
Computing and Informatics, Vol. 38, 2019, 817–850, doi: 10.31577/cai 2019 4 817

MULTILEVEL ALGEBRAIC APPROACH
FOR PERFORMANCE ANALYSIS
OF PARALLEL ALGORITHMS

Luisa D’Amore, Valeria Mele

University of Naples Federico II
Naples, Italy
e-mail: {luisa.damore, valeria.mele}@unina.it

Diego Romano

Institute of High Performance Computing and Networking (ICAR), CNR
Naples, Italy
e-mail: diego.romano@cnr.it

Giuliano Laccetti

University of Naples Federico II
Naples, Italy
e-mail: giuliano.laccetti@unina.it

Abstract. In order to solve a problem in parallel we need to undertake the fun-
damental step of splitting the computational tasks into parts, i.e. decomposing the
problem solving. A whatever decomposition does not necessarily lead to a par-
allel algorithm with the highest performance. This topic is even more important
when complex parallel algorithms must be developed for hybrid or heterogeneous
architectures. We present an innovative approach which starts from a problem de-
composition into parts (sub-problems). These parts will be regarded as elements
of an algebraic structure and will be related to each other according to a suit-
ably defined dependency relationship. The main outcome of such framework is to
define a set of block matrices (dependency, decomposition, memory accesses and
execution) which simply highlight fundamental characteristics of the correspond-

818 L. D’Amore, V. Mele, D. Romano, G. Laccetti

ing algorithm, such as inherent parallelism and sources of overheads. We provide
a mathematical formulation of this approach, and we perform a feasibility analysis
for the performance of a parallel algorithm in terms of its time complexity and scal-
ability. We compare our results with standard expressions of speed up, efficiency,
overhead, and so on. Finally, we show how the multilevel structure of this frame-
work eases the choice of the abstraction level (both for the problem decomposition
and for the algorithm description) in order to determine the granularity of the tasks
within the performance analysis. This feature is helpful to better understand the
mapping of parallel algorithms on novel hybrid and heterogeneous architectures.

Keywords: Complexity and performance of numerical algorithms, performance
metrics, data decomposition, concurrency, parallel algorithms

Mathematics Subject Classification 2010: 65Y05, 65Y20, 68R01

1 INTRODUCTION AND MOTIVATION

Numerical algorithms are at the heart of the software that enable scientific discover-
ies. The development of effective algorithms has a tremendous impact on harnessing
emerging computer architectures to achieve new science. The mapping problem, first
considered in 1980s [8], refers to the implementation of algorithms on a given target
architecture which is capable to maximize some performance metrics [5, 6, 31, 26, 32].
Due to the multidimensional heterogeneity of modern architectures, it is becoming
increasingly clear that using the performance metrics in a one-size-fits-all approach
fails to discover sources of performance degradation that hamper to deliver the de-
sired performance level. The present article attempts to collect our efforts towards
the development of a performance model, based on mathematical tools, guiding the
understanding of computational tasks within an algorithm. We briefly summarize
main novelties we provide in this work.

• We address the study of data dependencies in an algorithm, through the depen-
dency matrix.

• We introduce the decomposition matrix describing a decomposition of the prob-
lem.

• We introduce the execution matrix describing the mapping of the algorithm on
the computing machine.

• We define the memory accesses matrix, that helps us to define the software
execution time.

• The block structure of the above matrices corresponds to the multiple levels (of
the performance analysis) for the proposed approach. This feature is helpful for
understanding the mapping of complex parallel algorithms solving real problems
on novel hybrid and heterogeneous architectures.

Multilevel Algebraic Approach for Performance Analysis of Parallel Algorithms 819

• A set of parameters characterizing the matrices structure, namely their number
of rows and columns, and a set of computing environment parameters, such as
the execution time for one floating point operation, are used both to describe
the problem and to compute speed up, efficiency, cost, overhead, scale up and
operating point of the algorithm, starting from the problem decomposition.

• Even though for simplicity of notations we assume that at each level of paral-
lelism the computing architecture is homogeneous, it is possible to extend the
proposed framework considering – at the same level of decomposition – fea-
tures of distributed algorithms on heterogeneous computing architectures. In
this case, dependency matrix should firstly be employed to analyze problem and
data decomposition; then, execution matrix, whose rows depend on the execu-
tion time of the machine operations at a given level of granularity, highlights
the corresponding workload distribution at this level (cfr. Section 6).

The article is organized as follows. Section 2 will review basic concepts and defini-
tions useful for setting up the mathematical framework. We define the decompo-
sition matrix; following [33], we describe a parallel algorithm as an ordered set of
operators, moreover we give the definition of complexity of the algorithm depending
on the number of such operators; finally, we define the execution matrix describing
the mapping of the algorithm on the target computing resource. Section 4 focuses
on two metrics characterizing the algorithm performance, such as the scale up factor
and the speed up. In Section 5, we analyse the performance of parallel algorithms
arising from the same problem decomposition. We derive the Generalized Amdhal’s
Law and some important upper and lower bounds of the performance metrics. In
Section 6, we consider the particular case where the operators of an algorithm have
the same execution time (namely, the operators are the usual floating point opera-
tions); in other words, we are assuming to get a decomposition at the lowest level
of granularity and we derive the standard expressions for the performance metrics.
Section 7 introduces the access memory matrix and some useful performance metrics
to evaluate specific aspects of the software implementation. In Section 8 conclusions
are drawn.

1.1 Related Works and Criticism

The appropriate mapping depends upon both the specification of the algorithm and
the underlying architecture. Firstly, it implies a transformation of the algorithm
into an equivalent, but in a more appropriate form. Works on the mapping problem
can be classified according to the used representation.

Graph based approaches perform transformations on the algorithm and the ar-
chitecture, both represented as graphs. In this approach the algorithm is modeled in
terms of graphs structures and the mapping in terms of graphs partitions [8]. Lin-
ear algebra approaches represent the graph and its data dependencies by a matrix,
then they transform the graph by performing matrix operations. Language based
approaches transform one form of program text into another form, where the target

820 L. D’Amore, V. Mele, D. Romano, G. Laccetti

form textually incorporates information about the architecture [25]. Characteristic
based approaches represent the algorithm in terms of a set of characteristics which
determines the transformations. Included in this category is the work of [28], where
a technique which abstracts a computation in terms of its data dependencies is de-
scribed. The method is based on a mathematical transformation of the index sets
and of the data-dependency vectors associated with the given algorithm. Finally, we
underline that there are a lot of scientific groups that are working on similar issue
from the years. In particular we mention the Heterogeneous Computing Laboratory
at University College in Dublin focusing on efficient use of heterogeneous architec-
tures. They mainly focus the attention on workload distribution, data distribution,
communication performance models and optimization of communication operations
of parallel or distributed algorithm on the network, by analyzing partitioning work-
load in proportion to the speed of the processing elements [29, 35].

One common issue of the aforementioned approaches is that very often the
model used for the representation and analysis of the algorithm cannot be explicitly
employed for deriving the expression of performance metrics of the software. On
the contrary, performance analysis is often accomplished with automatic tools on
a combination of the algorithm and the parallel architecture on which it is imple-
mented (the so-called parallel system), exploiting automating mappings, automatic
translations, re-targeting mappings tracing, auto-tuning tools (such as: the PaRSEC
runtime system [11], that provides a portable way to automatically adapt algorithms
to new hardware trend). Nevertheless, these approaches ignore dependency among
sub problems within the problem decomposition. Instead, our model, through the
choice of the computing operators of the algorithm, allows to set a level of abstrac-
tion for the algorithm description; each level determines the granularity/detail of
the performance analysis, and could be used to better understand the subsequent
mapping on the computing architecture. This topic is mainly important to analyse
performance of complex algorithm solving real problems.

2 PRELIMINARY CONCEPTS AND DEFINITIONS

We introduce a dependency relationship among the parts of a computational prob-
lem, among operators of the algorithm that solves the problem and, finally, among
memory accesses of the algorithm. In this way we are able to define the matrices
which are the foundations of the mathematical model we are going to introduce.

To this aim we first give some definitions1.

Definition 1 (Computational Problem). A computational problem BNr is the ma-
thematical problem specified by an input/output functional relation 7→:

BNr : InBNr 7→ OutBNr

1 It is worth to note that these definitions do not claim to be general. Their aim is to
establish the mathematical setting on which we will restrict our attention.

Multilevel Algebraic Approach for Performance Analysis of Parallel Algorithms 821

where Nr is the input data size and r ∈ N, between the data and the solution of
BNr .

In the following the computational problem BNr is identified by the triple:

BNr ≡
(
Nr, InBNr ,OutBNr

)
.

Definition 2 (Similar Computational Problem). Two computational problems,
BNr and BNq , are said similar if they are specified by the same functional relation
7→ and they only differ in the input/output data size. If BNr and BNq are similar we
write BNrSBNq .

Dividing a computation into smaller computations, some or all of which may
potentially be executed in parallel, is the key step in designing parallel algorithms.
These parts often share input, output, or intermediate data, such that the output of
one part is the input of another. In our mathematical framework these relationships
will be described by the so called decomposition matrix. In order to define this
matrix we need to introduce the following algebraic structure

Definition 3 (Dependency Group). Let (E , π) be a group and let πE be a strict
partial order relation on E , which is compatible with π. We say that any element
of E , let us say A, depends on an element of E , let us say B, if AπEB, and we write
A ← B. If A and B do not depend on each other we write A 8 B. The group
(E , π) equipped with πE is called dependency group and it is denoted as (E , π, πE).

Remark 1. Since πE is transitive, from Definition 2 it follows that any two elements
of E , let us say A and B, are independent if there is no any relationship between
them. In this case we write A8 B and B 8 A, or even A= B.

Now we are able to define the dependency matrix on (E , π, πE).

