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Abstract. We consider the classical exact multiple string matching problem. The
proposed solution is based on a combination of a few ideas: using q-grams instead of
single characters, pattern superimposition, bit-parallelism and alphabet size reduc-
tion. We discuss the pros and cons of various alternatives to achieve the possibly
best combination of techniques. The main contribution of this paper are different al-
phabet mapping methods that allow to reduce memory requirements and use larger
q-grams. The experimental results show that the presented algorithm is competitive
in most practical cases. One of the tests shows also that tailoring our scheme to
search over a byte-encoded text results in speedups in comparison to searching over
a plain text.
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1 INTRODUCTION

The problem of multiple pattern matching can be stated as follows: Given text T of
length n and pattern set P = {P0, . . . , Pr−1}, in which each pattern is of length m,
and all considered sequences are over common alphabet Σ of size σ, find all pattern
occurrences in T . The pattern equal length requirement may be removed (although
not all algorithms easily handle uneven patterns). Multiple pattern matching is
a classic problem, with over 40 years of history and applications in intrusion detec-
tion, anti-virus software, spam filtering and bioinformatics, to name a few. As this
problem is a straightforward generalization of a single pattern matching, it is per-
haps no surprise that many techniques worked out for a single pattern are borrowed
for efficient algorithms for multiple patterns.

Our paper presents a novel algorithm for multiple pattern matching, being
a careful combination of several known techniques: using q-grams combined with
pattern superimposition, bit-parallelism and alphabet size reduction. The experi-
mental results will show that the presented solution, MAG (Multi AOSO on
q-Grams), usually dominates over its competitors on texts with diverse characteris-
tics.

1.1 Related Work

A naive approach to searching for r patterns in a text is to use any single pattern
search algorithm r times. As the performance grows linearly with r, such a technique
cannot be reasonably used when, e.g., r exceeds 10. Non-trivial algorithms for the
presented problem can roughly be divided into three different categories, based on
the location of pattern substrings they try to find (and then to extend). More
specifically, these algorithms are based on

1. prefix searching,

2. suffix searching and

3. factor searching, respectively.

Another taxonomy of the existing solutions classifies them according to whether they
are based on character comparisons, hashing, or bit-parallelism. Yet another view is
to say that they are based on filtering, aiming for good average case complexity, or
on some kind of “direct search” with good worst case complexity guarantees. These
different categorizations are of course not mutually exclusive, and many solutions
are hybrids that borrow ideas from several techniques. For a good overview of the
classical solutions, the reader is referred to, e.g., [27, 19, 10]. We briefly review some
of them in the following paragraphs.

Perhaps the most famous solution to the multiple pattern matching problem
is the Aho-Corasick (AC) [1] algorithm, which generalizes the Knuth-Morris-Pratt
algorithm [22] for a single pattern. The AC algorithm follows the prefix-based ap-
proach and it builds a pattern trie with extra (failure) links. One can say that AC
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works in linear time. More precisely, however, AC total time is O(M+n+z) for con-
stant alphabet, where M , the sum of pattern lengths, is the preprocessing cost, and
z is the total number of pattern occurrences in T . For an integer alphabet, i.e., when
σ = nO(1), it obtains O(M + n log σ + z) time [12]. Fredriksson and Grabowski [18]
showed an average-optimal filtering variant of the classic AC algorithm. They built
the AC automaton over superimposed subpatterns, which allows to sample the text
characters in regular distances, not to miss any match (i.e., any verification). This
algorithm is based on similar ideas as the current work.

Another classic algorithm is Commentz-Walter [8], which generalizes the ideas
of Boyer-Moore (BM) algorithm [4] for a single pattern, to solve the multiple pat-
tern matching problem (suffix-based approach). Set Horspool (SH) [15, 27] may be
considered its more practical simplification, exactly in the way that Boyer-Moore-
Horspool (BMH) [20] is a simplification of the original BM. Set Horspool makes
use of a generalized bad character function. The Horspool technique was used in
a different way in an earlier algorithm by Wu and Manber (WM) [32]. These meth-
ods are based on backward matching over a sliding text window, which is shifted
based on some rule, with the hope that many text characters can be skipped alto-
gether.

The first factor-based algorithms were DAWG-match [9] and MultiBDM [11].
Like Commentz-Walter and Set Horspool, they are based on backward matching.
However, instead of recognizing the pattern suffixes, they recognize the factors,
which effectively means that they work more per window, but in return they are
able to make longer shifts of the sliding window, and in fact they obtain opti-
mal average case complexity. At the same time they are linear in the worst case.
The drawback is that these algorithms are reasonably complex and not very effi-
cient in practice. A more practical approach is the Set Backward Oracle Matching
(SBOM) algorithm [2], which is based on the same idea as MultiBDM, but uses
simpler data structures and is very efficient in practice. Yet another variant is the
Succinct Backward DAWG Matching algorithm (SBDM) [17], which is practical
for huge pattern sets due to replacing the suffix automaton with succinct index.
The factor-based algorithms usually lead to average-optimal [25] time complexity of
O(n logσ(rm)/m).

Bit-parallelism can be used to replace the various automata in the methods
mentioned earlier, to obtain very simple and yet competitive incarnations of many
classical algorithms. The most standard bit-parallel solution for a single pattern is
Shift-Or [3]. The idea is to encode (non-deterministic) automaton as a bitvector, i.e.,
a small integer value, and simulate all the states in parallel using Boolean logic and
arithmetic. The result is often the most practical method for the problem, but the
drawback is that the scalability is limited by the number of bits in a computer word,
although there exist ways to alleviate this problem somewhat, see [28, 7]. Another
way that is applicable to huge pattern sets is to combine bit-parallelism with q-grams;
our method is also based on this, and we review the idea and related previous work
in detail in the next section. Another practical solution based on q-grams (used for
a cache-efficient index structure), where a multiple pattern matching algorithm is
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applied in intrusion detection software and an antivirus system, is SigMatch [21].
Using q-grams in searches over DNA (for one or multiple patterns) is recommended
in the survey by Rivals et al. [29].

