub-trajectories), 29 (with 32 sub-trajecto-
ries), and 30 (with 16 sub-trajectories) steps. The last of them represents practically
two consecutive shortest trajectories (i.e. two successive cycles without a failure).
While any of the sub-trajectories of the shortest cycle introduced above does not
contain the transition t16 representing the failure, the sub-trajectories of the longer
cycles (namely with 22 steps and 29 steps) do. In spite of this they operate correctly,
because of the successful error recovery. It means that the cycle consisting of 15 steps
represents the normal operation of the controlled plant, i.e., the situations when no
failure occurs. However, the longer cycles are able to deal with the failure (occurring
event represented by firing t16) successfully.

Unfortunately, there is not a sufficient space here for a graphical presentation of
the trajectories, or all their sub-trajectories. Nevertheless, they can be traced from
Figure 17. For illustration, let us introduce them at least in the aggregated form
in Figure 19 (up) and Figure 19 (down). They show that the system is able to deal
with the failure – i.e., the error recovery was successful.

4.2 Local Summary

The application of IPN for modelling and control of DES with nondeterminism rep-
resented by uncontrollable and/or unobservable transitions was presented in this
section. IPN seems to be a suitable, sound and relatively simple approach for re-
solving such tasks, especially technical ones. In Section 5 the application of LbPN
will be presented pointing out the difference from IPN.
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Figure 19. The aggregated form of the path with 22 steps (up) and 29 steps (down). In
both cases on the horizontal axes the numbers of steps are displayed, while on the vertical
axes the numbers of state vectors (shifted by +1) are displayed – namely, the RG nodes
Ni+1 corresponds to xi, i = 0, 1 . . .



752 F. Čapkovič

5 CASE STUDY ON CONTROL OF FMS BY MEANS OF LBPN

Consider the plant (a robotic cell) schematically displayed in Figure 20. There are
two production lines producing two different kinds of final products. The plant
consists of four machines (M1–M4), four robots (R1–R4), one automatically guided
vehicle (AGV) system, one buffer (B) with the finite capacity, two input transport
belts I1 and I2 feeding the cell, respectively, by parts of a kind Pa1 and of a kind Pa2.
Finally, the output transport belts O1 and O2 export, respectively, the processed
final parts Fp1, Fp2 from the cell. A similar production plant was used for another
reason in [5], based on [26].

Figure 20. The scheme of the plant

While in an ideal P/T PN model all transitions are considered to be control-
lable and no faults occur in the plant, in the model of a real plant none of those
presumptions holds true. However, when there occur uncontrollable transitions and
even some errors, the situation changes. Therefore, let us use the LbPN model given
in Figure 21.

The particular sections of the model are denoted by framed badges corresponding
to individual devices.

The marking of the place p1 represents the number of parts (in general α) of the
type Pa1 entering the production line PL1 (the left column of devices in Figure 20),
while the marking of the place p16 represents the number of parts (in general β)
of the type Pa2 entering the production line PL2 (the right column of devices in
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Figure 21. The LbPN model of the real plant with unobservable/uncontrollable transi-
tions

Figure 20). Devices in the central column in Figure 20 – R1, R2 as well as B and
AGV – are common for both production lines. The robot R3 belongs solely to PL1
and R4 solely to PL2.

Formally said, p1 and p16 are fed, respectively, by means of I1 and I2. On the
other hand t15 and t33 feed, respectively, O1 with final products Fp1 and O2 with
final products Fp2. The marking of the place p43 expresses the number of free slots
in B (they should be two minimally).

Places from the set {p33, p34, p38, p39, p46} represent the faulty behavior, i.e. errors.
They are marked only if a fault has occurred. Transitions t18, t36, t37, t38, filled in the
black color, model (by means of their firing) occurrence of the failures. Segments
of the PN model containing those faults are demarcated by means of the dashed
rectangles with the vertical dimension being greater than the horizontal dimension.
The transition t18 models a fault of the robot R3 that moves a part from the output
buffer of the machine M1 to the input buffer of the machine M2 instead of putting
it into the buffer B. In the like manner t36 models a fault in the robot R4 that
moves a part from the output buffer of the machine M3 to the input buffer of the
machine M4 instead of to insert it into the buffer B. Finally, t37, t38 model a fault
in the AGV. When AGV is working correctly, a completely finished part exits from
the robotic cell and a new part enters AGV. If a fault occurs in AGV, parts are
not exiting the production lines. Hence, they cannot be replaced by new input
parts.