Definition 4 (Dependency Matrix). Given (E , π, πE), the matrix F , of size rD · cD,
whose elements di,j ∈ (E , π), are such that ∀i ∈ [0, rD − 1]

di,j = di,s, ∀s, j ∈ [0, cD − 1] (1)

and ∀i ∈ [1, rD − 1], ∃q ∈ [0, cD − 1] s.t.

di,j ← di−1,q, ∀j ∈ [0, cD − 1], (2)

while the others elements are set equal to zero, is said the dependency matrix.

Remark 2. Matrix F is unique (through its construction), up to a permutation of
elements on the same row. cF is said the concurrency degree2 of (E , π, πE) and rF
is the said the dependency degree of E . Concurrency degree measures the intrinsic
concurrency among sub-problems of (E , π, πE). It is obtained as the number of
columns of F .

2 A similar concept has already been highlighted in [22]

822 L. D’Amore, V. Mele, D. Romano, G. Laccetti

2.1 The Problem Decomposition

Let S(BNr) denote the solution3 of BNr .

Definition 5 (Decomposition of a Computational Problem). Given BNr , any finite
set of computational problems {BNi}i=0,...,k−1, where k ∈ N, such that BNr ← BNi ,
where Ni < Nr, and

k−1∑
i=0

Ni ≥ Nr

is called a decomposition of BNr . BNi denotes a sub-problem of BNr . A decomposi-
tion of BNr , which is denoted as

Dk(BNr) := {BN0 , . . . ,BNk−1
} (3)

defines the computational problem

Dk(BNr) ≡

(
k−1∑
i=0

Ni, InBNr , OutBNr

)
.

The set of all the decompositions of BNr is denoted as DBNr .

Definition 6 (Similar Decompositions). Given BNrSBNq , two decompositions
Dki(BNr) and Dkj(BNq) are called similar if

ki = card(Dki(BNr)) = card(Dkj(BNq)) = kj

and
∀BNs ∈ Dki(BNr)∃!BNt ∈ Dkj(BNq) : BNsSBNt

and we write
Dki(BNr)SDkj(BNq).

Remark 3 (Decomposition Matrix). In order to capture interactions among parts
(or sub-problems) of BNr , we use the dependency matrix on Dk(BNr). More pre-
cisely, by using Definition 2 we introduce the group (Dk(BNr), gsol) where gsol is any
application between any two elements BNi and BNj of Dk(BNr), equipped with the
strict partial order relation πDk(BNr). Then, we construct the (unique) dependency
matrix F corresponding to the decomposition Dk(BNr). In the following we denote
this matrix as MD(Dk(BNr)), or MDk for simplicity, and we refer to it as the de-
composition matrix. Given Dk(BNr), let cDk denote the number of columns. This
is the (unique) concurrency degree of BNr . Let rDk denote the row number of rows.
This is the (unique) dependency degree of BNr . Concurrency degree measures the
intrinsic concurrency among sub-problems of BNr .

3 Here, for the sake of simplicity, we assume that S(BNr) exists and it is unique.

Multilevel Algebraic Approach for Performance Analysis of Parallel Algorithms 823

If there are not empty elements, the problem BNr has the highest intrinsic concur-
rency, hence we give the following

Definition 7 (Perfectly Decomposed Problems). BNr is said perfectly decomposed
if ∃Dk(BNr) and MD such that

• cD > 1,

• ∀i, j, di,j 6= ∅.

The next step is to take these parts and assign them (i.e., the mapping step)
onto the computing machine. In the next section we introduce the computing envi-
ronment characterized by the set of logical-operational operators/operations that it
is able to apply/execute and by the memory system.

2.2 The Computing Architecture

Let MP denote the computing architecture equipped with P ≥ 1 processing ele-
ments with specific logical-operational capabilities such as: basic operations (arith-
metic, . . .), special functions evaluations (sin, cos, . . .), solvers (integrals, equations
system, non linear equations, . . .). These are the computing operators of MP . In
particular, we will use the following characterization of operators of MP .

Definition 8 (Computing Operators). The operator Ij ofMP is a correspondence
between Rs and Rt, where s, t ∈ N are positive integers.

Given MP , the set
CopMP

:= {Ij}j∈[0,q−1], q ∈ N
where operators Ij are taken without repetitions, characterizes logical-operational
capabilities of MP .

Operators, properly organized, provide the solution to BNr , as stated in the
following definition.

Definition 9 (Solvable Problems). BNr is solvable in MP if

∃Dk(BNr) ∈ DBNr : ∀BNj ∈ Dk(BNr) ∃Ij ∈ CopMP
: Ij[BNj] = S(BNj)

that is, if there exists any relation

θ : BNj ∈ Dk(BNr) ∈ DBNr 7−→ Ij ∈ CopMP
. (4)

In particular, we say that a decomposition is suited forMP if θ is a function. From
now on, we assume any problem BNr to be solvable, and we assume a decomposition
Dk(BNr) ∈ DBNr suited for MP to be fixed4.

We associate to each I i ∈ CopMP
in MP the parameter ti, denoting the execu-

tion time measured, for instance, in seconds. If I i ≡ ∅, we set t∅ = 0.

4 Note that there is no loss of generality.

824 L. D’Amore, V. Mele, D. Romano, G. Laccetti

2.3 Memory Hierarchy and Communications

A computing architecture is not only characterized by the set of operations that is
able to apply, but also by the memory system. Indeed, the effective performance of
an algorithm relies not only on the processor speed for arithmetic operations but
also on the ability of the memory system to feed data to the processor. At the
logical level, a memory system, possibly consisting of multiple levels of caches, let
us say L, takes in a request for a memory word and returns a block of data contain-
ing the requested word after tmem l nanoseconds. Here, tmem l consists of memory
latency time, measuring the time between the of a read request and the release of its
corresponding data, plus the data transfer time. Memory latency time depends on
the latency of the memory, which is typically bridged by a hierarchy of successively
faster memory that rely on locality of data reference to deliver higher performance.
The rate at which data can be moved from the memory to the processor deter-
mines the bandwidth of the memory system. It is determined by the memory bus
bandwidth as well as by the memory unit.

So, we consider a computing machine MP such that

• its memory has L ≥ 2 levels,

• for each level l, where l ∈ [1, L], ndl denotes the bandwidth, i.e. the rate for
transferring (read/write) data of the same type. It is ndl ≥ 1,

• memory access time is
tmem l := taccl + ttransl

where taccl measures the memory latency time while ttransl measures the transfer
time. Moreover, let tcalc be the execution time of one floating point operation.
We assume that

tcalc < tmem1 ≤ tmem2 ≤ . . . ≤ tmemL

and
tmem l = αmeml · tmem, ∀l ∈ [1, L], αl ∈ < − {∞} (5)

where tmem denotes the execution time needed for moving a memory word.

Remark 4. In case of latency bound algorithms (i.e., taccl prevails over ttransl) or
bandwidth bound algorithms (i.e., ttransl prevails over taccl) the model could be prop-
erly refined by specifying tmeml.

Communication means moving data, either between levels of a memory hierarchy
or between processors of the reference machine. Hence, this mathematical framework
includes the communication level within the memory accesses, and the last (that is
the slowest) memory level (Lth) refers to it. Let tcom := tmemL denote the unitary
communication time, we assume that tcom � tmem i, i ∈ [1, L− 1].

Such computing machine is denoted asMP,L,ndL or simply asMP if there is no
ambiguity.

Multilevel Algebraic Approach for Performance Analysis of Parallel Algorithms 825

3 THE ALGORITHM

In literature, an algorithm is any procedure consisting of a finite number of unam-
biguous rules that specify a finite sequence of operations bringing to a solution of
a problem or of a specific class of problems [24]. Analogously, we define an algorithm
as a finite set of operators solving BNr .

Definition 10 (Algorithm). Given Dk(BNr), an algorithm solving BNr , indicated
as

ADk(BNr),MP
= {I i0 , I i1 , . . . , I ik}

is a sequence of elements (not necessarily distinct) of CopMP
, such that5

I ik ◦ I ik−1 ◦ . . . ◦ I i0 [BNr] = S(BNr)

where j ∈ [0, card(CopMP
)− 1], and such that there is a bijective correspondence

γ : BNν ∈ Dk(BNr) ∈ DBNr ←→ I ij ∈ ADk(BNr),MP
. (6)

Every ordered subset of ADk(BNr),MP
is a sub-algorithm of ADk(BNr),MP

.

For simplicity of notations and when there is no ambiguity, we indicate algorithms
briefly as Ak,P .

Definition 11 (Equal Algorithms). Two algorithms

Aik,P = {I i0 , I i1 , . . . , I ik}, Ajk,P = {Ij0 , Ij1 , . . . , Ijk}

are said equal if ∀s ∈ [0, k], I is ≡ Ijs .

We note that in this mathematical framework, two equal algorithms have the same
cardinality.

Definition 12 (Granularity Set of an Algorithm). Given Ak,P , the subset G(Ak,P)
of Ak,P made of distinct operators of Ak,P defines the granularity set of Ak,P . Two
algorithms

Aik,P = {I i0 , I i1 , . . . , I ik}, Ajk,P = {Ij0 , Ij1 , . . . , Ijk}

have the same granularity if G(Aik,P) ≡ G(Ajk,P).

Let ALBNr (or simply AL) be the set of algorithms that solve BNr , obtained by
varying MP , the number of processing units P and Dk(BNr) ∈ DBNr . Even if one
can easily formulate infinite variations of an algorithm that do the same thing, for
simplicity in the following we assume AL to be finite.

5 In the following we use the symbol ◦ to denote correspondence composition.

826 L. D’Amore, V. Mele, D. Romano, G. Laccetti

Definition 13 (The Quotient Set AL
%

). Let

ϕ : Ak,P ∈ AL −→ Dk(BNr) ∈ DBNr (7)

be the surjective correspondence which induces on AL an equivalence relationship %
of AL in itself, such that

%(Ak,P) = {Ãk,P ∈ AL : ϕ(Ãk,P) = ϕ(Ak,P)}. (8)

The set %(Ak,P) consists of algorithms of AL associated with the same decomposition
Dk(BNr) ∈ DBNr . % induces the quotient set AL

%
, whose elements are disjoints and

finite subsets of AL determined by %, that is they are equivalence classes under %.

