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Abstract. Users usually want to gather information about what they are interested
in, which could be achieved by entity augmentation using a vast amount of web ta-
bles. Existing techniques assume that web tables are entity-attribute binary tables.
As for tables having multiple columns to be augmented, they will be split into sev-
eral entity-attribute binary relations, which would cause semantic fragmentation.
Furthermore, the result table consolidated by binary relations will suffer from en-
tity inconsistency and low precision. The objective of our research is to return
a consistent result table for entity augmentation when given a set of entities and
attribute names. In this paper we propose a web information gathering framework
based on consistent entity augmentation. To ensure high consistency and precision
of the result table we propose that answer tables for building result table should
have consistent matching relationships with each other. Instead of splitting tables
into pieces we regard web tables as nodes and consistent matching relationships as
edges to make a consistent clique and expand it until its coverage for augmentation
query reaches certain threshold γ. It is proved in this paper that a consistent result
table could be built by considering tables in consistent clique to be answer tables.
We tested our method on four real-life datasets, compared it with different answer
table selection methods and state-of-the-art entity augmentation technique based
on table fragmentation as well. The results of a comprehensive set of experiments
indicate that our entity augmentation framework is more effective than the existing
method in getting consistent entity augmentation results with high accuracy and
reliability.
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1 INTRODUCTION

In recent years, a vast amount of structured data in web pages attracts more
and more attention. Google presented WEBTABLES system in 2008 [1, 2], which
crawled 14.1 billion HTML tables containing 154 million relational data. Now, we
can also get web tables from some commercial table search engines, such as Google
Tables, Google Fusion Tables and Microsoft’s Excel PowerQuery [3, 4, 5, 6]. Web
tables containing relational information could be used to integrate data, one appli-
cation of which is entity augmentation. Our paper focuses on entity augmentation
using web tables. In other words, given a set of entities, a set of names of attributes,
we regard web tables as data source to return the value of attributes for each entity.

For entity augmentation, Yakout et al. implemented InfoGather to augment
entities by holistic matching [7]. They only considered binary query table with single
attribute to be extended by making assumption that web tables are entity-attribute
binary (EAB) relations. As for n-ary query tables, they split the table into several
EAB relations, i.e., the subject column with each of the other columns comprise
a set of EAB relations. Under this strategy, attributes in a web table are thought to
be independent. Other entity augmentation systems, such as SearchJoin [8, 9, 10],
use the same methods, getting result table by consolidating multiple entity-attribute
binary tables.

The most significant problem for current entity augmentation methods is entity
inconsistency. For example, Figure 1 gives an example of entity augmentation by
InfoGather, in which augmentation for only one attribute at a time could be per-
formed. At the beginning, the second column of t1 is selected to augment the value
of column author in query table according to schema matching. Then, the third
column of t2 is selected to augment the value of column year in query table. The
topic of t1 is about book, while the topic of t2 is about film. Consolidated by t1
and t2, the result table shown in Figure 2 suffers from entity inconsistency because
values for author and year in the same row are not from the same entity.

The quality of the entity augmentation result could be evaluated by several
aspects such as consistency, coverage and precision. By observation, we find some
limitations in existing technology that leads to low coverage, low precision and low
consistency.

First, existing methods usually perform entity augmentation for one attribute
at a time by splitting an n-ary web table into several binary entity-attribute tables.
As we discussed above, this kind of method will cause entity inconsistency and then
lead to low precision.

Second, web tables usually miss header text. For example, in Figure 1, t3 misses
the label of the second attribute. When we search web tables to match the query
table Q, t3 could not be found because its attributes do not overlap Q’s attributes.
In this circumstance, low coverage is caused by losing some matching values.

Third, a web table is usually regarded to be matched with a query table when
they both have the same entities and the same attributes. But if we only consider
schema level features to find matching tables, there may be semantic conflicts be-
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Figure 1. Example of entity augmentation using web tables

Figure 2. The result table

tween two tables. For example, in Figure 1, t2 is a matching table for the query
table when only considering matches of entities and attribute names. However, en-
tity inconsistency occurs because the query table is about books and t2 is about
films. This situation will also lead to low precision.

