
Computing and Informatics, Vol. 38, 2019, 790–816, doi: 10.31577/cai 2019 4 790

AGENT-BASED SYSTEM FOR MOBILE SERVICE
ADAPTATION USING ONLINE MACHINE LEARNING
AND MOBILE CLOUD COMPUTING PARADIGM

Piotr Nawrocki, Bart lomiej Śnieżyński

AGH University of Science and Technology
Faculty of Computer Science, Electronics and Telecommunications
Department of Computer Science
al. A. Mickiewicza 30
30-059 Krakow, Poland
e-mail: {piotr.nawrocki, bartlomiej.sniezynski}@agh.edu.pl

Jakub Ko lodziej

CRIF Sp. z o.o.
Lublańska 38
31-476 Krakow, Poland
e-mail: jakub.lukasz.kolodziej@gmail.com

Abstract. An important aspect of modern computer systems is their ability to
adapt. This is particularly important in the context of the use of mobile de-
vices, which have limited resources and are able to work longer and more efficiently
through adaptation. One possibility for the adaptation of mobile service execution
is the use of the Mobile Cloud Computing (MCC) paradigm, which allows such
services to run in computational clouds and only return the result to the mobile
device. At the same time, the importance of machine learning used to optimize
various computer systems is increasing. The novel concept proposed by the au-
thors extends the MCC paradigm to add the ability to run services on a PC (e.g.
at home). The solution proposed utilizes agent-based concepts in order to create
a system that operates in a heterogeneous environment. Machine learning algo-
rithms are used to optimize the performance of mobile services online on mobile
devices. This guarantees scalability and privacy. As a result, the solution makes it
possible to reduce service execution time and power consumption by mobile devices.

Agent-Based System for Mobile Service Adaptation 791

In order to evaluate the proposed concept, an agent-based system for mobile service
adaptation was implemented and experiments were performed. The solution devel-
oped demonstrates that extending the MCC paradigm with the simultaneous use of
machine learning and agent-based concepts allows for the effective adaptation and
optimization of mobile services.

Keywords: Agent-based system, machine learning, adaptation, mobile service, mo-
bile cloud computing

1 INTRODUCTION

The immense popularity of mobile devices, mainly smartphones, has brought about
a rapid development of mobile services. At the same time, this development of
mobile devices, including the availability of various sensors, has caused that the
services offered are becoming still smarter. They can adapt to the context in which
they are located and are able to learn some of their users’ behavioral patterns.
The user can obtain certain hints and context-based information from the device
(location, time, network communication method, light level, pulse, etc.) and from
the knowledge acquired in the learning process. The user may use this information
for a great variety of purposes, e.g. determining the best route or evaluating his/her
health. However, some mobile services overload the mobile device, especially in the
context of energy consumption. In such a situation, the Mobile Cloud Computing
(MCC) paradigm can be used. This paradigm makes it possible to execute these
services (or elements) in the cloud. Utilizing cloud resources allows service-oriented
computations (which would otherwise be resource-intensive) to be performed faster
using cloud infrastructure, and the results are sent to the mobile device. The ability
to change the location where the service is run makes it possible to optimize the
execution time of the service, also taking into account the energy consumption of
the mobile device. In MCC, in order to decide whether the mobile service should
run on the mobile device or in the cloud in the case in question, machine learning
algorithms can be used. An analysis of existing MCC solutions has shown that
the concept of using machine learning to optimize such systems has not yet been
thoroughly investigated. There are a few articles dealing with this topic such as [1]
and [2], also including the work conducted by the authors of this article: [3, 4]
and [5]. In addition, there are no comprehensive studies discussing the possibility
of extending the MCC paradigm to service-oriented computations on local PCs,
which has been demonstrated in a novel way by the authors of this article. Such
an extension allows the operating costs of a system to be decreased, but the system
becomes more complex. In this case, the use of machine learning is even more
justified.

A distributed system, like the one considered in this paper, is a natural envi-
ronment for agent-based solutions. If the environment is complex, it is very difficult

792 P. Nawrocki, B. Śnieżyński, J. Ko lodziej

to design all system details a priori. To overcome this problem, one can apply
a learning algorithm which makes it possible to adapt agents to the environment. In
multi-agent systems, most applications use reinforcement learning [6, 7, 8]. However,
in a complex environment (where the state-space is large), reinforcement learning
needs time to reach satisfactory performance and the knowledge learned is very
difficult to analyze. These problems suggest that other solutions, like supervised
learning, should be sought. It appears that this method can be also applied to
multi-agent systems and it yields results faster and in a human-readable form [9].

The main novelty of the solution proposed in this paper is the application of
the agent-based framework with agents which learn autonomously on a mobile de-
vice. This makes it possible to achieve scalable learning, because no computations
are performed on the data collected from mobile devices. It also protects privacy,
because the information collected about task execution is processed locally instead
of being sent to a server. An agent adapts the mobile service execution strategy
on-line. Mobile services may be executed on a computational cloud, a local PC
(personal computer) or a mobile device. The experiments are performed in a real
environment.

The structure of the article is as follows: Section 2 presents the analysis of
research in the field of agent-based systems in the context of mobile devices, Section 3
presents the concept of agent-based system for mobile service adaptation, Section 4
describes the implementation of this system, Section 5 introduces the results of the
experiments conducted and Section 6 contains conclusions.

2 RELATED WORK

Nowadays, an increase in the importance of agent-based systems can be noticed, es-
pecially when they are used as parts of heterogeneous environments. This approach
to developing systems facilitates communication between their elements located in
different places. Benefits of agent-based systems are that they are composed of intel-
ligent elements which are capable of learning and adapting. These elements are able
to communicate with one another and share experiences, which further helps the
evolution of the system to adapt to the current state of the environment. For this
reason, agent-based systems are among the best platforms for building intelligent
adaptive systems.

2.1 Learning Agents

The development of a complex, heterogeneous system is very difficult. It is practi-
cally impossible to foresee and design optimal behavior for all situations that may
arise. Therefore the agents must adapt to the situations they encounter. One of the
most commonly used adaptation mechanisms that may be applied for this purpose
is agents learning optimal behaviors.

The most common technique used for learning strategies in agent-based systems
is reinforcement learning [6, 7, 8]. The learning agent model assumes that the agent

Agent-Based System for Mobile Service Adaptation 793

interacts with the environment in discrete steps, sets its state s by observing the
environment, executes actions and receives a reward r ∈ R. The reward is high if
its actions are good, and low if they are bad. The agent has to learn which ac-
tion should be executed in a given state. The formal model of learning is based
on a Markov process. Reinforcement learning algorithms are simple and computa-
tionally inexpensive. However, the process of learning requires a lot of trials and
without complex extensions it is inefficient in large state spaces [10]. This is a result
of the curse of dimensionality, a well-known problem in dynamic programming [11],
on which reinforcement learning is based. Another disadvantage of reinforcement
learning is the unreadability of the knowledge generated because the knowledge
learned is represented in a low-level manner (e.g. Q-value tables). Limitations of
reinforcement learning can be overcome by adding extensions to the basic algorithm.
One of the most impressive results has been achieved by combining reinforcement
learning and neural networks [12]. The Deep Q-Network developed as a result of
this approach allows the processing of large-dimensional spaces and even image pro-
cessing. However, it should be noted that such learning exhibits high computational
complexity. Therefore, currently it cannot be implemented on mobile devices.

Evolutionary computation, which is a second popular method of adaptation used
in agent-based systems, relies on using multiple agent generations to improve perfor-
mance [6]. This approach is computationally expensive, because many populations
of agents have to be maintained. As a result, it is not an appropriate choice for
mobile devices. Therefore this type of adaptation is not considered here.