In the following we assume Ak,P to represent its equivalence class in AL.

Definition 14 (Complexity). The cardinality of Ak,P , denoted as C(Ak,P), is said
complexity of Ak,P . It is C(Ak,P) := card(Ak,P) = k.

Remark 5. C(Ak,P) = k equals to the number of non empty elements of MDk , i.e.
the decomposition matrix defined on Dk(BNr). By virtue of the bijective correspon-
dence γ in (6), it holds that

card(Ak,P) = card(Dk(BNr)) = k, ∀Ak,P ∈ %(Ak,P). (9)

Each algorithm belonging to the same equivalence class according to % has the
same complexity. An integer (the complexity) is therefore associated with each
element %(Ak,P) of quotient set AL

%
which induces an ordering relation between the

equivalence classes in AL
%

: therefore there is a minimum complexity for algorithms
that solve the problem BNr .

Remark 6 (Similar Algorithms). Given BNrSBNq and their relative similar de-

compositions D′k(BNr)SD
′′

k(BNq) (see Definition 6), algorithms belonging to %(Ak,P)
= ϕ−1(D′k(BNr)) (see (7)) are similar to algorithms belonging to %(Ak,P) =
ϕ−1(D

′′

k(BNq)). From Definition 6 and 14 and (9), it follows that

Ak,PSAk,P =⇒ C(Ak,P) = C(Ak,P) = k,

that is, similar algorithms have the same complexity.

Remark 7. As we can associate I ik ∈ Ak,P to each subproblem according to γ,
then the operators of Ak,P inherit the dependencies existing between subproblems
of BNr , but they do not inherit independency, because for instance, two opera-
tors may depend on the availability of computing units of MP during their execu-
tion [33].

Remark 8 (Execution Matrix). According to Definition 3, we introduce the group(
P (Ak,P) , ◦, πAk,P

)
where P (Ak,P) is the set of all the sub-algorithms of Ak,P , and

Multilevel Algebraic Approach for Performance Analysis of Parallel Algorithms 827

πAk,P is the strict partial order relation between any two elements of P (Ak,P) that
guarantees that two elements cannot be performed in any arbitrary order and simul-
taneously6. We construct matrix F of order rE · cE, where cE = P 7 as a dependency
matrix (see Definition 4). The number of columns of this matrix will represent the
maximum number of sub-algorithms that can be performed simultaneously onMP .
In the following, we denote this matrix as execution matrix and we refer to it
by using the symbol ME(Ak,P) = (ei,j) or simply MEk,P if there is no ambiguity.
Matrix MEk,P is unique up to a permutation of elements on the same row. This
matrix can be placed in analogy with the execution graphs (see [7, 10, 12, 30]) that
are often used to describe the sequence of steps of an algorithm on a given machine
for a particular input or a particular configuration.

Remark 9. As it is card(Ak,P) = card(Dk(BNr)), then MDk and MEk,P have the
same number of non empty elements (k), whichever is P ≥ 1. If cE = P = cDk ,
there exists Ak,P whose matrix MEk,P has exactly the same structure of the matrix
MDk .

Definition 15. Ak,P is said perfectly parallel if: cE > 1 and ∀i, j : ei,j 6= ∅. Ak,P
is said sequential if: cE = 1 and @j > 1 : ei,j 6= ∅. Ak,P is said (simply) parallel if:
cE > 1 and ∃i, j : ei,j = ∅. Moreover, every row of matrix MEk,P such that ∃ei,j 6= ∅,
where j > 1, is a parallel sub-algorithm of Ak,P . Every row of matrix MEk,P such
that ∃!ei,j 6= ∅ is a sequential sub-algorithm of Ak,P .

Remark 10. Observe that the concurrency degree of BNr in a given decomposition
provides an upper limit to the maximum number of independent sub-algorithms
executable simultaneously on the machine. The dependency degree provides a lower
limit to the execution time of the algorithm.

Finally, from correspondence γ (see (6)), we say that BNr is solvable in MP ⇔
∃Dk(BNr) ∈ DBNr : ∃Ak,P that solves BNr .

Theorem 1. If BNr is perfectly decomposed according to Dk, ∃MP , where P > 1,
such that ∃Ak,P perfectly parallel that solves BNr .

Proof. If BNr is perfectly decomposed then the matrix MDk has not empty elements
and has order greater than 1. Since card(Ak,P) = card(Dk(BNr)) = k, there exists
Ak,P with execution matrix MEk,P of order rE · cE, with only non zero elements,

6 The condition that two elements cannot be performed in any arbitrary order induces
the inheritance of dependencies between decomposition subproblems and algorithm opera-
tors, while the condition that two elements cannot be performed simultaneously – relating
to availability of resources – adds possible reasons for dependency between operators,
which depend on the machine on which algorithm A is intended to run [33].

7 In general cE ≤ P , but we can exclude cases where dependencies existing between
subproblems do not allow to use all the computing units available, i.e., in which cE < P ,
because they can be easily taken back to the case where cE = P .

828 L. D’Amore, V. Mele, D. Romano, G. Laccetti

such that rE = rDk and cE = P = cDk or8 rE = n · rDk and cE = P = cDk/n
with the integer n is such that n < cDk and cDk mod n = 0. In conclusion, MEk,P

has cE = P > 1 columns, and no rows have an empty element; so Ak,P is perfectly
parallel. �

4 PERFORMANCE METRICS

In this section we employ the mathematical settings we introduced in Section 2, in
order to define two quantities to measure the performance of an algorithm: the scale
up and the speed up.

Let us consider two decompositions Dki(BN) and Dkj(BN) in DBN . Let us
consider Aki,P and Akj ,P representing their equivalence class in AL. We introduce
the following quantity:

Definition 16 (Scale Up Factor). If Aki,P and Akj ,P have the same granularity set
(see Definition 12), the ratio

Scup(Aki,P , Akj ,P) :=
ki
kj

(10)

is said scale up factor of %(Akj ,P) measured with respect to %(Aki,P).

Note that by using Definition 14, we get

Scup(Aki,P , Akj ,P) =
C(Aki,P)

C(Akj ,P)
. (11)

Next proposition quantifies the scale up when we solve the same problem with
an algorithm that is the concatenation of several algorithms which are similar to the
first one, with polynomial complexity of degree d.

Proposition 1. Given BNr , Dk(BNr) and Dk′(BNr) = {Dk′i
(BNq)}i=1,µ where

• Nq = Nr/µ with µ ∈ N , µ ≤ Nr, and Nr mod µ = 0,

• BNqSBNr ,
• DkSDk′i

SDk′j
, ∀i 6= j.

Consider Ak,P ∈ ϕ−1(Dk(BNr)) and Ak′i,P ∈ ϕ
−1(Dk′i

(BNq)) and assume that C(Ak,P)

= k = Pd(Nr) and C(Ak′i,P) = k′i = Pd(Nq) where

Pd(x) = adx
d + ad−1x

d−1 + . . .+ a0, ad 6= 0 ∈ Πd, x ∈ <,
8 If the concurrency degree cDk is so great that we cannot imagine a real machine

with so many units, we can always use a number of computing units P = cDk/n with
cDk mod (n) = 0. This will mean that the execution matrix of Ak,P will have n times
more rows and n times less columns than the dependency matrix.

Multilevel Algebraic Approach for Performance Analysis of Parallel Algorithms 829

then Scup(Ak,P , Ak′,P) = ξ(Nr, µ) · µd−1 where

ξ(Nr, µ) :=
ad + ad−1

Nr
+ . . .+ a0

Nd
r

ad + ad−1
µ
Nr

+ . . .+ a0
µd

Nd
r

. (12)

Proof. We have that

C(Ak′,P) =

µ∑
i=1

C(Ak′i,P) = µ · Pd(Nq), (13)

then from the (11) it follows that

Scup(Ak,P , Ak′,P) =
C(Ak,P)

C(Ak′,P)
=
Pd(Nr)

µ · Pd(Nq)
, (14)

that is

Scup(Ak,P , Ak′,P) =
adN

d
r + ad−1N

d−1
r + . . .+ a0

µ ·
(
adNd

q + ad−1Nd−1
q + . . .+ a0

) . (15)

Since Nq = Nr/µ, then it is

Scup(Ak,P , Ak′,P) =
ad(µNq)

d + ad−1(µNq)
d−1 + . . .+ a0

µ ·
(
adNd

q + ad−1Nd−1
q + . . .+ a0

) , (16)

then thesis follows from the (12). �

It comes out the following result:

Corollary 1. If Nr is fixed, and µ ' Nr, it is ξ(Nr, µ) = const where const ∈ (0, 1]
and Scup(Ak,P , Ak′,P) ≤ Nd−1

r . If µ is fixed, it is limNr→∞ ξ(Nr, µ) = const where
const ∈ (0, 1] and limNr→∞ Scup(Ak,P , Ak′,P) ≤ µd−1. If ai = 0, ∀i < d, then
ξ(Nr, µ) = 1 and Sup(Ak,P , Ak′,P) = µd−1, ∀µ.

We observe that in the following, when we need to refer to the execution time
of computing operators of Ak,P , we will use the notation βcalc...,MEk,P

for the parame-

ters highlighting the execution matrix MEk,P and characterizing the mapping of the
algorithm on the machine MP . We assume that

∀I ij ∈ CopMP
, tij = βcalcij ,MEk,1

· tcalc, βcalcij ,MEk,1
∈ <, βcalcij ,MEk,1

≥ 1. (17)

Definition 17 (Row Execution Time). The quantity

Tr(Ak,P) := max
j∈[0,cE−1]

trj (18)

is said execution time of the row r of MEk,P (which is a sub-algorithm of Ak,P).

830 L. D’Amore, V. Mele, D. Romano, G. Laccetti

Remark 11. Let βcalcr,MEk,P
:= maxj∈[0,cE−1] β

calc
rj ,MEk,P

, then

Tr(Ak,P) = max
j∈[0,cE−1]

βcalcrj ,MEk,P
· tcalc = βcalcr,MEk,P

· tcalc.