In a somewhat different way, parallelism for multiple pattern matching has been
obtained with a GPU. In particular, Kouzinopoulos et al. [24] adopted the well-
known (and mentioned earlier) AC, SH, SBOM, WM algorithms, as well as a more
recent one, SOG [30], to the CUDA programming model, to obtain from about
10- to 30-fold speedup compared to one CPU core. Their test GPU was an Nvidia
GTX280, and we can guess that the speedup would be significantly higher on a more
modern GPU. The same authors [23] proposed another solution based on hybrid
OpenMP/MPI technique, focusing on searching in biological databases.

Some recent work also recognizes the neglected power of the SIMD instructions,
which have been available on commodity computers well over a decade. For ex-
ample, Faro and Külekci [13] make use of the Intel Streaming SIMD Extensions
(SSE) technology, which gives wide registers and many special purpose instructions
to work with. They develop (among other things) a wsfp (word-size fingerprint in-
struction) operation, based on hardware opcode for computing CRC32 checksums,
which computes an α-bit fingerprint from a w-bit register handled as a block of α
characters. Similar values are obtained for all α-sized factors of all the patterns in
the preprocessing, and wsfp can therefore be used as a simple yet efficient hash-
function to identify text blocks that may contain a matching pattern. The same
authors [14] presented later a SIMD-based solution for multiple string matching, fo-
cusing on searching short patterns (16 ≤ m < 32) in genome sequences and English
texts.

Our paper is organized as follows. Section 2 describes and discusses the two
key concepts underlying our work, q-grams and pattern superimposition. Section 3
presents the description of our algorithm, together with its complexity analysis.
Section 4 contains experimental results. The last section concludes and points some
avenues for pursuing further research.

A preliminary version of our work appeared in Proc. PSC 2014 [31].

2 ON SUPERIMPOSING Q-GRAMS

A q-gram is usually defined as a contiguous substring (factor) of a string comprising
q characters, although, noteworthily, non-contiguous q-grams have also been consid-
ered [6]. In what follows, q can be considered a small constant (2, . . . , 6 in practice),
although we may analyze the optimal value for a given problem instance. We note
that q-grams have been widely used in approximate (single and multiple) string
matching, where they can be used to obtain fast filtering algorithms based on exact
matching of a set of q-grams. Obviously these algorithms work for the exact case as
well, as a special case, but they are not within the scope of this paper. Another use
(which is not relevant in our case) is to speed up exact matching of a single pattern
by treating the q-grams as a superalphabet [16].
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In multiple pattern matching q-grams may be combined using an interesting
technique called superimposition. Consider a set of patterns P = {P0, . . . , Pr−1}.
We form a single pattern P where each position P [i] is no longer a single character,
but a set of characters, i.e., P [i] ⊆ Σ. More precisely, P [i] =

⋃
j Pj[i]. Now P

can be used as a filter: we search candidate text substrings that might contain an
occurrence of any of the patterns in P . In other words, if T [i + j] ∈ P [j], for all
j ∈ 0, . . . ,m− 1, then T [i . . . i+m− 1] may match with some pattern in P .

Let us present a simple example. Let r = 2 and P = {abba, bbac}. The superim-
posed pattern is then P = {a, b}{b}{a, b}{a, c}, and there are a total of 8 different
strings of length 4 that can match with P (and trigger verification). Therefore we
immediately notice one of the problems with this approach, i.e., the probability
that some text character t matches a pattern character p is no longer 1/σ (assuming
uniform random distribution), it can be up to r/σ. This gets quickly out of hands
when the number of patterns r grows.

To make the technique more useful, we first generate a new set of patterns,
and then superimpose. The new patterns have the q-grams as the alphabet, which
means the new alphabet has size σq, and the probability of a false positive candidate
will be considerably lower. There are two main approaches: overlapping and non-
overlapping q-grams.

Consider first the overlapping q-grams. For each Pi we generate a new pattern
such that P ′i [j] = Pi[j . . . j+q−1], for j ∈ 0 . . .m−q, that is, each q-gram Pi[j . . . j+
q−1] is treated as a single “super character” in P ′i . Note also that the pattern lengths
are decreased from m to m−q+1. Taking the previous example, if P = {abba, bbac}
and now q = 2, the new pattern set is P ′ = {[ab][bb][ba], [bb][ba][ac]}, where we use
the brackets to denote the q-grams. The corresponding superimposed pattern is then
P ′ = {[ab], [bb]}{[bb], [ba]}{[ba], [ac]}. To be able to search for P ′, the text must be
factored in exactly the same way.

The other possibility is to use non-overlapping q-grams. In this case we have
P ′i [j] = Pi[(j − 1)q + 1 . . . jq], for j ∈ 0 . . . bm/qc − 1, and for our running example
we get P ′ = {[ab], [bb]}{[ba], [ac]}. Again, the text must be factored similarly. But
the problem now is that only every qth text position is considered, and to solve this
problem we must consider all q possible shifts of the original patterns. That is,
given a pattern Pi, we generate a set P̂i = {Pi[0 . . .m− 1], Pi[1 . . .m− 1], . . . , Pi[q−
1 . . .m− 1]}, and then generate P̂ ′i , and finally superimpose them.

The two alternatives given above both have some benefits and drawbacks. For
overlapping q-grams we have:

• pattern length is large (m− q + 1), which implies fewer verifications,

• text length is practically unaffected (n− q + 1).

