
Computing and Informatics, Vol. 38, 2019, 883–916, doi: 10.31577/cai 2019 4 883

AN EFFECTIVE METAHEURISTIC FOR MULTIPLE
TRAVELING REPAIRMAN PROBLEM WITH
DISTANCE CONSTRAINTS

Ha-Bang Ban

School of Information and Communication Technology
Hanoi University of Science and Technology
Hanoi, Vietnam
&
FPT University, Hanoi, Vietnam
e-mail: BangBH@soict.hust.edu.vn

Duc-Nghia Nguyen

School of Information and Communication Technology
Hanoi University of Science and Technology
Hanoi, Vietnam
e-mail: NghiaND@soict.hust.edu.vn

Kien Nguyen

Graduate School of Science and Engineering, Chiba University, Japan
e-mail: nguyen@chiba-u.jp

Abstract. Multiple Traveling Repairman Problem with Distance Constraints
(MTRPD) is an extension of the NP-hard Multiple Traveling Repairman Problem.
In MTRPD, a fleet of identical vehicles is dispatched to serve a set of customers
with the following constraints. First, each vehicle’s travel distance is limited by
a threshold. Second, each customer must be visited exactly once. Our goal is to
find the visiting order that minimizes the sum of waiting times. To solve MTRPD
we propose to combine the Insertion Heuristic (IH), Variable Neighborhood Search
(VNS), and Tabu Search (TS) algorithms into an effective two-phase metaheuris-

884 H.-B. Ban, D.-N. Nguyen, K. Nguyen

tic that includes a construction phase and an improvement phase. In the former
phase, IH is used to create an initial solution. In the latter phase, we use VNS
to generate various neighborhoods, while TS is employed to mainly prohibit from
getting trapped into cycles. By doing so, our algorithm can support the search to
escape local optima. In addition, we introduce a novel neighborhoods’ structure
and a constant time operation which are efficient for calculating the cost of each
neighboring solution. To show the efficiency of our proposed metaheuristic algo-
rithm, we extensively experiment on benchmark instances. The results show that
our algorithm can find the optimal solutions for all instances with up to 50 vertices
in a fraction of seconds. Moreover, for instances from 60 to 80 vertices, almost all
found solutions fall into the range of 0.9 %–1.1 % of the optimal solutions’ lower
bounds in a reasonable duration. For instances with a larger number of vertices,
the algorithm reaches good-quality solutions fast. Moreover, in a comparison to the
state-of-the-art metaheuristics, our proposed algorithm can find better solutions.

Keywords: Traveling repairmen problem, distance constraints, insertion heuristic,
tabu search, variable neighborhood search

1 INTRODUCTION

The Traveling Repairman Problem (TRP), which is also known as the Minimum
Latency Problem (MLP) or the Deliveryman Problem (DMP), has been studied in
the number of previous works [1, 2, 3, 4, 5, 6, 10, 11, 18]. The problem arises when
repairmen or servers have to accommodate a set of requests to minimize the total
or average waiting times [1, 2, 8, 10]. A direct generalization of the TRP is the
Multiple Traveling Repairman Problem (MTRP) that considers multiple vehicles
or travelers. Similar to TRP, there are several prior studies in the literature for
MTRP [22, 9, 23, 28, 29]. Applications of the MTRP can be found in routing
Pizza deliverymen or scheduling machines to minimize mean flow time for jobs [17].
In this paper, we study an extension of MTRP, namely the Multiple Traveling
Repairmen Problem with Distance Constraints (MTRPD), which involves distance
constraints. In MTRPD, the route length or maximum duration of each vehicle
cannot exceed a predetermined limit (MD). This type of constraint usually stems
from regulations on working hours for workers. Other examples of vehicle routing
models that incorporate the distance constraint can be found in [30]. In MTRPD,
we consider k vehicles at a main depot s and n customers. The goal is to find a tour
such that each vertex is visited exactly once, the distance constraint is respected
and the total waiting time of all customers is minimized.

MTRPD is at least as hard as TRP and MTRP. MPTRPD, which is also NP-
hard problem, can be formulated as follows.

Given a complete graph Kn with the vertex set V = {1, 2, . . . , n}, a symmet-
ric distance matrix C = {c(i, j) | i, j = 1, 2, . . . , n}, where c(i, j) is the distance
between two vertices i and j, and a predetermined limit L. Let R = (1, 2, . . . , k)

Effective Metaheuristic for MTRP with Distance Constraints 885

be a set of k vehicles which begin at the main depot v1. Suppose that the tour
T = (R1, . . . , Rl, . . . , Rk) is a set of obtained routes from k vehicles. Let Rl =
(v1, . . . , vh, . . . , vm) (1 < m 6 n) be a route of vehicle l (l ∈ R). P (v1, vh) is the
path from v1 to vh on the route Rl and l(P (v1, vh)) is its length. The waiting time
of a vertex vh (1 < h 6 m) on Rl is the length of the path from starting vertex v1
to vh:

l(P (v1, vh)) =
h−1∑
i=1

c(vi, vi+1).

The waiting time of Rl is defined as the sum of waiting times of all vertices in this
route. It must satisfy the below constraint:

W (Rl) =
m∑

h=2

l(P (v1, vh)),

L(Rl) =
m−1∑
i=1

c(vi, vi+1) 6 MD .

The total waiting time of T is the sum of all the vertices’ waiting times:

W (T) =
k∑

l=1

W (Rl).

MTRPD asks for a k -route, which starts at a given vertex v1, visits each vertex
in the graph once exactly with the total waiting time of all vertices being minimized.
Like other NP-hard problems, there are three main approaches to solve MTRPD:

1. exact algorithms,

2. approximation algorithms, and

3. heuristic algorithms.

The first approach guarantees to find the optimal solution that takes exponential
time in the worst case. However, the exact algorithm only solves with up to 50
vertices [25]. In the second approach, we denote an approximation algorithm as
p-approximation when the algorithm finds the solution at most p times worse than
the optimal one. Here p is the approximation ratio, which has a constant value. Up
to date, the best approximation ratio is 16.994 for the MTRP [22], which is still far
from the optimal solution. In the third approach, the proposed heuristic algorithms
perform well in practice and their performance is validated on an experimental
benchmark of interesting instances. The metaheuristic algorithm also falls in the
third approach.

Research on the MTRPD has not studied much and only one meta-heuristic
approach for this problem has been proposed in [9]. Ban’s algorithm in [9] is mainly
based on the principles of the Variable Neighborhood Decent (VND). However, Ban’s

886 H.-B. Ban, D.-N. Nguyen, K. Nguyen

algorithms might become trapped into cycles. That means they return to the points
previously explored in the solution space. Consequently, the algorithms can get stuck
in local optima. In this article, we investigate the global structure of the MTRPD
solution space. Based on the investigation, a meta-heuristic algorithm that com-
bines the Tabu search (TS) and Variable Neighborhood Search (VNS) is proposed.
In the algorithm, TS is used to avoid getting trapped into cycles. Therefore, it
supports the search to escape from local optima. In a cooperative way, VNS is em-
ployed to generate various neighborhoods for the TS. Moreover, we also introduce
a novel neighborhoods’ structure for VNS and present a constant time operation
for calculating the cost of each neighboring solution. Therefore, the extension of
explored part of the solution space obtained by using various neighborhoods, which
can increase chances of finding better solution, is not time-consuming in our algo-
rithm. Extensive computational experiments on benchmark instances show that the
proposed algorithm is able to find the optimal solutions for all instances with up
to 50 vertices in a fraction of seconds. Moreover, almost all found solutions for in-
stances from 60 to 80 vertices fall into the range of 0.9 %–1.1 % of the lower bounds
of the optimal solutions at reasonable amount of time. For larger instances, our
algorithm obtains good-quality solutions fast and the new best solutions are found
in comparison with the state-of-the-art metaheuristics.

The rest of this article is organized as follows. Section 2 introduces the global
structure of the solution space of MTRPD. Section 3 presents the proposed algo-
rithm. Section 4 contains the evaluation. Finally, Section 5 concludes the article.

2 INVESTIGATION OF MTRPD SOLUTION SPACE

The structure of the MTRPD solution takes an important part in improving a suit-
able algorithm to solve the problem. However, to the best of our knowledge, there
has not been a previous work that would solve the global structure of the MTRPD
problem. That motivates us to investigate the global structure of the MTRPD
solution space.

In an intuitive way, the distance between two tours T1 and T2 of the problem
is defined as the minimum number of transformations from T1 to T2, denoted by
d(T1, T2). Since no polynomial method for computing d(T1, T2) has been known, we
define d(T1, T2) to be n minus the number of vertices which have the same position
in both T1 and T2. We see that this distance approximates the number of 2-opt
operations (2-opt is a local search described in Section 3) required to transform one
tour into another, to within a factor of two. Therefore, d(T1, T2) is the good measure
of proximity between solutions produced by 2-opt.

We have selected two instances (d15112-x and pr1002-x) from the dataset in [25]
and implemented with 2-opt. The selection reason is that the optimal solutions of
both instances are provided in [25]. Running each instance with 2-opt, we obtain
locally optimal solutions. The larger the number of 2-opt runs, the better the visu-
alization of the MTRPD solution space. The pilot experiment shows that the value

Effective Metaheuristic for MTRP with Distance Constraints 887

36 37 38 39 40 41 42 43

C
os

t

6.0

6.5

7.0

7.5

8.0

8.5

9.0

9.5

10
(a) Average distance from local minimax 10 3

a)

10 20 30 40 50 60 70 80 90 100

(b) Distance to best local minimum

C
os

t

6.5

7.0

7.5

8.0

8.5

9.0

9.5

10
x 10 3

b)

Figure 1. 2 000 random 2-opt local minima for d15112-x. Tour cost (vertical axis) is
plotted against a) mean distance to the 1 999 other local minima and b) distance to the
global minimum.

of 2 000 is good enough for the investigation. We run 2-opt 2 000 times to produce
2 000 locally optimal solutions. Then, for each of those solutions, we compute the
average distance to the other 1999 solutions, measured by the distance metric d. The
results for d15112-x and pr1002-x are presented in Figures 1 and 2, respectively.

In Figures 1 a) and 2 a), we can realize a clear correlation as follows. The op-
timal minimum appears to be central to all other local minima. Moreover, indeed,
a prominent valley structure can be said to govern the set of locally minimum solu-
tions. We can gain further insights from Figures 1 b) and 2 b), which plot the costs
of the same 2 000 local minima against their distances from the optimal minimum
solution found. It indicates that the average distance between two random solu-
tions is just under (n− 2). The experiment shows that the MTRPD solution space
exhibits a global convex (i.e., the so-called big valley structure in Figure 3). That
means the set of local optima appears convex with one central global optimum.

As mentioned earlier, MTRPD has shown to be NP-Hard because it is a gen-
eralization of TRP, which is NP-hard [10, 18]. Therefore, a metaheuristic needs
to be developed to provide near-optimal solutions within a short computation time

888 H.-B. Ban, D.-N. Nguyen, K. Nguyen

54 55 56 57 58 59 60 61 62

C
os

t

× 104

1.0

1.1

1.2

1.3

1.4

1.5

1.6 (a) Average distance from other local minima

a)

10 20 30 40 50 60 70 80 90 100

(b) Distance to best local minimum

C
os

t

1.0

1.1

1.2

1.3

1.4

1.5

1.6
× 104

b)

Figure 2. 2 000 random 2-opt local minima for pr1002-x. Tour cost (vertical axis) is
plotted against a) mean distance to the 1 999 other local minima and b) distance to the
global minimum.

Figure 3. Intuitive scheme of the “big valley” solution space structure

Effective Metaheuristic for MTRP with Distance Constraints 889

for large instance sizes. Moreover, the big valley structure suggests the idea of the
hybrid approach that combines the TS and VNS algorithms. First, in the valley
structure, the best elite solutions created by the VNS dispersed over it. Second, TS
is perfectly attracted to big valley area. Even though the initial solution was set
far from the valley, TS still can prevent from getting trapped into cycles to drive
the search to the big valley. The above observations indicate that the combination
between TS and VNS is suitable for finding good solutions inside the big valley.

3 OUR METAHEURISTIC APPROACH

We propose the efficient and straightforward metaheuristic algorithm that brings
together the components of IH, TS [19], and VNS [27]. The proposed algorithm
includes two phases:

1. IH in the construction phase and

2. VNS and TS in the improvement phase.

The two phases could be divided into five detailed steps, as shown in Algorithm 1. In
Step 1, the algorithm starts with an initial solution obtained from IH. The following
four main steps are repeated until a stop condition is met. In Step 2, we introduce
a novel neighborhoods’ structure in VNS [27]. Moreover, in order to avoid tabu
move, tabu lists are used. The idea of voiding possibility repeatedly in TS [19] is
to make tabu lists of the recent types of moves in the space solution, and prohibit
reversing these moves. The move here is a transition from one solution to another.
In Step 3, a list of promising solutions is built up, and the list serves as input for
Step 4. The step aims at exploiting the current solution space. To explore the entire
solution space, a diversification phase is added in Step 5. Further in this section we
describe the five steps of our algorithm in more details.

Step 1: We use the insertion heuristic which is given in Algorithm 2 for finding
an initial solution. Consider a partial tour, and define the set V as the set of all
non-visited nodes, V ⊆ V . To improve the partial tour, a node from V should be
added. This process requires two decisions: which vertex to insert and where to
place it in the tour. We use two insertion schemes to keep the balance between
pure greediness and overall layout of the tour. The major difference between
the two is the order in which the vertices are inserted.

Cheapest insertion: Among all vertices not inserted so far, choose a vertex
whose insertion causes the lowest increase in the cost of the tour. The idea
behind this strategy is undoubtedly pure greediness.

Farthest insertion: Insert the vertex whose minimal distance to a tour vertex
is maximal. The idea behind this strategy is to fix the overall layout of the
tour early in the insertion process.

Several main steps in IH-procedure is repeated until a feasible solution is found
or a stop condition is met. If any feasible solution is found, it is considered as

890 H.-B. Ban, D.-N. Nguyen, K. Nguyen

Algorithm 1 Our VNS + TS Metaheuristic Algorithm

Input: v1, Kn, k are a starting vertex, the complete graph, and the number of ve-
hicles, respectively.