Entity inconsistency occurs when the semantics of web tables is ignored. For
n-ary query table, we should regard all the attributes as a whole, instead of splitting
the attributes into pieces. In the following paragraphs, we will make a distinction
between an answer table and a result table. After entity augmentation, a query
table Q corresponds to one result table, which contains value of attributes to be
extended. In order to construct a result table, we should find a set of answer tables
which provide attribute values for the final result table. Consistent entities could
be obtained when answer tables match with each other either in semantics or in
value, which will later be defined as consistent matching relationship in Section 2.
Given a set of web tables T and a query table Q with entities, the process of
entity augmentation could be thought as continuing to find answer tables from T
and augmenting entities until coverage of the result table for Q reaches a specific
threshold γ. If we take web tables as nodes and consistent matching relationships as
edges, answer tables for a query table make up a clique because those answer tables
should be matched with each other to make up consistent matching relationship.
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Entity augmentation problem could be converted into another problem of building
clique in a graph.

At the beginning, we find seed tables which are the most related with the query
table to build initial cliques, each of which has only one node (seed table). To get
a result table with a specific coverage γ, we have to expand the initial clique with
more nodes (web tables) to form a clique satisfying the requirement of coverage,
which is later defined as Consistent γ-Coverage Clique in Section 2. When a con-
sistent γ-coverage clique is built successfully, the nodes in this clique are answer
tables for the result table. At last, we will get a set of consistent γ-coverage cliques
and corresponding answer tables, from which we choose the optimal clique and its
corresponding result table.

The main contributions of this paper are:

1. We propose consistent matching relationships to solve entity inconsistency,
which should be hold not only between any two answer tables but also between
each answer table and the query table. We also propose answer table selection
method based on consistent matching degree.

2. To our best knowledge, we are the first that propose to settle consistent entity
augmentation problem by building consistent γ-coverage clique. We regard web
tables having consistent matching relationships with query table as nodes and
consistent matching relationships between web tables as edges, therefore we get
a consistent clique. It is proved that a consistent result table could be built by
considering tables in consistent clique to be answer tables.

3. We have performed extensive experiments on 4 real-life datasets of web tables.
Experimental results demonstrate that our entity augmentation framework has
high accuracy and reliability, meanwhile ensuring entity consistency.

This paper is structured as follows. We start in Section 2 by modeling the
problem. The entity augmentation method by building consistent γ-coverage clique
is described in Section 3. Experimental evaluating results are presented in Section 4.
Related work is discussed in Section 5 and we conclude in Section 6.

2 PROBLEM MODELING

In recent years, entity augmentation has attracted more and more attention from
researchers. Yakout et al. proposed indirect matching to augment entities [7]. Lehm-
berg et al. proposed Mannheim Search Join Engine to extend query table [8, 9, 10].
During entity augmentation, they only considered the entity column and the col-
umn to be augmented. The above mentioned entity augmentation techniques are
all based on the assumption that columns are independent.

In case that there exist some n-ary query tables and web tables, this assump-
tion will lead to low precision and entity inconsistency. When splitting a complete
web table into several pieces, the semantics of this table is segmented, thus causing
entity inconsistency in the result table and leading to low precision. In order to get
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consistent entity and high precision for result table, we propose that answer tables
should have consistent matching relationships with each other to ensure high con-
sistency and have consistent matching relationship with query table to ensure high
precision of the result table. In order to make consistent matching relationship more
understandable, we individually define concepts of semantic relevance (Definition 1)
and table matching degree (Definition 2). Consistent matching relationship between
two tables is made up of semantics part and value part. Semantic relevance gives the
degree of how two tables are semantic related. Also, table matching degree reflects
the probability that two tables consistently match in value. Before discussing the
problem model, we introduce notations in Table 1.

Notation Description

Q (E,A) The query table with entity set E and attribute set A
T = {t1, t2, t3, . . .} A set of web tables
γ A specific coverage
AT An answer table set for the query table
RT The result table for the query table
SRD(ti, tj) The semantic related degree for table ti and tj
TMD(ti, tj) The table matching degree between ti and tj
U (V, S) The clique U with the node set V and the edge set S
cov (RT,Q) The coverage of result table RT to query table Q
cov (U,Q) The coverage of clique U to query table Q
SMS (Q, t) The semantic matching score between query table Q and web table t

Table 1. Notations

2.1 Consistent Matching Relationship

Considering two tables, we think they are semantically related if their entity sets are
semantically related, because concepts of entity columns are thought to represent the
tables’ semantic concepts [11]. In the following paragraphs, we will first introduce
how to get semantic related degree between two tables by calculating entity sets’
relatedness.