Note that βcalcij ,MEk,1
≥ 1, then βcalcr,MEk,1

≥ 1.

Definition 18 (Execution Time). The quantity

T (Ak,P) :=

rE−1∑
r=0

Tr(Ak,P) (19)

is said execution time of Ak,P .

Remark 12. Let βcalcMEk,P
:=
∑rE−1

r=0 βcalcr,MEk,P
, then βcalcMEk,P

≥ rE.

T (Ak,P) = βcalcMEk,P
· tcalc. (20)

Remark 13. Let

βcalcsum,MEk,P
:=

rE−1∑
i=0

cE−1∑
j=0

βcalcij ,MEk,P
. (21)

Then, if P = 1, then βcalcMEk,P
:= βcalcsum,MEk,P

.

Remark 14. Let

• rseq ≤ rE denote the number of rows of MEk,P with only one non-empty element
(sequential sub-algorithms of Ak,P);

• rpar = rE − rseq, with rpar ≤ rE, denote the number of rows of MEk,P with more
than one non empty element.

From the sequence i = 0, . . . , rE − 1, numbering the rE rows of MEk,P , two sub-
sequences of indices originate {iq}q∈[0,rseq−1], and {ir}r∈[0,rpar−1], and the following
definition follows.

Definition 19 (Parallel Execution Time). The quantity

Tpar(Ak,P) :=

rpar−1∑
r=0

Tir(Ak,P) (22)

is said parallel execution time of Ak,P .

Definition 20 (Sequential Execution Time). The quantity

Tseq(Ak,P) :=

rseq−1∑
q=0

Tiq(Ak,P) (23)

is said sequential execution time of Ak,P .

Multilevel Algebraic Approach for Performance Analysis of Parallel Algorithms 831

The (19) can be written as

T (Ak,P) = Tseq(Ak,P) + Tpar(Ak,P). (24)

This states that, by looking at matrix MEk,P , the model expresses the size of the
parallel and the sequential parts composing the execution time Ak,P .

Let

Rcalc(Ak,P) :=
βcalcMEk,P

rE
. (25)

Rcalc is the parameter of the algorithm Ak,P depending on the most computationally
intensive sub-algorithms of A.

It holds

T (Ak,P) = Rcalc(Ak,P) · rE · tcalc =

rE−1∑
r=0

βcalcr,MEk,P
· tcalc. (26)

Remark 15. If P = 1, since rE = C(Ak,1) = k from (25), it is

Rcalc(Ak,1) :=
βcalcall,MEk,P

k
. (27)

Corollary 2. From the (25) it follows

T (Ak,1) = k ·Rcalc(Ak,1) · tcalc, (28)

T (Ak,P) ≥ rD ·Rcalc(Ak,P)tcalc (29)

and it assumes its minimum value when rE = rD.

T (Ak,P) = (rseq + rpar) ·Rcalc(Ak,P) · tcalc. (30)

Definition 21 (Speed Up in AL
ρ

). Given

• BNr ,
• Ak,P ∈ ϕ−1(Dk(BNr)) where P > 1,

• two different decompositions Dk(BNr) and Dk′(BNr),
• Ak′,1 ∈ ϕ−1(Dk′(BNr))

where M1 and MP differ only in the number of processing elements, if G(Ak,P) =
G(Ak′,P), then the speed up of Ak,P with respect to Ak′,1 is

Sp(Ak,P , Ak′,1) := Scup(Ak,P , Ak′,1) ·
T (Ak,1)

T (Ak,P)
=
k′

k
·
βcalcsum,ME(Ak,P)

βcalcME(Ak,P)

. (31)

832 L. D’Amore, V. Mele, D. Romano, G. Laccetti

Remark 16 (Ideal Speed Up). Since it is always9

βcalcsum,ME(Ak,P)
≤ P · βcalcME(Ak,P)

,

then it holds that

Sp(Ak,P , Ak′,1) ≤ Scup(Ak,P , Ak′,1) · P. (32)

Definition 22 (Speed Up in ρ(Ak,P)). The speed up of Ak,P with respect to Ak,1
is

Sp(Ak,P) =
T (Ak,1)

T (Ak,P)
=
βcalcsum,ME(Ak,P)

βcalcME(Ak,P)

. (33)

Example 1. Preliminary results on speed up and scale up validating this approach
appear in [27, 3, 14]. In [27], the authors addressed the development of a modular
implementation of MGRIT (MultiGrid-In-Time), a parallel iterative algorithm to
solve linear and nonlinear systems that arise from the discretization of evolutionary
models with a parallel in time approach in the context of the PETSc (the Portable,
Extensible Toolkit for Scientific computing) library. The algorithm speed up has
been analyzed a priori to provide the best number of processing elements and grid
levels needed to address the scaling of MGRIT. In [3, 14], the performance analysis
carried out by the authors using the scale up factor suggests the introduction of
a highly scalable problem decomposition.

5 ALGORITHMS IN THE SAME EQUIVALENCE CLASS

We consider algorithms that are in the same equivalence class, i.e. those correspond-
ing to the same decomposition of the problem

Theorem 2. ∀BNr perfectly decomposed according to the decomposition Dk(BNr),
and ∀Ak,P perfectly parallel algorithm that solves it on MP with P > 1, if

CopM1
≡ CopMp

,

it follows that:

T (Ak,P) =
T (Ak,1)

P
· R

calc(Ak,P)

Rcalc(Ak,1)
. (34)

Proof. If Ak,P is perfectly parallel, then MEk,P has no empty elements so

rE =
k

cE
=
k

P
.

9 βcalcME(Ak,P)
is the sum of the maximum operator time on each row, so βcalcsum,ME(Ak,P)

can be equal to P · βcalcME(Ak,P)
only if the operators have all the same time.

Multilevel Algebraic Approach for Performance Analysis of Parallel Algorithms 833

Therefore, from the (26) and (28), it is

T (Ak,P) = rE ·Rcalc(Ak,P) · tcalc,

=
k

cE
·Rcalc(Ak,P) · tcalc =

T (Ak,1)

P
· R

calc(Ak,P)

Rcalc(Ak,1)
. (35)

�

Theorem 3. For all the matrices MEk,P of algorithms in %(Ak,P), it holds

cE ≤ cDk (36)

and
rE ≥ rDk . (37)

Moreover, let us consider Aik,P and Ajk,P two algorithms belonging to %(Ak,P), and

their matrices M i
Ek,P

and M j
Ek,P

. We have:

• ciE < cjE ⇒ riE ≥ rjE;

• ciE > cjE ⇒ riE ≤ rjE.

Proof. From inheritance on Ak,P of dependencies defined on Dk(BNr), it is not
possible that cE > cD, therefore cE ≤ cDk . Then there is at least one row of
MDk with cDk non-empty elements. Let d be the difference between cDk and cE.
Therefore, since MDk and ME have the same number of non-empty elements, it is
rE ≥ rD + d(d/cE.)e.

Similarly, it can be proved that if ciE < cjE then riE ≥ rjE, and if ciE > cjE then
riE ≤ rjE. �

Remark 17. The minimum execution time is proportional to the dependency de-
gree of BNr , that is when the number of computing units is equal to the concurrency
degree of BNr .

We now define a subset of the equivalence class of %(Ak,P). Let ' be the equiv-
alence relation identifying two algorithms with the same P . Then

%̂(Ak,P) := %(Ak,P)/ ' (38)

i.e. consisting of the representatives of the equivalence classes of '10.
Let us now consider matrices MEk,P associated to algorithms belonging to

%̂(Ak,P), varying P .
The following result defines the speed up of a parallel algorithm with respect to

the sequential algorithm belonging to its class.

10 For example, we can take the algorithm in %̂(Ak,P), P ≥ 1, whose execution matrix
has the fewest number of rows.

834 L. D’Amore, V. Mele, D. Romano, G. Laccetti

Theorem 4. Consider Ak,1
%
≡ Ak,P with

ME1 , of order NE
1 = rE1 · 1 and MEP of order NE

P = rEP · P.

It holds

Sp(Ak,P) =
βcalcsum,MEk,1

rEP ·Rcalc(Ak,P)
. (39)

Proof. From the (26), (27) and (33), it follows

Sp(Ak,P) =
rE1 ·Rcalc(Ak,1) · tcalc
rEP ·Rcalc(Ak,P) · tcalc

=
C(Ak,P)

rEP

Rcalc(Ak,1)

Rcalc(Ak,P)

=
βcalcsum,MEk,1

rEP ·Rcalc(Ak,P)
. (40)

�

Corollary 3. Since (rEP · cEP) ≥ C(Ak,P), from the (40) it follows that

Sp(Ak,P) ≤ cEP ·
Rcalc(Ak,1)

Rcalc(Ak,P)
= P · R

calc(Ak,1)

Rcalc(Ak,P)
.

Definition 23 (Ideal Speed Up in %̂(Ak,P)). We let

SpIdeal(Ak,P) = P · R
calc(Ak,1)

Rcalc(Ak,P)
(41)

be the ideal speed up.

Let rpari denote the number of rows having i > 1 not empty elements, and
rpar1 = rseq, then it is

rEP =
P∑
i=1

rpari .

Definition 24 (Total Time of A with i Non Empty Elements). Let Tji the time of
a row with i ≥ 1 not empty elements. The quantity

Tpari(Ak,P) =

rpari−1∑
j=0

Tij (42)

is the execution time of the part of A with i non empty elements on each row.

Remark 18. It holds that rpar = rEP − rseq =
∑P

i=2 rpari then Tpar1(Ak,P) =
Tseq(Ak,P).

Multilevel Algebraic Approach for Performance Analysis of Parallel Algorithms 835

Next result shows how the generalized Amdhal’s Law can be derived by using
the rows of the execution matrix MEk,P having at least one non empty element.

Theorem 5 (Generalized Amdhal’s Law). It is

Sp(Ak,P) =

Rcalc(Ak,1)

Rcalc(Ak,P)∑P
i=1 αi

(43)

where
αi =

rpari
C(Ak,P)

.