Output: the best solution T ∗.
Step 1 (Generate an initial solution):
T ← IH-Procedure(v1, V, k); {initiate the best solution}
T ∗ ← T {LT is the list of promising solutions}
LT ← ∅
while stop criteria not met do

Step 2 (VNS):
for i : 1→ 10 do
T

′ ← arg minNi(T); {local search}
if ((W (T

′
) < W (T) and T

′
is not tabu) or (W (T

′
) < W (T ∗))) then

T ← T
′

i← 1
update tabu lists;
if (W (T

′
) < W (T ∗)) and (T

′
must be a feasible solution) then

T ∗ ← T
′
;

end if
else
i++

end if
end for
Step 3 (Built up promising solutions list LT):
if W (T) < (1 + ST)W (T ∗) then
LT ← LT ∪ T ;

end if
if (| LT |== sLT) then

go to Step 2;
end if
Step 4 (Implement Intensification):
for j : 1→ sLT do

perform VNS as in Step 2 without tabu list with an element of LT as start
solution;

end for
Step 5 (Implement Diversification):
Clear all tabu lists and update attribute matrix M ;
select a random tour T in LT ;
T ← shaking-procedure(T);

end while
return T ∗;

Effective Metaheuristic for MTRP with Distance Constraints 891

Algorithm 2 IH-Procedure(v1, Kn, k)

Input: v1, Kn, k are a starting vertex, the complete graph, and the number of ve-
hicles, respectively.

Output: An initial solution T . {LIT is the list of infeasible tours}
1: LT = φ;
2: T = v1;
3: while stop criteria not met do
4: for (l = 1; l < k; l++) do
5: Rl = Rl ∪ v1; {The lth route of the tour T starts at a main depot v1}
6: end for {L is the list of visited vertices in Kn}
7: L = φ;
8: while |T | < n do
9: l = random(k); {Choose a route randomly in k routes}

10: rd = random(2); {Choose an insertion scheme randomly}
11: if rd == 1 then
12: Arbitrary select a vertex v that is not yet in the partial route and

an inserted position j < |Rl| at time tj so that the cost of R
′

l (R
′

l =
Insert(Rl, j, v)) is minimal; {Cheapest Insertion}

13: else
14: Arbitrary select a vertex v that is not yet in the partial tour and an in-

serted position j < |Rl| at time tj so that c(vj, v, j) is minimal and the
cost of R

′

l (R
′

l = Insert(Rl, j, v)) is maximal; {Farthest Insertion}
15: end if
16: Rl ← R

′

l

17: end while
18: if T is a feasible solution then
19: return T ;
20: else
21: LIT = LIT ∪ {T};
22: end if
23: if |LIT | > n− 1 then
24: choose a tour with the minimum cost in LIT ;
25: exit();
26: end if
27: end while

the initial solution. Conversely, it is added into the list LIT that is used to
store all infeasible tours. Since the size of LIT is n, we choose a tour with the
minimum cost in LIT as the initial solution.

Step 2: In this step, ten neighborhoods investigated are divided into two categories:
intro-route, and intra-route. Intro-route is used as a post-optimizer on single
vehicle routes. It includes remove-insert, swap-adjacent, swap, move-up(down),
move-forward(backward)-k -vertices [21]. Meanwhile, solution improvements can

892 H.-B. Ban, D.-N. Nguyen, K. Nguyen

Algorithm 3 Shaking(T,M, pos)

Input: T , M , pos are the tour, attribute matrix, and the number of swap, respec-
tively.

Output: a new route T
′
.

Select randomly a route Rl in T ;
T = Shaking-intro-route(Rl,M, l, pos).
Select randomly two routes Rl and Rh in T ;
T = Shaking-intra-routes(Rl, Rh, pos).
return T ;

Algorithm 4 Shaking-intro-route(Rl,M, l, pos)

Input: Rl, M , l, pos are the l− th route, attribute matrix, and the number of times
an edge is present in an element of the promising solutions list, the number of
swap, respectively.

Output: a new solution T .
while (pos > 0) do
{select i, j from [1, n] at random}
i←− Random(1, n);
j ←− Random(1, n);
if (i 6= j) then

if (edge(Rl[i], Rl[j]) and edge(Rl[i], Rl[j+1]) are not in M more than l times)
then

Insert Rl[i] between Rl[j] and Rl[j + 1];
pos←− pos− 1;

end if
end if

end while
update Rl in T ;
return T ;

Algorithm 5 Shaking-intra-routes(Rl, Rh, pos)

Input: Rl, Rh, pos are the lth, hth route, the number of vehicles and the number of
swap, respectively.

Output: a new solution T .
while (pos > 0) do

select ith and jth positions from Rl and Rh at random, respectively;
swap Rl[i] between Rh[j];
pos = pos− 1;

end while
update T ;
return T ;

Effective Metaheuristic for MTRP with Distance Constraints 893

be obtained by moving vertices belonging to two or more different routes in
intra-route. In this work, we introduce new neighborhoods in intra-route such
as swap-2-route, and insert-2-route. For a given current solution T , neighbor-
hood explores the neighboring solution space set N(T) of T iteratively and tries
to replace T by the best solution T ′ ∈ N(T). The main operation in explor-
ing the neighborhood is the calculation of the cost of a neighboring solution.
In a straightforward implementation in the worst case, this operation requires
Tsol = O(n). In this paper, by using the known cost of the current solution,
we show that this operation can be done in constant time for some considered
neighborhoods. Thus, we speed up the running time of exploring these neighbor-
hoods. Now, let T = (R1, R2, . . . , Rk) be a tour with k routes, we then introduce
a novel neighborhoods’ structure and complexity of its exploration.

For Intro-route: Intro-route is used to optimize on a single route. Assume
that R and m (m < n) are a route and its length, respectively. We then
introduce eight neighborhoods’ structure in turn.

Remove-insert neighborhood considers each vertex vi in the route at the
end of the route. This neighborhood of R is defined as a set N1(R) = {Ri =
(v1, v2, . . . , vi−1, vi+1, . . . , vm, vi) : i = 2, 3, . . . ,m− 1}. Obviously, the size of
N1(R) is O(m).

Property 1. The time complexity of exploring N1(R) is O(m2).

Proof. Let us consider an initial solution R = v1, v2, . . . , vi−1, vi, vi+1, . . . , vm.
The neighborhood generates a neighboring solution Ri = v1, v2, . . . , vi−1, vi+1,
. . . , vm, vi. The costs of R and Ri are calculated as follows:

L(R) = (m− 1)c(v1, v2) + . . .+ (m− i+ 1)c(vi−1, vi) + (m− i)c(vi, vi+1)

+ (m− i− 1)c(vi+1, vi+2) + . . .+ c(vm−1, vm) (1)

and

L(Ri) = (m− 1)c(v1, v2) + . . .+ (m− i+ 1)c(vi−1, vi+1) + (m− i)c(vi+1, vi+2)

+ . . .+ 2c(vm−1, vm) + c(vm, vi).

Thus,

L(Ri) = L(R)−
m−1∑
k=i−1

(m− k)c(vk, vk+1) + (m− i+ 1)c(vi−1, vi+1)

+
m−1∑
k=i+1

(m− k + 1)c(vk, vk+1) + c(vm, vi). (2)

894 H.-B. Ban, D.-N. Nguyen, K. Nguyen

It takes O(m) time to calculate the formulation in (2). Therefore, the time
complexity of exploring N1(R) is O(m2). �

Swap adjacent neighborhood attempts to swap each pair of adjacent ver-
tices in the route. This neighborhood of R is defined as a set N2(R) = {Ri =
(v1, v2, . . . , vi−2, vi, vi−1, vi+1, . . . , vm) : i = 3, 4, . . . ,m − 1}. The size of the
neighborhood is O(m).

Property 2. The time complexity of exploring N2(R) is O(m).

Proof. The initial tour R and L(R) are the same as in (1). The neighborhood
generates a neighboring tour Ri = v1, v2, . . . , vi−2, vi, vi−1, vi+1, . . . , vm. The la-
tency of Ri is calculated as follows:

L(Ri) = (n− 1)c(v1, v2) + . . .+ (m− i+ 2)c(vi−2, vi) + (m− i+ 1)c(vi, vi−1)

+ (m− i)c(vi−1, vi+1) + (m− i− 1)c(vi+1, vi+2) + . . .+ c(vm−1, vn).

We have

L(Ri) = L(R)− (m− i+ 2)c(vi−2, vi−1)− (m− i)c(vi, vi+1)

+ (m− i+ 2)c(vi−2, vi) + (m− i)c(vi−1, vi+1). (3)

It is obvious that we can calculate L(Ri) by the formulation (3) in O(1) time.
Therefore, the complexity of exploring N2(R) is O(m). �

Swap neighborhood attempts to swap the positions of each pair of vertices
in the route. This neighborhood of R is defined as a set N3(R) = {Rij =
(v1, v2, . . . , vi−1, vj, vi+1, . . . , vj−1, vi, vj+1, . . . , vm) : i = 2, 3, . . . ,m − 3; j =
i+ 3, . . . ,m}. The size of the neighborhood is O(m2).

Property 3. The complexity of exploring N3(R) is O(m2).

Proof. Initially, we have a solution R = v1, v2, . . . , vi−1, vi, vi+1, . . . , vj−1, vj,
vj+1, . . . , vm (i+ 2 < j). Swap generates a neighboring solution Rij = v1, v2, . . . ,
vi−1, vj, vi+1, . . . , vj−1, vi, vj+1, . . . , vm. The costs of R and Ri are calculated as
follows:

L(R) = (m− 1)c(v1, v2) + . . .+ (m− i+ 1)c(vi−1, vi) + (m− i)c(vi, vi+1)

+ . . .+ (m− j + 1)c(vj−1, vj) + (m− j)c(vj, vj+1)

+ . . .+ c(vm−1, vm). (4)

L(Rij) = (m− 1)c(v1, v2) + . . .+ (m− i+ 1)c(vi−1, vj) + (m− i)c(vj, vi+1)

+ . . .+ (m− j + 1)c(vj−1, vi) + (m− j)c(vi, vj+1) + . . .+ c(vm−1, vm).

Effective Metaheuristic for MTRP with Distance Constraints 895

It follows that

L(Rij) = L(R)− (m− i+ 1)c(vi−1, vi)− (m− i)c(vi, vi+1)

− (m− j + 1)c(vj−1, vj)− (m− j)c(vj, vj+1) + (m− i+ 1)c(vi−1, vj)

+ (m− i)c(vj, vi+1) + (m− j + 1)c(vj−1, vi) + (m− j)c(vi, vj+1). (5)

Hence, we can calculate L(Rij) by the formulation (5) in O(1) time. Therefore,
the complexity of exploring L(Rij) is O(m2). �

Or neighborhood attempts to reallocate three adjacent vertices to another
position of the route. This neighborhood of R is defined as a set N4(R) =
{Ri = (v1, v2, . . . , vi−1, vi, vj+1, . . . , vk, vi+1, . . . , vj, vk+1, . . . , vm) : i = 2, 3,
. . . ,m−5, j = 4, . . . ,m−3, k = 6, . . . ,m−1}. The size of the neighborhood
is O(m3).

Property 4. The complexity of exploring N4(R) is O(m3).

Proof. In fact, this neighborhood implements the swap neighborhoods twice
(we exchange between vj+1 and vi+1 and between vj and vk) in the route. It
takes O(1) time for swap operation. Therefore, calculating L(Rijk) is 2 × O(1)
time and the complexity of exploring L(Rijk) is O(m3). �

2-opt neighborhood removes each pair of edges from the solution and recon-
nects the vertices. This neighborhood of T is defined as a set N5(T) = {Tij =
(v1, v2, . . . , vi, vj, vj−1, . . . , vi+2, vi+1, vj+1, . . . , vm) : i = 1, . . . , n − 4; j = i +
4, . . . ,m}. The size of the neighborhood is O(m2).

Property 5. The complexity of exploring N5(T) is O(m3).

Proof. The initial tour and L(T) are the same as in (4). The neighborhood
generates a neighboring tour Tij = (v1, v2, . . . , vi, vj, vj−1, . . . , vi+2, vi+1, vj+1, . . . ,
vm). The costs of T and Ti are calculated as follows:

L(Tij) = (m− 1)c(v1, v2) + . . .+ (m− i)c(vi, vj) + (m− i− 1)c(vj, vi+2)

+ . . .+ (m− j + 1)c(vj−1, vi+1) + (m− j)c(vi+1, vj+1) +

+ . . .+ (vm−1, vm).

896 H.-B. Ban, D.-N. Nguyen, K. Nguyen

We have

L(Tij) = L(T)− (m− i)c(vi, vi+1)−
j−i−1∑
h=1

(m− i− h)c(vi+h, vi+h+1)

− (m− j)c(vj, vj+1) + (m− i)c(vi, vj)

+

j−i−1∑
h=1

(m− i− h)c(vj−h+1, vj−h) + (m− j)c(vi+1, vj+1). (6)

It is obvious that we can calculate L(Tij) by the formulation (6) in O(m) time.
Therefore, the complexity of exploring N5(T) is O(m3). �

Move-forward-k-vertices neighborhood of T is defined as a set N6(T) =
{Tijk = (v1, v2, . . . , vi, vi+k+1, vi+k+2, . . . , vj, vi+1, vi+2 . . . , vi+k, vj+1, . . . , vm) :
i = 1, 2, . . . ,m − k − 1; i + k < j 6 m} with k = 2, . . . , l. The size of the
neighborhood is O(m2).

Move-backward-k-vertices neighborhood of T is defined as a set N7(T) =
{Tijk = (v1, v2, . . . , vi, vi+k+1, vi+k+2, . . . , vi+1, vi+2 . . . , vi+k, vj, vj+1, . . . , vm) :
i = 1, 2, . . . ,m − k − 1; i + k < j 6 m} with k = 2, . . . , l. The size of the
neighborhood is O(m2).

Property 6. The complexity of exploring N6(R) and N7(R) is O(m3).

Proof. We prove Property 6 for move-forward-k-vertices and the same argument
holds for move-backward-k-vertices. For a tour Rijl ∈ N6(R), it can be shown
that

L(Tijk) = L(T)− (m− i)c(vi, vi+1)−
j−1∑

h=i+1

(m− h)c(vh, vh+1)

− (m− i)c(vi, vi+1) + (m− i)c(vi, vi+k+1)

+

j−i−k−2∑
h=1

(m− i− h)c(vi+k+h, vi+k+h+1) + (m− j + k + 1)c(vj−1, vj)

+ (m− j + k)c(vj, vi+1) +
k−1∑
h=1

(m− j + k − h)c(vi+h, vi+h+1)

+ (m− j + 1)c(vi+k, vj+1). (7)

It is obvious that we can calculate L(Tijk) by the formulation (7) in O(m) time.
Therefore, the complexity of exploring N6(T) is O(m3). �

It is realized that the calculation of a neighboring solution cost by using the
known cost of the current solution in (6) and (7) cannot be done in constant

Effective Metaheuristic for MTRP with Distance Constraints 897

time. As a result, the algorithm spends O(m3) operations for a full neighborhood
search. However, Silva et al. [31] suggest a move evaluation procedure, which
only requires O(1) amortized operations since the number of edge exchanges is
bounded. In this work, we use their evaluation procedure for 2-opt and move
forward(backward)-k-vertices. Therefore, the time complexity of exploring all
neighborhoods in the worst case is performed in O(m3).