We use Probase [12] to determine if two entity sets are semantically related. For
each entity in one table, we calculate its relatedness to each entity in another table
by using Jaccard Similarity on two entities’ concept sets returned by Probase. Then,
we aggregate the pairwise entity relatedness to get two tables’ (ti and tj) semantic
related degree, denoted as SRD(ti, tj), which could be calculated using the following
formula:

SRD(ti, tj) =

∑
∀ei∈Ei,∀ej∈Ej

Jaccard(C(ei), C(ej))

|Ei| |Ej|
(1)

where Ei, Ej are entity sets of ti and tj, respectively, C(e) denotes concept set of

entity e, and Jaccard (C (ei) , C (ej)) =
|C(ei)

⋂
C(ej)|

|C(ei)
⋃
C(ej)| .
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Definition 1 (Semantic Relevance). Given two tables ti and tj, we call the table ti

is semantically related with tj, denoted as ti
sem
≈ tj , if SRD(ti , tj ) ≥ θ.

Generally, two tables are thought to match with each other in value if both tables
have the same value in the same attribute for the same entities. For example, if two
tables both have entity “United States”, we expect them to have “Washington” in
column capital. If there are a certain proportion of same entities with same value in
column capital of two tables, two capital columns are regarded as matching columns.
So, to determine if two tables are consistent matching with each other in value, we
have to find their mapping columns with matching labels. Tables are matched in
value if all the mapping columns are matching columns. Specially, because a query
table misses attribute values, it is thought to match with a web table in value when
they have same entities and same attributes. We propose the concept of Table
Matching Degree to determine whether two tables are matched in value or not.

Definition 2 (Table Matching Degree). Given two tables ti and tj, query table Q,
Ci and Cj are respectively mapping columns for ti and tj. The table matching degree
between ti and tj, denoted as TMD(ti, tj), could be calculated using the following
formula:

TMD(ti, tj) =


|ti.E

⋂
tj .E|

min{|ti.E|,|tj .E|} ×
|ti.A

⋂
tj .A|

min{|ti.A|,|tj .A|} , if ti = Q ∨ tj = Q,

|{<Ci,Cj>|Ci≈Cj}|
|{<Ci,Cj>}| , if | {< Ci, Cj >} | 6= 0,

−1, otherwise,

(2)

where t.E denotes t’s entities set, and t.A denotes a set of attributes names of table
t; Ci ≈ Cj denotes columns Ci and Cj are matching columns which meet column
matching degree threshold (given in Section 3.3.2).

In Definition 2, table matching degree is −1 when there are no mapping columns
between two web tables. Under this situation, whether two tables have consistent
matching relationship or not is determined only by considering two tables’ semantic
relevance. When there are mapping columns in two tables, whether two tables have
consistent matching relationship or not is determined by considering both semantic
relevance and table matching degree between two tables.

Definition 3 (Consistent Matching Relationship). Given two tables ti and tj, we

call ti has consistent matching relationship with tj, denoted as ti
cm↔ tj, iff (ti

sem
≈

tj ∧ ((TMD(ti, tj) > τ ∧ ti 6= Q ∧ tj 6= Q) ∨ TMD(ti, tj) = −1 ∨ TMD(ti, tj) > 0)).

Theorem 1. Consistent matching relationship is symmetric. Given tables ti and
tj, if ti

cm↔ tj holds, then tj
cm↔ ti holds.

Proof. Under the condition that ti
cm↔ tj, it is obvious that ti

sem
≈ tj and ((TMD(ti,

tj) > τ ∧ ti 6= Q ∧ tj 6= Q) ∨ TMD(ti, tj) = −1 ∨ TMD(ti, tj) > 0) hold. According

to Equation (1) and Definition 1, tj
sem
≈ ti holds. And, according to Equation (2),
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TMD(ti, tj) = TMD(tj, ti) holds, which means that ((TMD(tj, ti) > τ∧tj 6= Q∧ti 6=
Q) ∨ TMD(tj, ti) = −1 ∨ TMD(tj, ti) > 0) holds. So, tj

cm↔ ti holds. That is to say,
consistent matching relationship is symmetric. �

2.2 Problem Statement

For a consistent entity augmentation result, the consistent matching relationship
should both exist between any two answer tables and exist between each answer
table and the query table. A result table built by answer tables satisfying the above
conditions is considered to be a consistent result table.