Proof. From (40) it is

Sp(Ak,P) =

C(Ak,P)·Rcalc(Ak,1)
Rcalc(Ak,P)

rseq +
∑P

i=2 rpari
. (44)

By dividing for C(Ak,P) it follows that

Sp(Ak,P) =

Rcalc(Ak,1)

Rcalc(Ak,P)

rseq
C(Ak,P)

+
∑P

i=2

rpari
C(Ak,P)

, (45)

that is

Sp(Ak,P) =

Rcalc(Ak,1)

Rcalc(Ak,P)

α1 +
∑P

i=2 αi
. (46)

�

Then, the Amdhal’s Law [1] comes out as a particular case of the previous
theorem.

Corollary 4 (Amdhal’s Law). If we assume that MEk,1 only has rows with 1 ele-
ment or P elements, we have

Sp(Ak,P) =

Rcalc(Ak,1)

Rcalc(Ak,P)

α + 1−α
P

(47)

where
α :=

rseq
C(Ak,P)

.

Proof. From (43) it follows that

Sp(Ak,P) =

Rcalc(Ak,1)

Rcalc(Ak,P)

α1 +
∑P

i=2 αi
(48)

836 L. D’Amore, V. Mele, D. Romano, G. Laccetti

where
αi :=

rpari
C(Ak,P)

and
rpar

C(Ak,P)
=

P∑
i=2

αi.

If the rows with more than one non empty element have P elements, it is

rpar =
C(Ak,P)− rseq

P
,

therefore, if we let α1 = α = rseq
C(Ak,P)

, we get

Sp(Ak,P) =

Rcalc(Ak,1)

Rcalc(Ak,P)
rseq
C(A)

+ rpar
C(Ak,P)

=

Rcalc(Ak,1)

Rcalc(Ak,P)

rseq
C(Ak,P)

+
C(Ak,P)−rseq
C(Ak,P)·P

=

Rcalc(Ak,1)

Rcalc(Ak,P)

α + 1−α
P

. (49)

�

Let Q denote the cost of Ak,P . The cost is defined as the product of the execution
time and the number of processors utilized [19]. In this mathematical settings it
holds that the cost Q can be written as

Q(Ak,P) = cE · rE ·Rcalc(Ak,P) · tcalc. (50)

If cE = 1, from the (28) it holds

Q(Ak,1) = rE ·Rcalc(Ak,P) · tcalc = T (Ak,1) = C(Ak,P) ·Rcalc(Ak,1) · tcalc

= βcalcsum,MEk,1
· tcalc. (51)

The overhead of Ak,P is the total time spent by all the processing elements over
and above that spent in useful computation.

Definition 25 (Algorithm Overhead). The quantity

Oh(Ak,P) := Q(Ak,P)−Q(Ak,1) =
(
cE · βcalcMEk,P

− βcalcsum,MEk,1

)
· tcalc (52)

is said overhead of Ak,P .

Theorem 6. It holds

C(Ak,P) · (Rcalc(Ak,P)−Rcalc(Ak,1)) · tcalc

{
= 0, if Rcalc(Ak,P) = Rcalc(Ak,1),

> 0, otherwise.

(53)

Multilevel Algebraic Approach for Performance Analysis of Parallel Algorithms 837

Proof. It holds

Q(Ak,P) ≥ card(Ak,P) ·Rcalc(Ak,P) · tcalc

= C(Ak,P) ·Rcalc(Ak,P) · tcalc = k ·Rcalc(Ak,P) · tcalc. (54)

Moreover,

Q(Ak,1) = C(Ak,1) ·Rcalc(Ak,1) · tcalc = k ·Rcalc(Ak,1) · tcalc,

therefore it follows from (52)

Oh(Ak,P) ≥
(
k · (Rcalc(Ak,P)−Rcalc(Ak,1))

)
· tcalc

and (53) follows. �

Definition 26 (Ideal Overhead in %̂(Ak,P)). From the (53) it follows

OhIdeal(Ak,P) =
(
k · (Rcalc(Ak,P)−Rcalc(Ak,1)

)
· tcalc. (55)

Let Ef(Ak,P) :=
Sp(Ak,P)

P
be the efficiency of A where P ≥ 1.

Theorem 7. Let NE
P = cEP · rEP denote the dimension of the execution matrix of

Ak,P , it holds that

Ef(Ak,P) =
βcalcsum,MEk,1

NE
P ·Rcalc(Ak,P)

. (56)

Proof. Since cE = P , it follows that

Ef(Ak,P) =
Sp(Ak,P)

P
=

βcalcsum,MEk,1

cEP · rEP ·Rcalc(Ak,P)
. (57)

�

Definition 27 (Ideal Efficiency in %̂(Ak,P)). Since Sp(k,P) ≤ P · R
calc(Ak,1)

Rcalc(Ak,P)
, it al-

ways is Ef(Ak,P) ≤ Rcalc(Ak,1)

Rcalc(Ak,P)
. So let

EfIdeal(Ak,P) =
Rcalc(Ak,1)

Rcalc(Ak,P)
(58)

be the ideal efficiency of Ak,P .

Remark 19. It is worth to note the role of parameters Rcalc(Ak,P) and Rcalc(Ak,1)
in (47), (55) and (56). If in Ak,P there are few operators which are much more
time consuming than the others, and k >> rE then βcalcMEk,P

' βcalcsum,MEk,1
and

Rcalc(Ak,P) >> Rcalc(Ak,1). The more the operators are and the greater the dif-
ference is in (55), or the lower the ratio is in (47) and (56). Hence, the greater the

838 L. D’Amore, V. Mele, D. Romano, G. Laccetti

overhead is, the lower the speed up and the efficiency are. This is a consequence of
a problem decomposition, associated to Ak,P not well balanced.

Let us now suppose that the algorithm Ak,P is perfectly parallel, that is its
execution matrix MEP has not any empty element. Since rEP · cEP = C(Ak,P) it
follows from Corollary 3 that

Sp(Ak,P) = SpIdeal(Ak,P) = P · R
calc(Ak,1)

Rcalc(Ak,P)
,

from (53) that

Oh(Ak,P) = OhIdeal(Ak,P) =
(
C(Ak,P) · (Rcalc(Ak,P)−Rcalc(Ak,1))

)
· tcalc,

from (58)

Ef(Ak,P) = EfIdeal(Ak,P) =
Rcalc(Ak,1)

Rcalc(Ak,P)
.

Remark 20. If P = cD, rE = rD and cE = cD, if P = cD then the following results
hold on:

1. Q(Ak,P) = cD · rD ·Rcalc(Ak,P) · tcalc = ND ·Rcalc(Ak,P) · tcalc;

2. Sp(Ak,P) =
C(Ak,P)

rD

Rcalc(Ak,1)

Rcalc(Ak,P)
;

3. Oh(Ak,P) = (cD · rD − C(Ak,P)) ·Rcalc(Ak,P) · tcalc;

4. Ef(Ak,P) =
C(Ak,P)

rD·cD
Rcalc(Ak,1)

Rcalc(Ak,P)
.

Example 2. The well known reduction problem is interesting to expose the nature
of Algorithm Overhead Oh and its impact in some classical metrics.

Let B27 denote the computational problem of the sum of 27 real numbers and
D13(B27) = {Bi3}0≤i<13 ∈ DB27 one of its decompositions, where Bi3 represents the
sum of 3 real numbers.

The decomposition matrix is

MD(D13(B27) =

B
0
3 B1

3 B2
3 B3

3 B4
3 B5

3 B6
3 B7

3 B8
3

B9
3 B10

3 B11
3 ∅ ∅ ∅ ∅ ∅ ∅

B12
3 ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

 . (59)

Therefore, the concurrency degree is cD13 = 9, the dependency degree is rD13 = 3,
and the problem is not perfectly decomposed. Let us suppose B27 is solvable onMP

with P = 3. Let CopM3 = {++, . . .}, be the computing operators of M3, and let
AD13(B27),M3 = {++0, . . . ,++12} be the algorithm that we choose to solve B27, given

Multilevel Algebraic Approach for Performance Analysis of Parallel Algorithms 839

D13(B27). Then the execution matrix is

ME13,3 =

++0 ++1 ++2

++3 ++4 ++5

++6 ++7 ++8

++9 ++10 ++11

++12 ∅ ∅

(60)

and the corresponding algorithm is simply parallel. Moreover, T (A13,3) = 5 · tcalc,
where tcalc is the execution time for the sum ++ of three real numbers.

If we take another MP with P = 4 where B27 is solvable, let us suppose that
CopM4 = CopM3 and AD13(B27),M4 = AD13(B27),M3 . Then, the execution matrix can
be written as

ME13,4 =

++0 ++1 ++2 ++3

++4 ++5 ++6 ++7

++8 ∅ ∅ ∅
++9 ++10 ++11 ∅
++12 ∅ ∅ ∅

. (61)

The corresponding algorithm is still simply parallel, and T (A13,4) = 5 · tcalc.

Considering the classical metrics of speed-up and efficiency, evaluated together
with cost and algorithm overhead, we have:

• for AD13(B27),M3

Sp(A13,3) =
rEA13,1

rEA13,3

= 2.6,

Q(A13,3) = cEA13,3
· rEA13,3

· tcalc = 15 · tcalc,

Oh(A13,3) = Q(A13,3)−Q(A13,1) = 2 · tcalc,

Ef(A13,3) =
rEA13,1

rEA13,3
· cEA13,3

= 0.87,

(62)

840 L. D’Amore, V. Mele, D. Romano, G. Laccetti

• for AD13(B27),M4

Sp(A13,4) =
rEA13,1

rEA13,4

= 2.6,

Q(A13,4) = cEA13,4
· rEA13,4

· tcalc = 20 · tcalc,

Oh(A13,4) = Q(A13,3)−Q(A13,1) = 7 · tcalc,

Ef(A13,4) =
rEA13,1

rEA13,4
· cEA13,4

= 0.65.