For intra-route: Let Rl, Rh, ml, and mh be two different routes and their
sizes in T , respectively. Intra-route is used to exchange vertices between
two different routes or remove vertices from a route and then insert them to
another as follows.

The swap-2-routes neighborhood tries to exchange the positions of each
pair of vertices in Rl and Rh in turn. The swap-2-route neighborhood
of Rl and Rh is defined as a set N8(T) = {Ti = (R1, . . . , R2, . . . , Rl =
(v1l, v2l, . . . , vih, vil+1, . . . , vml), . . . , Rh = (v1h, v2h, . . . , vil, vih+1, . . . , vmh),
. . . , Rk) : il = 2, 3, . . . ,ml − 1, ih = 2, 3, . . . ,mh − 1}. The size of the
neighborhood is O(ml ×mh).

Property 7. The complexity of exploring N8(T) is O(ml ×mh).

Proof. We have an initial tour T and its two routes are Rl = (v1l, v2l, . . . , vil,
vil+1, vil+2 . . . , vml) and Rh = (v1h, v2h, . . . , vih, vih+1, vih+2, . . . , vhl). The neigh-
borhood generates a neighboring tour Ti = (R1, . . . , R2, . . . , R

′

l = (v1l, v2l, . . . ,
vih, vil+1, . . . , vml), . . . , R

′

h = (v1h, v2h, . . . , vil, vih+1, . . . , vmh), . . . , Rk). The costs
of Rl, and Rh are calculated as follows:

L(Rl) = (ml − 1)c(v1l, v2l) + . . .+ (ml − i+ 1)c(vil−1, vil) + (ml − i)c(vil, vil+1)

+ (ml − i− 1)c(vil+1, vil+2) + . . .+ c(vml−1, vml),

L
′
(Rl) = (ml − 1)c(v1l, v2l) + . . .+ (ml − i+ 1)c(vil−1, vih) + (ml − i)c(vih, vil+1)

+ (ml − i− 1)c(vil+1, vil+2) + . . .+ c(vml−1, vml), (8)

L(Rh) = (mh− 1)c(v1h, v2h) + . . .+ (mh− i+ 1)c(vih−1, vih)

+ (mh− i)c(vih, vih+1) + (mh− i− 1)c(vih+1, vih+2)

+ . . .+ c(vmh−1, vmh), (9)

L
′
(Rh) = (mh− 1)c(v1h, v2h) + . . .+ (mh− i+ 1)c(vih−1, vil)

+ (mh− i)c(vil, vih+1)− (mh− i− 1)c(vih+1, vih+2)

+ . . .+ c(vmh−1, vmh).

898 H.-B. Ban, D.-N. Nguyen, K. Nguyen

Therefore,

L(Ti) = L(T)− (ml − i+ 1)c(vil−1, vil)− (ml − i)c(vil, vil+1)

− (mh− i− 1)c(vih−1, vih)− (mh− i)c(vih, vih+1)

+ (ml − i+ 1)c(vil−1, vih) + (ml − i)c(vih, vil+1)

+ (mh− i+ 1)c(vih−1, vil) + (mh− i)c(vil, vih+1). (10)

�

Hence, we can calculate L(Ti) by the formulation (10) in O(1) time. The com-
plexity of exploring N8(T) is O(ml ×mh).

The insert-2-routes neighborhood considers each vertex vi inRl and inserts
it into each position in Rh. Insert-2-route neighborhood of Rl and Rh is
defined as a set N11(T) = {Ti = (R1, . . . , R2, . . . , Rl = (v1l, v2l, . . . , vih−1, vih,
vil+1, . . . , vml), . . . , Rh = (v1h, v2h, . . . , vih−1, vih+1, . . . , vmh), . . . , Rk) : il =
2, 3, . . . ,ml − 1, ih = 2, 3, . . . ,mh − 1}. The size of the neighborhood is
O(ml ×mh).

Property 8. The complexity of exploring N9(T) is O(ml ×mh).

Proof. The initial tour and L(R) are the same as in (8) and (9). The neighbor-
hood generates a neighboring tour Ti = (R1, . . . , R2, . . . , R

′

l = (v1l, v2l, . . . , vih,
vil, vil+1, . . . , vml), . . . , R

′

h = (v1h, v2h, . . . , vih−1, vih+1, . . . , vmh), . . . , Rk). The
costs of R

′

l, R
′

h are calculated as follows:

L
′
(Rl) = (ml − 1)c(v1l, v2l) + . . .+ (ml − i+ 1)c(vil−1, vil) + (ml − i)c(vil, vih)

+ (ml − i− 1)c(vih, vil+1) + (ml − i− 2)c(vil+1, vil+2)

+ . . .+ c(vml−1, vml),

L
′
(Rh) = (mh− 1)c(v1h, v2h) + . . .+ (mh− i+ 1)c(vih−1, vih+1)

+ (mh− i)c(vih+1, vih+2) + . . .+ c(vmh−1, vmh).

Therefore,

L(Ti) = L(T)− (ml − i)c(vil, vil+1)− (mh− i+ 1)c(vih−1, vih)

− (mh− i)c(vih, vih+1)−
ih−1∑
k=1h

c(vk, vk+1)

+ (ml − i)c(vil, vih) + (mh− i− 1)c(vih, vil+1)

+ (mh− i+ 1)c(vih−1, vih+1) +
il−1∑
k=1l

c(vk, vk+1). (11)

Effective Metaheuristic for MTRP with Distance Constraints 899

�

Hence, we can calculate L(Ti) by the formulation (11) in O(max(mh,ml)) time.
Therefore, the complexity of exploring N9(T) is O(max(mh,ml)×ml ×mh).

In each iteration, the best neighboring solution is accepted if it is non-tabu
and improving, or tabu, but globally improving. Due to the use of different
neighborhood structures, three tabu lists are built. A move of the type remove-
insert, swap-adjacent, or move-up(down) is stored in the first tabu list, the
second is for 2-opt and 2-edge-opt moves, and the last one is for swap-2-routes,
insert-2-routes. We do not use tabu list for move-forward-k-vertices, and move-
backward-k-vertices.

Step 3: After finding a local optimum in Step 2, Step 3 starts to build up a promis-
ing solution LT . When the objective value of any local optimum lies within
5–10 % of the best-found solution, it is added into LT . If the size of LT is equal
to sTL, then the algorithm goes to Step 4. The size of LT is chosen to be five
because a small value for the size of LT enhances more implementations to the
intensification and diversification steps. However, the search can be moved to
another area of the solution space without the previous area explored. Other-
wise, if the value of sTL is large, less intensification and diversification steps are
performed.

Step 4: If the promising solution list LT is full, an intensification step starts. Each
solution of LT is returned to Step 2 without any tabu move. When a new local
optimum is found, the algorithm goes to Step 5 in which a diverse solution to
reinitialize the search is created.

Step 5: We update an attribute matrix M , whose entries represent the number of
times edge (i, j) occurred in an element of the promising solutions list. The
Shaking procedure in Algorithm 3 will use the matrix; hence allows guiding
the search towards an unexplored part of the solution space. In this work, two
shaking mechanisms can be used to give a new solution as follows:

1. In intro-route, we use the shaking mechanism in Algorithm 4, called double-
bridge, originally developed by [26]. The structure of the double-bridge move
derives from a special 4-opt neighborhood where edges added and dropped
need not be successively adjacent. This mechanism can also be seen as
a permutation of two disjoint segments of a route.

2. In intra-route, we randomly choose two routes and after that, exchange some
vertices in them or insert some vertices from a route into another. The
steps in the intra-route are described in Algorithm 5. This solution obtained
from shaking procedures does not include the edges which appear more than
l times in the M matrix. We finally return to Step 2 with this solution.

The last aspect to discuss is the stop criterium of the VNS+TS algorithm. A bal-
ance must be made between computation time and efficiency. Here, the algorithm
stops if no improvement is found after the number of the loop (NL).

900 H.-B. Ban, D.-N. Nguyen, K. Nguyen

The running time of the VNS + TS algorithm is mostly during the VNS step.
In that step, insert-2-routes neighborhood consumes time at least as the others do.
Assume that if these neighborhoods are invoked k1 times, then the complexity of
neighborhoods’ exploration is O(k1 × max(mh,ml) × ml × mh) ∼ O(k1 × n3) (in
the worst case the size of mh or ml is n). It is the theoretical complexity of our
algorithm.

4 COMPUTATIONAL EVALUATIONS

4.1 Metrics

In order to evaluate the efficiency of a metaheuristic algorithm, we can compare its
solution to

1. the optimal solution (OPT);

2. the lower bound (LB); and

3. the initial solution of the construction phase (Init.Sol) or a good upper bound
of the state-of-the-art metaheuristic algorithm (UB).

We define the improvement of the algorithm concerning Best.Sol, when Best.Sol
is the best solution found by our algorithm, in comparison with the optimal solution
(Gap1[%]), a lower bound (Gap2[%]), and an initial solution (Improv [%]) in percent,
respectively, as follows:

Gap1[%] =
Best .Sol −OPT

OPT
× 100 %,

Gap2[%] =
Best .Sol − LB

LB
× 100 %,

Improv [%] =
Best .Sol − Init .Sol

Init .Sol
× 100 %.

The exact algorithm can find optimal solutions as in [25]. However, the algorithms
only solve the problems with small sizes. The optimal solutions have been unknown
with large instance sizes. In such cases, our best solutions can be compared to
the tight lower bounds (i.e., defined by Nucamendi-Guillén et al. in [29]) or the
initial solutions (i.e., the output of the insertion heuristic). As mentioned ealier, the
MTRP is a relaxation of the MTRPD since MD = 0. Therefore, we can consider
the optimal solutions published by Nucamendi-Guillén et al. [29] for the MTRP as
the tight lower bounds in our experiments.

4.2 Datasets

The experimental data includes two datasets. In all instances, every distance be-
tween vertices satisfies the triangle inequality. Each instance contains the coordinate

Effective Metaheuristic for MTRP with Distance Constraints 901

of n vertices and one vertex was arbitrary designated as the depot. We divide these
instances into two types (i.e., type 1 and type 2). The former one consists of the
instances in which the optimal solutions have been known, otherwise the other de-
pends on type 2.

We inherit several small instances in [25] and name them dataset 1 in our ex-
periments. As a result, we can obtain the optimal solutions for these instances by
using the exact algorithm in [25]. The dataset includes six TSP instances from
the TSPLIB such as brd14051, d15112, d18512, fnl4461, nrw1379, and pr1002. For
each TSP instance, they generate ten MTRPD instances by randomly selecting ten
subsets of n vertices, where n = 30, 40 and 50. Therefore, in total, fifty MTRPD
instances are used in our experiment.

The numerical analysis was performed on a set of benchmark problems for Ca-
pacitated VRP in [34]. As testing the proposed algorithm on all instances would be
computationally too expensive, we applied our numerical analysis on some selected
instances. First, to eliminate the effects of size, problems with approximately 50 up
to 561 customers are chosen. Moreover, in order not to bias the results by taking
“easy” or “hard” instances we randomly select them. We put them into a group
named dataset 2. These are:

1. Christofides et al.: This dataset includes seven instances (CMT6, CMT7, . . . ,
CMT14), which vary the number of vertices from 50 to 200 and vehicles from 5
to 18;

2. Taillard et al.: Nine instances from 75 to 150 vertices are picked randomly,
specifically: tai75a, tai75b, tai75c, tai100a, tai100b, tai100c, tai150a, tai150b,
tai150c;

3. Augerat et al.: Fifteen instances of dataset P and E are selected, which vary
the number of vertices from 30 to 76 and vehicles from 2 to 15. In this dataset,
we can obtain the lower bounds of the optimal solutions for the instances in [29];

4. Golden et al.: Six larger instances are picked randomly from G1 to G8, which
vary the number of vertices from 240 to 480 and vehicles from 5 to 10;

5. Nucamendi-Guillén et al.: One hundred and fifty instances from 60 to 80 vertices
are used in our experiments. The optimal solutions for the instances can be
extracted from [29].

Moreover, our algorithm is also tested with some TRP instances. These are:

6. Silva et al. [31]: Three of these sets are generated, where each of them is
composed of 20 instances with 50, 100, and 200 customers, respectively;

7. Abeledo et al. [2]: Nine instances from 48 to 100 vertices are chosen. The
optimal solutions for these instances are extracted from [2].

In all instances in dataset 1, and several instances in dataset 2 (such as Chri-
stofides et al.’s and Golden et al.’s instances), the maximum total distance traveled
in a route is available. However, in the others, there does not exist the distance

902 H.-B. Ban, D.-N. Nguyen, K. Nguyen

constraint. For each of these instances, we generated three possible distance con-
straints as a function of the distance to the farthest vertice from the depot (dmax).
The distance constraint gets the values 2 × dmax, 2.5 × dmax, and 3 × dmax. The
similar generation for travel distance limit can be found in [12, 13, 25].

4.3 Results and Discussion

We conducted the experiments on a personal computer, which is equipped with
an Intel Pentium Core i7 duo 2.10 GHz CPU and 4 GB RAM.

We experimented with the above datasets. For the instances in dataset 1, their
optimal solutions let us evaluate precisely the efficiency of the TS + VNS algorithm.
For the instances in dataset 2, because their optimal solutions have been unknown,
our solutions only compare to the upper bounds or the known best solutions instead
of the optimal ones. Therefore, the TS+VNS algorithm’s efficiency is only evaluated
relatively.

Through preliminary experiments, we observed that the values pos = 5, sLT = 5,
l = 5, and NL = 50 resulted in a good trade-off between solution quality and run
time. In addition, in a pilot study, the performance of the algorithm relatively
depends on the order in which the neighborhoods are used. Generally speaking,
the neighborhoods which have a smaller size are explored first. Since the algorithm
becomes stuck in local optimum, the larger neighborhoods are used. That is, larger
sized neighborhoods may help escape from local optimum. In this paper, the order
of the neighborhoods is as follows: swap adjacent, remove-insert, swap, 2-opt, or,
swap-2-route, and insert-2-route.