Definition 4 (Consistent Result Table). Given a query table Q and a set of web
tables T , RT is a result table for Q and AT is its corresponding answer tables set.
RT is a consistent result table for Q if and only if:

1. Each table in AT has consistent matching relationship with the query table Q.

2. Tables in AT have consistent matching relationships with each other.

Problem Statement. Given query table Q(E,A) and a set of web tables T , where
Q.E denotes query table’s entities, and Q.A denotes a set of names of attributes
which are to be augmented. Consistent Entity Augmentation is to find a group of
answer tables AT (AT ⊆ T ) for building a consistent result table RT whose coverage
to query table reaches the specific threshold γ.

If we take web tables having consistent matching relationships with query table
as nodes and consistent matching relationships as edges, then a clique is the complete
subgraph in which tables as nodes consistently match with each other. Tables in
a clique come to be answer tables when their corresponding result table’s coverage
to query table is larger than the specific threshold. So, entity augmentation problem
could be converted into building consistent γ-coverage clique (Definition 7) problem.

Definition 5 (Result Coverage). Given a query table Q, a clique U composed of
answer tables for Q and the corresponding result table RT , the coverage of result
table RT or clique U to Q, denoted as cov(RT,Q) or cov(U,Q), could be calculated
using the following formula:

cov(RT,Q) = cov(U,Q) =
#augCells(RT )

#Cells(Q)
(3)

where #augCells(RT ) and #Cells(Q) denote the number of cells augmented by the
clique U , and the number of cells which should be augmented in the query table,
respectively.

Definition 6 (Consistent Clique). Given a query table Q and a set of candidate
tables CT , a clique U(V, S) is a consistent clique for Q when:
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• V is a subset of CT , and each table in V has consistent matching relationship
with Q;

• S is a set of consistent matching relationships between table pairs in V , ∀(ti, tj) ∈
S, ti

cm↔ tj holds;

where CT is selected from source web tables T , having at least one same entity with
the query table.

Definition 7 (Consistent γ-Coverage Clique). Given a query table Q, a consistent
clique U(V, S) for Q, and a coverage threshold γ, a clique U is a consistent γ-coverage
clique for Q when cov(U,Q) ≥ γ.

Theorem 2. Given a query table Q, a set of web tables T , a consistent result table
RT for Q with γ coverage could be built using V as answer tables if and only if
existing a consistent γ-coverage clique U(V, S) for Q.

Proof. Firstly, we prove necessity. When a consistent result table RT for Q with
γ coverage exists, we could regard its answer tables as nodes set V and consistent
matching relationships between tables as edges set S, then get a complete graph
U(V, S). According to Definition 4, consistent matching relationships in RT exist
both between any two answer tables and between each answer table and the query
table, which makes the complete graph U(V, S) to be a consistent clique for Q.
Furthermore, under the condition that coverage of result table RT to Q reaches γ,
it is obvious that U(V, S) is a consistent γ-coverage clique for Q.

Secondly, we will prove sufficiency. If existing a consistent γ-coverage clique
U(V, S), according to Definition 7, every table in V has consistent matching rela-

tionship with Q. For clique U , ti
cm↔ tj holds for any two tables ti, tj in V . Using

V as answer tables, a consistent result table RT could be built for Q. Furthermore,
when cov(U,Q) ≥ γ, cov(RT,Q) ≥ γ holds. �

Theorem 2 is given to validate that we could get a consistent result table for
query table Q with γ coverage by building Consistent γ-Coverage Clique. Based on
this theorem, the entity augmentation problem could be converted into the Consis-
tent γ-Coverage Clique Problem as follows.

The Consistent γ-Coverage Clique Problem. Given a query table Q and a
set of web tables T , the consistent γ-coverage clique problem is to build a set of
cliques whose coverage to query table Q are larger than γ.

3 ENTITY AUGMENTATION BY BUILDING CONSISTENT
γ-COVERAGE CLIQUE

3.1 Solution Overview

Given the query table is missing some attributes’ values, as one application of data
integration, the aim of entity augmentation is to return a result table containing
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query table’s missing data. Existing entity augmentation techniques assume web
tables are EAB relations [7, 8, 9, 10]. When an n-ary query table has multiple
columns to be extended, the result table consolidated by binary tables will suffer
from entity inconsistency problem. The goal of our paper is to build consistent
results for n-ary entity augmentation queries.

Figure 3 gives the framework for consistent entity augmentation. At first, we
find candidates from source tables with aid of the index EI(Q). Given a query ta-
ble Q and a set of web tables T , index EI(Q) will return tables having at least one
same entity with the query table. In order to get consistent entity for result table, we
propose that answer tables should have consistent matching relationships with each
other to ensure high consistency and precision of the result table. Based on graph
theory, consistent entity augmentation query problem could be converted into con-
sistent γ-coverage clique building problem. We also prove that tables in consistent
γ-coverage clique are answer tables for entity augmentation query in Theorem 2.