There are few works on supervised learning applications in multi-agent systems.
In [13], rule induction is used in a multi-agent system for vehicle routing problems.
However, in that work the learning is done offline. First, rules are generated by the
AQ (algorithm quasi-optimal) algorithm (the same as used in this work) from global
traffic data. Next, agents use these rules to predict traffic. An extension of that
approach is [14]. Agents use a hybrid learning algorithm, which is executed online.
Rule induction is used to decrease the size of the search space for reinforcement
learning. Another approach is applied in [15, 16], where Airiau et al. add learning
capabilities to the Belief-Desire-Intention model. Decision tree learning is used to
support plan applicability testing. In [17], the C4.5 algorithm is used by agent to
build a model of teammates.

2.2 Mobile Cloud Computing

The development of technology, including the increase in processing power, the
ongoing miniaturization, and improving availability of various sensors, means that
mobile devices, including smartphones, have better technical parameters and more
computing power each year, which results in a broader range of applications. The
development of mobile devices has improved our ability to determine the context of
the device and its user. Information on the context has enabled the development of
solutions that are capable of learning how they should operate in order to optimize
the use of mobile device resources and also meet user expectations as best as possible.

794 P. Nawrocki, B. Śnieżyński, J. Ko lodziej

A large number of existing solutions only utilize the resources of mobile de-
vices and information about context [18]. Devices learn how to best perform ser-
vices based on the experience acquired. However, these solutions do not enable
a permanent reduction in mobile device resource consumption or a significant in-
crease in the execution speed of mobile services. This is why another idea – the
Mobile Cloud Computing paradigm – is becoming increasingly popular. In this
concept, cloud computing is used for the purpose of offloading mobile services to
the cloud in order to increase operating speed and reduce the load on mobile de-
vices. There are many solutions using the MCC paradigm such as Adaptive Code
Offloading for Mobile Cloud Applications, AIOLOS, AlfredO (An Architecture for
Flexible Interaction with Electronic Devices), CACTSE (Cloudlet Aided Coopera-
tive Terminal Service Environment), COMET (Code Offload by Migrating Execution
Transparently), COSMOS (Clouddb for Seamless Mobile Services), Cuckoo, Elijah,
EMCO, IC-Cloud (Computation Offloading to an Intermittently-Connected Cloud),
MALMOS (Machine Learning-based Mobile Offloading Scheduler), MAUI (Mobile
Assistance Using Infrastructure), Mirroring Mobile Device, Mobile Cloud Execu-
tion Framework, Mobility Prediction Based on Machine Learning, MOCHA (Mobile
Cloud Hybrid Architecture), Replicated Application Framework, ThinkAir, VMCC
(Virtualization in Mobile Cloud Computing), MpOS (Multiplatform Offloading Sys-
tem), VCLA (Virtual Cloud Learning Automata), Service-Oriented Context-Aware
Recommender System, Mobile Multimedia Processing System and Service-Oriented
Mobile Processing System (SMPS). However, only a few solutions (MALMOS, IC-
Cloud, VCLA, Service-Oriented Context-Aware Recommender System, Mobile Mul-
timedia Processing System and SMPS) utilize machine learning in order to determine
the optimal location for executing the service (the mobile device or the cloud)

The architecture proposed in the MALMOS solution [1] enables decisions to
be made, with the application of machine learning technologies, when to offload
applications from the mobile device to the cloud. For the offloading, the solution
uses the DPartner environment (Java-based on-demand offloading framework). In
order to properly teach the system where it should run applications so that they
launch faster, the solution uses an online training mechanism. This solution only
determines the optimal location for executing the application/service and completely
fails to address the important aspect of energy consumption during the launching
of the application and transferring the data to the cloud and also the amount of
energy used by the online learning mechanism.

Another solution, IC-Cloud [2], uses machine learning to estimate task execu-
tion times for the mobile device and for the cloud. These are used to determine
the location where the task is to be executed. The time estimation system uses two
components simultaneously: the offline component, which prepares the execution
model for each task for a specific device prior to the launch of the application, and
the online component, which utilizes the online training mechanism with machine
learning algorithms on an ongoing basis. In addition, the solution also estimates the
quality of network connection based on historical data and on radio signal strength.
This solution requires the prior offline setup of the task execution model for each mo-

Agent-Based System for Mobile Service Adaptation 795

bile device separately, which may make broader application of the solution difficult.
Neither of the solutions (MALMOS, IC-Cloud) are being developed any longer.

The idea of using MCC to optimize the operation of mobile devices is still
valid and important [19]. In [20], the authors propose the MpOS system (Multi-
platform Offloading System), which allows offloading for mobile applications (An-
droid/Windows Phone) using the MCC and cloudlet concepts. The decision when
to offload tasks is made by the Dynamic Decision System (DDS) on the basis of
predefined simple metrics such as RTT (round-trip time) or the type of network
connection. At the same time, the authors investigate the impact of various types
of serialization methods on the performance of the offloading process itself. The
DDS system does not take into account the specificity of individual mobile applica-
tions nor their requirements related to the use of the processor or energy consump-
tion.

Another article [21] presents an extension of the MCC concept using the cloud
learning automata algorithm (VCLA). Some mobile devices are selected using Learn-
ing Automata (LA) as ad hoc virtual cloud elements and used to perform calcula-
tions. This complements the MCC concept when there is no connection to the
cloud. The results of tests conducted using the QualNet 4.5 simulator have shown
that the use of VCLA makes it possible to optimize the choice of the number of
remote devices (in an ad hoc virtual cloud) on which the calculations are carried
out. However, no experiments were conducted in a real-life testing environment
which would take into account, among other things, the actual energy consumption
of mobile devices.

Recently, the Deep Neural Network (DNN) mechanism has been commonly used
in mobile applications, for example for speech recognition purposes (Apple Siri).
The use of DNNs in the MCC often involves transferring large amounts of data
between the mobile device and the cloud. In [22], the authors study the possibility
of offloading only part of the DNN calculation to the cloud. The decision what
calculations to send to the cloud takes into account the energy consumption of
mobile devices and limited cloud resources. Test results demonstrated an increase
in calculation speed and a reduction in the energy consumption of the mobile device.
However, the authors only conducted simulation experiments without testing their
solution under real-life conditions.

Another article dealing with certain aspects of energy consumption by mobile
devices in the context of MCC is [23]. The authors propose an agent-based MCC
framework using the Dynamic Programming After Filtering (DPAF) algorithm to
enable the optimization of the offloading strategy, taking into account the energy
consumption of mobile devices. The experiments conducted demonstrated the use-
fulness of the framework developed in reducing energy consumption. However, they
were only performed in a simulation environment without verifying the solution
developed in real-life mobile devices.

An important aspect of using the MCC concept to optimize the operation of
mobile devices is security. In [24], the authors propose a secure and efficient offload-
ing scheme which employs a combination of regular rekeying and random padding.

796 P. Nawrocki, B. Śnieżyński, J. Ko lodziej

However, in the research conducted, the aspect of optimizing the operation of ser-
vices/applications on mobile devices was not addressed and the experiments were
only performed in a simulation environment.

The other solutions developed by the authors of this article such as the Service-
Oriented Context-Aware Recommender System – SoCaRS [25], Mobile Multimedia
Processing System – MMPS [4] and SMPS [3] make it possible to optimize (in terms
of execution time and the energy used) the location where services are executed
(locally or in the cloud) using MCC and machine learning algorithms.