For each instance, our algorithm runs ten times, and the results are shown in Ta-
bles 1–18. In all the tables, we denote Best.Sol and Aver.Sol as the best and average
solution of our metaheuristic, respectively. Table 1 includes the comparison between
our algorithm and the optimal solutions in [25]. Table 2 shows the average values
of Table 1. In Tables 3–11, we compare the results of the algorithm with the lower
bound of the optimal solution. In these cases, the optimal solution of MTRP is the
lower bound of the optimal solution of MTRPD. The optimal solution of MTRP is
obtained in [29]. Moreover, they are also compared with the initial solutions by using
insertion heuristic. Table 12 illustrates the evolution of the average deviation to the
initial solutions during the iterations in some instances. In Tables 13–18, we show
the results of our algorithm against the state-of-the-art metaheuristic algorithms in
several MTRPD variants. Let T be the running time in seconds for our metaheuris-
tic. cTime represents scaled run times, which is estimated on a Pentium 4, 2.4 GHz
by means of the factors of Dongarra in [14] by second (note that: The experiments of
Ezzineet et al. (IOE) [15], Ke et al. (CCVRP) [23], Ngueveu (MA1) [28], Nucamendi-
Guillén et al. (SNG) [29], Riberio et al. (ALNS) [30], Silva et al. (MS) [31], and
Ban (GRASP + VND) [9] were implemented on Pentium 4, 1 GHz, Pentium 4,
2.4 GHz, Pentium 4, 2 GHz, Intel Core 2 Duo 3 GHz, Pentium 4, 2 GHz, Pentium 4,
2.4 GHz, Pentium core i7 2.93 GHz, and Pentium core i7 duo 2.10 GHz, respectively).

Effective Metaheuristic for MTRP with Distance Constraints 903

4.3.1 Experimental Results for Datasets in Type 1

The experimental results are illustrated in Table 2, which are the average values
calculated from Table 1. In Table 2, we denote Gap1 and T as the average values of
Gap1 and T for each dataset, respectively.

Table 2 shows that the algorithm is capable of finding the optimal solutions for
all instances in dataset 1 in a reasonable amount of time, even for the cases of 50
vertices. That means our solutions are better than the ones in our previous work [9],
which fails to find the optimal solutions for all instances with 50 vertices.

 Table 1. Results for dataset type 1

Instances
n=30, k=6 n=40, k=8 n=50, k=10

OPT Best.Sol Aver.Sol T OPT Best.Sol Aver.Sol T OPT Best.Sol Aver.Sol T

pr1002

0 168,188.80 168,188.80 272,908.40 0.19 233,387.20 233,387.20 272,908.40 0.38 272,908.40 272,908.40 273754.69 0.72
1 195,805.80 195,805.80 249,275.40 0.18 218,781.40 218,781.40 249,275.40 0.38 249,275.40 249,275.40 250561.75 0.73
2 182,635.00 182,635.00 277,959.10 0.20 211,241.70 211,241.70 277,959.10 0.40 277,959.10 277,959.10 278260.69 0.69
3 139,784.70 139,784.70 298,846.10 0.18 196,120.40 196,120.40 298,846.10 0.42 298,846.10 298,846.10 299368.26 0.72
4 164,916.70 164,916.70 262,518.40 0.17 227,450.10 227,450.10 262,518.40 0.50 262,518.40 262,518.40 263424.19 0.68
5 163,642.30 163,642.30 273,318.80 0.18 194,802.20 194,802.20 273,318.80 0.43 273,318.80 273,318.80 275714.50 0.68
6 160,585.90 160,585.90 280,317.30 0.19 229,730.10 229,730.10 280,317.30 0.48 280,317.30 280,317.30 281015.54 0.72
7 166,887.00 166,887.00 246,341.00 0.20 236,896.10 236,896.10 246,341.00 0.39 246,341.00 246,341.00 247693.88 0.73
8 161,025.80 161,025.80 256,971.40 0.18 230,126.60 230,126.60 256,971.40 0.47 256,971.40 256,971.40 257688.31 0.74
9 144,167.00 144,167.00 267,596.70 0.18 192,179.90 192,179.90 267,596.70 0.48 267,596.70 267,596.70 268104.67 0.75

brd14051

0 97,380.30 97,380.30 133,642.30 0.19 97,630.70 97,630.70 133,642.30 0.43 133,642.30 133,642.30 134565.72 0.68
1 96,322.50 96,322.50 123,212.70 0.18 110,671.10 110,671.10 123,212.70 0.42 123,212.70 123,212.70 123459.68 0.69
2 64,109.40 64,109.40 137,175.10 0.19 127,629.70 127,629.70 137,175.10 0.46 137,175.10 137,175.10 137550.65 0.75
3 89,582.50 89,582.50 150,209.80 0.18 99,527.60 99,527.60 150,209.80 0.37 150,209.80 150,209.80 151117.47 0.75
4 87,615.70 87,615.70 116,278.70 0.19 123,881.80 123,881.80 116,278.70 0.49 116,278.70 116,278.70 116771.48 0.75
5 75,079.50 75,079.50 124,648.20 0.19 98,329.40 98,329.40 124,648.20 0.49 124,648.20 124,648.20 124860.29 0.69
6 94,540.80 94,540.80 121,190.40 0.20 110,676.60 110,676.60 121,190.40 0.36 121,190.40 121,190.40 122040.23 0.72
7 81,515.80 81,515.80 124,077.60 0.19 103,775.50 103,775.50 124,077.60 0.42 124,077.60 124,077.60 124459.33 0.68
8 74,160.80 74,160.80 125,446.00 0.19 101,387.30 101,387.30 125,446.00 0.41 125,446.00 125,446.00 125750.98 0.72
9 90,628.10 90,628.10 118,925.00 0.18 87,945.10 87,945.10 118,925.00 0.48 118,925.00 118,925.00 119701.47 0.75

fnl4461

0 51,192.20 51,192.20 81,562.20 0.19 63,096.00 63,096.00 81,562.20 0.48 81,562.20 81,562.20 81931.39 0.68
1 44,154.70 44,154.70 79,804.80 0.18 66,882.60 66,882.60 79,804.80 0.38 79,804.80 79,804.80 80132.27 0.71
2 46,571.20 46,571.20 73,309.10 0.18 70,151.40 70,151.40 73,309.10 0.39 73,309.10 73,309.10 73657.61 0.69
3 48,591.40 48,591.40 79,335.10 0.19 58,843.90 58,843.90 79,335.10 0.43 79,335.10 79,335.10 79480.48 0.67
4 54,485.90 54,485.90 75,052.00 0.18 61,654.90 61,654.90 75,052.00 0.38 75,052.00 75,052.00 75154.18 0.70
5 47,907.30 47,907.30 76,738.10 0.18 56,144.50 56,144.50 76,738.10 0.42 76,738.10 76,738.10 77076.34 0.75
6 45,882.10 45,882.10 75,268.90 0.18 61,274.90 61,274.90 75,268.90 0.43 75,268.90 75,268.90 75553.79 0.70
7 44,545.30 44,545.30 72,956.30 0.20 65,698.30 65,698.30 72,956.30 0.38 72,956.30 72,956.30 73058.48 0.72
8 50,365.30 50,365.30 70,244.00 0.20 64,260.90 64,260.90 70,244.00 0.48 70,244.00 70,244.00 70593.77 0.72
9 49,179.60 49,179.60 82,157.00 0.18 58,717.50 58,717.50 82,157.00 0.49 82,157.00 82,157.00 82319.62 0.73

d15112

0 225,070.20 225,070.20 353,657.80 0.18 287,734.80 287,734.80 353,657.80 0.37 353,657.80 353,657.80 354976.61 0.73
1 213,332.30 213,332.30 355,115.20 0.19 256,987.10 256,987.10 355,115.20 0.39 355,115.20 355,115.20 356258.02 0.72
2 208,323.60 208,323.60 392,196.10 0.19 307,407.10 307,407.10 392,196.10 0.46 392,196.10 392,196.10 393694.14 0.75
3 222,870.40 222,870.40 350,821.80 0.19 292,602.70 292,602.70 350,821.80 0.42 350,821.80 350,821.80 351422.23 0.72
4 216,056.00 216,056.00 341,493.60 0.19 299,259.00 299,259.00 341,493.60 0.35 341,493.60 341,493.60 342212.93 0.74
5 235,215.80 235,215.80 360,717.40 0.18 269,559.40 269,559.40 360,717.40 0.35 360,717.40 360,717.40 362220.31 0.72
6 207,139.00 207,139.00 390,251.40 0.19 320,989.40 320,989.40 390,251.40 0.45 390,251.40 390,251.40 392014.44 0.72
7 280,309.00 280,309.00 327,701.90 0.20 287,270.70 287,270.70 327,701.90 0.41 327,701.90 327,701.90 328900.79 0.73
8 244,015.40 244,015.40 344,600.50 0.19 303,263.90 303,263.90 344,600.50 0.38 344,600.50 344,600.50 345172.84 0.68
9 238,976.20 238,976.20 347,783.60 0.20 282,412.30 282,412.30 347,783.60 0.40 347,783.60 347,783.60 348249.82 0.72

nrw1379

0 31,249.40 31,249.40 39,206.10 0.17 35,655.20 35,655.20 39,206.10 0.45 39,206.10 39,206.10 39299.26 0.74
1 33,138.50 33,138.50 61,449.00 0.17 33,000.70 33,000.70 61,449.00 0.39 61,449.00 61,449.00 44859.42 0.68
2 31,872.00 31,872.00 45,914.20 0.19 39,928.10 39,928.10 45,914.20 0.49 45,914.20 45,914.20 46111.68 0.72
3 31,777.10 31,777.10 46,208.00 0.18 36,685.40 36,685.40 46,208.00 0.50 46,208.00 46,208.00 46317.23 0.68
4 26,671.20 26,671.20 43,557.90 0.18 36,168.60 36,168.60 43,557.90 0.38 43,557.90 43,557.90 43635.93 0.75
5 29,010.30 29,010.30 46,718.40 0.18 38,005.40 38,005.40 46,718.40 0.42 46,718.40 46,718.40 46946.35 0.71
6 30,398.10 30,398.10 49,421.10 0.19 31,837.30 31,837.30 49,421.10 0.36 49,421.10 49,421.10 49553.53 0.73
7 30,765.50 30,765.50 49,960.10 0.19 39,394.80 39,394.80 49,960.10 0.49 49,960.10 49,960.10 50037.67 0.75
8 28,796.40 28,796.40 41,560.90 0.20 36,674.50 36,674.50 41,560.90 0.37 41,560.90 41,560.90 41703.33 0.74
9 26,271.20 26,271.20 44,404.00 0.18 36,447.70 36,447.70 44,404.00 0.43 44,404.00 44,404.00 44518.42 0.68

Table 1. Results for dataset type 1

4.3.2 Experimental Results for Datasets in Type 2

Similar to the dataset type 1, we show the average values in Tables 9 and 12. The
values in Table 9 are calculated from the ones in Tables 3–8. Meanwhile, Table 12

904 H.-B. Ban, D.-N. Nguyen, K. Nguyen

 Table 2. Average results for dataset type 1

Instances n=30 n=40 n=50

Gap1 T Gap1 T Gap1 T
brd14051-x 0.00 0.19 0.00 0.38 0.00 0.72
d15112-x 0.00 0.18 0.00 0.38 0.00 0.73
fnl4461-x 0.00 0.20 0.00 0.40 0.00 0.69
nrw1379-x 0.00 0.18 0.00 0.42 0.00 0.72
pr1002-x 0.00 0.17 0.00 0.50 0.00 0.68

Table 2. Average results for daset type 1

 Table 3. Results for ANMM-instances (n=60, k=12)