To build γ-coverage cliques, we first find seed cliques as initials using semantic
matching score. For each seed clique, we try to expand it with tables and get
a corresponding consistent γ-coverage clique. For a seed clique not satisfying the
requirement of coverage, we have to find other web tables called clique tables to
improve its coverage. In order to get clique tables, we calculate table potential for
each candidate table, which is made up of its consistent matching degree with the
query table and its consistent matching degree with each table in clique. Obviously,
a web table is selected to be a clique table, if it has consistent matching relationship
not only with query table but also with each table in existing clique. In other
words, the higher is the table potential, the greater is the probability of being
a clique table. Based on this intuition, we select one with the highest potential
as a new clique table, and add edges between this new addition and each original
clique table. After that, we continue to expand the clique by adding tables with high
potential until its coverage reaches γ. For each seed table, we will get a consistent γ-
coverage clique and corresponding answer tables. To get final consistent result table,
we select the optimal clique by measuring several indicators such as consistency
support degree, diversity of source and coverage. At last, tables in optimal clique
are regarded as answer tables which provide attribute values for the final consistent
result table.

3.2 Finding Seed Cliques Based on Semantic Relevance

In our solution, the first step is to find seed cliques, which is the base for building
consistent γ-coverage cliques. In most cases, a query table contains less information,
so seed cliques are introduced to provide as much information as possible for entity
augmentation. As shown in Figure 1, “The Lord of The Rings” is not only a best-
selling novel, but it is also a popular movie. The information provided by the query
table is not enough to determine entity’s concept. If we provide more information,
such as publishing time, it will be helpful for identifying concept of the entity. So,
it is very important to find seed cliques with tables “matching with” query table.
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Figure 3. A framework for consistent entity augmentation

At the beginning, we can get a graph made up of isolated tables without con-
sistent matching relationships among them. At that time, each node in the graph
could be regarded as an initial clique, which would be expanded by other nodes
(web tables) to form a consistent γ-coverage clique. In order to improve accuracy
and reduce time cost, we should select seed cliques having more consistent matching
degree with the query table as initial cliques. Because each initial clique only has
one node, the problem of finding seed cliques could be converted to the problem of
finding seed tables.

To find seed tables, schema matching techniques are usually used, which is
generally based on schema level features (e.g. attribute names) and instance level
features (e.g. attribute values). Previous works only consider schema information
and select seed tables when they have the same entities and same attribute names
with the query table [7]. Using the existing method, for example in Figure 1, we can
get seed tables t1 and t2 because their matching scores are the same. Obviously, t2
is a false seed table whose entities are films, while entities of query table are books.
During entity augmentation, error will be amplified by using t2 as the seed table.

This problem is due to only considering schema information. In fact, based on
schema level features, we can also consider semantic relevance between a candidate
table and the query table. And, according to Problem Statement described in Sec-
tion 2.2, every answer table should have a consistent matching relationship with the
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query table, so are seed tables. As for selection of seed tables, we hope that seed
tables have a higher consistent matching degree than other tables, based on that
they all have consistent matching relationships with a query table. To measure con-
sistent matching degree between a web table and a query table, we need to calculate
semantic matching score.

Definition 8 (Semantic Matching Score). Given the query table Q(E,A) and
a web table t(K,B), the semantic matching score between Q and t, denoted as
SMS(Q, t), could be calculated using the following formula:

SMS(Q, t) = φ(SRD(Q, t), θ) ∗ φ(TMD(Q, t), 0) (4)

where φ(p, θ) = Jp > θKp−∞, which denotes φ(p, θ) = p when p > θ, otherwise
φ(p, θ) = −∞. SRD(Q, t) denotes semantic related degree between query table
and web table. When SRD(Q, t) < θ, we think the table t and the query table are
not semantically related.

Given the query table and candidate tables CT , for each table in CT , we can get
its semantic matching score with query table Q. According to semantic matching
scores, we can get top-k seed tables, which makes the initial cliques taking shape.