In the model we can see three kinds of transitions:

1. observable transitions t1, t6, t8, t13, t15, t19, t24, t26, t31, t33, t16, t34, t39. They are
drawn by means of thick lines. The dashed rectangles with the greater width
than their height are added in order to cover also t8 along with t7 and t26 along
with t25;



754 F. Čapkovič

2. unobservable but regular transitions t2, t3, t4, t5, t7, t9, t10, t11, t12, t14, t20, t21,
t22, t23, t25, t27, t28, t29, t30, t32. Using the mark ε established in [3] (the Part 1
of this paper), the transitions may be renamed as ε2, ε3, ε4, ε5, ε7, ε9, ε10, ε11,
ε12, ε14, ε20, ε21, ε22, ε23, ε25, ε27, ε28, ε29, ε30, ε32, respectively. They are drawn
normally, i.e. by means of thin lines;

3. fault transitions t18, t36, t37, t38. They are filled in by black colour.

The LbPN model has 46 places and 39 transitions. Because of the great number
of places and transitions, and rather complicated structure, the RT/RG may have
the extensive number of nodes (i.e. reachable states of the model from a given initial
state) depending on the initial state x0. At the initial state displayed in Figure 21 –
i.e., when each of the places p1, p41, p16, p31, p36, p32, p37, p35, p40, p44, p45 possesses
one token and p43 possesses two tokens – the number of nodes is 1640. The RT was
computed in Matlab using the toolbox SPNBOX elaborated in [21]. Consequently,
neither RT nor RG can be displayed here because of insufficient space.

It is not easy to compute the RT/RG of such large dimensionality because of
long computational time, sometimes also for the limited capacity of the computer
memory, especially in case of the initial state containing more entering parts –
represented by number of tokens α, β stationed, respectively, in p1, p16 – and/or
the higher capacity of the buffer B represented by the number of tokens stationed
in p43.

Suppose that each robot is equipped with a sensor. Thus, it always can be
observed whether the robot grasps a part (e.g. from a belt) and/or inserts it (e.g.
into a machine or B) or not. Taking [3] into account, in LbPN the term L = L ∪ ε
is an alphabet representing a finite set of events, where L represents observable
events and ε represents unobservable events. In our case in particular, we can set
for observable transitions the following:

1. for R1 L(t1) = a and L(t19) = e;

2. for R2 L(t13) = c and L(t31) = l;

3. for R3 L(t6) = L(t8) = L(t16) = b;

4. for R4 L(t24) = L(t26) = L(t34) = g;

5. providing that it is possible to observe each time when a part is moved by the
AGV, also L(t15) = L(t33) = L(t39) = d.

The robot R1 always starts taking one part from the first production line. Having
denoted (see above) the number of tokens in p1 as α, while the number of tokens in
p16 as β, we can analyze the LbPN model behaviour in detail.

All cases in which α = 0 present only one node corresponding to M0. Moreover,
all cases in which β = 0 present 19 nodes in RG.

For α 6= 0 and β 6= 0 many of states occur in RG. For example for initial state
where p1 = 1, p16 = 1, p31 = 1, p32 = 1, p35 = 1, p36 = 1, p39 = 1, p40 = 1, p41 = 1,
p43 = 2, p44 = 1, p45 = 1, 592 nodes occur in RG. However, it is valid for cases
without failures.
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When the failures occur in the model, the situation is changed. For example
when p1 = 1, p16 = 0, p31 = 1, p32 = 1, p33 = 1, p35 = 1, p36 = 1, p38 = 1, p39 = 1,
p40 = 1, p41 = 1, p43 = 2, p44 = 1, p45 = 1, p46 = 1 the number of RG nodes is 1266.
When p1 = 0, p16 = 1, p31 = 1, p32 = 1, p33 = 1, p35 = 1, p36 = 1, p38 = 1, p39 = 1,
p40 = 1, p41 = 1, p43 = 2, p44 = 1, p45 = 1, p46 = 1 the number of RG nodes is 19.