MCC studies have been further developed in work related to Mobile Edge Com-
puting (MEC) [26, 27] in which cloud resources are complemented by edge devices
(servers) located close to the infrastructure which enables wireless transmission.
This concept is used primarily in cellular networks (including 5G). Most often, sys-
tems using MEC implement optimizations on the infrastructure side and use MCC
on the device and mobile application side. In MEC research, machine learning
algorithms are sometimes used to optimize the use of resources [28, 29].

In [28], a novel post-decision state (PDS) based learning algorithm was used
to optimize the operation of MEC. This enabled a significant improvement in edge
computing performance with regard to energy aspects. The research conducted only
concerned the optimization of operation and energy consumption by edge devices
and did not take into account aspects related to the optimization of mobile device
operation. Moreover, the authors’ experiments were only conducted in a simulation
environment.

In [29], the authors propose solutions for offloading in the MEC environment
in the context of IoT applications (IoT-Q-L). For this purpose, they use learning
agents and the Q-learning algorithm which improves the offloading of computing
tasks and reduces energy consumption. Experiments confirming the possibility of
optimizing task offloading were only performed in a simulation environment. An-
other article [30] proposes a multi-agent based flexible IoT edge computing system
(F-IoT-EC) which makes it possible to optimize operation and reduce the amount
of energy consumed. The system uses a rule-based engine with a fixed rule set. The
tests were carried out in a simulation environment.

2.3 Agent-Based Platforms for Mobile Devices

In order to choose a framework for our system, we have analyzed the agent-based
platforms available on mobile devices.

In [31], authors describe the JADE-LEAP platform as an agent-based technology
for use in connection with mobile devices. JADE-LEAP is a modified version of the
JADE platform that can be run on both PCs and servers, but also on mobile devices
using the Java environment (e.g., on Android mobile devices). JADE is a Java
framework designed for developing agent-based applications that are compliant with
FIPA (Foundation of Intelligent Physical Agents) specifications [32]. JADE-LEAP
message exchanges are ACL standard compliant. The exchange of messages is done
asynchronously. Each agent has its own message queue, to which data are sent from

Agent-Based System for Mobile Service Adaptation 797

the other agents. The main limitation of JADE-LEAP is the inability to run more
than one agent in a separate container on the mobile device and the fact that the
main container cannot be created on the mobile device. The JADE-LEAP design
requires it always to be located on a PC.

In [33], authors present an agent-based software development platform called
JaCaMo. JaCaMo’s operating environment can be defined as a designed and pro-
grammed set of computing units called artifacts, collected in workspaces that can
be distributed across the network. Agents can communicate with each other and
use artifacts. In order for the agents to use artifacts, each of them should provide
an appropriate interface composed of a set of operations and properties, where op-
erations are actions that allow agents to interact with the environment. Properties
define the state of a given artifact, which can be read and modified by the agent
through corresponding operations.

In [34], the author describe the µ2 platform, which is an environment used
to build applications that use an effective communicating µ-agent. The platform
provides a comprehensive network support. Applications developed for desktop
can be (in most cases) launched on mobile devices. The main component of the
µ2 platform are agents and their roles. In contrast to conventional agent-based
solutions, the µ2 platform is strongly focused on efficiency and the minimization
of performance problems. Application development is therefore primarily about
implementing roles and modeling agent organizations. Java provides the basis for
working in the µ2 platform environment (the alternative is using Clojure). Jetlang
is used as an internal messaging mechanism between agents. XStream is used to
serialize objects over the network in XML. Netty is used for establishing connections,
agent discovery and agent communication over the network.

2.4 Mobile Service Adaptation

In Sections 2.2 and 2.3, the authors primarily analyzed various existing solutions
which enable service adaptation using, among others, machine learning and the
MCC paradigm. The result of this analysis is the comparison of existing solutions,
which is presented in Table 1.

As we can see, some systems are rule-based with manually created rules and
mostly apply machine learning to train the model that is used for service adaptation.
The latter solution is better because it makes it possible to adapt the system to
changing conditions by executing the machine learning algorithm again. Considering
all possible mobile devices, tasks and conditions would result in a very complex set
of rules.

Analyzing this table, it can also be observed that many state-of-the-art solutions
are tested in simulation environments. It should be noted that simulations of wireless
networks are simplified and do not account for all the technical problems which occur
in the real world [35].

Only a few systems use agents. However, agents are often used on the modeling
level rather than at the implementation stage (SoCaRS, MMPS, SMPS, IoT-Q-L,

798 P. Nawrocki, B. Śnieżyński, J. Ko lodziej

DPAF). Moreover, there is one type of the agent defined in these systems, and that is
an abstract entity which encapsulates learning and decision algorithms. It interacts
with environment rather than with other agents. Also importantly, these systems
are developed in a standard way, without using an agent-based framework, and
certain advantages of applying an agent-based methodology (like interoperability or
the ability to operate in heterogeneous environments) are not exploited. The only
solution known to the authors which employs a multi-agent system in this domain
is F-IoT-EC. However, it is implemented in the cloud and on the edge rather than
on mobile devices and no machine learning algorithm is used.

Solutions Env Energy Time ML/Rules Agents Tests

MALMOS MCC no yes ML no real

IC-Cloud MCC no yes ML no real

MpOS MCC no yes Rules no real

VCLA MCC no yes ML no simulation

DNN MCC yes yes ML no simulation

DPAF MCC yes yes Rules one simulation

SoCaRS MCC yes yes ML one real

MMPS MCC no yes ML one real

SMPS MCC yes yes ML no real

PDS MEC yes yes ML no simulation

IoT-Q-L MEC yes yes ML one simulation

F-IoT-EC MEC yes yes Rules multi simulation

Table 1. Comparison of existing service adaptation solutions

Several important elements of our research constitute contributions to the area
of MCC. The important aspect is that solution performance has been tested in a real-
life environment. Additionally, the experience gained by the authors in developing
their solutions (SoCaRS, MMPS, SMPS) has allowed them to develop the concept
of an agent-based system for mobile service adaptation. However, in contrast to
previous research, the authors used an agent-based platform for mobile devices (µ2)
to optimize the performance of mobile services. As a result, a genuine multi-agent
system with learning agents was built. The final contribution is that the solution
developed extends (in comparison to previous work) the ability to perform services
on local PCs, which makes the environment more complex and heterogeneous. Cur-
rently, it consists of mobile devices, the mobile cloud and the PCs accessible via
a local Wi-Fi network.

In summary, when compared with the solutions analyzed, the solution developed
by the authors is the only one that uses a multi-agent system, takes into account
time and energy consumption, applies ML (Machine Learning) online and has been
tested in a real-life environment.

Agent-Based System for Mobile Service Adaptation 799

3 AGENT-BASED SYSTEM FOR MOBILE SERVICE ADAPTATION

The purpose of the research was to develop, implement and test the concept of
an agent-based system for mobile service adaptation using online machine learning
and the MCC paradigm. The system developed should allow adaptation in order to
select the optimal place of service execution from the point of view of execution time
and power consumption by a mobile device. The system keeps track of the service
being performed on a current basis and selects the place of its execution using the
machine learning concept on the basis of defined parameters.

The concept of system architecture (Figure 1) assumes that agents perform the
services commissioned on a mobile device, on a PC and in the cloud. The operation
of the system is based on interaction between agents in a heterogeneous environment.
The management agent containing the service adaptation module is located on the
mobile device. At the same time, there are agents responsible for launching the
mobile service on the mobile device (locally), on the PC and in the cloud. By using
this approach, it is possible to define a common way of exchanging messages and
data, which allows communication between different service locations and the mobile
device itself.

NETWORK
Mobile device

Main
app

Agent executing
services on PC

Mobile application

Service
Adaptation

Module

Agent executing
services locally Management Agent

Server in
computing

cloud

Figure 1. Concept of system architecture

The Service Adaptation Module (Figure 2) consists of four main elements:

• The Manager whose task is to receive a service request, collect training data,
cooperate with the Learning Module and return a response that represents the
location selected.