3.3 Building Consistent γ-Coverage Cliques

For any seed clique, we need to expand it by adding web tables (denoted as clique
tables) if its coverage is smaller than γ. Based on seed cliques, we can build con-
sistent γ-coverage clique by dynamically adding clique tables. According to Defini-
tion 6, a clique is considered as a consistent clique when its nodes have a consistent
matching relationships with the query table and its edges are consistent matching
relationships. Through Definition 8, every seed clique meets the requirement of be-
ing a consistent clique. The way to find a clique table is considering its consistent
matching degree both with the query table and with each table in the current clique.
A node potential reflects consistent matching degree between the clique table and
the query table, while an edge potential reflects consistent matching degree between
two tables in the clique. The potential of a candidate table is the sum of its node
potential and all edge potentials between itself and each table in the clique.

3.3.1 Node Potential

Node potential is proposed to measure the probability of a candidate to become
a clique table, which mainly considers the coverage of the clique after adding the
web table into it. In order to represent the contribution of a web table for increasing
clique’s coverage, we propose the concept of Supplementary Coverage.

Definition 9 (Supplementary Coverage). Given a query table Q(E,A), candidate
tables CT and a consistent clique U(V, S) for Q whose coverage is smaller than γ.
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The supplementary coverage of a web table t (t ∈ CT − V ) about the clique U for
the query table Q, denoted as SC(t, U,Q), is the incremental coverage of clique U
improved by table t.

SC(t, U,Q) = cov(U ∪ {t} , Q)− cov(U,Q). (5)

Node Potential. Given a query table Q(E,A), candidate tables CT and a con-
sistent clique U(V, S) for Q whose coverage is smaller than γ. Node potential
ϕnode(t, U,Q) for table t (t ∈ CT − V ) is calculated as follows:

ϕnode(t, U,Q) = φ(SRD(Q, t), θ)) ∗ SC(t, U,Q). (6)

3.3.2 Edge Potential

For web tables missing labels, Equation (6) could not give accurate node potential
for those tables. Using Figure 1 as an example, the supplementary coverage of t3
is 0 due to missing a column label in t3. Actually, with label year in the second
column, t3’s supplementary coverage should be 0.2 based on seed table t1. We can
settle this problem by transferring the label year from the third column of t1 to the
second column of t3 by finding matching columns.

Two columns will be matching columns when their column matching degree is
larger than a specific threshold. For two columns Ci and Cj in tables ti and tj,
respectively, their column matching degree, denoted as CM(Ci, Cj), reflects the
similarity degree of two columns. Column matching degree is the ratio of the same
entities with the same values in two columns. For column matching degree of two
columns, we mainly consider three situations:

1. both columns’ elements are character values;

2. both columns’ elements are years;

3. both columns’ elements are numeric values.

For character values, two values are regarded as the same when their EditDistance
is larger than a specific threshold. For two years, two values are regarded as the
same when they equal to each other. Specially, for numeric values, two values are
regarded as same when they meet a specific unit conversion.

Definition 10 (Matching Columns). Given two tables ti and tj, Ci and Cj are
columns for ti and tj, respectively, they are regarded as matching columns, denoted
as Ci ≈ Cj, if CM(Ci, Cj) > σ holds.

In order to calculate node potential for a web table with missing column labels,
we try to transfer labels of columns which are query table’s mapping columns to
their matching columns.
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After transferring labels, we can get edge potential over the table pair when
two tables have a consistent matching relationship with each other. Edge poten-
tial denotes consistent matching degree between two tables, considering two tables’
consistent matching degree both in semantics and in value.

Edge Potential. Given candidate tables CT and a consistent clique U(V, S) for
a query table Q whose coverage is smaller than γ. Edge potential ϕedge(ti, tj) for
edge between table ti in CT−V and table tj in V could be calculated using following
formula:

ϕedge(ti, tj) =

φ(SRD(ti, tj), θ), if TMD(ti, tj) = −1,

φ(SRD(ti.tj),θ)+φ(TMD(ti.tj),τ)

2
, otherwise.

(7)

3.3.3 Getting Clique Tables

The goal of this stage is continuously to find clique tables from the set of candidate
tables CT , to make the coverage of clique approach γ. So, to find clique table for
clique U(V, S), we regard the sum of node potential and edge potential as table
potential, denoted as ϕtable(ti).

ϕtable(ti) = ϕnode(ti, U,Q) +
∑
∀tj∈V

ϕedge(ti, tj) (8)

where ti ∈ CT − V .
According to Equation (8), we can get the clique table tU for the clique U(V, S)

using the following formula:

tU = arg max
∀ti∈CT−V

ϕtable(ti). (9)

In order to build consistent γ-coverage clique, we select seed tables first according
to semantic matching score. Then, for each seed table whose coverage is smaller
than γ, we separately calculate table potentials for candidates and select one with
the maximal value as clique table. Each time when new clique table is putting in,
the clique is expanded and its coverage is improved. Above progress is repeated
until clique’s coverage reaches γ.