(63)

Observe that while the speed up is the same, the overhead reveals that the
mapping on M4 is not the optimal one, showing the performance bottleneck of the
algorithm.

6 ALGORITHMS WHOSE OPERATORS
HAVE THE SAME EXECUTION TIME

We assume that all the operators of the algorithm have the same execution time.
For example they are the elementary floating point operations. The execution time
is βcalc · tcalc, and without loss of generality we assume that βcalc = 1.

Hence, it follows that, ∀P, βcalcr,MEk,P
= 1, βcalcMEk,P

= rE, β
calc
sum,MEk,P

= k. Finally,

from (25) it follows that ∀P,Rcalc(Ak,P) = 1. Hence, we get

• Sp(Ak,P , Ak′,1) := k′

k
· k
rE

,

• if Q = 1, then Sp(Ak,P) := k
rE

,

• SpIdeal(Ak,P , Ak′,1) = Scup(Ak,P , Ak′,1) · P = k′

k
· P ,

• SpIdeal(Ak,P) = cEP = P .

Finally, if BNr is perfectly decomposed, then

T (Ak,P) =
T (Ak,1)

P
, (64)

i.e., Ak,P has the ideal speed up in the classical definition.

Let us now consider matrices MEk,P associated with algorithms in %̂(Ak,P), vary-
ing P . The following results hold: Q(Ak,P) = cE · rE · tcalc and, if cE = 1, then
Q(Ak,1) = k · tcalc; OhIdeal(Ak,P) = 0; EfIdeal(Ak,P) = 1.

Theorem 8. Let us suppose that

∀I ij ∈ CopMP
, tij = βcalcij ,MEk,1

· tcalc = tcalc, ∀i, j. (65)

Multilevel Algebraic Approach for Performance Analysis of Parallel Algorithms 841

Given Ak,P , P > 1, MEk,P of order NE
P = rE · P , let Vr be the number of empty

elements of the row r of MEk,P ; it is

Oh(Ak,P) =

rE−1∑
r=0

Vr · tcalc. (66)

Proof. It holds that cE · rE = card(Ak,P) +
∑rE−1

r=0 Vr = C(Ak,P) +
∑rE−1

r=0 Vr =

k +
∑rE−1

r=0 Vr then from (52)

Oh(Ak,P) =

(
k +

rE−1∑
r=0

Vr − k

)
· tcalc =

rE−1∑
r=0

Vr · tcalc. (67)

�

Remark 21. Note that
∑rE−1

r=0 Vr is the sparsity degree of the execution matrix.

Among the decomposition approaches, recursive decomposition very often is the
most suitable approach for employing a performance analysis, especially in the pres-
ence of complex algorithms solving real-world applications/simulations. In this case,
as described in the toy example below, the problem is solved by firstly decomposing
it into a set of independent sub-problems. Furthermore, each one of these sub-
problems is solved by applying a similar decomposition into smaller subproblems
followed by a combination of their results, and so on. In this way we get a decompo-
sition matrix whose elements are problems which could be subsequently decomposed
and analyzed until the desired level of detail is reached.

Example 3. Let B16 denote the computational problem of the sum of 16 real num-
bers and D3(B16) = {B8, B8, B2} ∈ DB16. The decomposition matrix is

MD3(B16) =

[
B8 B8
B2 ∅

]
. (68)

If B8 can be decomposed as D1
3(B8) = {B4,B4,B2} ∈ DB8 then

MD1
3
(B8) =

[
B4 B4
B2 ∅

]
. (69)

In the same way, if B4 can be decomposed as D2
3(B4) = {B2,B2,B2} ∈ DB8 and

MD2
3
(B4) =

[
B2 B2
B2 ∅

]
. (70)

842 L. D’Amore, V. Mele, D. Romano, G. Laccetti

We have three decompositions for B16:

D3 ∈ D(B16) = {B8,B8,B2},

D7 ∈ D(B16) ≡ D1
3(B8) ∪D1

3(B8) ∪ {B2}

≡ {B4,B4,B2} ∪ {B4,B4,B2} ∪ {B2},

D15 ∈ D(B16) ≡ D2
3(B4) ∪D2

3(B4) ∪ {B2} ∪D2
3(B4) ∪D2

3(B4) ∪ {B2} ∪ {B2}

≡ {B2,B2,B2} ∪ {B2,B2,B2} ∪ {B2} ∪ {B2,B2,B2}

∪ {B2,B2,B2} ∪ {B2} ∪ {B2}

≡ {Bi2}0≤i<15 ∈ DB16 (71)

with the following characteristics, according to the corresponding decomposition
matrices:

• D3: cardinality 3, concurrency degree 2 and dependence degree 2,

• D7: cardinality 7, concurrency degree 4 and dependence degree 3,

• D15: cardinality 15, concurrency degree 8 and dependence degree 4,

meaning that the intrinsic concurrency of a problem heavily depends on the decom-
position chosen for that problem. Each decomposition has a level of detail depending
on the type of subproblems that are considered.

7 SOFTWARE

From now on, we consider memory accesses performed by an algorithm and we as-
sume, for simplicity, that to each access corresponds one read/write of a single data.
Moreover, we assume that computations and memory accesses are not performed
simultaneously, instead they depend on each other.

Definition 28. Given the set of elementary operators ofMP , we introduce memory
access operators corresponding to the memory access (read/write) of processing
elements of MP . The set OAMP

= {r(·), w(·)} where r(a), which reads a, and
w(a), which writes a, contains memory access operators of MP .

Note that MP is now the union of the set of elementary operators and the set of
memory accesses operators, MP = OpMP

⋃
OAMP

.

Definition 29. We introduce the ordered set (whose elements should not be dif-
ferent) of accesses operators ofMP AC = {oa0(·), oa1(·), . . . , oak(·)} where oai(·) ∈
OAMP

. Moreover, we consider the surjective correspondence

γ̄ : oai(·) ∈ OAMP
←→ opi ∈ Ak,P . (72)

Multilevel Algebraic Approach for Performance Analysis of Parallel Algorithms 843

Note that card(AC) ≥ card(Ak,P).

The set ACMP,L,ndL
(l) := {oali0(·), oa

l
i1

(·), . . . , oalik(·)} ⊂ XopMP
denotes an or-

dered set of accesses operators of MP,L,ndL at level l. Let ACMP,L,ndL
:=⋃L

l=1ACMP,L,ndL
(l) denote the set of the memory accesses of MP,L,ndL . For sim-

plicity of notations, if there is no ambiguity, the set ACMP,L,ndL
of memory accesses

of MP,L,ndL is briefly denoted as AC(L).

Definition 30 (Software). The set SW (Ak,P) := Ak,P ∪ AC(L) where the order
relation on AC(L) is induced by the ordering on Ak,P is said the Software corre-
sponding to algorithm Ak,P . More simply, in the sequel we denote the Software as
SW (Ak,P).

Definition 31. Given ME and AC, matrix AMADk,MP,L,ndL
(l), defined in AC of

order rAMl
× cAMl

, with cAM = ndl
11 is said the lth access matrix of SW .

Let rAM :=
∑L

l=1 rAMl
and let rCOM := rAML

(rCOM ≤ rAM) be the parameter
counting the rows of the Lth matrix AM(L) related to Lth level. If P = 1 then
rCOM = 0.

Definition 32 (Memory Access Time). The quantity

TM(SW (Ak,P)) :=
L−1∑
l=1

(rAMl
· tmem l) (73)

is said memory access time of SW (A).

Computational intensity is defined as the number of operations per memory ac-
cesses [23]. More precisely, it measures how intensely A computes with data, once
it has been received.

Definition 33 (Computational Intensity). The quantity

CI(SW (Ak,P)) :=
rE
rAM

∈ [1,∞[(74)

is said software computational intensity.

Remark 22. If instead of rAM we only consider the number of rows of the Lth

memory access matrix, which is related to the software communications, i.e., we
only consider rCOM and take the reciprocal of CI(SW (Ak,P)), we get the so called
software communication intensity. It measures how much communications dominate
with respect to the operations. This quantity is usually called surface-to-volume
ratio [14].

11 In general cAMl
≤ ndl, but with no loss of generality we assume that cAMl

= ndl.

844 L. D’Amore, V. Mele, D. Romano, G. Laccetti

Definition 34 (Communication Intensity). The quantity

ComI(SW (Ak,P)) :=
rCOM
rE

(75)

is said software communication intensity.

Definition 35 (Communication Time). The quantity

TCOM(SW (Ak,P)) := rCOM · tcom (76)

is said the software communication time.

We now assume that MP,ndL is such that P ≥ 1 and L ≥ 3, that is, it includes
the level L of the communications among processing elements. Moreover, since
overlapping communication with computation comes at the expense of increased
memory requirements, we assume that memory accesses (including communications)
and computations cannot be executed simultaneously, but they are dependent on
each other.

Definition 36 (Execution Time). The quantity

T (SW (Ak,P)) := T (Ak,P) + TM(SW (Ak,P)) + TCOM(SW (Ak,P)) (77)

is said software execution time of SW (Ak,P).

Definition 37 (Machine Communication Overhead). The ratio

UComoh(MP) :=
tcom

tcalc
(78)

is said unitary machine communication overhead.

Observe that at present time it is UComoh(MP,L,ndL)� 1. Machine communication
overhead, also known as machine balance, is one of the parameters depending on
the machine [17].

Definition 38 (Software Communication Overhead). The quantity

Comoh(SW (Ak,P)) :=
TCOM(SW (Ak,P))

T (Ak,P)
, (79)

which is the software communication overhead, is expressed as follows

Comoh(SW (Ak,P)) :=
rCOM
rE

· tcom
tcalc

≡ ComI(SW (Ak,P)) · UComoh(MP). (80)

Multilevel Algebraic Approach for Performance Analysis of Parallel Algorithms 845

Definition 39 (Memory Traffic). The quantity

MT (Ak,P) :=
TM(SW (Ak,P))

T (Ak,P)
, (81)

which is the memory traffic, is expressed as follows

MT (Ak,P) :=

∑L−1
l=1 (rAMl

· tmem l)∑rE−1
r=0 Tr(Ak,P)

. (82)

Remark 23. If memory traffic grows, then the computational intensity
CI(SW (Ak,P)) decreases (see Definition 33).