800 P. Nawrocki, B. Śnieżyński, J. Ko lodziej

• The Learning Module, which builds the knowledge model K from training data.
K is used to select the service execution location.

• Training data – examples representing requests, locations of their execution and
results of their execution as described by attributes Attr collected during service
execution.

• Knowledge (K) – models allowing the prediction of request execution results in
a given location.

The Manager receives the service request and possible locations from the Man-
agement Agent, describes them with Attr, creating a problem, and passes it to the
Learning Module. The Learning Module applies K and returns a response repre-
senting the predicted outcome. The Manager’s task is to select the best location
based on such predictions. It also collects data from the execution of services and
stores them in T (Training Data). It is also responsible for passing T to the Learning
Module when necessary to build new knowledge K. The structure of knowledge is
closely related to the type of machine learning algorithm used. Model examples in-
clude a set of regression parameters, a set of neural network parameters or a decision
tree.

Service Adaptation Module

Learning
Module

Manager

Knowledge

training data

problem

response

request

response

Training
data

Figure 2. Service Adaptation Module architecture

More formally, the Service Adaptation Module may be defined as the following
tuple:

SAM = (A,K, T, L) (1)

where A is a set of attributes that are used to describe tasks and the context, K is
generated knowledge, T is training data, which is a set of examples, and L is a set of
possible execution locations.

Input data for the module is a pair x = (t, c) representing the task t which
should be executed in the context c. The aim of the module is to return a location
l ∈ L = {l1, l2, . . . lns}, which corresponds to engaging one of ns services. The
processing module describes x with observation attributes O = {o1, o2, . . . on} ⊂ A,

Agent-Based System for Mobile Service Adaptation 801

which yields xO = (o1(x), o2(x), . . . on(x)), i.e. a description of the problem. Next,
using the knowledge stored in K, it solves the problem by selecting l ∈ L, which has
the minimum predicted cost. If K is empty, l is randomized.

The decision about execution location l is then applied and the task is run
using the corresponding service (i.e. locally or in the mobile cloud). After the
execution, the module obtains the execution result r(x, l), which is described by
Res = {r1, r2, . . . rm} ⊂ A attributes. For example, the four following attributes
may be used: whether execution was successful es(x, l), power consumption b(x, l),
calculation time ct(x, l) and user’s dissatisfaction dis(x, l), which may be measured
by observing if the user overrode the module’s decision. Therefore, the set of all
attributes used to describe the input data is the sum of O and Res

A = O ∪ Res . (2)

The module stores these results together with xO and location l in T . Therefore the
complete training example t stored in T has the form

t = (o1(x), o2(x), . . . on(x), r1(x, l), r2(x, l), . . . rm(x, l), l). (3)

The models {Mri} to predict Res values are constructed using supervised learn-
ing algorithms and stored in K. These models influence the decision selected. There
are |Res| models stored in K. Every model Mri : X,L → [0, 1] calculates the nor-
malized ri value for given x and l.

Using predictions of the ri value returned by the learned model: Mri(x, l), the
module may rate its decisions about all locations l ∈ L by calculating predicted
expenses e(x, l):

e(x, l) =
m∑
i=1

wi ∗Mri(x, l) (4)

where wi are weights of the result ri. The weights represent user’s preferences and
are also related to the specificity of application which executes services. In case of
an interactive application, the execution time may be more important and its weight
may be higher. If mobile services are executed in a background process, the weight
of battery usage may have higher value. In the production version of the system,
weights can be modified by the user in the settings.

The module selects the location l∗ ∈ L for which execution is predicted to be
successful and the expense is predicted to be the lowest:

l∗ =

{
arg minl∈L{e(x, l)|Mes(x, l) = 1}, Mes ∈ K,
arg minl∈L{e(x, l)}, Mes /∈ K.

(5)

The full algorithm of the Service Adaptation Module is presented in Figure 3.
At the beginning, K and T are set to empty (lines 1–2). Next, algorithm waits
for the task (line 4). If there is no learned knowledge, the decision is randomized
(lines 5–6). Else there is some knowledge, therefore expenses are calculated for all

802 P. Nawrocki, B. Śnieżyński, J. Ko lodziej

possible locations (line 8). Next, the best location is selected (line 9). To provide
exploration, l∗ is replaced by a random location with ε probability (line 10). The task
is executed in the selected service (line 12). Results of the execution are observed
(line 13) and the example is stored in T (line 14). After processing a given number
of tasks (line 15), Learning Module is called to generate new knowledge from T and
the learned knowledge is stored in K (line 16).

1: K := ∅;
2: T := ∅;
3: while module is working do
4: wait for x = (t, c);
5: if K = ∅ then
6: l := random decision;
7: else
8: calculate e(x, l) according to Equation (4) for all l ∈ L applying

models from K to predict ri;
9: l∗ := best location according to Equation (5);

10: replace l∗ by a random location with ε probability;
11: end if
12: execute task at the service determined by l∗;
13: observe execution results;
14: store example t (see Equation (3)) in the T ;
15: if it is learning time (e.g. every 100 steps) then
16: learn K from T ;
17: end if
18: end while

Figure 3. Algorithm of the Service Adaptation Module allowing the adaptation of mobile
service using machine learning

4 IMPLEMENTATION

The µ2 platform was used for implementation because it is lightweight and allows
the easy building of agents working in a heterogeneous environment. Each agent
operating within the µ2 platform must be on the same network (e.g. the same Wi-
Fi network). For this reason, it is not possible to establish direct communication
between an agent operating on a mobile device and an agent operating in the public
cloud. Exchanges of messages between agents are accomplished using the TCP
(Transmission Control Protocol).

The most important agent in the system is the ManagementAgent, which re-
ceives requests for service execution. The ManagementAgent selects the optimal
location for the service and then passes the service’s startup parameters to one of
the service agents:

Agent-Based System for Mobile Service Adaptation 803

• AndroidProviderAgent – the agent responsible for the execution of the service
commissioned on the mobile device;

• AWSProviderAgent – the agent responsible for the execution of the service com-
missioned in the computing cloud;

• PCProviderAgent – the agent responsible for the execution of the service com-
missioned on the desktop device.

The communication between agents is based on exchanging MicroMessage mes-
sages. The message includes information about the sender and Intent (data). In the
Agent-based System for MCC Service Adaptation, the Intent object is composed
of:

• the data needed for service execution;

• information about the time when service execution started;

• battery status information at the start of service execution;

• information about the type of service executed;

• the result of service execution.

The detection of active agents is accomplished through a polling mechanism –
Heartbeat. The XML configuration file defines the frequency with which an agent
should query the presence of other agents.

At the time of receiving the service request, the ManagementAgent selects
where to execute the service, then creates a MicroMessage message with the data
necessary to execute it and the information described above. The Management-
Agent sends the message to the recipient who should execute the service via the
send(MicroMessage message) function. If the service should be executed by all
agents available, then the sendGlobalBroadcast(MicroMessage message) function is
used.

The Mobile application was written for Android mobile devices in accordance
with API 17. During the implementation work, the following technologies and tools
were used:

• Java language version 1.7;

• Gradle for building and managing application dependencies;

• Power Tutor for measuring the energy consumption of mobile device;

• WEKA (Waikato Environment for Knowledge Analysis) – a library providing
machine learning algorithms;

• Tess4J – Java interface for the Tesseract library for text recognition (Optical
Character Recognition – OCR);

• iText – a library for creating PDF documents;

• AWS (Amazon Web Services) Android SDK – a library for communicating be-
tween a mobile device and the AWS computing cloud;

804 P. Nawrocki, B. Śnieżyński, J. Ko lodziej

• µ2 – a platform for multi-agent systems.