Instances LB Init.Sol MD = 2×dmax MD = 2.5×dmax MD = 3×dmax Best.Sol Aver.Sol T Best.Sol Aver.Sol T Best.Sol Aver.Sol T
pr1002_60_0 530946.01 660211.35 532444.24 537533.19 1.49 531865.86 533825.5 1.45 531757.16 534609.7 1.45
pr1002_60_1 356469.79 455893.41 359952.84 370184.99 1.42 358368.98 367379.55 1.45 358942.18 367163.14 1.45
pr1002_60_2 344118.14 467498.53 344660.51 354297.21 1.49 344923.03 351734.69 1.42 344310.30 351678.69 1.42
pr1002_60_3 429604.2 579392.35 430930.61 435619.75 1.46 430738.16 433873.27 1.45 430341.65 434434.23 1.45
pr1002_60_4 435655.25 540342.11 436868.42 443304.34 1.41 437187.11 441177.4 1.46 436487.61 441214.38 1.46
pr1002_60_5 668129.73 779776.11 670146.51 674511.75 1.43 669780.58 673040.01 1.47 669092.64 673298.58 1.47
pr1002_60_6 406678.77 495022.53 408185.76 413479.93 1.45 407782.79 411889.62 1.44 407328.01 412153.54 1.44
pr1002_60_7 311254.73 414296.52 315012.06 325939.25 1.49 314351.03 322249.21 1.44 314631.61 323133.36 1.44
pr1002_60_8 469816.84 591638.26 471572.56 478597.47 1.50 470579.14 476756.73 1.50 471383.23 476823.63 1.50
pr1002_60_9 277336.06 377249.41 280140.52 292281.76 1.42 281572.42 288733.31 1.40 278504.55 288503.61 1.40
brd14051_60_0 213420.42 267899.2375 214319.39 216860.88 1.50 213818.46 215295.73 1.49 213614.02 215749.05 1.49
brd14051_60_1 218315.68 312468.7714 218728.14 220264.95 1.49 218880.78 220373.77 1.49 218556.31 220728.3 1.49
brd14051_60_2 151666.85 207799.2353 153198.75 156139.96 1.45 152543.04 154954.36 1.48 153057.91 154911.12 1.48
brd14051_60_3 172199.83 232433.3597 172875.34 175903.46 1.48 172877.53 174923.62 1.41 172882.12 174934.8 1.41
brd14051_60_4 133952.5 167792.608 135660.89 139384.34 1.42 134963.93 138301.02 1.42 135622.01 138319.39 1.42
brd14051_60_5 203145.14 290606.4286 203424.5 205266.4 1.44 203348.6 204742.68 1.43 203576.11 204746.58 1.43
brd14051_60_6 136233.51 171636.975 137309.58 140813.51 1.49 137072.2 139742.31 1.47 137666.96 139931.2 1.47
brd14051_60_7 171879.58 248180.3 173726.21 176795.14 1.48 173395.86 175603.68 1.42 172880.97 175530.15 1.42
brd14051_60_8 191580.79 241067.3882 192145.73 196064.3 1.49 191949.55 194840.17 1.47 192277.69 195207.18 1.47
brd14051_60_9 128178.58 174326.1925 129452.37 132113.8 1.47 129039.81 131038.32 1.41 128554.14 131136.74 1.41
fnl4461_60_0 156260.54 194032.1583 156482.1 157364.48 1.40 156502.53 156867.68 1.47 156508.88 157085.13 1.47
fnl4461_60_1 103190.13 131569.4961 103881.33 105989.96 1.48 103571.39 105059.35 1.45 103533.38 104978.45 1.45
fnl4461_60_2 109739.93 149525.6149 110236.87 111979.43 1.49 110112.9 111088.62 1.48 109795.94 111158.19 1.48
fnl4461_60_3 100792.2 136198.0575 101299.08 103234.98 1.47 100961.18 102382.31 1.47 101131.62 102305.81 1.47
fnl4461_60_4 149638.18 185947.0777 150338.84 151703.66 1.48 150322.42 151338.95 1.49 150154.33 151438.45 1.49
fnl4461_60_5 158679.44 185251.4379 159206.73 160478.43 1.48 158930.62 160072.49 1.49 158926.13 160089.54 1.49
fnl4461_60_6 122266.92 149102.6283 122947.07 124435.02 1.44 122916.9 123926.83 1.43 122817.55 123825.42 1.43
fnl4461_60_7 107469.11 142108.8532 108053.05 109887.69 1.47 107925.52 109376.06 1.47 107716.14 109006.11 1.47
fnl4461_60_8 100531.72 127280.3749 101450.39 104630.87 1.42 101592.06 103707.02 1.42 101118.58 103710.54 1.42
fnl4461_60_9 135829.76 183343.8156 136148.74 137640.52 1.47 136160.29 137330.96 1.40 136163.91 137267.96 1.40
d15112_60_0 684939.42 851498.8482 686712.6 699720.00 1.40 685359.09 694349.73 1.48 686192.80 694446.4 1.48
d15112_60_1 644759.99 819500.5493 647040.61 654258.07 1.43 646425.6 651802.15 1.45 645901.74 652152.95 1.45
d15112_60_2 425069.33 583381.5404 430094.57 444157.23 1.41 428827.48 439403.47 1.45 426883.39 438826.4 1.45
d15112_60_3 528177.95 662371.45 529897.16 541938.08 1.41 529082.69 539617.02 1.49 529129.18 538786.1 1.49
d15112_60_4 586915.82 736112.95 588890.36 596517.59 1.48 587802.34 593603.46 1.46 588157.01 593755.74 1.46
d15112_60_5 422195.61 494729.4263 425174.86 435267.63 1.47 423386.01 432465.17 1.46 422698.69 432637.93 1.46
d15112_60_6 518793.6 633637.8578 522485.21 534777.58 1.43 521841.6 530514.27 1.48 520984.95 529540.23 1.48
d15112_60_7 616918.44 776732.675 621386.14 631195.53 1.49 620561.63 627712.93 1.48 619844.40 627215.03 1.48
d15112_60_8 397619.37 500495.3875 400396.31 417380.61 1.40 400772.54 412773.75 1.46 400191.93 412712.49 1.46
d15112_60_9 673840.81 910298.6184 675975.95 682660.36 1.45 674759.18 681252.34 1.42 675686.08 680839.7 1.42
nrw1379_60_0 64359.77 80086.56654 64587.82 65752.75 1.44 64588.24 65216.27 1.42 64570.11 65388.53 1.42
nrw1379_60_1 83410.67 104646.3375 83717.07 84295.24 1.48 83453.87 84149.95 1.49 83577.60 84304.19 1.49
nrw1379_60_2 52858.87 70986.81333 53240.11 55622.46 1.48 53731.31 55606.98 1.40 53699.79 55545.65 1.40
nrw1379_60_3 62341.36 84434.20476 62799.04 64203.28 1.42 63054.46 64243.88 1.45 63155.92 64314.58 1.45
nrw1379_60_4 56012.13 69680.90881 56337.25 57630.46 1.45 56306.76 57462.91 1.42 56401.26 57331.24 1.42
nrw1379_60_5 58083.8 72973.325 58378.66 59960.51 1.45 58551.84 59986.25 1.50 58611.01 59945.96 1.50
nrw1379_60_6 52224.66 65749.025 52599.22 54626.86 1.46 52433.62 54526.7 1.47 52476.05 54450.03 1.47
nrw1379_60_7 58402.97 73290.6375 58632.51 59997.69 1.47 58495.04 60194.16 1.45 58679.87 59937.75 1.45
nrw1379_60_8 52145.08 66101.85821 52687.3 53873.21 1.48 52682.18 53653.94 1.45 52550.57 53726.75 1.45
nrw1379_60_9 49026.52 66572.84307 49436.13 51019.36 1.43 49471.03 51283.54 1.41 49385.68 50955.34 1.41

Table 3. Results for ANMM-instances (n = 60, k = 12)

Effective Metaheuristic for MTRP with Distance Constraints 905 Table 4. Results for ANMM-instances (n=70, k=14)

Instances LB Init.Sol MD = 2×dmax MD = 2.5×dmax MD = 3×dmax
Best.Sol Aver.Sol T Best.Sol Aver.Sol T Best.Sol Aver.Sol T

pr1002_70_0 429557.7 535485.69 432866.54 439866.58 1.56 432866.54 439866.58 1.86 432866.54 439866.58 1.86
pr1002_70_1 430048.06 530744.28 433424.51 440956.86 1.54 433424.51 440956.86 2.10 433424.51 440956.86 2.10
pr1002_70_2 377233.86 524943.18 379605.76 389076.55 1.34 379605.76 389076.55 1.95 379605.76 389076.55 1.95
pr1002_70_3 429562.01 557187.53 432804.3 441224.85 1.32 432804.3 441224.85 1.85 432804.3 441224.85 1.85
pr1002_70_4 435659.17 574628.71 439726.32 447473.63 1.48 439726.32 447473.63 2.17 439726.32 447473.63 2.17
pr1002_70_5 429584.16 558284.19 431998.56 443795.32 1.67 431998.56 443795.32 2.13 431998.56 443795.32 2.13
pr1002_70_6 344534.44 495280.87 348013.29 355996.4 1.41 348013.29 355996.4 1.95 348013.29 355996.4 1.95
pr1002_70_7 393558.46 543537.08 396618.63 406657.01 1.51 396618.63 406657.01 1.99 396618.63 406657.01 1.99
pr1002_70_8 397072.39 560744.46 400993.88 412836.03 1.37 400993.88 412836.03 1.97 400993.88 412836.03 1.97
pr1002_70_0 429557.7 535485.69 432866.54 439866.58 1.56 432866.54 439866.58 1.86 432866.54 439866.58 1.86
brd14051_70_0 191843.35 248655.93 193433.59 196300.43 1.38 193433.59 196300.43 1.82 192664.90 195906.35 1.82
brd14051_70_1 169340.01 227929.44 169848.29 172027.95 1.49 169848.29 172027.95 1.91 170141.57 171980.54 1.91
brd14051_70_2 216195.95 274964.88 217119.82 218723.61 1.56 217119.82 218723.61 1.78 216904.65 219570.63 1.78
brd14051_70_3 229328.9 287350.77 230828.7 235001.63 1.64 230828.7 235001.63 2.12 230700.27 234893.9 2.12
brd14051_70_4 302498.42 352533.21 303665.65 305149.45 1.67 303665.65 305149.45 1.75 302997.60 305008.65 1.75
brd14051_70_5 179470.31 239730.53 180336.91 182335.7 1.50 180336.91 182335.7 1.78 180402.62 182346.26 1.78
brd14051_70_6 231693.74 299183.67 232654.01 234908.12 1.33 232654.01 234908.12 1.75 232686.01 234963.25 1.75
brd14051_70_7 284960.31 354174.33 285658.8 288385.84 1.33 285658.8 288385.84 1.78 285974.24 288104.83 1.78
brd14051_70_8 167533.17 246354.08 168487.82 171604.89 1.38 168487.82 171604.89 1.89 169011.06 171829.52 1.89
brd14051_70_9 253499.74 304870.99 255311.77 259334.3 1.63 255311.77 259334.3 1.82 255500.92 259488.88 1.82
fnl4461_70_0 154805.67 195026.89 155064.12 156113.94 1.38 155064.12 156113.94 2.16 155064.12 156113.94 2.16
fnl4461_70_1 104585.82 138431.3 105739.55 108511.43 1.62 105739.55 108511.43 1.88 105739.55 108511.43 1.88
fnl4461_70_2 161892.44 202490.16 162356.87 163138.77 1.37 162356.87 163138.77 1.75 162356.87 163138.77 1.75
fnl4461_70_3 99122.23 136888.98 100079.14 101756.85 1.66 100079.14 101756.85 2.15 100079.14 101756.85 2.15
fnl4461_70_4 157106.13 215133.56 157517.01 158373.7 1.42 157517.01 158373.7 2.19 157517.01 158373.7 2.19
fnl4461_70_5 112094.64 154967.72 113643.87 116157.3 1.36 113643.87 116157.3 1.89 113643.87 116157.3 1.89
fnl4461_70_6 121521 163833.57 122307.91 124262.7 1.37 122307.91 124262.7 1.71 122307.91 124262.7 1.71
fnl4461_70_7 175859.51 219145.84 176440.38 177290.01 1.53 176440.38 177290.01 1.79 176440.38 177290.01 1.79
fnl4461_70_8 122141.15 168186.87 122884.09 125065.93 1.47 122884.09 125065.93 1.88 122884.09 125065.93 1.88
fnl4461_70_0 154805.67 195026.89 155064.12 156113.94 1.38 155064.12 156113.94 2.16 155064.12 156113.94 2.16
d15112_70_0 517426.18 692065.87 523553.26 531145.65 1.62 523553.26 531145.65 1.48 523553.26 531145.65 1.79
d15112_70_1 715678.26 886361.97 722362.06 728250.24 1.51 722362.06 728250.24 1.45 722362.06 728250.24 1.98
d15112_70_2 688605.9 892883.4 690001.05 695602.83 1.50 690001.05 695602.83 1.45 690001.05 695602.83 2.04
d15112_70_3 625623.9 852706.46 630340.44 637526.15 1.66 630340.44 637526.15 1.49 630340.44 637526.15 1.77
d15112_70_4 532088.98 747897.34 536030.13 544894.97 1.39 536030.13 544894.97 1.46 536030.13 544894.97 1.72
d15112_70_5 500455.25 639173.85 504012.97 516029.99 1.59 504012.97 516029.99 1.46 504012.97 516029.99 1.82
d15112_70_6 497229.6 708355.1 494630.23 501861.27 1.59 494630.23 501861.27 1.48 494630.23 501861.27 1.82
d15112_70_7 599776.85 766690.15 604254.21 609315.82 1.43 604254.21 609315.82 1.48 604254.21 609315.82 1.88
d15112_70_8 576957.51 734369.78 582333.88 587065.31 1.51 582333.88 587065.31 1.46 582333.88 587065.31 1.93
d15112_70_9 775176.3 1018784.7 776211.48 780571.39 1.30 776211.48 780571.39 1.42 776211.48 780571.39 1.70
nrw1379_70_0 66839.83 91823.05 67133.95 68149.96 1.29 67133.95 68149.96 1.42 67141.89 67842.3 1.79
nrw1379_70_1 65103.43 86177.5 65403.57 67281.39 1.49 65403.57 67281.39 1.49 65836.06 67162.39 2.09
nrw1379_70_2 63480.7 86971.23 64215.06 65872.58 1.60 64215.06 65872.58 1.40 63992.33 65884.47 1.67
nrw1379_70_3 59273.92 78578.67 60111.63 61528.06 1.66 60111.63 61528.06 1.45 59705.82 61585.84 2.16
nrw1379_70_4 70594.56 90450.43 71095.2 71700.76 1.33 71095.2 71700.76 1.42 70953.48 71755.91 2.05
nrw1379_70_5 73884.17 95059.75 74190.23 74969.23 1.51 74190.23 74969.23 1.50 74081.86 75045.23 1.92
nrw1379_70_6 64306.14 87586.7 65019.63 66399.38 1.47 65019.63 66399.38 1.47 64995.77 66682.88 1.97
nrw1379_70_7 90554.87 113522.25 90716.75 91348.07 1.27 90716.75 91348.07 1.45 90743.23 91407.05 1.78
nrw1379_70_8 91738.43 125234.93 91924.59 92556.51 1.41 91924.59 92556.51 1.45 91961.09 92591.73 1.90
nrw1379_70_9 68024.3 92003.32 68219.67 69163.47 1.34 68219.67 69163.47 1.41 68512.64 69234.01 2.18

Table 4. Results for ANMM-instances (n = 70, k = 14)

contains the average values calculated from Tables 10 to 11. In Tables 9 and 12, we
denote Gapi(i = 1, 2) and T as the average of Gapi(i = 1, 2) and T for each dataset,
respectively.

From Tables 9 to 11, for all instances, it is indicated that the proposed algorithm
can improve the solutions in comparison with the initial solutions. Specifically, the
average of Improv lines between 19.4 % and 27.1 %. Besides, in Table 9, for most
instances, our solutions fall into the range of 0.88 %–3.77 % of the lower bound of
the optimal solution. Therefore, we can conclude that for the instances solved, our
algorithm finds near-optimal solutions, even for the large instances. In compari-
son with GRASP + VND [9], our average Gap2 (about 1.09) is much better than
GRASP + VND (about 3.62). Obviously, the VNS + TS algorithm outperforms