On the other hand, for the non-overlapping ones:

• pattern length is short (m/q), which means potentially more verifications, but
bit-parallelism works for bigger m,

• text is shorter too (n/q),
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• more patterns to superimpose (factor of q).

In the end, the benefits and drawbacks between the two approaches mostly cancel
out each other, except bit-parallelism remains more applicable to non-overlapping
q-grams.

To illustrate the power of this technique, let us have, for example, a random
text over an alphabet of size σ = 16 and patterns generated according to the
same probability distribution; q-grams are not used yet (i.e., we assume q = 1).
If r = 16, then the expected size of a character class in the superimposed pat-
tern is about 10.3, which means that a match probability for a single charac-
ter position is about 64 %. Even if high, this value may yet be feasible for long
enough patterns, but if we increase r to 64, the character class expected size grows
to over 15.7 and the corresponding probability to over 98 %. This implies that
match verifications are likely to be invoked for most positions of the text. Using
q-grams has the effect of artificially growing the alphabet. In our example, if we
use q = 2 and thus σ′ = 162 = 256, the corresponding probabilities for r = 16
and r = 64 become about 6 % and 22 %, respectively, so they are significantly
lower.

The main problem that remains is to decide between the two choices, properly
choose a suitable q, and finally find a good algorithm to search the superimposed
pattern. To this end, Salmela et al. [30] presented three algorithms combining the
known mechanisms: Shift-Or, BNDM [26] and BMH, with overlapping q-grams; the
former two of these algorithms are bit-parallel ones. The resulting algorithms were
called SOG, BG and HG, respectively. In general, larger q means better filtering,
but on the other hand the size of the data structures (tables) that the algorithms
use is O(σq), which can be prohibitive. BGqus (BG with q-grams, Unrolling and
s-bit shift hash method) [33] tries to solve the problem by combining BG with
hashing.

Actually, not many classic algorithms can be generalized to handle superimposed
patterns (character classes) efficiently, but bit-parallel methods generalize trivially.
In the next section we describe our choice, FAOSO [18].

3 OUR ALGORITHM

In [18] a general technique of how to skip text characters, with any (linear time)
string matching algorithm that can search for multiple patterns simultaneously was
presented, alongside with several applications to known algorithms. In the follow-
ing we review the idea, and for the moment assume that we already have done all
factoring to q-grams, and that we have only a single pattern.
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3.1 Average-Optimal Character Skipping

The method takes a parameter k, and from the original pattern generates a set K
of k new patterns K = {P 0, . . . , P k−1}, each of length m′ = bm/kc, as follows:

P j[i] = P [j + ik], j = 0 . . . k − 1, i = 0 . . . bm/kc − 1.

In other words, k different alignments of the original pattern P is generated, each
alignment containing only every kth character. The total length of the patterns P j

is kbm/kc ≤ m.
Assume now that P occurs at T [i . . . i + m − 1]. From the definition of P j it

directly follows that

P j[h] = T [i+ j + hk], j = i mod k, h = 0 . . .m′ − 1.

This means that the set K can be used as a filter for the pattern P , and that the
filter needs only to scan every kth character of T . Figure 1 serves as an illustra-
tion.

P a b c d e f

i p
T x x a b c d e f x x x x

P 0 a d

P 1 b e

P 2 c f

P ∗ a d b e c f

Figure 1. An example. Assume that P = abcdef occurs at text position T [i . . . i+m−1],
and that k = 3. The current text position is p = 10, and T [p] = b. The next character
the algorithm reads is T [p+ k] = T [13] = e. This triggers a match of P p mod k = P 1, and
the text area T [p− 1 . . . p− 1 + m− 1] = T [i . . . i + m− 1] is verified.

The occurrences of the patterns in K can be searched for simultaneously using
any multiple string matching algorithm. Assuming that the selected string matching
algorithm runs generally in O(n) time, then the filtering time becomes O(n/k),
as only every kth symbol of T is read. The filter searches for the exact matches
of k patterns, each of length bm/kc. Assuming that each character occurs with
probability 1/σ, the probability that P j occurs (triggering a verification) in a given
text position is (1/σ)bm/kc. A brute force verification cost is in the worst case O(m).
To keep the total time O(n/k) on average, we select k so that nm/σm/k = O(n/k).
This is satisfied for k = m/(2 logσ(m)), where the verification cost becomes O(n/m)
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and filtering cost O(n logσ(m)/m). The total average time is then dominated by the
filtering time, i.e., O(n logσ(m)/m), which is optimal [34].

3.2 Multiple Matching with q-Grams

To apply the previous idea to multiple matching, we just assume that the (single) in-
put pattern (for the filter) is the non-overlapping q-gram factored and superimposed
pattern set. The verification phase just needs to be aware that there are possibly
more than one pattern to verify. The analysis remains essentially the same: now
the text length is n/q, pattern lengths are m/q, there are r patterns to verify, and
the probability of a match is p instead of 1/σ, where p = O(1 − (1 − (1/σq))qr) =
O((qr)/σq). That is, the filtering time is O(qn/(kq)) = O(n/k), verification cost is
O(rqm), and its probability is O(pbm/(kq)c) for each of the n/q text positions. How-
ever, now we have two parameters to optimize, k and q, and the optimal value of
one depends on the other.

In practice we want to choose q first, such that the verification probability is as
low as possible. This means maximizing q, but the preprocessing cost (and space)
grows as O(σq), and we do not want this to exceed O(rm) (or the filtering cost for
that matter). So we select q = logσ(rm), and then choose k as large as possible.
Repeating the above analysis gives then

k = O

(
m

logσ(rm)
· logσ 1/ρ

logσ(rm) + logσ 1/ρ

)
(1)

where ρ = logσ(rm)/m. We note that this is not average-optimal anymore, although
we are still able to skip text characters.