Definition 40 (lth Software Memory Traffic). The ratio

MT (Ak,P)l :=
rAMl

· tmem l∑rE−1
r=0 Tr(Ak,P)

(83)

is said level the lth memory traffic of SW (A).

Definition 41 (Software Speed Up). Given SW (Ak,P1) and SW (Ak,P2), where
P2 > P1, the ratio

Sp(SW (Ak,P2)) :=
T (SW (Ak,P1))

T (SW (Ak,P2))
(84)

is said software speed up of SW (Ak,P2).

Proposition 2.

Sp(SWAk,P ,MP,ndL1
) =

T (SWAk,1,M1,nd
L1

)

T (SWAk,P ,MP,nd
LP

)

=
rE1 · tcalc+ (rAM1 − rCOM1) · tmem + rCOM1 · tcom
rEP · tcalc + (rAMP − rCOMP) · tmem + rCOMP · tcom

.

In the same way as we have previously done for algorithm A, the Software efficiency
Ep(SW) and all the other performance metrics can be defined in terms of the
Software execution time T (SW).

8 CONCLUSIONS

This paper targets an important topic of current importance in High Performance
Computing community, which is the performance analysis of parallel algorithms; it
should be re-evaluated to find out the best-practice algorithm on novel architec-
tures [4, 15, 16, 18, 20, 21, 26, 34]. In this paper we presented a mathematical
framework which can be used to get a multilevel description of a parallel algorithm,

846 L. D’Amore, V. Mele, D. Romano, G. Laccetti

and we proved that it can be suitable for analysing the mapping of an algorithm on
a given machine. The model is multilevel, in the sense that it allows the choice of
a level of abstraction of both the problem decomposition and of the operations in
the algorithm, which determines the level of granularity of the performance analy-
sis. This feature can be very useful in practice to analyze performance of complex
algorithms solving real problems and to indicate performance bottlenecks within the
algorithm. Furthermore, the model allows to take into account the initial decompo-
sition of the problem into subproblems, and so their mutual dependencies. In order
to show how to use the performance model, we validated this approach in practice
using real problems on real architectures. In [27], a preliminary performance ana-
lysis, carried out considering the speed up of the algorithm before its mapping on
the computing architectures, provided the best number of processing elements and
grid levels to address the scaling of a multigrid in time algorithm. According to the
time-stepping procedure, the performance analysis was carried out choosing matrix-
vector products or linear system solutions as the elements of the dependency matrix,
and therefore as computing operators of the algorithm. In [3, 14], the performance
analysis of the algorithm, carried out in terms of scale up, suggested the introduc-
tion of a highly scalable decomposition of a variational data assimilation problem.
This approach completely redesigned the mapping of the numerical algorithm on
high performance computing architectures.

We remark that energy consumption on computer systems has emerged as an im-
portant concern, and the energy consumed in executing an algorithm cannot be in-
ferred from its performance alone. We will employ the proposed framework to also
model energy consumption of parallel algorithms. As example, according to [13], we
performed the energy analysis of a variational data assimilation algorithm running
on an ARM-based HPC systems assuming that total energy depends on the energy
consumed in all steps executed by the parallel algorithm; the energy consumed at
each step is measured in terms of parameters depending on both the algorithm and
the computing architecture [2]. This approach can be used to extend the perfor-
mance metrics to address the analysis of software energy consumption.

We conclude that we have assumed abstract models for both algorithms and
architectures, and we have made numerous simplifying assumptions. Indeed, we be-
lieve that a simplified parameterized model gives a useful generalization for a better
understanding of algorithms that can run really fast, no matter how complicated
the underlying computer architecture [17].

REFERENCES

[1] Amdahl, G. M.: Validity of the Single Processor Approach to Achieving Large Scale
Computing Capabilities. AFIPS Conference Proceedings (AFIPS ’67), Vol. 30, 1967,
pp. 483–485, doi: 10.1145/1465482.1465560.

[2] Arcucci, R.—Basciano, D.—Cilardo, A.—D’Amore, L.—Mantovani, F.:
Energy Analysis of a 4D Variational Data Assimilation Algorithm and Evaluation

https://doi.org/10.1145/1465482.1465560

Multilevel Algebraic Approach for Performance Analysis of Parallel Algorithms 847

on ARM-Based HPC Systems. In: Wyrzykowski, R., Dongarra, J., Deelman, E.,
Karczewski, K. (Eds.): Parallel Processing and Applied Mathematics (PPAM 2017).
Springer, Cham, Lecture Notes in Computer Science, Vol. 10778, 2018, pp. 37–47,
doi: 10.1007/978-3-319-78054-2 4.

[3] Arcucci, R.—D’Amore, L.—Celestino, S.—Laccetti, G.—Murli, A.:
A Scalable Numerical Algorithm for Solving Tikhonov Regularization Problems. In:
Wyrzykowski, R., Deelman, E., Dongarra, J., Karczewski, K., Kitowski, J., Wiatr, K.
(Eds.): Parallel Processing and Applied Mathematics. Springer, Cham, Lecture Notes
in Computer Science, Vol. 9574, 2016, pp. 45–54, doi: 10.1007/978-3-319-32152-3 5.

[4] Ballard, G.—Demmel, J.—Holtz, O.—Schwartz, O.: Minimizing Communi-
cation in Numerical Linear Algebra. SIAM Journal on Matrix Analysis and Applica-
tions, Vol. 32, 2011, No. 3, pp. 866–901, doi: 10.1137/090769156.

[5] Berman, F.—Snyder, L.: Mapping Parallel Algorithms into Parallel Architectures.
Journal of Parallel and Distributed Computing, Vol. 4, 1987, No. 5, pp. 439–458, doi:
10.1016/0743-7315(87)90018-9.

[6] Berman, F.: The Mapping Problem in Parallel Computation. In: Rice, J. R. (Ed.):
Mathematical Aspects of Scientific Software. Springer, New York, NY, The IMA Vol-
umes in Mathematics and Its Applications, Vol. 14, 1988, pp. 41–57, doi: 10.1007/978-
1-4684-7074-1 2.

[7] Bernstein, A. J.: Analysis of Programs for Parallel Processing. IEEE Trans-
actions on Electronic Computers, Vol. EC-15, 1966, No. 5, pp. 757–763, doi:
10.1109/pgec.1966.264565.

[8] Bokhari, S. H.: On the Mapping Problem. IEEE Transactions on Computers,
Vol. C-30, 1981, No. 3, pp. 207–214, doi: 10.1109/tc.1981.1675756.

[9] Browne, S.—Dongarra, J.—Garner, N.—Ho, G.—Mucci, P.: A Portable
Programming Interface for Performance Evaluation on Modern Processors. The Inter-
national Journal of High Performance Computing Applications, Vol. 14, 2000, No. 3,
pp. 189–204, doi: 10.1177/109434200001400303.

[10] Bosilca, G.—Bouteiller, A.—Danalis, A.—Herault, T.—Lemari-
nier, P.—Dongarra, J.: DAGuE: A Generic Distributed DAG Engine for High
Performance Computing. Parallel Computing, Vol. 38, 2012, No. 1–2, pp. 37–51, doi:
10.1016/j.parco.2011.10.003.

[11] Bosilca, G.—Bouteiller, A.—Danalis, A.—Faverge, M.—Herault, T.—
Dongarra, J.: PaRSEC: Exploiting Heterogeneity to Enhance Scalability. Com-
puting in Science and Engineering, Vol. 15, 2013, No. 6, pp. 36–45, doi:
10.1109/mcse.2013.98.

[12] Coffman, E. G. Jr.—Denning, P. J.: Operating Systems Theory. Prentice Hall,
1973.

[13] Korthikanti, V. A.—Agha, G.: Energy-Performance Trade-Off Analysis of Paral-
lel Algorithms for Shared Memory Architectures. Sustainable Computing: Informat-
ics and Systems, Vol. 1, 2011, No. 3, pp. 167–176, doi: 10.1016/j.suscom.2011.05.004.

[14] D’Amore, L.—Arcucci, R.—Carracciuolo, L.—Murli, A.: A Scalable Ap-
proach for Variational Data Assimilation. Journal of Scientific Computing, Vol. 61,
2014, No. 2, pp. 239–257, doi: 10.1007/s10915-014-9824-2.

https://doi.org/10.1007/978-3-319-78054-2_4
https://doi.org/10.1007/978-3-319-32152-3_5
https://doi.org/10.1137/090769156
https://doi.org/10.1016/0743-7315(87)90018-9
https://doi.org/10.1007/978-1-4684-7074-1_2
https://doi.org/10.1007/978-1-4684-7074-1_2
https://doi.org/10.1109/pgec.1966.264565
https://doi.org/10.1109/tc.1981.1675756
https://doi.org/10.1177/109434200001400303
https://doi.org/10.1016/j.parco.2011.10.003
https://doi.org/10.1109/mcse.2013.98
https://doi.org/10.1016/j.suscom.2011.05.004
https://doi.org/10.1007/s10915-014-9824-2

848 L. D’Amore, V. Mele, D. Romano, G. Laccetti

[15] D’Amore, L.—Laccetti, G.—Romano, D.—Scotti, G.—Murli, A.: Towards
a Parallel Component in a GPU-CUDA Environment: A Case Study with the L-BFGS
Harwell Routine. International Journal of Computer Mathematics, Vol. 92, 2014,
No. 1, pp. 59–76, doi: 10.1080/00207160.2014.899589.

[16] D’Amore, L.—Mele, V.—Laccetti, G.—Murli, A.: Mathematical Approach
to the Performance Evaluation of Matrix Multiply Algorithm. In: Wyrzykowski, R.,
Deelman, E., Dongarra, J., Karczewski, K., Kitowski, J., Wiatr, K. (Eds.): Parallel
Processing and Applied Mathematics. Springer, Cham, Lecture Notes in Computer
Science, Vol. 9574, 2016, pp. 25–34, doi: 10.1007/978-3-319-32152-3 3.