906 H.-B. Ban, D.-N. Nguyen, K. Nguyen
 Table 5. Results for ANMM-instances (n=80, k=16)

Instances LB Init.Sol MD = 2×dmax MD = 2.5×dmax MD = 3×dmax Best.Sol Aver.Sol T Best.Sol Aver.Sol T Best.Sol Aver.Sol T
pr1002_80_0 491764.64 656239.68 494687.68 504055.32 4.74 494687.82 501827.11 4.52 495216.69 502028.79 4.52
pr1002_80_1 442164.21 613287.46 446829.95 452810.93 4.59 446638.68 451662.89 4.77 446105.29 451219.62 4.77
pr1002_80_2 505524.17 609954.56 509224.22 516775.04 4.66 507827.3 514010.41 4.78 509460.12 513907.95 4.78
pr1002_80_3 436752.96 614611.29 439342.64 448311.86 4.55 439573.59 445577.18 4.65 438557.21 445402.53 4.65
pr1002_80_4 453609.46 587470.83 457842.39 467356.11 4.68 458557.63 464161.5 4.65 454449.43 463546.66 4.65
pr1002_80_5 599492.4 771733.95 601443.35 606392.15 4.58 601220.79 605159.05 4.60 601030.48 605036.78 4.60
pr1002_80_6 619003.36 805206.35 620905.87 626627.49 4.70 620390.26 624888.79 4.77 620980.59 624674.78 4.77
pr1002_80_7 508186.51 658640.85 511992.03 520148.95 4.71 512678.26 518684.16 4.61 511049.54 518270.58 4.61
pr1002_80_8 409733.88 518052.51 414454.61 431925.53 4.72 416386.88 426285.82 4.53 417195.97 426199.67 4.53
pr1002_80_9 557220.48 670387.49 559471.39 566974.28 4.64 560004.93 565634.88 4.73 560663.69 565474.87 4.73
brd14051_80_0 336983.07 403178.34 338615.5 340638.58 4.52 339017.38 341621.98 4.62 338752.62 341253.06 4.62
brd14051_80_1 277861.02 348787.38 278718.88 280954.58 4.57 278712.45 280898.21 4.57 279056.42 281444.44 4.57
brd14051_80_2 265370.92 321922.47 266964.57 271196.43 4.78 266965.71 271284.78 4.62 267098.27 271731.14 4.62
brd14051_80_3 189815.69 240361.74 190981.53 192988.97 4.55 190970.44 193195.6 4.53 190524.94 192859.4 4.53
brd14051_80_4 206068.45 275228.43 207846.42 211233.89 4.75 208142.71 211570.64 4.54 206986.40 211677.53 4.54
brd14051_80_5 303621.75 348578.27 304790.13 307187.47 4.66 304570.04 307066.74 4.78 304731.36 306944.31 4.78
brd14051_80_6 213405.23 266958.37 215496.73 219693.15 4.80 215905.29 220134.25 4.78 214846.74 220392.91 4.78
brd14051_80_7 263737.93 308039.16 265261 267579.79 4.52 265166.47 267383 4.67 265491.60 268425.6 4.67
brd14051_80_8 232967.83 298574.84 234215.29 236778.42 4.63 234262.37 238062.49 4.52 235200.12 238042.96 4.52
brd14051_80_9 317790.55 368183.51 318860.4 320911.18 4.53 319258.92 321512.59 4.57 319305.30 321576.77 4.57
fnl4461_80_0 153124.51 194685.8 154240.65 155854.44 4.79 154017.32 155260.49 4.61 154016.10 155538.61 4.61
fnl4461_80_1 174975.64 224516.74 175564.02 176753.56 4.50 175521.26 176567.39 4.75 175432.81 176488.95 4.75
fnl4461_80_2 162755.5 197782.39 163709.43 165437.58 4.73 163927.72 165265.48 4.51 163681.90 165198.58 4.51
fnl4461_80_3 160819.04 192927.87 161721.6 164211.03 4.75 162093.53 164341.05 4.52 161950.22 164289.55 4.52
fnl4461_80_4 151790.69 187440.09 152909.48 154583.49 4.76 152741.67 154474.03 4.55 152941.34 154525.71 4.55
fnl4461_80_5 131045.47 172293.83 131674.42 134594.78 4.52 132508.99 134525.24 4.69 132384.34 134838.76 4.69
fnl4461_80_6 125405.93 166418.99 126309.93 128634.42 4.62 126716.15 128784.35 4.72 126469.44 128585.69 4.72
fnl4461_80_7 125228.91 164627.71 127382.05 129202.79 4.58 126969.72 129172.82 4.69 126973.64 129372.03 4.69
fnl4461_80_8 185280.87 228208.31 185832.25 187148.81 4.74 185826.34 187068.01 4.64 185922.90 187144.12 4.64
fnl4461_80_9 130304.95 165022.1 131835.98 133896.72 4.63 131690.15 133899.8 4.66 131257.09 134025.52 4.66
d15112_80_0 551900.43 753989.49 556725.13 564166.47 4.78 552906.19 562737.67 4.59 552906.19 562737.67 4.59
d15112_80_1 815029.39 979921.76 816533.21 820893.85 4.55 817987.76 820839.25 4.72 817987.76 820839.25 4.72
d15112_80_2 828114.32 1080571.45 830372.82 834934.02 4.58 831176.05 836837.77 4.55 831176.05 836837.77 4.55
d15112_80_3 689450.94 964458.54 693037.65 702133.55 4.55 694369.37 708522.84 4.71 694369.37 708522.84 4.71
d15112_80_4 560385.47 737417.48 566738.01 578449.8 4.54 566738.01 578449.8 4.55 566738.01 578449.8 4.55
d15112_80_5 821959.4 1030515.79 825064.27 830641.04 4.76 825064.27 830641.04 4.61 825064.27 830641.04 4.61
d15112_80_6 715206.03 882086.8 719021.95 728868.7 4.68 719021.95 728868.7 4.68 719021.95 728868.7 4.68
d15112_80_7 958278.86 1155190.13 960032.55 964445.29 4.66 960032.55 964445.29 4.73 960032.55 964445.29 4.73
d15112_80_8 990277.77 1174384.17 990277.77 992123.77 4.55 990277.77 992123.77 4.52 990277.77 992123.77 4.52
d15112_80_9 672457.47 931587.71 672457.47 677541.47 4.75 672457.47 677541.47 4.78 672457.47 677541.47 4.78
nrw1379_80_0 64831.76 96656.39 65739.01 67598.57 4.68 65725.8 67571.78 4.73 65550.91 67927.83 4.73
nrw1379_80_1 64967.83 88394.72 66163.83 67947.85 4.61 65927.2 67899.4 4.65 65929.48 67713.73 4.65
nrw1379_80_2 73858.13 96499.97 74824.24 76023.55 4.65 74664.85 75881.09 4.63 74495.65 75981.26 4.63
nrw1379_80_3 100592.83 131733.34 101010.22 101650.71 4.62 100706.51 101643.99 4.63 100858.38 101810.63 4.63
nrw1379_80_4 98228.29 126451.61 98545.56 99177.28 4.52 98519.47 99278.86 4.59 98418.60 99239.92 4.59
nrw1379_80_5 75984.21 99492.47 76685.61 78143.45 4.57 76525.87 78206.56 4.65 76524.34 78122.3 4.65
nrw1379_80_6 79165.6 105024.23 79636.62 80402.19 4.54 79757.37 80363.95 4.65 79757.37 80363.95 4.65
nrw1379_80_7 73194.55 105328.52 74106.95 75589.58 4.55 74106.95 75589.58 4.75 74106.95 75589.58 4.75
nrw1379_80_8 83492.62 115793.31 83710.72 85128.66 4.57 83710.72 85128.66 4.74 83710.72 85128.66 4.74
nrw1379_80_9 67034.31 92380.75 67853.71 69638.94 4.62 67853.71 69638.94 4.69 67853.71 69638.94 4.69

Table 5. Results for ANMM-instances (n = 80, k = 16)

 Table 6. Results for E-instances

Instances LB Init.Sol MD = 2×dmax MD = 2.5×dmax MD = 3×dmax

Best.Sol Aver.Sol T Best.Sol Aver.Sol T Best.Sol Aver.Sol T
E-n30-k3 1643.3 2604.62 1670.41 1670.41 0.06 1670.41 1670.41 0.06 1670.41 1670.41 0.06

E-n30-k4 1643.3 2490.48 1645.87 1645.87 0.07 1645.87 1645.87 0.06 1645.87 1645.87 0.07

E-n33-k4 2819.43 3545.31 2819.43 2819.43 0.08 2819.43 2819.43 0.08 2819.43 2819.43 0.08

E-n51-k5 2209.64 3357.72 2292.60 2292.60 1.01 2292.60 2292.60 1.05 2292.60 2292.60 0.96

E-n76-k10 2310.09 3775.91 2417.55 2589.31 2.05 2417.55 2417.55 2.12 2417.55 2417.55 2.14

E-n76-k14 2005.4 3237.01 2049.33 2145.23 2.13 2030.43 2030.43 2.09 2030.43 2030.43 2.05

E-n76-k15 1962.47 3116.23 2031.95 2145.90 2.11 2031.95 2047.43 2.17 2031.95 2047.43 2.03

Table 6. Results for E-instances

Effective Metaheuristic for MTRP with Distance Constraints 907 Table 7. Results for P-instances

Instances LB Init.Sol MD = 2×dmax MD = 2.5×dmax MD = 3×dmax

Best.Sol Aver.Sol T Best.Sol Aver.Sol T Best.Sol Aver.Sol T
P40k5 1537.79 2146.68 1587.52 1690.1559 0.08 1587.52 1568.86 0.08 1587.52 1568.86 0.08

P45k5 1912.31 2688.95 1968.57 2143.5088 0.09 1968.57 1961.12 0.10 1968.57 1961.12 0.09

P50k7 1547.89 2267.93 1580.65 1726.5957 0.97 1580.65 1575.59 0.97 1580.65 1575.59 1.01

P55k7 1766.56 2716.8 1840.22 2006.9836 1.07 1840.22 1838.15 0.99 1840.22 1838.15 1.07

P60k10 1676.35 2492.09 1723.04 1830.2216 1.18 1723.04 1707.72 1.16 1723.04 1707.72 1.20

P76k4 4686.92 6474.01 5059.4 5666.5279 2.18 5059.4 5023.78 2.16 5059.40 5023.78 2.16

P76k5 3820.02 5962.72 3820.02 3820.02 2.14 3820.02 3820.02 2.04 3820.02 3820.02 2.13

Pn70k10 2097.17 3414.5 2137.3 2332.3804 1.40 2137.3 2332.3804 1.40 2137.3 2332.3804 1.40

Table 7. Results for P-instances Table 8. Results for Tai-instances

Instances Init.Sol MD = 2×dmax MD = 2.5×dmax MD = 3×dmax

Best.Sol Aver.Sol T Best.Sol Aver.Sol T Best.Sol Aver.Sol T
tai75a 6840.64 4840.69 5020.63 2.06 4803.02 5023.08 2.06 4803.02 5023.08 2.06

tai75b 5575.85 3782.95 3931.11 2.14 3793.62 3941.72 2.14 3793.62 3941.72 2.14

tai75c 7110.74 3838.18 4008.01 2.19 3848.39 4008.11 2.25 3848.39 4008.11 2.25

tai75d 6501.43 4762.54 5091.00 2.18 4762.54 5091.00 2.22 4762.54 5091.00 2.22

tai100a 11398.60 7798.82 8167.83 6.35 7772.71 8042.25 6.37 7733.07 8150.46 6.37

tai100b 9775.59 7002.04 7510.64 6.42 6968.49 7452.22 6.34 6859.95 7398.34 6.34

tai100c 7895.75 4773.88 4945.76 6.35 4773.88 4945.76 6.35 4773.88 4945.76 6.35

tai100d 9051.64 5411.22 5695.49 6.38 5384.50 5627.70 6.36 5357.70 5646.42 6.36

tai150a 16188.04 14048.22 14595.99 67.08 14052.37 14594.23 67.77 14075.20 14559.93 67.77

tai150b 14018.07 11225.23 11802.84 67.15 11225.23 11802.84 68.54 11303.73 11804.18 68.54

tai150c 13293.35 9756.99 10177.14 66.69 9763.81 10151.19 68.12 9789.65 10210.75 68.12

tai150d 13001.42 9843.82 10201.89 67.46 9843.82 10201.89 69.01 9846.68 10199.94 69.01

Table 8. Results for Tai-instances

GRASP + VND. On the other hand, the results from the different values of MD in
Table 9 indicate that the distance constraint also affects the quality of solutions.

In the CMT and Kelly instances with the maximum total distance traveled
in a route (as in Tables 11 and 12), as expected, our proposed algorithm shows
a significant improvement comparing to the initial solutions, with average Improv
of 24.01 % to 26.31 %.

Table 12 shows the evolution of the average deviation to the initial solutions dur-
ing the iterations in some instances. The deviations are 26.07 %, 28.05 %, 28.34 %,
28.61 %, 28.86 %, and 28.86 % for the first local optimum, obtained by one, ten,
twenty, thirty, fifty and one-hundred calls VNS, respectively. A major part of the
descent obtained is about 0.87 % by fifty to three-hundred calls VNS. We can ob-
serve that additional iterations give a minor improvement with the big running time.
Hence, the first way to reduce the long running time is to use no more than fifty
calls to VNS, and the improvement of our algorithm is about 28.61 %. A much faster
option is to run the initial construction phase, then improve it by using a single call
to VNS. As as a result, we can obtain an average deviation of 26.07 % and average

908 H.-B. Ban, D.-N. Nguyen, K. Nguyen

 Table 9. Average results for dataset type 2

Instances MD = 2×dmax MD = 2.5×dmax MD = 3×dmax
Gap2 Impro T Gap2 Impro T Gap2 Impro T

pr1002_60_x 0.53 21.30 1.12 0.48 21.35 1.45 0.34 21.45 1.45
brd14051_60_x 0.66 25.63 1.13 0.46 25.77 1.45 0.53 25.73 1.45
fnl4461_60_x 0.48 20.26 1.12 0.39 20.33 1.45 0.29 20.41 1.45
d15112_60_x 0.56 23.94 1.11 0.39 24.07 1.46 0.31 24.12 1.46
nrw1379_60_x 0.75 25.65 1.12 0.70 25.69 1.45 0.63 25.74 1.45
pr1002_70_x 0.92 24.55 1.48 0.88 24.58 1.97 0.82 24.62 1.97
brd14051_70_x 0.53 21.62 1.49 0.50 21.65 1.84 0.50 21.66 1.84
fnl4461_70_x 0.66 23.53 1.46 0.62 23.56 1.94 0.59 23.58 1.94
d15112_70_x 0.75 23.70 1.51 0.73 23.73 1.85 0.69 23.70 1.85
nrw1379_70_x 0.72 24.17 1.44 0.64 24.23 1.95 0.61 24.25 1.95
pr1002_80_x 0.73 22.23 3.58 0.68 22.26 4.66 0.65 22.28 4.66
brd14051_80_x 0.62 17.85 3.56 0.57 17.89 4.62 0.56 17.89 4.62
fnl4461_80_x 0.79 20.29 3.59 0.73 20.34 4.63 0.72 20.35 4.63
d15112_80_x 0.43 21.59 3.57 0.41 21.61 4.65 0.39 21.62 4.65
nrw1379_80_x 0.95 25.60 3.53 0.85 25.67 4.67 0.81 25.70 4.67
E-instances 5.29 32.69 1.39 5.29 32.69 1.42 5.29 32.69 1.37
P-instances 3.14 30.18 1.48 3.14 30.18 1.45 3.14 30.18 1.48
Tai-instances - 29.77 32.79 - 32.42 33.20 - 29.83 33.31
Aver 1.09 24.14 3.69 1.03 24.33 4.23 0.99 24.21 4.23