To search the superimposed pattern, we use FAOSO [18], which is based on
Shift-Or. The fact that the pattern consists of character classes is not a problem for
bit-parallel algorithms, since it only affects the initial preprocessing of a single table.
For details see [18]. The filter implemented with FAOSO runs in O(n/k ·d(m/q)/we)
time in our case, where w is the number of bits in computer word (typically 64).

We note that Salmela et al. [30] have tried a similar approach, but abandoned
it early because it did not look promising for short patterns in their tests.

3.2.1 Implementation

The q-gram, i.e., the super character, must have some suitable representation, and
the convenient way is to compute a numerical value in the range 0 . . . σq − 1, which
is done as

∑q−1
i=0 S[i] ·σi for a q-gram S[0 . . . q− 1]. This is computed using Horner’s

method to avoid the exponentiation. We have experimented with two different vari-
ants. The first encodes the whole text prior to starting the actual search algorithm,
which is then more streamlined. This also means that the total complexity is Ω(n),
the time to encode the text. We call the resulting algorithm SMAG (short of Simple
Multi AOSO on q-grams). The other alternative is to keep the text intact, and
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compute the numerical representation of the q-gram requested on the fly. This adds
just constant overhead to the total complexity. We call this variant MAG (short of
Multi AOSO on q-grams). We have verified experimentally that MAG is generally
better than SMAG.

3.3 Alphabet Mapping

If the alphabet is large, then selecting a suitable q may become a problem. The
reason is that some value q′ may be too small to facilitate good filtering capability,
yet, using q = q′ + 1 can be problematic, as the preprocessing time and space grow
with σq (note that q must be an integer). The other view of using strings of length q
as super characters is that we may then say that our characters have q log2 σ bits,
and we want to have more control of how many bits we use. One way to achieve
this is to reduce the original alphabet size σ.

We note that in theory this method cannot achieve much, as reducing the alpha-
bet size generally only worsens the filtering capability and therefore forces larger q,
but in practice this allows better fine tuning of the parameters.

3.3.1 Histogram Based Alphabet Mapping (HAM)

What we do is that we select some σ′ < σ, compute a mapping µ : Σ 7→ 0 . . . σ′ − 1,
and use µ(c) whenever the (filtering) algorithm needs to access some character c
from the text or the pattern set. Verifications still obviously use the original al-
phabet. A simple method to achieve this is to compute the histogram of character
distribution of the pattern set, and assign code 0 to the most frequent character,
1 to second most frequent, and so on, and put the σ′ − 1 . . . σ − 1 most frequent
characters to the last bin, i.e., giving them code σ′ − 1. The text characters not
appearing in the patterns also will have code σ′ − 1.

A better strategy is to try to distribute the original characters into σ′ bins so that
each bin will have (approximately) equal weight, i.e., each µ(c), where c ∈ 0 . . . σ′−1
will have (approximately) equal probability of appearance. This is NP-hard opti-
mization problem, so we use a simple greedy heuristic which can be described in few
steps:

1. compute the symbol frequencies on the pattern set (using, e.g., hashing to avoid
possibly large tables);

2. choose some suitable σ′, the size of the mapped alphabet;

3. use method of choice (e.g., bin-packing) to reduce the number of symbols, i.e.,
map them to range 0 . . . σ′ − 1;

4. optionally use hashing to store the mapping.
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3.3.2 Histogram Based Alphabet Mapping on q-Grams (HAMq)

The HAM method can be applied also to q-grams. This variant allows control of
table size, and with combined hashing it can accommodate very large q as well.
In this case the q-grams are used instead of the alphabet symbols, but the whole
process is very much the same. The only issue here is the need of additional hashing
to store mapping, along with the corresponding bitvectors needed by FAOSO. We
did not implement this method in this paper.

3.3.3 Combined Alphabet Mapping and q-Gram Generation (CAMq)

Yet another method to reduce the alphabet is to combine the q-gram computations
with some bit magic. The benefit is that the mapping tables need not to be prepro-
cessed, and this allows further optimizations as we will see shortly. The drawback
is that the quality of the mapping is worse than what is achieved with approaches
like bin-packing.

Consider a (text sub-)string S[0 . . . q − 1] over alphabet Σ of size σ. A simple
way to reduce the alphabet is to consider only the ` low-order bits of each S[i],
where ` < log2 σ. We can then compute (q`)-bit q-gram s simply as

s = (S[0] & b) + (S[1] & b) << `+ (S[2] & b) (2)

<< 2`+ · · ·+ (S[q − 1] & b) << (q − 1)`

where b = (1 << `)− 1 and << denotes the left shift and & the bitwise and.
There is a possibility to have four unique values in ASCII DNA alphabet by

right shift (CAMq(dna)).

s = ((S[0] >> 1) & b) + ((S[1] >> 1) & b) (3)

<< `+ · · ·+ ((S[q − 1] >> 1) & b) << (q − 1)`.

The main benefit of this approach is that a sequence of shifts and adds can be
often replaced by a multiplication (which can be seen as an algorithm performing just
that). As an illustrative example, consider the case ` = 2 and hence b = 3 (which
coincides to DNA nicely). As an implementation detail, assume that the text is
8-bit ASCII text, and it is possible to address the text, a sequence of characters,
as a sequence of 32-bit integers (which is easy, e.g., in C). Then to compute a 8-bit
4-gram s we can simply apply the transform:

s = (((x >> 1) & 0x03030303) ∗ 0x40100401) >> 24 (4)

where x is the 32-bit integer containing S[0 . . . 3]. Assuming 4-letter DNA alphabet,
with a right shift (by 1) and the (parallel) masking we obtain unique (and case
insensitive) 2-bit codes for all four characters. If the alphabet is larger (many DNA
sequences have rare extra symbols), those will be mapped into the same range,
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0 . . . 3. The multiplication then shifts and adds all those codes into an 8-bit value,
and the final shift moves the 4-gram to the lower bits (CAMq(opt)). Larger q-grams
can be obtained by repeating the code.