WEKA was selected as the machine learning library because it has been ported
to the Android system used in the development and it provides a broad range of
algorithms, thus enabling comparisons between different solutions. In the production
version of the system, it may be replaced by a more modern machine learning library
like TensorFlow.

The Amazon AWS cloud has been used in the Agent-based System for MCC
Service Adaptation. For service execution, the AWS Lambda solution is used, which
is based on the IaaS (Infrastructure as a Service) model. AWS Lambda enables
the implementation of features that can be remotely invoked by web applications,
desktop applications and mobile applications. Due to the limitations related to µ2

platform operation in a local area network, it was not possible to run the agent in
the AWS Lambda cloud computing environment.

Two AWS Lambda functions have been created for MCC Service Adaptation:
the OCR and convertingPNGToPDF functions. The OCR service uses the Tess4J
API for Tesseract library operations. The same mechanism was used to implement
the service on a desktop. For the OCR service using the Tesseract library, it was
not possible to use the same source code as for the mobile app where the dedicated
tess-two library was used, which is a modified version of the Tesseract library that
can run on Android mobile devices. The same source code (using the iText library)
was used for the conversion of the image file to PDF. The AWS Lambda cloud
computing environment in which the functions are executed is a Java-based one.
The maximum memory for the functions was set at 512 MB and the timeout was
set to five minutes.

The desktop application within the Agent-based System for MCC Service Adap-
tation uses the µ2 environment and Java. The most important part of the application
is the agent that works on the desktop device. The agent communicates with the
Management Agent on the mobile device through the network. As with other agents
operating within the framework of the system, it receives the service request, ex-
ecutes it on the desktop device and then sends the result of its execution to the
Management Agent.

In order to objectively compare the services offered by cloud computing and the
desktop application, we have decided to run the desktop application under conditions
that are as close as possible to those in the cloud computing environment. For this
purpose, the Docker tool is used to place the program and all its dependencies, such
as additional libraries, in a lightweight, portable and virtual container that can be
run on a Linux server. In order to run a container on a Docker, an image must
be created with boot parameters that install the appropriate libraries and other
dependencies.

In order to map the AWS Lambda environment on a PC, a desktop application
is started via Docker using a docker-lambda image. It has the same software and
libraries installed, the same file structure and permissions, and the same environ-
mental variables as the AWS Lambda environment. The image makes it possible to

Agent-Based System for Mobile Service Adaptation 805

run AWS Lambda functions in the Node.JS and Python environments. Currently,
the Java environment is not yet fully supported, but it is possible to launch Java
programs manually.

5 PERFORMANCE EVALUATION

A series of experiments were conducted to verify the operation of the Agent-based
System for MCC Service Adaptation. As test services, text recognition (OCR) and
PNG transformation to PDF format were selected due to the complexity of the
service and its demand for mobile device hardware resources.

Eight graphic files with varying sizes, resolutions, and amounts of text contained
in them were selected to test the service with different input parameters. Each of the
experiments was designed to perform a defined set of services under certain condi-
tions. The tests included service execution, time measurements, energy consumption
measurements by the mobile device while the service was being executed, and the
recording of results. Observed attributes were O = {tt, s, res, con, sig}. They corre-
spond to task type, file size, number of pixels in the picture, connection type and
network connection signal strength, respectively. Execution results observed were
Res = {ct, b} (calculation time and battery usage). Result expenses were calculated
according to the following formula:

e(x, l) = wctct(x, l) + wbb(x, l) (6)

where:

• wct – weight of service execution time;

• wb – weight of device energy consumption.

In experiments, sets of service requests were executed as consecutive rounds.
During the first round, the location is selected in a random way. During each
subsequent round, the Service Adaptation Module is trained on the data collected
from previous rounds 1 . . . r − 1. To ensure exploration, the location is randomly
selected with a probability of 10% even if knowledge is not empty.

After each service execution, the results are recorded in Training Data. After
each round, the Service Adaptation Module builds new knowledge using one of the
following algorithms provided by the WEKA library: J48, RandomForest, KStar,
MultilayerPerceptron and SimpleLogistic. For the J48, RandomForest and KStar
algorithms, numerical values of parameters are discretized into 6 compartments of
equal frequency.

Every experiment consists of 8 rounds, repeated 10 times. The measurement
involves total service execution time and total energy consumption of the mobile
device during the round in question. The results are presented as charts representing
average values and standard deviations of these measures over ten repetitions for
each of the rounds.

806 P. Nawrocki, B. Śnieżyński, J. Ko lodziej

The experiment was carried out using a mobile device – LG G2 (CPU1 –
2.26 GHz, memory – 2 GB), router – Wi-Fi TP-Link TL-WR842N (802.11bgn),
cloud – AWS Lambda platform and PC (CPU – Intel Core i5-3320M 2.6 GHz, mem-
ory – 8 GB).

5.1 Initial Tests

Initially, we measured values for cases when all tasks were executed on the mobile
device. These values are 364 806 ms for average execution time and 399 556 mJ
for average battery power consumption. Similarly, for executing all requests in
the cloud we get an average execution time of 340 714 ms and an average battery
power consumption of 408 212 mJ. It means that execution in the cloud is faster,
but requires somewhat more energy because of data transmission. There are no
results related to the execution of all tasks on the desktop device since the solution
implemented does not enable the execution of tasks on a PC when the mobile device
uses HSDPA (High-Speed Downlink Packet Access). In the scenario simulated, the
user can only use the desktop device at home.

5.2 Energy Optimization

The experiment was aimed at comparing the effectiveness of machine learning algo-
rithms in optimizing the power consumption of the mobile device. For comparison,
we selected five classification algorithms: J48, RandomForest, MultilayerPerceptron,
logistic regression and k -NN (k-Nearest Neighbors). The set of service requests con-
sists of 16 individual OCR service requests with various input data. Eight of them
are executed using the Wi-Fi connection, and eight using HSDPA.

Coefficient values are: the cost of service execution time wct at 0.1 and the cost
of device energy consumption wb at 0.9. Figure 4 shows the average results for each
round together with standard deviations.

The logistic regression algorithm was the worst from the point of view of opti-
mization. The results obtained by this algorithm in the rounds where location was
selected were worse than in the first round where the choice of execution location
was random.

The k -NN algorithm enabled a significant optimization of energy consumption,
but it was susceptible to overfitting. Initially, the algorithm was getting better with
each round until the fifth one, after which it started to oscillate. The statistical
significance of the improvement between the first and last rounds (d) was checked
using t-Student test. The p-value equals to 0.1196, which means that d is not
statistically significant.

Three other algorithms (J48, Random Forest and MultilayerPerceptron) enabled
similar levels of optimization. For each of them, a significant reduction in energy
consumption could be observed in the early rounds. After the fifth round had been

1 Central Processing Unit

Agent-Based System for Mobile Service Adaptation 807

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 1 2 3 4 5 6 7 8

En
er

gy
 c

on
su

m
pt

io
n,

 m
J

Rounds

J48
Random forest

Multilayer Perceptron
Logistic regression

k-NN

Figure 4. Optimizing energy consumption for coefficients wct = 0.1 and wb = 0.9

completed, the process of reducing energy consumption slowed down, but oscillations
were smaller. Results of the t-Student test for these classifiers (p-value) are as
follows:

• for J48: 0.0245, which means that d is statistically significant;

• for RandomForest: 0.0004, which means that d is statistically significant;

• for MultilayerPerceptron: ≤ 0.0001, which means that d is statistically signifi-
cant.