Table 9. Average results for dataset type 2

 Table 10. Average results for dataset type 2

Instances
MD = 2×dmax MD = 2.5×dmax MD = 3×dmax

Gap1 Gap2 T Gap1 Gap2 T Gap1 Gap2 T
pr1002_60_x 0.53 21.30 1.12 0.48 21.35 1.45 0.34 21.45 1.45
brd14051_60_x 0.66 20.43 1.13 0.46 24.86 1.45 0.53 24.80 1.45
fnl4461_60_x 0.48 21.78 1.12 0.48 21.78 1.45 0.48 21.78 1.45
d15112_60_x 0.56 21.18 1.11 0.56 21.18 1.46 0.56 21.18 1.46
nrw1379_60_x 0.63 20.98 1.12 0.63 20.98 1.45 0.63 20.98 1.45
pr1002_70_x 0.88 24.58 1.14 0.88 24.58 1.52 0.88 24.58 1.52
brd14051_70_x 0.50 21.65 1.15 0.50 21.65 1.41 0.50 21.66 1.41
fnl4461_70_x 0.62 23.56 1.12 0.62 23.56 1.49 0.62 23.56 1.49
d15112_70_x 0.69 23.70 1.16 0.69 23.70 1.13 0.69 23.70 1.42
nrw1379_70_x 0.64 24.23 1.11 0.64 24.23 1.11 0.61 24.25 1.50
pr1002_80_x 0.68 22.26 3.58 0.73 22.23 3.58 0.65 22.28 3.58
brd14051_80_x 0.57 17.89 3.56 0.62 17.85 3.55 0.56 17.89 3.55
fnl4461_80_x 0.73 20.34 3.59 0.79 20.29 3.56 0.72 20.35 3.56
d15112_80_x 0.41 21.61 3.57 0.39 21.62 3.57 0.39 21.62 3.57
nrw1379_80_x 0.95 25.60 3.53 0.85 25.67 3.59 0.81 25.70 3.59
E-instances 2.28 32.78 1.07 2.14 32.68 1.09 2.14 32.68 1.06
P-instances 3.14 30.18 1.14 3.14 30.18 1.11 3.14 30.18 1.14
Tai-instances - 29.83 25.20 - 29.91 25.63 - 29.98 25.63
Aver 0.88 23.55 3.14 0.86 23.79 3.31 0.84 23.81 3.35

Table 10. Average results for dataset type 2

Effective Metaheuristic for MTRP with Distance Constraints 909
 Table 11. Results for Kelly-instances

Instances n k MD Init.Sol Best.Sol Aver.Sol Impro T
kelly01 240 9 650 72143.84 56121.25 57116.60 22.21 177.04
kelly02 320 10 700 152816.69 104163.33 106346.89 31.84 349.84
kelly04 480 10 1600 353374.40 271826.46 278169.07 23.08 566.42
kelly05 200 5 1800 153187.07 116050.81 118758.33 24.24 179.39
kelly06 280 7 1500 157506.03 127733.90 129785.16 18.90 404.47
kelly07 360 8 1300 218214.03 166321.67 170351.03 23.78 615.73
Aver 24.01 382.15

Table 11. Results for Kelly-instances
Table 12. Evolution of average Impro deviation to Init.Sol

Dataset
1 iteration 20 iterations 30 iterations 50 iterations 100 iterations 200 iterations

ଓ݉݋ݎ݌തതതതതതതത തܶ ଓ݉݋ݎ݌തതതതതതതത തܶ ଓ݉݋ݎ݌തതതതതതതത തܶ ଓ݉݋ݎ݌തതതതതതതത തܶ ଓ݉݋ݎ݌തതതതതതതത തܶ ଓ݉݋ݎ݌തതതതതതതത തܶ

E-instances 27.23 0.16 31.62 0.45 32.24 0.64 32.71 1.07 32.71 2.24 32.71 4.15
P-instances 28.01 0.17 29.80 0.48 30.04 0.68 30.18 1.13 30.18 2.26 30.18 4.72
Tai-instances 28.29 1.83 29.56 12.74 29.84 16.38 29.91 25.49 29.91 52.80 29.91 105.59
CMT 24.98 17.45 25.87 23.92 26.31 27.10 26.31 35.06 26.31 61.03 26.31 141.56
Kelly 22.01 188.22 23.55 259.52 23.88 293.74 24.01 382.15 24.01 667.34 24.01 1544.29
Aver 26.10 41.56 28.08 59.42 28.46 67.71 28.62 88.98 28.62 157.13 28.62 360.06

Table 12. Evolution of average Impro deviation to Init .Sol

time of 41.46 seconds, even for the instances which are up to 560 customers.
Most previous algorithms are proposed for specific variants; hence, they do not

apply for the other variants. However, our proposed algorithm is applicable to mul-
tiple variants of MTRPD, although it was not designed for solving them. In com-
parison with the state-of-the-art algorithms in [15, 23, 28, 29, 30, 31], our TS+VNS
algorithm’s solutions are at least as good as already the existing CCVRP algorithm
in [23, 28, 30], MTRP algorithm in [15, 29], TRP algorithm in [31]. Specifically,
for CCVRP problem, our algorithm obtains the better solutions for CMT1, CMT2,
CMT3, CMT4 or at least similar solutions for the others in Table 14. For the MTRP
problem, as shown in Table 13, the quality of our solutions is much better than the
algorithm of Ezzine et al. in [15] and comparable with the algorithm of Nucamendi-
Guillén et al. Tables 15 to 18 show the experimental results for the TRP problem.
Our algorithm outperforms that of Silva et al. [31] for four instances, and has similar
performance for the most of instances in TRP-100-Rx. In TRP-200-Rx, although
the VNS + TS metaheuristic cannot find any new best solution, our average solu-
tion quality is slightly improved. In addition, our algorithm can find the optimal
solutions for the problems with 50 to 100 vertices in several seconds, as shown in
Tables 15 and 18 (note that the optimal solutions for the instances are extracted
from Abeledo et al. [2]).

Our metaheuristic performs well because of two reasons:

1. The algorithm uses more neighborhoods than the others. Therefore, the explored
part of the solution space is more substantial. Hence, the chances of finding
even better solutions are higher. The extension of explored part is not time-

910 H.-B. Ban, D.-N. Nguyen, K. Nguyen
Table 13. Comparsion with state of the art metaheuristic algorithm for MTRP (MD = 0)

Instances IOE SNG Our Algorithm
Best.Sol T Best.Sol T Best.Sol T cTime

E-n51-k5 3320 2.25 2209.64 0.70 2209.64 1.31 3.25
E-n76-k10 4094 1.48 2310.09 4.20 2310.09 2.67 6.62
E-n76-k14 3762 0.50 2005.40 3.40 2005.40 2.77 6.87
E-n76-k15 3822 0.09 1962.47 2.81 1962.47 2.74 6.80
E-n101-k8 6383 89.4 - - 4051.47 6.40 15.87
E-n101-k14 5048 5.43 - - 3288.53 6.74 16.72
P-n50-k7 - - 1547.89 0.70 1547.89 1.26 3.12
P-n55-k7 - - 1766.56 1.01 1766.56 1.39 3.45
P-n60-k10 - - 1676.35 1.42 1676.35 1.54 3.82
P-n76-k4 - - 4686.92 3.40 4686.92 2.83 7.02
P-n76-k5 - - 3820.02 3.63 3820.02 2.78 6.89
CMT1 - - 2209.64 0.70 2209.64 1.40 3.47
CMT2 - - 2310.09 4.19 2310.09 2.78 6.89
CMT3 - - 4002.90 14.94 4002.90 6.40 15.87
tai100a - - 7809.43 13.63 7733.07 6.37 15.54
tai100b - - 7038.60 12.83 6859.95 6.34 15.47
tai100a - - 4868.61 14.12 4786.94 6.35 15.49
tai100b - - 5422.63 14.23 5357.70 6.36 15.52

Table 13. Comparision with state-of-the-art metaheuristic algorithm for MTRP (MD =
0)

Table 14. Comparsion with state of the art metaheuristic algorithm for CCVRP (MD = 0)

Instances MA1 ALNS L. Ke’s algorithm Our Algorithm
Best.Sol T Best.Sol T Best.Sol T Best.Sol T cTime

CMT1 2230.35 10.63 2230.35 30.29 2230.35 17.64 2209.64 1.40 3.47
CMT2 2421.90 27.78 2391.63 60.77 2391.63 22.48 2310.09 2.78 6.89
CMT3 4073.12 97.91 4045.42 172.4 4045.42 60.96 4002.90 6.40 15.8
CMT4 4987.52 449.4 4987.52 235.1 4987.52 92.68 4953.94 63.0 156.
CMT5 5810.12 1035. 5838.32 277.3 5809.59 135.36 5809.59 11.2 92.7
CMT12 3558.92 53.72 3558.92 38.20 3558.92 152.74 3564.24 9.42 23.3

Table 14. Comparision with state-of-the-art metaheuristic algorithm for CCVRP (MD =
0)

consuming because of a constant time operation for calculating the latency cost
of each neighboring solution.

2. In some cases, while their algorithms get trapped in cycles, our algorithm over-
comes the issue and obtains the better solutions.

In Tables 13–14, the average scaled running time of the VNS + TS algorithm is
better than those of Ban et al., Ngueveu et al., and Ribeiro et al., and as well as
the algorithm of Ke et al. Besides, it grows quite moderately with the algorithm of
Nucamendi-Guillén et al.

Effective Metaheuristic for MTRP with Distance Constraints 911

Table 15. Comparsion with state of the art metaheuristic algorithm for TRP (TPR-50-Rx)

Instances
k = 1

MD=0
OPT�

Our Algorithm

Best.Sol� Aver.Sol� T� cTime

TRP-50-R1 12198 12198 12198 0.49 1.20
TRP-50-R2 11621 11621 11674 0.57 1.41
TRP-50-R3 12139 12139 12139 0.61 1.50
TRP-50-R4 13071 13071 13071 0.61 1.49
TRP-50-R5 12126 12126 12284 0.58 1.44
TRP-50-R6 12684 12684 12684 0.55 1.36
TRP-50-R7 11176 11176 11176 0.59 1.45
TRP-50-R8 12910 12910 12945 0.61 1.50
TRP-50-R9 13149 13149 13149 0.62 1.53
TRP-50-R10 12892 12892 12892 0.62 1.53
TRP-50-R11 12103 12103 12181 0.61 1.44
TRP-50-R12 10633 10633 10633 0.61 1.47
TRP-50-R13 12115 12115 12115 0.56 1.47
TRP-50-R14 13117 13117 13117 0.58 1.47
TRP-50-R15 11986 11986 11986 0.61 1.47
TRP-50-R16 12138 12138 12138 0.58 1.47
TRP-50-R17 12176 12176 12176 0.49 1.48
TRP-50-R18 13357 13357 13357 0.57 1.48
TRP-50-R19 11430 11430 11430 0.61 1.48
TRP-50-R20 11935 11935 11935 0.58 1.48
Aver 0.58 1.47

Table 15. Comparision with state-of-the-art metaheuristic algorithm for TRP (TPR-50-
Rx)

Table 16. Comparsion with state of the art metaheuristic algorithm for TRP (TPR-100-Rx)

Instances
k = 1

MD=0

MS Our Algorithm

Best.Sol� Best.Sol� Aver.Sol� T� cTime

TRP-100-R1 32779 32680 32680 5.67 14.00
TRP-100-R2 33435 31598 31598 5.77 14.25
TRP-100-R3 32390 32390 32390 5.67 14.00
TRP-100-R4 34733 35208 35208 5.98 14.76
TRP-100-R5 32598 32598 32598 5.87 14.50
TRP-100-R6 34159 34159 34159 5.46 13.49
TRP-100-R7 33375 33375 33375 5.05 12.47
TRP-100-R8 31780 32479 32479 5.36 13.23
TRP-100-R9 34167 34167 34167 5.98 14.76
TRP-100-R10 31605 31605 31289 5.26 12.98
TRP-100-R11 34188 34188 34188 5.26 13.84
TRP-100-R12 32146 32146 30487 5.46 13.83
TRP-100-R13 32604 31930 31930 5.05 13.78
TRP-100-R14 32433 32433 32433 5.67 13.76
TRP-100-R15 32574 32574 32574 5.87 13.67
TRP-100-R16 33566 33566 33275 5.26 13.58
TRP-100-R17 34198 34198 34198 5.87 13.59
TRP-100-R18 31929 31929 31929 5.46 13.70
TRP-100-R19 33463 33463 33463 6.08 13.75
TRP-100-R20 33632 33363 33363 5.36 13.65
Aver 5.57 13.72

Table 16. Comparision with state-of-the-art metaheuristic algorithm for TRP (TRP-100-
Rx)

912 H.-B. Ban, D.-N. Nguyen, K. Nguyen
Table 17. Comparsion with state of the art metaheuristic algorithm for TRP (TPR-200-Rx)

Instances
k = 1

MD=0

Our Algorithm MS

Best.Sol� Aver.Sol� Best.Sol� Aver.Sol� T� cTime

TRP-200-R1 88787 88794.60 88789 88794.25 89.51 218.40
TRP-200-R2 91977 92013.10 91977 91989.30 91.77 223.93
TRP-200-R3 92568 92631.20 92570 92570.90 96.31 234.98
TRP-200-R4 93174 93192.30 93174 93178.60 101.97 248.81
TRP-200-R5 88737 88841.20 88737 88740.65 94.04 229.46
TRP-200-R6 91589 91601.90 91591 91590.50 99.70 243.28
TRP-200-R7 92754 92763.20 92754 92759.85 92.91 226.69
TRP-200-R8 89048 89049.00 89048 89051.25 94.04 229.46
TRP-200-R9 86326 86326.00 86326 86327.70 90.64 221.16
TRP-200-R10 91554 91596.50 91554 91555.51 91.77 223.93
TRP-200-R11 92655 92700.60 92658 92658.22 94.04 229.46
TRP-200-R12 91457 91504.10 91457 91458.43 90.64 221.16
TRP-200-R13 86155 86181.40 86159 86178.31 97.44 237.75
TRP-200-R14 91882 91929.10 91882 91890.95 95.17 232.22
TRP-200-R15 88914 88912.40 88914 88928.95 90.64 221.16
TRP-200-R16 89313 89364.70 89313 89316.21 96.31 234.98
TRP-200-R17 89089 89118.30 89089 89092.93 96.31 234.98
TRP-200-R18 93619 93676.60 93619 93632.77 99.70 243.28
TRP-200-R19 93369 93401.60 93369 93371.85 94.04 229.46
TRP-200-R20 86294 86292.00 86294 86294.35 95.17 232.22
Aver 94.60 230.82

Table 17. Comparision with state-of-the-art metaheuristic algorithm for TRP (TRP-200-
Rx)

Table 18. Comparison with state-of-the-art metaheuristic algorithm for TRP(TSPLIB)

Instances
k = 1

MD=0
n

OPT UB
Our algorithm

Best.Sol Aver.Sol T cTime

dantzig42 42 12528 12650 12528 12528 0.56 1.50
att48 48 209320 25315 209320 209320 1.45 3.87
eil51 51 10178 10593 10178 10178 1.56 4.17
berlin52 52 143721 15209 143721 143721 1.51 4.03
st70 70 20557 25809 20557 20557 2.43 6.49
KroA100 100 983128 10912 983128 983128 8.25 22.03
KroB100 100 986008 10212 986008 986008 8.12 21.68
KroC100 100 961324 11013 961324 961324 8.28 22.11
KroD100 100 976965 10253 976965 976965 8.19 21.87
Aver 4.48 11.97

Table 18. Comparision with state-of-the-art metaheuristic algorithm for TRP (TSPLIB)

5 CONCLUSIONS

In this paper, we study the global structure of the MTRPD solution space. We have
proposed a new effective meta-heuristic algorithm for MTRPD, which combines In-
sertion Heuristic (IH), Tabu Search (TS), and Variable Neighborhood Search (VNS).
Our algorithm has been suitable for the global structure of the solution space. More-
over, we introduce the novel neighborhoods’ structure as well as the constant time
operation for efficient calculation of the latency cost for each neighboring solution.