3.4 Preprocessing and Verification

Figure 2. An example of the data structure used for verification; r = 4, q = 3

The algorithm only returns the positions of possible matches so each of the
position needs to be verified. There is no information if the string on returned
position belongs to the list of the patterns or not so the verification is necessary.
To verify which (if any) of the patterns is found on a given position, the algorithm
maintains a dictionary with q-grams as keys and lists of the patterns which contain
the key as a substring starting at position 0, . . . , q− 1 as the associated values. The
total length of all the lists stored in the dictionary is rq.

Figure 2 presents a simple example of the described dictionary. The patterns
are shown on the left and the dictionary (I) of mappings from 3-grams to patterns
containing them (only their respective suffixes are presented) are given on the right.
For example, the second element on the list I[“CTG”] is 3 because “CTG” is the
third q-gram in the 3rd pattern. The pattern occurs in two other lists: I[“GAC”] and
I[“ACT”]. The pseudocode of building such structure is presented as Algorithm 1.

The presented structure is later used in verification process whose pseudocode
is presented as Algorithm 2. After a tentative match at position pos is reported, the
list of associated patterns, I[get q gram(T [pos . . . pos + q− 1])], is searched with the
binary search (line 3). The bsearch function searches over I[idx] with the pat field as
the key and returns the maximum range of indexes (i, j) such that for all i ≤ a ≤ j,
T [pos− I[idx][a].off . . . pos− I[idx][a].off +m− 1] = I[idx][a].pat.

3.5 Algorithm

The combination of all the described techniques yields a fast algorithm for multiple
pattern matching, presented as Algorithm 3. The search phase is based on FAOSO
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Algorithm 1 MAG Build Index

1: function MAG Build Index(P)
2: for j ← 0 . . . r − 1 do
3: for i← 0 . . . q − 1 do
4: idx← get q gram(Pj[i . . . q + i− 1])
5: el.off← i
6: el.pat← Pj
7: I[idx]← I[idx] ∪ {el}
8: for i← 0 . . . | I | do
9: sort(I[i], key = pat) . Sort by pat

10: return I

Algorithm 2 MAG Verification

1: function MAG Verification(T, pos, I)
2: idx← get q gram(T [pos . . . pos + q − 1])
3: [i, j]← bsearch(I[idx])
4: for el← I[idx][i] . . . I[idx][j] do
5: report match at pos− el.off

(an algorithm for searching a single pattern) but the preprocessing (lines 3–16) and
verification (Algorithm 2) are novel. The preprocessing involves multiple patterns
(there are r of them) that consist of character classes built on top of q-grams. There
is a possibility that the found position is aligned with one of the first q q-grams
and this is why such shifts have been taken into account (line 11). Note that
the pseudocode presents the variant with combined alphabet mappings and q-gram
generation called get q gram.

3.6 Searching in Compressed Text

Text compression is a technique widely used to decrease the amount of memory
needed to store (or transmit) textual data. Some text compression methods allow
to search directly in the compressed text, without prior decompression, which is not
only elegant but may also improve the search speed, even compared to searching
over non-compressed text. In this section, we adapt our solution to searching in
End-Tagged Dense Code (ETDC) [5] compressed text, where the ETDC codes are
assigned to words. ETDC is a variable-length byte code in which 7 bits per byte
store data and 1 bit (by convention, the highest one) is set in the last byte of each
codeword and unset otherwise. The data bits are used fully, which means that (in
accordance to the golden rule of data compression, which assigns shorter codewords
to more frequent symbols) 1-byte codewords are assigned to 128 most frequent words
in the text, 2-byte codewords are assigned to 214 = 16 384 next most frequent words,
and so on (in practice, for unilingual texts it is enough to maintain at most 3-byte
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Algorithm 3 Multi AOSO on q-Grams

1: function MAG(P , T [0 . . . n− 1])
2: I ← MAG Build Index(P)
3: for i← 0 . . . σq − 1 do b[i] = ∼0

4: m′ ← (bm/qc)− (1− b(m mod q)/(q − 1)c)
5: j ← 0
6: h← 0
7: mm← 0
8: for j ← 0 . . . k − 1 do
9: for i← 0 . . .m′/k − 1 do

10: for z ← 0 . . . r − 1 do
11: for o← 0 . . . q − 1 do
12: b[get q gram(Pz[ik̇q̇ + jq̇ + o])] &= ∼(1 << h)

13: for l← 0 . . . U − 1 do
14: mm← mm | (1 << (h− 1))
15: h← h+ 1

16: h← h− 1

17: /* Search superimposed pattern in T using FAOSO and verify each
tentative match at position pos with MAG Verification(T, pos, I) */

codewords). The flag bits not only make the code a prefix one, but also allow instant
synchronization in an ETDC stream, which in turn conveniently enables to plug in
any character-skipping pattern searching algorithms. Note also that such encoding
of a text perceived as a sequence of words is intended to make the text shorter (to
about 35 % of its original length in practice), yet the encoded pattern (a phrase
consisting of whole words) also tends to be shorter, which mitigates the expected
search speedup.