The experiment also examined the level of optimization in execution time with
the same cost factors. The results are shown in Figure 5.

As in the case of energy consumption optimization, the logistic regression algo-
rithm exhibited the worst results because no improvement could be observed. The
k -NN and MultilayerPerceptron algorithms made it possible to decrease execution
time. However, it should be noted that oscillations appeared after several rounds.
The best results were obtained by the J48 and RandomForest algorithms, which re-
duced execution time with small standard deviations in each round and oscillations
were small. The results of the t-Student test (p-value) are as follows:

• for logistic regression algorithm: 0.3501, which means that d is not statistically
significant;

• for k -NN: 0.0190, which means that d is statistically significant;

• for MultilayerPerceptron: 0.0024, which means that d is statistically significant;

• for J48: ≤ 0.0001, which means that d is statistically significant;

• for RandomForest: ≤ 0.0001, which means that d is statistically significant.

808 P. Nawrocki, B. Śnieżyński, J. Ko lodziej

 200000

 250000

 300000

 350000

 400000

 450000

 500000

 1 2 3 4 5 6 7 8

Ex
ec

ut
io

n
tim

e,
 m

s

Rounds

J48
Random forest

Multilayer Perceptron
Logistic regression

k-NN

Figure 5. Optimizing execution time for coefficients wct = 0.1 and wb = 0.9

5.3 Time Execution Optimization

The experiment methodology was analogous to the one described above. The exper-
iment was designed to compare machine learning algorithms for selecting the service
execution location in order to optimize execution time. For comparison, the three
best algorithms were selected: J48, RandomForest and MultilayerPerceptron. The
set of service requests is defined in the same way as in the previous experiment. The
coefficients are: the cost of service execution time wct at 0.9 and the energy con-
sumption of the device wb at 0.1. Average results together with standard deviations
are shown in Figure 6.

The J48 and RandomForest algorithms exhibited similar results. Between the
second and fourth rounds, the improvement was almost linear. From round four
onwards, the reduction in execution time was no longer present, and then in rounds
from five to eight the execution time increased slightly. Standard deviations for
these two algorithms were significantly higher than for the MultilayerPerceptron al-
gorithm. The MultilayerPerceptron algorithm behaved similarly to the other two,
with the difference that from the second to fourth rounds it enabled better opti-
mization of execution time, and from the fifth round onwards the service execution
time for the MultilayerPerceptron algorithm oscillated around the same level and
standard deviations were small. The results of the t-Student test (p-value) are as
follows:

• for J48: 0.0002, which means that d is statistically significant;

• for RandomForest: ≤ 0.0001, which means that d is statistically significant;

• for MultilayerPerceptron: 0.0033, which means that d is statistically significant.

Agent-Based System for Mobile Service Adaptation 809

 200000

 250000

 300000

 350000

 400000

 1 2 3 4 5 6 7 8

Ex
ec

ut
io

n
tim

e,
 m

s

Rounds

J48
Random forest

Multilayer Perceptron

Figure 6. Optimizing execution time for coefficients wct = 0.9 and wb = 0.1

The experiment also examines the level of energy consumption optimization on
the mobile device with the same cost factors. The results are shown in Figure 7.

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 1 2 3 4 5 6 7 8

En
er

gy
 c

on
su

m
pt

io
n,

 m
J

Rounds

J48
Random forest

Multilayer Perceptron

Figure 7. Optimizing energy consumption for coefficients wct = 0.9 and wb = 0.1

In the fourth round, energy consumption by the mobile device was the lowest
for the Random Forest algorithm. However, from the fourth round onwards there
was an increase in energy consumption by the device and a significant increase
in standard deviation could be observed in rounds six and seven. The significant
increase in standard deviation was related, among others, to the specificity of the

810 P. Nawrocki, B. Śnieżyński, J. Ko lodziej

HSDPA wireless transmission technology used in the tests, which does not allow to
guarantee the quality of the network connection (including delay and bandwidth).
The J48 and MultilayerPerceptron algorithms proved better in the end and they
also had lower standard deviations. The results of the t-Student test (p-value) are
as follows:

• for J48: 0.0002, which means that d is statistically significant;

• for RandomForest: 0.1757, which means that d is not statistically significant;

• for MultilayerPerceptron: 0.0013, which means that d is statistically significant.

5.4 Time and Energy Optimization

The experiment methodology was analogous to the previous experiments. The ex-
periment aimed at comparing machine learning algorithms for selecting service ex-
ecution location in order to optimize both mobile device execution time and energy
consumption. The same algorithms were compared as in the previous experiments:
J48, Random Forest and MultilayerPerceptron. The values of coefficients were as
follows: service execution time cost wct at 0.5 and device energy consumption cost
wb at 0.5. Average results together with standard deviations are shown in Figures 8
and 9.

 150000

 200000

 250000

 300000

 350000

 1 2 3 4 5 6 7 8

Ex
ec

ut
io

n
tim

e,
 m

s

Rounds

J48
Random forest

Multilayer Perceptron

Figure 8. Optimizing execution time for coefficients wct = 0.5 and wb = 0.5

The J48 algorithm enabled the optimization of both mobile device execution
time and energy consumption. In the case of energy consumption, until the fourth
round of the algorithm a significant reduction in energy consumption was noted.
From the fifth round onwards, the process slowed down, but continued. A similar
situation occurred with the optimization of execution time, with the difference that

Agent-Based System for Mobile Service Adaptation 811

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 1 2 3 4 5 6 7 8

En
er

gy
 c

on
su

m
pt

io
n,

 m
J

Rounds

J48
Random forest

Multilayer Perceptron

Figure 9. Optimizing energy consumption for coefficients wct = 0.5 and wb = 0.5

from round four to six there was an increase in execution time but from round six to
eight the execution time decreased again. The Random Forest algorithm behaved
in the same manner with respect to both measurements. Until the fourth round,
there was a significant improvement in both parameters, and from the fourth to
the eighth rounds the values of the parameters oscillated around the same level. In
addition, the algorithm was characterized by the fact that the standard deviation
value over all rounds remained at a similar, low level. The MultilayerPerceptron
algorithm also optimized both the execution time and energy consumption of the
mobile device well. In both cases, the reduction was considerable until the fourth
round. From round four to round eight, the values of the metrics oscillated. The
feature that distinguished this algorithm from the others was also the low value
of standard deviation for all rounds. The results of the t-Student test for energy
consumption optimization (p-value) are as follows:

• for J48: 0.0039, which means that d is statistically significant;

• for RandomForest: 0.0059, which means that d is statistically significant;

• for MultilayerPerceptron: 0.0105, which means that d is statistically significant.

The results of the t-Student test for execution time optimization (p-value) are
as follows:

• for J48: 0.0002, which means that d is statistically significant;

• for RandomForest: 0.0002, which means that d is statistically significant;

• for MultilayerPerceptron: 0.0053, which means that d is statistically significant.

812 P. Nawrocki, B. Śnieżyński, J. Ko lodziej

5.5 Analysis of Results

As we can see, the J48, RandomForest and MultilayerPerceptron algorithms are
useful for service adaptation, while k -NN and SimpleLogistic yield poor results.
It should be noted that a careful choice of parameters with values different from
default ones might improve their results, but the first three algorithms listed work
well without such tuning.

The best optimization results were achieved by the J48 algorithm. It exhibited
the lowest energy consumption or execution time in the last round in three out of
six cases. This learning algorithm is relatively simple and has a low computational
complexity. What is also important, the knowledge learned has a form of a decision
tree, so it may potentially be analyzed by a human. Thus it appears to be the best
choice for mobile cloud computing and service adaptation.