However, in case when p1 = 0, p16 = 1, p31 = 1, p32 = 1, p33 = 1, p35 = 1,
p36 = 1, p37 = 1, p38 = 1, p40 = 1, p41 = 1, p43 = 2, p44 = 1, p45 = 1 the number
of RG nodes is 10, for p1 = 1, p16 = 0, p31 = 1, p32 = 1, p33 = 1, p35 = 1, p36 = 1,
p37 = 1, p38 = 1, p40 = 1, p41 = 1, p43 = 2, p44 = 1, p45 = 1 the number of RG nodes
is 516.

But, for p1 = 1, p16 = 1, p31 = 1, p32 = 1, p33 = 1, p35 = 1, p36 = 1, p37 = 1,
p38 = 1, p40 = 1, p41 = 1, p43 = 2, p44 = 1, p45 = 1 the number of RG nodes is 2 904,
for p1 = 2, p16 = 1, p31 = 1, p32 = 1, p33 = 1, p35 = 1, p36 = 1, p37 = 1, p38 = 1,
p40 = 1, p41 = 1, p43 = 2, p44 = 1, p45 = 1 the number of RG nodes is 20 356.

For greater α, β the numbers of RG nodes reach tens thousands, even hundred
thousands.

Because PL1 is perfectly symmetric with PL2, the number of RG nodes does
not change by altering α with β.

Local Summary. In [22] the observation of events is considered as outputs in
most problem settings, such as state estimation and fault diagnosis. Some au-
thors, e.g. [18, 20], consider an extended LbPN model enriched with state obser-
vations. It is assumed there that the token content in some places of the net is
measurable. Such understanding of the extension of LbPN is named as Interpreted
PN (IPN). It is suitable especially for technical applications, as shown in the Sec-
tion 4.

However, in [20] we can see that such a type of LbPN can always be converted
into an equivalent standard LbPN by a suitable re-definition of the transition labels,
and hence the LbPN-based models and the IPN-based models have the same mod-
eling power. In spite of this it is interesting and useful to utilize the IPN models
along with the LbPN models. In general, the scope of LbPN abilities seems to be
a little wider than that of IPN because LbPN are suitable also for the fault diagnosis
and state estimation (as it was pointed out in this Section). Although both of the
approaches are very suitable for analysing and modelling DES containing nondeter-
minism (as it was demonstrated above), the successful applicability of both kinds of
PN (i.e. IPN and LbPN) in the supervisor synthesis may be limited by the complex-
ity of the modelled plant (and especially by the consecutive complexity of its PN
model). Namely, the so called curse of dimensionality well known in respect of the
Bellman’s dynamic programming [2] is, unfortunately, in force also in many other
cases including the computation and analysis of RT/RG in PN at the supervisor syn-
thesis. This is generally true for the PN-based control synthesis utilizing RT/RG
and it has nothing to do with the convenience of the IPN and LbPN applicability
to DES with nondeterminism.
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In case of the estimation of the LbPN marking, the representative markings and
corresponding representative marking graphs are defined [12] in order to find the
consistent markings. The consistent marking set consists of all markings that are
reachable from initial marking by firing some sequences whose observation is a word
(a sequence of transitions being consecutively fired). In [13] the PN reachability
problem is analyzed by means of defining the basis marking. There, the set T of PN
transitions is partitioned into two subsets – the explicit and implicit transitions. The
subset of implicit transitions does not contain directed cycles. The reachability set
obtained by firing of implicit transitions is created by a subset of reachable markings
called basis makings. Consequently, the basis reachability graph (BRG) can be
obtained by means of the efficient algorithm presented just in [13]. It is suitable for
bounded PN and after an extension also for unbounded PN. For unbounded PN the
newest approach to computing basis coverability graph (BCG) is presented in [10].
Such approaches help to reduce an enormity (hugeness) of RT/RG sometimes also
exponentially – see [10].