3.6.1 Implementation

We encode the input text with ETDC and build a helper array A which allows
us to find the position of the pattern in the original (non-compressed) text. More
precisely, before the encoding, the original text T is transformed to a simpler form T ′

by removing all commas, tabulation symbols, excessive spaces and EOL characters
(a period is treated as a separate word). After the ETDC encoding we obtain three
streams:

1. the encoded text E(T ′),

2. the dictionary, which maps the distinct words to their corresponding variable-
length codewords, and

3. the array A.
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Assume that the length of T ′ is n′ (characters, and also bytes). The array A is of
length n′/h (integers), where h > 1 is a parameter; larger h produces a smaller array
yet reporting a match position is more time consuming. Each A[i], 0 ≤ i < n′, stores
a value j such that T ′[j] is the first symbol of the word whose codeword in E(T ′)
contains the byte T ′[ih]. We assume that h is at least the maximum number of bytes
per codeword (in practice, it is much larger, otherwise the overhead of A would be
significant).

Searching in E(T ′) is very similar to searching in the plain text T . We first
run the MAG code for the encoded patterns over E(T ′), to obtain their positions in
the encoded text. Then, in a postprocessing, we map the found positions onto the
original positions in T ′.

The mapping, making use of the array A, will be shown on an example. Let
us have a short text (extracted from english.200MB) T ′ = “the fire on the hearth
filled the chamber .” and a pattern P = “the hearth” (for clarity we use only
one pattern, but it easily generalizes to multiple patterns). Figure 3 presents the
(simplified) text T ′, the encoded text E(T ′) and the helper table A. The goal is to
obtain all positions of pattern P in text T ′ from the found occurrences of E(P ) in
E(T ′).

Let us assume that E(P ) is the 3-byte sequence [(128)(36, 189)] and let h = 4
(note that |A| = d|E(T ′)|/he = d13/4e = 4). The first (and only in the example)
occurrence of E(P ) in E(T ′) is at position pos = 4. As pos mod h = 0, we have that
A[bpos/hc] is aligned with the match position and the returned value A[bpos/hc] =
A[1] = 12 is the match position of P in T ′.

In the second case, i.e., when pos mod h 6= 0, things are slighly more complicated.
Again, let us use an example; this time we look for P = “chamber”. It is encoded
as E(P ) = [(85, 138)(129)]. Its (first and only) occurrence in E(T ′) is at position
pos = 10. As pos mod h 6= 0, to the largest value of A sampling E(T ′) before
pos, that is, A[bpos/hc] = A[2] = 23, we add the decoded lengths of all the words
before the found pattern, starting with the word aligned with A[bpos/hc]. In our
example, there are two such words, spanning E(T [7 . . . 9]) and decoded to “filled
the ” (note the blank space following the last word), of length 11. Therefore, the
returned position of P in T ′ is 23 + 11 = 34. Note that the ETDC dictionary is not
shown in Figure 3.

the fire on the hearth filled the chamber .

0123456789012345678901234567890123456789012

(128)(112,130)(150)(128)  (36,189)    (66,133)  (128)   (85,138)  (129)
0 1 2 3 4 5 6 7 8

0

9 10 11 12

2312 42

T' = 

E(T') =

A = 

Figure 3. The excerpt from an ETDC-encoded text with the helper array (h = 4)
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4 EXPERIMENTAL RESULTS

In order to evaluate the performance of our approach, we ran several experiments,
using 200 MB versions of selected datasets (dna, english and proteins) from the
widely used Pizza & Chili corpus (http://pizzachili.dcc.uchile.cl/). MAG
variants were implemented in C++ and compiled with g++ 4.8.1 with -O3 opti-
mization. The experiments were run on a desktop PC with an Intel i3-2100 CPU
clocked at 3.1 GHz with 128 KB L1, 512 KB L2 and 3 MB L3 cache, sporting 4 GB of
1 333 MHz DDR3 RAM and running Ubuntu 13.04 64-bit OS with kernel 3.11.0-17.
The MAG source codes can be found at the URLs given below:

1. MAG – https://github.com/rsusik/mag,

2. MAG on ETDC – https://github.com/rsusik/magetdc.

4.1 Multi AOSO on q-Grams

In this section we compare several variants (cf. Section 3.3.1) of our solution. We
use the following naming convention:

• dna, adapted for the dna alphabet (each symbol is right shifted),

• opt, an optimized variant (shifts and adds replaced by a multiplication),

• lx, where x is the value of the ` parameter (σ = 2`).

We have nine variants in total:

• mag – HAM (Section 3.3.1),

• mag l2 – CAMq (Equation (2)), with ` = 2,

• mag l3 – as above, ` = 3,

• mag l4 – as above, ` = 4,

• mag dna l2 – CAMq(dna) (Equation (3)), ` = 2,

• mag dna l3 – as above, ` = 3,

• mag dna l4 – as above, ` = 4,

• mag dna opt l2 – CAMq(opt) (Equation (4)), with ` = 2,

• mag dna opt l3 – as above, ` = 3.

We call CAMq and CAMq(dna) as the generic variants, and CAMq(opt) as
the optimized variant (shifts and adds replaced by a multiplication). There are
a few parameters to set for the algorithms such as q-gram size, FAOSO striding
parameter (k) and the quantized alphabet size σ′ (only for HAM). We tested HAM
with multiple σ′ values ({4, 5, . . . , 26}) and experimentally chose only a few later
used in the tests, namely σ′ = 5 for dna, σ′ = 14 for english and proteins

(r ∈ {10, 100}) and σ′ = 21 for proteins (r ∈ {1 000, 10 000}). For all variants
we set q = min(10,max(2, blogσ′(rm)e)) and the FAOSO parameter k as mentioned

http://pizzachili.dcc.uchile.cl/
https://github.com/rsusik/mag
https://github.com/rsusik/magetdc
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in Equation (1), but rounded to the nearest value from {1, 2, 4}, and the pattern
length as follows:

m′ =

bm/qc − 1, if m mod q < q − 1,

bm/qc, otherwise.