[17] Demmel, J.: Applications of Parallel Computers. U.C. Berkeley CS267, http://

www.cs.berkeley.edu/~demmel/cs267_Spr12, 2012.

[18] Demmel, J.—Eliahu, D.—Fox, A.—Kamil, S.—Lipshitz, B.—
Schwartz, O.—Spillinger, O.: Communication-Optimal Parallel Recursive
Rectangular Matrix Multiplication. Proceedings of the 2013 IEEE 27th International
Symposium on Parallel and Distributed Processing (IPDPS ’13), 2013, pp. 261–272,
doi: 10.1109/ipdps.2013.80.

[19] Flatt, H. P.—Kennedy, K.: Performance of Parallel Processors. Parallel Com-
puting, Vol. 12, 1989, No. 1, pp. 1–20, doi: 10.1016/0167-8191(89)90003-3.

[20] Gunnels, J. A.—Henry, G. M.—van de Geijn, R. A.: A Family of High-
Performance Matrix Multiplication Algorithms. In: Alexandrov, V. N., Don-
garra, J. J., Juliano, B. A., Renner, R. S., Tan, C. J. K. (Eds.): Computational Scien-
ce – ICCS 2001, Part I. Springer, Berlin, Heidelberg, Lecture Notes in Computer
Science, Vol. 2073, 2001, pp. 51–60, doi: 10.1007/3-540-45545-0 15.

[21] Gunnels, J. A.—Gustavson, F. G.—Henry, G. M.—van de Geijn, R. A.:
FLAME: Formal Linear Algebra Methods Environment. ACM Transactions on Math-
ematical Software, Vol. 27, 2001, No. 4, pp. 422–455, doi: 10.1145/504210.504213.

[22] Gupta, A.—Kumar, V.: Performance Properties of Large Scale Parallel Systems.
Journal of Parallel and Distributed Computing, Vol. 19, 1993, No. 3, pp. 234–244,
doi: 10.1006/jpdc.1993.1107.

[23] Hockney, R. W.: The Science of Computer Benchmarking. SIAM, Software, Envi-
ronments and Tools Series, 1996, doi: 10.1137/1.9780898719666.

[24] Kronsjö, L. I.: Algorithms, Their Complexity and Efficiency. John Wiley and Sons,
New York, NY, USA, 1979.

[25] Kuck, D. J.—Kuhn, R. H.—Padua, D. A.—Leasure, B.—Wolfe, M.: Depen-
dence Graphs and Compiler Optimization. Proceeding of the 8th ACM SIGPLAN –
SIGACT Symposium on Principles on Programming Languages (POPL ’81), 1981,
pp. 207–218, doi: 10.1145/567532.567555.

[26] Miller, B.—Vahid, F.—Givargis, T.—Brisk, P.: Graph-Based Approaches to
Placement of Processing Element Networks on FPGAs for Physical Model Simulation.
ACM Transaction on Reconfigurable Technology and Systems, Vol. 7, 2015, No. 4,
Art. No. 37, doi: 10.1145/2629521.

[27] Mele, V.—Constantinescu, E. M.—Carracciuolo, L.—D’Amore, L.:
A PETSc Parallel-in-Time Solver Based on MGRIT Algorithm. Concur-

https://doi.org/10.1080/00207160.2014.899589
https://doi.org/10.1007/978-3-319-32152-3_3
http://www.cs.berkeley.edu/~demmel/cs267_Spr12
http://www.cs.berkeley.edu/~demmel/cs267_Spr12
https://doi.org/10.1109/ipdps.2013.80
https://doi.org/10.1016/0167-8191(89)90003-3
https://doi.org/10.1007/3-540-45545-0_15
https://doi.org/10.1145/504210.504213
https://doi.org/10.1006/jpdc.1993.1107
https://doi.org/10.1137/1.9780898719666
https://doi.org/10.1145/567532.567555
https://doi.org/10.1145/2629521

Multilevel Algebraic Approach for Performance Analysis of Parallel Algorithms 849

rency and Computation: Practice and Experience, Vol. 30, 2018, No. 24,
doi: 10.1002/cpe.4928.

[28] Moldovan, D. I.: On the Analysis and Synthesis of VLSI Algorithms. IEEE
Transactions on Computers, Vol. C-31, 1982, No. 11, pp. 1121–1126, doi:
10.1109/tc.1982.1675929.

[29] Rico-Gallego, J. A.—D́ıaz-Mart́ın, J. C.—Manumachu, R. R.—Lastovet-
sky, A. L.: A Survey of Communications Performance Models for High-Performance
Computing. ACM Computing Surveys, Vol. 51, 2019, No. 6, Art. No. 126, doi:
10.1145/3284358.

[30] Sharp, J. A. (Ed.): Data Flow Computing: Theory and Practice. Ablex Publishing
Corporation, Norwood, New Jersey, 1992.

[31] Lee, S.-Y.—Aggarwal, J. K.: A Mapping Strategy for Parallel Processing.
IEEE Transactions on Computers, Vol. C-36, 1987, No. 4, pp. 433–442, doi:
10.1109/tc.1987.1676925.

[32] Tekinerdogan, B.—Arkin, E.: Architectural Framework for Mapping Parallel
Algorithms to Parallel Computing Platforms. 2nd International Workshop on Model
Driven Engineering for High Performance and Cloud Computing (MDHPCL 2013),
Miami, Florida, CEUR Workshop Proceedings, Vol. 1118, 2013, pp. 53–62.

[33] Tjaden, G. S.—Flynn, M. J.: Detection and Parallel Execution of Independent
Instructions. IEEE Transactions on Computers, Vol. C-19, 1970, No. 10, pp. 889–895,
doi: 10.1109/t-c.1970.222795.

[34] Voevodin, V. V.—Antonov, A. S.—Dongarra, J. J.: AlgoWiki: An Open En-
cyclopedia of Parallel Algorithmic Features. Supercomputing Frontiers and Innova-
tions, Vol. 2, 2015, No. 1, pp. 4–18, doi: 10.14529/jsfi150101.

[35] Zhong, Z.—Rychkov, V.—Lastovetsky, A.: Data Partitioning on Multicore
and Multi-GPU Platforms Using Functional Performance Models. IEEE Transactions
on Computers, Vol. 64, 2015, No. 9, pp. 2506–2518, doi: 10.1109/tc.2014.2375202.

Luisa D'Amore received her degree in mathematics in 1988
and her Ph.D. in applied mathematics and computer science in
1995. Since 1996 she works as researcher in numerical analy-
sis and since 2001 she is Associate Professor of numerical ana-
lysis. Since 2011 she has been working as an associate staff re-
searcher of the ASC (Advanced Scientific Computing) Division
of CMCC (Euro Mediterranean Center on Climate Changes).
She is a member of the Academic Board for the Ph.D. in math-
ematics and informatics at the University of Naples Federico II
and a teacher of courses in numerical analysis, scientific com-

puting and parallel computing. Her research activity focuses on scientific computing
and it is addressed to the numerical solution of ill-posed inverse problems with appli-
cations in image analysis, medical imaging, astronomy, digital restoration of films and
data assimilation. The need of computing the numerical solution in a suitable time,
induced by the applications, often requires the use of advanced computing architectures.

https://doi.org/10.1002/cpe.4928
https://doi.org/10.1109/tc.1982.1675929
https://doi.org/10.1145/3284358
https://doi.org/10.1109/tc.1987.1676925
https://doi.org/10.1109/t-c.1970.222795
https://doi.org/10.14529/jsfi150101
https://doi.org/10.1109/tc.2014.2375202

850 L. D’Amore, V. Mele, D. Romano, G. Laccetti

This involves designing and development of algorithms and software capable of exploiting

the high performance of emergingcomputing infrastructures. She is (co)author of about

100 publications in refereed journals and conference proceedings.

Valeria Mele is a Researcher at University of Naples Federico
II (Naples, Italy). She obtained a degree in informatics and
a Ph.D. in computational science, and for many years has been
working as teaching assistant in Parallel and Distributed Com-
puting classes at University of Naples Parthenope and Univer-
sity of Naples Federico II. Meanwhile, her research activity has
been mainly focused on the development and the performance
evaluation of parallel algorithms and software for heterogeneous,
hybrid and multilevel parallel architectures, from multicore to
GPU-enhanced machines and modern clusters and supercom-

puters. After attending the Argonne Training Program on Extreme-Scale Computing
(ATPESC) and visiting the Argonne National Laboratory (ANL, Chicago, Illinois, USA),
she is now mainly working on the designing, the implementation and the performance
prediction/evaluation of software with/for the PETSc (Portable, Extensible Toolkit for
Scientific Computation) library, collaborating with applied mathematicians and computer
scientists at the Mathematics and Computer Science Division of the ANL.

Diego Romano obtained the Laurea degree (Italian M.Sc. equi-
valent) in mathematics in 2000, and his Ph.D. degree in com-
putational and computer sciences from the University of Naples
Federico II, Italy, in 2012. He obtained a permanent position
as researcher at the Italian National Research Council (CNR) in
2008, where he is currently employed at the Institute for High
Performance Computing and Networking (ICAR). His research
interests include performance and design of GPU computing al-
gorithms. Within this field, he works, for instance, on the global
illumination problem in computer graphics, and on a mathemat-

ical model for the performance analysis.

Giuliano Laccetti is Professor of computer science at the Uni-
versity of Naples Federico II, Italy. He obtained his Laurea de-
gree (cum laude) in physics from the University of Naples. His
main research interests are mathematical software, high perfor-
mance architecture for scientific computing, distributed comput-
ing, grid and cloud computing, algorithms on emerging hybrid
architectures (CPU+GPU, . . .), Internet of Things. He has been
organizer and chair of several workshops joint to larger interna-
tional conferences. He is author (or co-author) of about 100 pa-
pers published in international refereed journals, books, and
conference proceedings.