Algorithm 1 gives an algorithm for finding clique table. The input of this algo-
rithm is the query table Q, candidate tables set CT and the clique U(V, S) whose
coverage is smaller than γ. At first, labels from matching columns are transferred
to tables with missing labels (line 8). Then, table potential is calculated for each
candidate table (line 9). At last, the clique table t with the maximal table potential
is chosen (line 11–12).

Algorithm 2 introduces the procedure of iteratively building consistent γ-cover-
age cliques based on seed cliques. The input is the query table Q, candidate tables
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Algorithm 1: findCTables(Q(E,A), CT, U(V, S))

Input: Q(E,A): the query table;
CT : candidate table set;
U(V, S): a clique whose coverage is smaller than γ;

Output: tU : clique table for U(V, S)
1 map← ø;
2 for each table ti in CT − V do
3 sum← 0;
4 for each table tj in V do
5 for each column Cj in tj’ column set Γ used to augment Q do
6 for each column Ci in ti do
7 if CM(ti, tj) > σ and A(Ci) 6= A(Cj) then
8 A(Ci)← A(Cj);

9 sum ← sum + ϕedge(ti, tj);

10 add 〈ti, sum + ϕnode(ti, U,Q)〉 to map;

11 map = HashMap(map);
12 return top − 1 table in map;

set CT and the number k of seed cliques. At the beginning, the set of initial cliques
is empty (line 1). Then, we get seed cliques (line 2). For each seed clique, the
function expand Clique(Q,CT, Ui(V, S), ε) is executed iteratively until the clique’s
coverage reaches γ (line 4). In practice, sometimes when the result table returned
could not satisfy the requirement of coverage γ, we would return the clique whose
coverage is the closest to γ instead. Under this situation, a clique U is returned
when its coverage converges (line 13–14).

3.4 Getting Consistent Result Table Based on Optimal Clique

After getting a set of consistent γ-coverage cliques, we can obtain the corresponding
answer tables for the query. At this stage, we should select an optimal clique, whose
nodes are answer tables for building the final consistent result table. We consider
the following indicators for selecting the optimal clique:

Consistency Support Degree: We measure consistency support degree using the
average value of table potentials in clique U(V, S). A higher value means the
result table could keep higher consistency with the query table.

Diversity of Source: This indicator reflects diversity of answer tables (i.e., the
diversity of tables in clique U(V, S)). We measure diversity of source simply by
the number of answer tables. Generally, the more diverse the data source is, the
less consistent the result table will be. In fact, fewer answer tables are helpful
for maintaining the entity consistency.
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Algorithm 2: build CC Cliques(Q,CT, k)

Input: Q(E,A): the query table;
CT : candidate table set;
k: the number of seed cliques;

Output: C: a set of consistent γ-coverage cliques
1 C← ∅;
2 get the seed cliques U1, U2, · · · , Uk;
3 for each seed clique Ui(V, S) do
4 Ui(V, S)← expand Clique(Q,CT, Ui(V, S), ε);
5 add Ui(V, S) in C;

6 return C;
7

8 Function expand Clique(Q,CT, Ui(V, S), ε)
9 if cov(Ui, Q) ≥ γ then

10 return Ui(V, S);

11 else
12 t← findCTables(Q(E,A), CT, Ui(V, S));
13 if SC(t, Ui, Q) ≤ ε then
14 return Ui(V, S);

15 else
16 add t in V ; for each ti in V do
17 add 〈t, ti〉 in S;

18 expand Clique(Q,CT, Ui(V, S), ε);

Coverage: Even though we set the coverage threshold, the coverage of result tables
returned by different cliques will be different. Apparently, we prefer clique with
a higher coverage.

We select optimal clique to build the final consistent result table by using the
following formula.