Effective Metaheuristic for MTRP with Distance Constraints 913

The extensive computational experiments on benchmark instances show that the
proposed algorithm is able to find the optimal solutions for all instances with up
to 50 vertices in a fraction of seconds. Moreover, almost all the found solutions
for instances from 60 to 80 vertices fall into the range of 0.9 %–1.1 % of the lower
bounds of the optimal solutions at a reasonable amount of time. For the larger
number of vertices, our algorithm obtains good-quality solutions fast. Additionally,
our algorithm can find better solutions than the state-of-the-art ones.

REFERENCES

[1] Archer, A.—Levin, A.—Williamson, D. P.: A Faster, Better Approximation
Algorithm for the Minimum Latency Problem. SIAM Journal on Computing, Vol. 37,
2008, No. 5, pp. 1472–1498, doi: 10.1137/07068151X.

[2] Abeledo, H.—Fukasawa, R.—Pessoa, A.—Uchoa, E.: The Time Dependent
Traveling Salesman Problem: Polyhedra and Algorithm. Mathematical Programming
Computation, Vol. 5, 2013, No. 1, pp. 27–55, doi: 10.1007/s12532-012-0047-y.

[3] Afrati, F.—Cosmadakis, S.—Papadimitriou, C. H.—Papageorgiou, G.—
Papakostantinou, N.: The Complexity of the Travelling Repairman Problem. In-
formatique Théorique et Applications, Vol. 20, 1986, No. 1, pp. 79–87.

[4] Arora, S.—Karakostas, G.: Approximation Schemes for Minimum Latency
Problems. Proceedings of the Thirty-First Annual ACM Symposium on Theory of
Computing (STOC ’99), 1999, pp. 688–693, doi: 10.1145/301250.301432.

[5] Ausiello, G.—Leonardi, S.—Marchetti-Spaccamela, A.: On Salesmen, Re-
pairmen, Spiders and Other Traveling Agents. In: Bongiovanni, G., Petreschi, R.,
Gambosi, G. (Eds.): Algorithms and Complexity (CIAC 2000). Springer, Berlin,
Heidelberg, Lecture Notes in Computer Science, Vol. 1767, 2000, pp. 1–16, doi:
10.1007/3-540-46521-9 1

[6] Ban, H. B.—Nguyen, D. N.: Improved Genetic Algorithm for Minimum Latency
Problem. Proceedings of the 2010 Symposium on Information and Communication
Technology (SoICT ’10), 2010, pp. 9–15, doi: 10.1145/1852611.1852614.

[7] Ban, H. B.—Nguyen, K.—Ngo, M. C.—Nguyen, D. N.: An Efficient Exact
Algorithm for Minimum Latency Problem. Progress in Informatics, No. 10, 2013,
pp. 167–174, doi: 10.2201/NiiPi.2013.10.10.

[8] Ban, H. B.—Nguyen, D. N.: A Meta-Heuristic Algorithm Combining Between
Tabu and Variable Neighborhood Search for the Minimum Latency Problem. The
2013 RIVF International Conference on Computing and Communication Technolo-
gies – Research, Innovation, and Vision for Future (RIVF), 2013, pp. 192–197, doi:
10.1109/RIVF.2013.6719892.

[9] Ban, H. B.: A GRASP + VND Algorithm for the Multiple Traveling Repairman
Problem with Distance Constraints. Journal of Computer Science and Cybernetics,
Vol. 33, 2017, No. 3, pp. 272–288, doi: 10.15625/1813-9663/33/3/10511.

[10] Blum, A.—Chalasani, P.—Coppersmith, D.—Pulleyblank, B.—
Raghavan, P.—Sudan, M.: The Minimum Latency Problem. Proceedings

https://doi.org/10.1137/07068151X
https://doi.org/10.1007/s12532-012-0047-y
https://doi.org/10.1145/301250.301432
https://doi.org/10.1007/3-540-46521-9_1
https://doi.org/10.1145/1852611.1852614
https://doi.org/10.2201/NiiPi.2013.10.10
https://doi.org/10.1109/RIVF.2013.6719892
https://doi.org/10.15625/1813-9663/33/3/10511

914 H.-B. Ban, D.-N. Nguyen, K. Nguyen

of the Twenty-Sixth Annual ACM Symposium on Theory of Computing (STOC ’94),
1994, pp. 163–171, doi: 10.1145/195058.195125.

[11] Chaudhuri, K.—Godfrey, B.—Rao, S.—Talwar, K.: Paths, Trees and Mini-
mum Latency Tours. Proceedings of the 44th Annual IEEE Symposium on Founda-
tions of Computer Science (FOCS ’03), 2003, pp. 36–45.

[12] Li, C.-L.—Simchi-Levi, D.—Desrochers, M.: On the Distance Constrained Ve-
hicle Routing Problem. Operations Research, Vol. 40, 1992, No. 4, pp. 790–799, doi:
10.1287/opre.40.4.790.

[13] Erera, A. L.—Morales, J. C.—Savelsbergh, M.: The Vehicle Routing Prob-
lem with Stochastic Demand and Duration Constraints. Transportation Science,
Vol. 44, 2010, No. 4, pp. 474–492, doi: 10.1287/trsc.1100.0324.

[14] Dongarra, J. J.: Performance of Various Computers Using Standard Linear Equa-
tions Software. Linpack Benchmark Report, University of Tennessee, Computer Scien-
ce Technical Report, CS-89-85, 2013.

[15] Ezzine, I. O.—Elloumi, S.: Polynomial Formulation and Heuristic Based Ap-
proach for the k-Travelling Repairman Problem. International Journal of Mathe-
matics in Operational Research, Vol. 4, 2012, No. 5, pp. 503–514, doi: 10.1504/IJ-
MOR.2012.048928.

[16] Feo, T. A.—Resende, M. G. C.: Greedy Randomized Adaptive Search Proce-
dures. Journal of Global Optimization, Vol. 6, 1995, No. 2, pp. 109–133, doi:
10.1007/BF01096763.

[17] Fischetti, M.—Laporte, G.—Martello, S.: The Delivery Man Problem and
Cumulative Matroids. Operations Research, Vol. 41, 1993, No. 6, pp. 1055–1064, doi:
10.1287/opre.41.6.1055.

[18] Goemans, M.—Kleinberg, J.: An Improved Approximation Ratio for the Mini-
mum Latency Problem. Proceedings of the Seventh Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA ’96), 1996, pp. 152–158.

[19] Glover, F.: Tabu Search – Part II. INFORMS Journal on Computing, Vol. 2, 1990,
No. 1, pp. 4–32, doi: 10.1287/ijoc.2.1.4.

[20] Fakcharoenphol, J.—Harrelson, C.—Rao, S.: The k-Traveling Repairman
Problem. Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA ’03), 2003, pp. 655–664.

[21] Johnson, D. S.—McGeoch, L. A.: The Traveling Salesman Problem: A Case
Study in Local Optimization in Local Search. In: Aarts, E. H. L., Lenstra, J. K. (Eds.):
Combinatorial Optimization. John Wiley and Sons, New York, 1997, pp. 215–310.

[22] Jothi, R.—Raghavachari, B.: Minimum Latency Tours and the k-Traveling Re-
pairmen Problem. In: Farach-Colton, M. (Ed.): LATIN 2004: Theoretical Informat-
ics. Springer, Berlin, Heidelberg, Lecture Notes in Computer Science, Vol. 2976, 2004,
pp. 423–433, doi: 10.1007/978-3-540-24698-5 46.

[23] Ke, L.—Feng, Z.: A Two-Phase Metaheuristic for the Cumulative Capacitated
Vehicle Routing Problem. Computers and Operations Research, Vol. 40, 2013, No. 2,
pp. 633–638, doi: 10.1016/j.cor.2012.08.020.

[24] Laporte, G.—Nobert, Y.—Desrochers, M.: Optimal Routing under Capacity
and Distance Restrictions. Operations Research, Vol. 33, 1985, No. 5, pp. 1050–1073,

https://doi.org/10.1145/195058.195125
https://doi.org/10.1287/opre.40.4.790
https://doi.org/10.1287/trsc.1100.0324
https://doi.org/10.1504/IJMOR.2012.048928
https://doi.org/10.1504/IJMOR.2012.048928
https://doi.org/10.1007/BF01096763
https://doi.org/10.1287/opre.41.6.1055
https://doi.org/10.1287/ijoc.2.1.4
https://doi.org/10.1007/978-3-540-24698-5_46
https://doi.org/10.1016/j.cor.2012.08.020

Effective Metaheuristic for MTRP with Distance Constraints 915

doi: 10.1287/opre.33.5.1050.

[25] Luo, Z.—Qin, H.—Lim, A.: Branch-and-Price-and-Cut for the Multiple Traveling
Repairman Problem with Distance Constraints. European Journal of Operational
Research, Vol. 234, 2014, No. 1, pp. 49–60, doi: 10.1016/j.ejor.2013.09.014.

[26] Martin, O.—Otto, S. W.—Felten, E. W.: Large-Step Markov Chains for the
Traveling Salesman Problem. Complex Systems, Vol. 5, 1991, No. 3, pp. 299–326.

[27] Mladenović, N.—Hansen, P.: Variable Neighborhood Search. Computers and
Operations Research, Vol. 24, 1997, No. 11, pp. 1097–1100, doi: 10.1016/S0305-
0548(97)00031-2.

[28] Ngueveu, S. U.—Prins, C.—Wolfler Calvo, R.: An Effective Memetic
Algorithm for the Cumulative Capacitated Vehicle Routing Problem. Comput-
ers and Operations Research, Vol. 37, 2010, No. 11, pp. 1877–1885, doi:
10.1016/j.cor.2009.06.014.

[29] Nucamendi-Guillén, S.—Mart́ınez-Salazar, I.—Angel-Bello, F.—More-
no-Vega, J. M.: A Mixed Integer Formulation and an Efficient Metaheuristic Pro-
cedure for the k-Travelling Repairmen Problem. Journal of the Operational Research
Society, Vol. 67, 2016, No. 8, pp. 1121–1134, doi: 10.1057/jors.2015.113.

[30] Ribeiro, G.—Laporte, G.: An Adaptive Large Variable Neighborhood
Search Heuristic for the Cumulative Capacitated Vehicle Routing Problem. Com-
puters and Operations Research, Vol. 39, 2012, No. 3, pp. 728–735, doi:
10.1016/j.cor.2011.05.005.

[31] Silva, M. M.—Subramanian, A.—Vidal, T.—Ochi, L. S.: A Simple and Effec-
tive Metaheuristic for the Minimum Latency Problem. European Journal of Opera-
tional Research, Vol. 221, 2012, No. 3, pp. 513–520, doi: 10.1016/j.ejor.2012.03.044.

[32] Simchi-Levi, D.—Berman, O.: Minimizing the Total Flow Time of N Jobs
on a Network. IIE Transactions, Vol. 23, 1991, No. 3, pp. 236–244, doi:
10.1080/07408179108963858.

[33] Wu, B. Y.—Huang, Z.-N.—Zhan, F.-J.: Exact Algorithms for the Minimum
Latency Problem. Information Processing Letters, Vol. 92, 2004, No. 6, pp. 303–309,
doi: 10.1016/j.ipl.2004.09.009.

[34] NEO: Capacitated VRP Instances. http://neo.lcc.uma.es/vrp/vrp-instances/
capacitated-vrp-instances/, 2013.

https://doi.org/10.1287/opre.33.5.1050
https://doi.org/10.1016/j.ejor.2013.09.014
https://doi.org/10.1016/S0305-0548(97)00031-2
https://doi.org/10.1016/S0305-0548(97)00031-2
https://doi.org/10.1016/j.cor.2009.06.014
https://doi.org/10.1057/jors.2015.113
https://doi.org/10.1016/j.cor.2011.05.005
https://doi.org/10.1016/j.ejor.2012.03.044
https://doi.org/10.1080/07408179108963858
https://doi.org/10.1016/j.ipl.2004.09.009
http://neo.lcc.uma.es/vrp/vrp-instances/capacitated-vrp-instances/
http://neo.lcc.uma.es/vrp/vrp-instances/capacitated-vrp-instances/

916 H.-B. Ban, D.-N. Nguyen, K. Nguyen

Ha-Bang Ban received his B.E. in information technology in
2006 and the Ph.D. in computer science in 2015, both from
the Hanoi University of Science and Technology (HUST), Viet-
nam. He is currently Lecturer at the School of Information and
Communication Technology (SOICT), HUST, Vietnam. His re-
search interests include algorithms, graphs, optimization, logis-
tics, etc. He has published many publications in international
peer-reviewed journals and conferences.

Duc-Nghia Nguyen is Associate Professor of computer science
at the School of Information and Communication Technology,
Hanoi University of Science and Technology (HUST), Vietnam.
He received his Ph.D. in computer science in 1988 from Belaru-
sian State University. His current research interests include al-
gorithms and optimization, high performance computing, data
science.

Kien Nguyen received his B.E. in electronics and telecom-
munications from Hanoi University of Science and Technology
(HUST), Vietnam, in 2004, and the Ph.D. in informatics from
the Graduate University for Advanced Studies, Japan, in 2012.
He is currently Assistant Professor at the Graduate School of
Engineering, Chiba University, Japan. Before joining Chiba Uni-
versity, he was a researcher at the National Institute of Informa-
tion and Communications Technology (NICT), Japan, during
2014–2018. His research interests include communication net-
works, the Internet, and the Internet of Things (IoT). He has

published 70+ publications in international peer-reviewed journals and conferences. Be-
sides, he has co-authored submitted patents and Internet Engineering Task Force (IETF)
Internet drafts. He is a member of IEICE and a senior member of IEEE.