To determine which algorithms yielded the fastest improvements, the results in
round three were compared. The fastest learning algorithm was Random Forest,
since it won in three out of six cases. Unfortunately, this learning algorithm is more
complex and needs more resources. The models learned are also difficult to analyze
in this case.

All algorithms yielded rapid improvements in performance in the first three
rounds. The reason for this is that during these rounds, various new examples were
added to the training set. During later rounds, the examples added were more
frequently similar to the previous ones and as a result, progress was much slower:
results were sometimes even worse than in earlier rounds or they oscillated.

6 CONCLUSIONS

In this paper, we have proposed an agent-based solution for mobile service adapta-
tion using machine learning. This approach enables online, autonomous adaptation
on a mobile device. Through the use of machine learning algorithms as well as the
Mobile Cloud Computing concept, various mobile services and applications may be-
come smarter, faster and more energy efficient. The local execution of the learning
algorithm allows for scalability because each device learns on its own. This solution
also ensures privacy protection as no usage data are being sent.

We have also shown that it is possible to add one more location to execute
computation, a PC computer that may by located at home or at work and used
instead of the cloud. Such solution makes task-related communication much faster,
because only local area network may be used. Increased complexity of the system
did not influence the adaptation capability. Application of the multi-agent platform
helped to design and implement PC-mobile devices cooperation.

Experimental results obtained in a real-life environment demonstrate that the
application of this approach brings improvements in energy consumption and exe-
cution time that are statistically significant. The best results are obtained by the
J48 algorithm. This algorithm creates models in a form of decision tree. Therefore
these models can be analyzed what may be important in some applications.

Agent-Based System for Mobile Service Adaptation 813

In future research we would like to address, among other things, the use of
localization data and the building of user models. The first improvement would
make it possible to take into account user needs specific to his/her location, e.g. the
ability to recharge the device while at home. On the other hand, building a user
model would enable a faster start. Instead of an empty knowledge set, an initial
knowledge base matching the owner profile could be used. We would also like to
incorporate other metrics such as the quality of the result and its cost in the cost
function (Equation (6)). We will be also investigating possibilities to use agent-
based platform on a cloud by extending the functionality of the µ2 platform with
the possibility of unicast communication.

Acknowledgements

The research presented in this paper was supported by funds from the Polish Min-
istry of Science and Higher Education assigned to the AGH University of Science
and Technology.

REFERENCES

[1] Eom, H.—Figueiredo, R.—Cai, H.—Zhang, Y.—Huang, G.: MALMOS: Ma-
chine Learning-Based Mobile Offloading Scheduler with Online Training. Proceed-
ings of the 2015 3rd IEEE International Conference on Mobile Cloud Computing,
Services, and Engineering (MOBILECLOUD ’15), 2015, pp. 51–60, doi: 10.1109/mo-
bilecloud.2015.19.

[2] Shi, C.—Pandurangan, P.—Ni, K.—Yang, J.—Ammar, M.—Naik, M.—
Zegura, E.: IC-Cloud: Computation Offloading to an Intermittently-Connected
Cloud. Technical report, School of Computer Science, Georgia Institute of Technology,
2013.

[3] Nawrocki, P.—Sniezynski, B.: Autonomous Context-Based Service Optimiza-
tion in Mobile Cloud Computing. Journal of Grid Computing, Vol. 15, 2017, No. 3,
pp. 343–356, doi: 10.1007/s10723-017-9406-2.

[4] Nawrocki, P.—Sniezynski, B.: Adaptive Service Management in Mobile Cloud
Computing by Means of Supervised and Reinforcement Learning. Journal of Network
and Systems Management, Vol. 26, 2018, No. 1, pp. 1–22, doi: 10.1007/s10922-017-
9405-4.

[5] Nawrocki, P.—Sniezynski, B.—Slojewski, H.: Adaptable Mobile Cloud Com-
puting Environment with Code Transfer Based on Machine Learning. Pervasive and
Mobile Computing, Vol. 57, 2019, pp. 49–63, doi: 10.1016/j.pmcj.2019.05.001.

[6] Panait, L.—Luke, S.: Cooperative Multi-Agent Learning: The State of the Art.
Autonomous Agents and Multi-Agent Systems, Vol. 11, 2005, No. 3, pp. 387–434,
doi: 10.1007/s10458-005-2631-2.

[7] Sen, S.—Weiss, G.: Learning in Multiagent Systems. In: Weiss, G. (Ed.): Multia-
gent Systems. Chapter 6. MIT Press, Cambridge, MA, USA, 1999, pp. 259–298.

https://doi.org/10.1109/mobilecloud.2015.19
https://doi.org/10.1109/mobilecloud.2015.19
https://doi.org/10.1007/s10723-017-9406-2
https://doi.org/10.1007/s10922-017-9405-4
https://doi.org/10.1007/s10922-017-9405-4
https://doi.org/10.1016/j.pmcj.2019.05.001
https://doi.org/10.1007/s10458-005-2631-2

814 P. Nawrocki, B. Śnieżyński, J. Ko lodziej

[8] Tuyls, K.—Weiss, G.: Multiagent Learning: Basics, Challenges, and Prospects.
AI Magazine, Vol. 33, 2012, No. 3, pp. 41–52, doi: 10.1609/aimag.v33i3.2426.

[9] Sniezynski, B.: A Strategy Learning Model for Autonomous Agents Based on
Classification. International Journal of Applied Mathematics and Computer Science,
Vol. 25, 2015, No. 3, pp. 471–482.

[10] Kaelbling, L. P.—Littman, M. L.—Moore, A. W.: Reinforcement Learning:
A Survey. Journal of Artificial Intelligence Research, Vol. 4, 1996, pp. 237–285, doi:
10.1613/jair.301.

[11] Bellman, R. E.: Dynamic Programming. A Rand Corporation Research Study.
Princeton University Press, 1957.

[12] Mnih, V.—Kavukcuoglu, K.—Silver, D.—Rusu, A. et al.: Human-Level
Control Through Deep Reinforcement Learning. Nature, Vol. 518, 2015, No. 7540,
pp. 529–533, doi: 10.1038/nature14236.

[13] Gehrke, J. D.—Wojtusiak, J.: Traffic Prediction for Agent Route Planning. In:
Bubak, M., Dick van Albada, G. D., Dongarra, J., Sloot, P. M. A. (Eds.): Computa-
tional Science – ICCS 2008. Springer, Berlin, Heidelberg, Lecture Notes in Computer
Science, Vol. 5103, 2008, pp. 692–701, doi: 10.1007/978-3-540-69389-5 77.

[14] Sniezynski, B.—Wojcik, W.—Gehrke, J. D.—Wojtusiak, J.: Combining
Rule Induction and Reinforcement Learning: An Agent-Based Vehicle Routing. Pro-
ceedings of the 2010 Ninth International Conference on Machine Learning and Ap-
plications (ICMLA 2010), 2010, pp. 851–856, doi: 10.1109/icmla.2010.132.

[15] Airiau, S.—Padgham, L.—Sardina, S.—Sen, S.: Incorporating Learning in
BDI Agents. Proceedings of the ALAMAS + ALAg Workshop at AAMAS, Estoril,
Portugal, May 2008.

[16] Singh, D.—Sardina, S.—Padgham, L.—Airiau, S.: Learning Context Condi-
tions for BDI Plan Selection. Proceedings of the 9th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS ’10), Toronto, Canada, 2010,
Vol. 1, pp. 325–332.

[17] Barrett, S.—Stone, P.—Kraus, S.—Rosenfeld, A.: Learning Teammate
Models for Ad Hoc Teamwork. International Conference on Autonomous Agents and
Multiagent Systems (AAMAS), Adaptive Learning Agents (ALA) Workshop, Valen-
cia, Spain, June 2012.