It is possible to tune the parameters for a certain dataset and achieve better results
(because the formulas on q and k are designed to be optimal for random text). The
RAM usage of our implementation can be roughly expressed as 16σ′q + 24r + rm
bytes, where 16 and 24 are the internal data structure sizes (in bytes). The variants
other than HAM are less flexible in terms of σ′, but, on the other hand, do not
have the preprocessing phase and an additional array to store the alphabet map-
ping. We tested both methods generic and optimized (shifts and adds replaced
by a multiplication). The tests were performed on a 64-bit machine, so there
was a limitation for the maximum alphabet size and the value of q. For exam-
ple, if ` = 2, then we can (directly) use q ≤ 5, therefore to deal with a larger q,
we need to combine two smaller q-grams, e.g., take S[0 . . . 2]S[3 . . . 5] to obtain
a 6-gram.

2 3 4 5 6 7 8 9 10
q

101

102

103

se
a
rc
h
 s
p
e
e
d
 [
M
B
/s
]

dna.200MB (r = 1000), m=32

2 3 4 5 6 7 8 9 10
q

101

102

103

se
a
rc
h
 s
p
e
e
d
 [
M
B
/s
]

english.200MB (r = 1000), m=32

2 3 4 5 6 7 8 9 10
q

101

102

103

se
a
rc

h
 s

p
e
e
d
 [
M

B
/s

]

proteins.200MB (r = 1000), m=32

mag

mag_l2

mag_l3

mag_l4

mag_dna_l2

mag_dna_l3

mag_dna_l4

mag_dna_opt_l2

Figure 4. Search speeds for 1 000 patterns, m = 32, in function of q
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Figure 4 presents search speeds for a collection of r = 1 000 patterns of length
m = 32 of the MAG algorithm variants using different alphabet mappings, a his-
togram based mapping (mag), and a combined mapping. The main advantage (and
disadvantage) of HAM variant is the σ′ flexibility that allows use of quite a large
range of alphabet mapping. This parameter lets us adapt the HAM (mag) in terms
of performance to certain dataset or amount of RAM. On the other hand, it forces
us to find the most suitable configuration, what is quite tricky and highly depends
on the text characteristic. We removed some variants from charts for clarity. The
CAMq(dna) and CAMq(opt) variants were removed for proteins and english as the
results were worse or similar to CAMq. The mag dna opt l3 was removed because
the search speed was almost the same as mag dna l3. The next thing that may be
noticed is the difference between larger and smaller alphabets. On dna the bene-
fits in performance are visible for a higher q than on the english and proteins

datasets. Another parameter whose optimal value may vary for different alphabet
sizes is `. As expected, a larger value of ` value is beneficial for larger alphabets
(english and proteins). Note also that there is no point in setting ` above 2 for
dna as its alphabet size is small (four symbols). Finally, the dna adapted variant
(right shift) proved successful.
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Figure 5. Search speeds for the pattern length m = 32 and varying q
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We also show how MAG performance changes with growing q for different
number of patterns (Figure 5). The figure presents HAM variant for different
r = {10, 100, 1 000, 10 000} as a separate function for multiple values of q values
(q ∈ {2, 3, . . . , 10} for dna and q ∈ {2, 3, . . . , 6} for english and proteins). As
expected, larger q makes sense for increasing number of patterns (r), but a too large
value of it slows down the search, presumably due to many cache misses. If the
alphabet size is small (such as dna) the optimal q-gram size is larger than for bigger
alphabet (such as english and proteins). Note that due to the quantization the
original alphabet size does not (significantly) affect the choice of q, but may affect
the choice of optimal σ′ as it is expected to be smaller than σ.

4.2 Other Solutions

After testing our variants we decided to compare them to other relevant algorithms
from the literature, namely:

• BNDM on q-grams (BG) [30],

• Shift-Or on q-grams (SOG) [30],

• BMH on q-grams (HG) [30],

• Rabin-Karp combined with binary search and two-level hashing (RK) [30],

• Multibom and Multibsom, variants of Set Backward Oracle Matching [2],

• Succinct Backward DAWG Matching (SBDM) [17],

• Multi AOSO on q-grams (MAG) (this work).

We tested the competitors’ algorithms for a variety of parameters and chose
the fastest ones. Namely, there were executed: four variants of BG (using 2-grams,
3-grams, 3-grams with 4 subsets, 3-grams with 2 subsets), two variants of RK (with
default parameters and second level hashing), two variants of HG (with default set-
tings and 3-grams), three variants of SOG (2-grams, 2-grams AOSO and 3-grams),
and one variant of SBDM (“-A -B -F 1”, rank g and CUSTSIGMA for english;
some other configurations were excluded after preliminary experiments), Multibom
and Multibsom (both with default parameters). All presented results include pre-
processing and search times.

In Figure 6 we show the results of all the listed algorithms on english, with
a fixed pattern length m and growing number of patterns r. The used pattern
lengths (one for each plot) are {8, 16, 32, 64}. Note that some algorithms (or rather
their available implementations) cannot handle longer patterns (m = 64). To make
the chart clear we chose only two variants of our solution that seem to be the most
interesting in this case, which are mag and mag l4. The mag l4 dominates for longer
patterns (32, 64) and its performance is mixed for m = 8 and m = 16. For short
(m = 8, 16) and many (r = 10 000) patterns SBDM achieves the best results. As
expected, for all algorithms the search speed deteriorates with a growing number
of patterns, and for r = 10 000 and relatively long patterns (m = 32) only MAG
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Figure 6. Search speeds for varying number of patterns r = {10, 100, 1 000, 10 000} and
pattern lengths m = {8, 16, 32, 64}

almost achieves 100 MB/s (the worst ones here, SOG and RK, are 10 times slower).
However, the parameters of MAG are calculated using a formula designed for random
text, so better results are possible with tuning the parameters for a particular dataset
(actually, we achieved almost 200 MB/s for above example). Yet, this approach is
rather inelegant and time-consuming in the construction phase.