To avoid the problem with the huge RT/RG at the DES control synthesis by
means of PN, also the theory of regions – see e.g. [16, 8, 9, 1, 23, 17, 14] – can be
used. Consider the labelled transition system given as a tuple (S,L, T→), where S is
a set of states, L is a set of labels and T→ is a set of labelled transitions. A region r
of such transition system is a mapping assigning to each state s ∈ S a number σ(s)
(natural number for P/T PN, binary number for some event structures) and to each
transition label ` a number τ(`) such that consistency condition σ(s′) = σ(s) + τ(`)
holds whenever (s, `, s′) ∈ T→. So, a region r corresponds to a place of the Petri net
which we would like to associate with a given step transition system. Consequently,
the PN structure is, of course, enriched in such a way. This makes possible to find
a more favourable structure in comparison with the original one. However, this topic
is out of the scope of this paper.

6 ILLUSTRATIVE EXAMPLE OF ANOTHER KIND
OF NONDETERMINISM IN FMS

Let us introduce, exclusively for illustration, another situation in complicated FMS
leading to the nondeterminism. It concerns the problems occurring at sharing re-
sources in a plant during cooperation of its subsystems. In FMS such systems are
named as Resource Allocation Systems (RAS).

There are frequently used the systems of simple sequential processes with resour-
ces (S3PRs) in FMS. In such systems the part being produced uses only one copy
of one resource at each processing step. Such systems create a subclass of a higher
(upper) class S∗PRs [24, 7] where more copies of one resource are allowed. Consider
the production system with the principal scheme given in Figure 22 performing the
production routing with the scheme given in Figure 23.

Here, M1–M4 are four machine tools each using some of the four sets of cut-
ting/surfacing tools h1–h4. Three robots R1–R3, being the crucial devices, serve
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Figure 22. The scheme of the RAS plant

Figure 23. The production routing scheme of the RAS plant

these machines as well as buffers B1, B2, the input and output belts I1, I2 and
O1, O2. The symbol Mi(hj/hk) in the routing scheme in Figure 23 means that the
machine Mi uses the tools from the sets hj and hk, namely at first the tool from hj
and then the tool from hk.

In the PN terminology, the resource(s) can be understood in a wider sense – e.g.,
in our case the instantaneous availability of a machine (because it can be either idle,
i.e. available for an interested device, or not), cutting/surfacing tool, robot, buffer,
etc.

The principle of PN model of a resource can be illustrated by means of Figure 24.
In general, two or more production lines working as parallel processes sharing com-
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mon resources, bring problems of different kinds to be solved, especially deadlocks
because of a lack of resources in one or more of the processes. The simplest case of
a resource is illustrated in Figure 24 left, while two simple parallel processes with
common resource(s) are given in Figure 24 right. The parallel running of these
processes is impossible when n = 1 while it is possible when n > 1.

Figure 24. Resorce(s). In case of S3PRs n = 1 (left). In case of S∗PRs n > 1 (right).
Here, two parallel processes share the common resource(s). When n = 1 the simultaneous
using of the resource by the upper process and lower one is mutually excluded. However,
for n > 1 both processes can run simultaneously.

The PN model of the RAS plant is displayed in Figure 25.
In general, the symbol px |= Dy means that a place px models the activity of

a device Dy. Then, in the PN model the following relations between PN places and
the FMS devices are actual: p6 |= M1, p9 |= B1, p10 |= M2, p17 |= B2, p19 |= M4,
p21 |= R1, p22 |= h1, p23 |= h3, p24 |= M3, p25 |= R2, p26 |= h4, p27 |= h2,
p28 |= R3.

This model corresponds to the situation when all resources are reliable. At the
given initial state x0 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 4, 0, 2, 10, 4, 0, 2, 10, 1, 2, 2, 2, 0, 1, 2, 2,
1, 0)T there exist 63 469 reachable states – e.g. the last of them is x63439 = (0, 0, 2, 1, 1,
1, 0, 0, 2, 0, 1, 3, 0, 2, 1, 3, 2, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2)T . For that reason, neither
RT/RG nor the reachability matrix (containing state vectors being RT/RG nodes
as its columns) cannot be introduced here.