[18] Korpipaa, P.—Mantyjarvi, J.—Kela, J.—Keranen, H.—Malm, E. J.: Man-
aging Context Information in Mobile Devices. IEEE Pervasive Computing, Vol. 2,
2003, No. 3, pp. 42–51, doi: 10.1109/mprv.2003.1228526.

[19] Zhou, B.—Buyya, R.: Augmentation Techniques for Mobile Cloud Computing:
A Taxonomy, Survey, and Future Directions. ACM Computing Surveys (CSUR),
Vol. 51, 2018, No. 1, pp. 13:1–13:38, doi: 10.1145/3152397.

[20] Rego, P. A. L.—Costa, P. B.—Coutinho, E. F.—Rocha, L. S.—
Trinta, F. A. M.—de Souza, J. N.: Performing Computation Offloading on
Multiple Platforms. Computer Communications, Vol. 105, 2017, pp. 1–13, doi:
10.1016/j.comcom.2016.07.017.

[21] Krishna, P. V.—Misra, S.—Saritha, V.—Raju, D. N.—Obaidat, M. S.:
An Efficient Learning Automata Based Task Offloading in Mobile Cloud Comput-

https://doi.org/10.1609/aimag.v33i3.2426
https://doi.org/10.1613/jair.301
https://doi.org/10.1038/nature14236
https://doi.org/10.1007/978-3-540-69389-5_77
https://doi.org/10.1109/icmla.2010.132
https://doi.org/10.1109/mprv.2003.1228526
https://doi.org/10.1145/3152397
https://doi.org/10.1016/j.comcom.2016.07.017

Agent-Based System for Mobile Service Adaptation 815

ing Environments. 2017 IEEE International Conference on Communications (ICC),
2017, pp. 1–6, doi: 10.1109/icc.2017.7997139.

[22] Eshratifar, A. E.—Pedram, M.: Energy and Performance Efficient Computation
Offloading for Deep Neural Networks in a Mobile Cloud Computing Environment.
Proceedings of the 2018 Great Lakes Symposium on VLSI (GLSVLSI ’18), ACM,
2018, pp. 111–116, doi: 10.1145/3194554.3194565.

[23] Kuang, Z.—Guo, S.—Liu, J.—Yang, Y.: A Quick-Response Framework for
Multi-User Computation Offloading in Mobile Cloud Computing. Future Generation
Computer Systems, Vol. 81, 2018, pp. 166–176, doi: 10.1016/j.future.2017.10.034.

[24] Meng, T.—Wolter, K.—Wu, H.—Wang, Q.: A Secure and Cost-Efficient Off-
loading Policy for Mobile Cloud Computing Against Timing Attacks. Pervasive and
Mobile Computing, Vol. 45, 2018, pp. 4–18, doi: 10.1016/j.pmcj.2018.01.007.

[25] Nawrocki, P.—Śnieżyński, B.—Czyżewski, J.: Learning Agent for a Service-
Oriented Context-Aware Recommender System in a Heterogeneous Environment.
Computing and Informatics, Vol. 35, 2016, No. 5, pp. 1005–1026.

[26] Dolui, K.—Datta, S. K.: Comparison of Edge Computing Implementations: Fog
Computing, Cloudlet and Mobile Edge Computing. 2017 Global Internet of Things
Summit (GIoTS), June 2017, pp. 1–6, doi: 10.1109/giots.2017.8016213.

[27] Mao, Y.—You, Ch.—Zhang, J.—Huang, K.—Letaief, K. B.: A Sur-
vey on Mobile Edge Computing: The Communication Perspective. IEEE Com-
munications Surveys and Tutorials, Vol. 19, 2017, No. 4, pp. 2322–2358, doi:
10.1109/comst.2017.2745201.

[28] Xu, J.—Chen, L.—Ren, S.: Online Learning for Offloading and Autoscal-
ing in Energy Harvesting Mobile Edge Computing. IEEE Transactions on Cog-
nitive Communications and Networking, Vol. 3, 2017, No. 3, pp. 361–373, doi:
10.1109/tccn.2017.2725277.

[29] Alam, M. G. R.—Hassan, M. M.—Uddin, M. Z.—Almogren, A.—Fortino,
G.: Autonomic Computation Offloading in Mobile Edge for IoT Applica-
tions. Future Generation Computer Systems, Vol. 90, 2019, pp. 149–157, doi:
10.1016/j.future.2018.07.050.

[30] Ogino, T.—Kitagami, S.—Suganuma, T.—Shiratori, N.: A Multi-Agent
Based Flexible IoT Edge Computing Architecture Harmonizing Its Control with
Cloud Computing. International Journal of Networking and Computing, Vol. 8, 2018,
No. 2, pp. 218–239.

[31] Bergenti, F.—Caire, G.—Gotta, D.: Agents on the Move: JADE for Android
Devices. In: Santoro, C., Bergenti, F. (Eds.): WOA 2014. CEUR Workshop Proceed-
ings, Vol. 1260, 2014, Art. No. 9.

[32] Bellifemine, F.—Poggi, A.—Rimassa, G.: JADE: A FIPA2000 Compliant
Agent Development Environment. Proceedings of the Fifth International Con-
ference on Autonomous Agents (AGENTS ’01), ACM, 2001, pp. 216–217, doi:
10.1145/375735.376120.

[33] Boissier, O.—Bordini, R.—Hubner, J.—Ricci, A.—Santi, A.: Multi-Agent
Oriented Programming with JaCaMo. Science of Computer Programming, Vol. 78,
2013, No. 6, pp. 747–761, doi: 10.1016/j.scico.2011.10.004.

https://doi.org/10.1109/icc.2017.7997139
https://doi.org/10.1145/3194554.3194565
https://doi.org/10.1016/j.future.2017.10.034
https://doi.org/10.1016/j.pmcj.2018.01.007
https://doi.org/10.1109/giots.2017.8016213
https://doi.org/10.1109/comst.2017.2745201
https://doi.org/10.1109/tccn.2017.2725277
https://doi.org/10.1016/j.future.2018.07.050
https://doi.org/10.1145/375735.376120
https://doi.org/10.1016/j.scico.2011.10.004

816 P. Nawrocki, B. Śnieżyński, J. Ko lodziej

[34] Frantz, Ch.: Micro-Agents Revisited: A Modern Reimplementation of the Micro-
Agent Layer of the Otago Agent Platform (OPAL). Master thesis, University of
Koblenz-Landau, Germany, 2010.

[35] Haq, F.—Kunz, T.: Simulation vs. Emulation: Evaluating Mobile Ad Hoc Network
Routing Protocols. Proceedings of the International Workshop on Wireless Ad-Hoc
Networks (IWWAN 2005), London, 2005.

Piotr Nawrocki is Assistant Professor in the Department of
Computer Science at the AGH University of Science and Tech-
nology, Poland. His research interests include distributed sys-
tems, computer networks, mobile systems, service-oriented ar-
chitectures and Mobile Cloud Computing. He obtained his Ph.D.
in computer science from AGH Krakow.

Bart lomiej �Snie_zy�nski received his Ph.D. degree in computer
science in 2004 from the AGH University of Science and Tech-
nology in Krakow, Poland. In 2004 he worked as Postdoctoral
Fellow under the supervision of the Professor R. S. Michalski at
the Machine Learning and Inference Laboratory, George Mason
University, Fairfax, VA, USA. Currently, he is Assistant Pro-
fessor in the Department of Computer Science at the AGH. His
research interests include machine learning, multi-agent systems,
and knowledge engineering.

Jakub Ko lodziej is a computer science graduate student at the
AGH University of Science and Technology in Krakow, Poland.