In Figure 7 the number of patterns r is fixed (1 000), but m grows. We chose
three variants, mag (the HAM variant) for all datasets, mag l4 for english and
proteins, and mag dna opt l2 for dna set. MAG usually wins on english and
proteins (except for the shortest patterns), yet is dominated by a few algorithms
on dna. Overall, in the experiments the toughest competitor to MAG was SBDM,
but in some cases (the shortest patterns (m = 8) on english and proteins) the
winner was SOG.
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Figure 7. Search speeds for the number of patterns r = 10 00 and varying pattern length m

4.3 MAG on ETDC

It is interesting to test multiple pattern matching also on compressed text. To
this end, we chose ETDC (see Section 3.6), a popular byte code scheme, applied
to the words of the text. The benefits of using ETDC are less text to search in,
possibly less RAM used, and (as we expect) reduced search time. Similarly to the
experiments on plain text, we use now different alphabet mapping methods. In
this experiment we use σ′ = 26 for etdc mag, and for other variants the same σ′

parameters as in the experiments with plain text. The variant naming convention is
preserved. The ETDC-encoded english text (including the helper array A) takes
between 33 (for the smallest A) and 35 (for the largest A) percent of the original
text.

In Figure 8 the performance difference between all variants of MAG algorithm
adapted for ETDC is presented. The ETDC variant has quite better performance
than the corresponding solution on plain text. ETDC compression allows to obtain
the compression ratio of factor 2.9 (as the ETDC-encoded file, the dictionary and
the array A take in total 35 % of the original file). The most successful variant is
etdc mag l4, which achieves not only the highest speed among all the variants but
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Figure 8. Search speeds for the pattern length m = 32 and varying q

then also makes use of a relatively small q (4), beneficial for RAM usage. This figure
also shows the growth of the optimal q for decreasing ` parameter (i.e., for ` = 4
the optimal q is 3, for ` = 3 the optimal q is 4 and for ` = 2 it is 7).

It is not trivial to compare the results of MAG in our two scenarios: on plain
text and ETDC-compressed text. The reason is that in the compressed scenario
the patterns must consist of words (which are obviously of varying length) and the
length (in bytes) of the ETDC codewords for the input words tends to differ. Taking
these into consideration, we decided to compare these algorithms by calculating the
average length of decoded patterns (for the ETDC case) and then execute MAG
tests with corresponding pattern lengths on plain text.
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Figure 9. Search speeds (comparison of plain text variants against ETDC variants) for
varying pattern lengths m = {33, 44, 57, 86, 170}

Figure 9 presents search speeds of MAG on plain text and MAG on ETDC-
compressed text with varying pattern length in {33, 44, 57, 86, 170} (averages for
ETDC). The corresponding word counts (in case of ETDC) for each pattern length
are {6, 8, 10, 16, 32}. As expected, the performance of MAG on ETDC data is much
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better than on plain text. The speed of the best result of MAG on ETDC is by
a factor of 2.8 higher (for m = 86 (16)) compared to the corresponding best result
of MAG on plain text.
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Figure 10. Difference of search speeds between the best plain text variant and ETDC
variants for varying pattern lengths m = {33, 44, 57, 86, 170}

In Figure 10 we compare variants of MAG on ETDC (etdc mag, etdc mag l2,
etdc mag l3, etdc mag l4) against the best result of MAG on plain text (mag,
mag l2, mag l3, mag l4) which is labeled as mag best. Overall, we can see a clear
upward trend in the speed growth when pattern length is increasing. Note that the
machine word size (64 bits) is limiting the MAG (mag best) performance in terms of
large pattern sizes, this is why we expected drastic speed increase for patterns longer
than 64 characters. On the other hand, a longer machine word can also improve the
performance of ETDC variants for even longer patterns.

5 CONCLUSIONS AND FUTURE WORK

Multiple string matching is one of the most explored problems in stringology. The
presented algorithm, MAG, usually wins with its competitors on the three test
datasets (english, proteins and dna). We discuss the pros and cons of vari-
ous alternatives to achieve a possibly best combination of techniques. The main
contribution and one of the key successful ideas was alphabet quantization such
as bin-packing which is performed in a greedy manner, after sorting the original
alphabet by frequency (HAM). We also proposed a different implementation of
alphabet quantization, called combined alphabet mapping (CAMq, in some vari-
ants), that has a few advantages like faster preprocessing (there is no need to
create a histogram), no array access (because there is no histogram) and less op-
erations. The disadvantage, which may be called reduced flexibility, is strong
dependence on machine word size, what significantly constraints the values of q
and `.
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There is a number of interesting questions that we can present here. We analyt-
ically showed that the presented approach is sublinear on average, yet not average
optimal. Therefore, is it possible to choose the algorithm’s parameters in order to
reach average optimality (for m = O(w))?

Our experiments confirmed that dense codes (ETDC) for words not only serve for
compressing data (texts), but also enable faster searching, for long enough patterns.
Thanks to the fact that the encoded pattern is much shorter than the original, the
actual input pattern length may be increased, which effectively raises the limit on
the machine word size and provides better performance for longer patterns.

Real computers nowadays have a hierarchy of caches in their CPU-related archi-
tecture and it could be interesting to apply the I/O model (or cache-obvious model)
for the multiple pattern matching problem. The cache efficiency issue may be crucial
for very large pattern sets.

The underexplored power of the SIMD instructions also seems to offer great
opportunities, especially for bit-parallel algorithms.
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