In case of the unreliable resources the situation is more complicated. The PN
model of such a case is given in Figure 27. Here, in comparison with Figure 25
five sub-nets represented by the dashed boxes are added. Namely, any unreliable
resource has to be equipped by an additional place which represents waiting for the
recovery of the resource failure. The scheme of such a sub-net is given in Figure 26.
The dashed boxes in Figure 27 represent just such sub-nets. Of course, the model
itself is not able to deal with such a nondeterminism. The recovery consists in the
renewal of the state of resources.

As it follows from Figure 26 and especially from the dashed sub-nets in Figure 27,
no transition having pu as its input place (i.e. t9, t12, t13, t25, t27) cannot be fired
during the occurrence of the rest of the corresponding breakdown. Any supervisor
being synthesized for such a PN model has to respect this rule. Namely, the token
in pw (i.e. p2, p6, p12, p20, p29) cannot be returned to pu (i.e. p3, p5, p13, p16, p28)
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Figure 25. The PN model of the RAS plant with multiple resources equipped with the
waiting places Pw, w = 2, 6, 12, 20, 29 waiting for the error recovery of unreliable resources

Figure 26. Unreliable resource x is represented by the place pu, while the place pw repre-
sents the process of waiting for the recovery. Transitions ts and tf represent, respectively,
the start and finish of the waiting.



760 F. Čapkovič

Figure 27. The PN model of the plant with multiple resources

until all faults related to pu are corrected. The corrections have to be performed by
error recovery subsystems.

Local Summary. The plant (FMS of a kind RAS) being the DES consists of
a set of versatile resources i.e. machine tools, robots, buffers, cutting/surfacing
tools, etc. Usually, there is a limited number of such resources shared by the
plant sub-processes. Consequently, a lot of deadlocks can originate for this rea-
son. Of course, deadlocks in FMS are undesirable, and highly unfavorable. Namely,
the entire plant or at least a part of it remains stagnate and the primal inten-
tion of the production cannot be achieved. Such a situation can also be under-
stood to be a form of nondeterminism, which is very unsafe. The recovery of re-
source failures is very complicated in this case. A fault-tolerant supervisor able
to handle resource failures has to be used in order to resolve deadlocks, e.g. the
Banker’s algorithm [6] or its newer modifications. Another approaches to removal
of deadlocks can be used as well – e.g. the supervisor based on PN siphons [25, 11,
19].
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The error recovery of this kind of FMS (i.e. ARS) is out of the focus of this
paper. However, dealing with such a problem may be an idea for further research
in the DES containing nondeterminism.

7 CONCLUSION

This paper is a continuation of the paper [3]. It represents the Part 2 of the paper [3]
being the Part 1. Both parts are inseparable components of one topic. While in [3]
the different kinds of PN (especially P/T PN, timed PN, controlled PN, labelled PN,
interpreted PN) were described and their applicability for DES modelling, analysis
and control were indicated, the Part 2 brings more examples and case studies from
PN-based modelling FMS and transport systems with nondeterminism.

The main aim of the article was to apply the results of article [3] particularly
on more kinds of DES with the nondeterminism of different types. Some essential
preliminaries were introduced at the beginning. Then, the particular topics were
discussed. At first, the nondeterminism resulting from unobservable/uncontrollable
transitions and/or unobservable (unmeasurable) places of PN-based models was
dealt with. The ideal and real enforceability of control interferences were confronted
in the example. After that, the problem of the error recovery was analyzed and two
case studies on error recovery in real systems were introduced – namely, the case
of the segment of the robotic cell of FMS and the segment of the transport system
(the railroad crossing). Next, the case study on the error recovery of the complete
robotic cell by means of IPN-based model was introduced. Afterward, the case
study on the error recovery of another complex FMS by means of the LbPN-based
model was presented. After all, the example of the specific kind of nondeterminism
in the special kind of FMS – RAS (Resource Allocation Systems) was introduced
for illustration.

The case studies and examples bear witness to applicability of PN in general,
and especially IPN and LbPN, on dealing with nondeterminism in PN models of
DES.

Because the local summaries were introduced at the end of the particular sec-
tions, they need not to be repeated here.
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