Ufinal = arg max
U∈C

ϕ(U) ∗ cov(U,Q)

|V |2
(10)

where ϕ(U) = SMS (Q, tseed) +
∑

ti∈U.V−{tseed}
ϕtable(ti) and tseed ∈ U.V , C is a set of

consistent γ-coverage cliques returned by Algorithm 2.
After getting the optimal clique, we could build a consistent result table using

answer tables in this clique. Algorithm get RT describes the procedure with answer
tables AT , query table Q and the similarity threshold α as input. In Algorithm 3,
array flag is a sign array used to record whether a cell in the result table has
been filled or not (line 1). To avoid entity inconsistency, the fill-in progress is
based on tables. By sorting answer tables according to their semantic matching
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Algorithm 3: get RT (AT,Q(E,A), α)

Input: Q(E,A): the query table;
AT : answer tables set;
α: the similarity threshold;

Output: RT : the final result table
1 flag[]← 0,RT ← Q;
2 while AT ! = ∅ do
3 t← arg maxt∈AT SMS(Q, t);
4 for each rt.cell ∈ RT do
5 if flag [rt.cell ] = 0&& arg maxt.cell∈t sim(rt.cell , t.cell) ≥ α then
6 t.cellmax ← arg maxt.cell∈t sim(rt.cell , t.cell);
7 flag [rt.cell ]← 1;
8 rt.cell(v)← t.cellmax(v);

9 AT ← AT − {t};

score, we select all available information from tables in turn to fill the result table
(line 2–9).

4 EXPERIMENTS

We are the first who have proposed to settle consistent entity augmentation problem
by building a consistent γ-coverage clique. We conduct a set of experiments to eval-
uate the effectiveness of our method (denoted as EACC) for getting high quality of
entity augmentation results by selecting answer tables based on consistent matching
degree. In the following paragraphs, we first evaluate the effectiveness of our answer
table selection method based on consistent matching degree, then evaluate the per-
formance of our consistent entity augmentation system based on building consistent
γ-coverage clique.

Four real-life datasets (Books, Country, Company and Song) from WDC Web
Table Corpora (http://webdatacommons.org/webtables/) and four query tables
in Table 2 are used in our experiments. We compiled the complete ground truth for
query tables by manually identifying and extracting the desired information from
Wikipedia [13].

Dataset Entity Attributes to be Number
Name Augmented of Entities

Books Book name Author, Published date 101
Country Country name Capital, Area 26
Company Company name Headquarter, Industry 48
Song Song name Artist, Time 47

Table 2. Features of query tables

http://webdatacommons.org/webtables/
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All methods were written in Java and all tests were conducted on a PC with
a 2.93 GHz Intel CPU and 8 GB RAM, running Windows 7.

4.1 Effectiveness of Our Answer Table Selection Method
Based on Consistent Matching Degree

The effectiveness of our answer table selection method based on consistent matching
degrees is evaluated by comparing other three methods as follows:

1. EACC: It is our entity augmentation method based on consistent matching rela-
tionship and consistent matching degree, which finds answer tables by building
consistent γ-coverage clique.

2. EATSP: It uses topic sensitive pagerank (TSP) [14] to select answer tables and
the corresponding result tables. TSP score is computed for each table as its
matching degree with the query table. EATSP implements entity augmentation
queries according to TSP score of each table.

3. EAWOS: It selects answer tables depending on Table Matching Degree calcu-
lated only by value similarity between tables, which could be regarded as EACC
method without semantics.

4. DMA: Different from above three methods, DMA is a kind of direct matching
approach only considering web tables which match directly with the query table.
It selects a web table as an answer table according to consistent matching degree
between this web table and the query table.

As we know, InfoGather is a typical entity augmentation system which selects
answer tables by TSP scores. For n-ary queries, however, InfoGather splits tables
into several EAB relations, while our method EACC regards all attributes in a table
as a whole. Instead of splitting attributes into pieces, EATSP regards all the at-
tributes as a whole but selects answer tables by TSP scores. Compared with EACC,
EAWOS considers only value matching but ignoring semantic matching between
tables. EACC, EASTP and EAWOS are all approaches which consider indirectly
matching tables in addition to the directly matching ones. The direct match ap-
proach and indirect match approach are described in [7]. DMA is a naive method
that attempts to directly match the query table with the web tables. The compari-
son of four entity augmentation methods are listed in Table 3.

Augmentation Method Matching Mode Matching Score

EACC Indirect & Direct Consistent matching degree
EASTP Indirect & Direct TSP
EAWOS Indirect & Direct Table matching degree
DMA Direct Consistent matching degree

Table 3. Features of four methods
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We extracted 16 GB web tables from WDC Web Table Corpora as data source
and deleted some off-grade web tables – such as tables with confusing information,
more empty values, and ambiguous subject columns. There are 3 000 000 web tables
in the data source in which the maximum number of rows and columns are 454
and 42, and the minimum number of rows and columns are 3 and 2. The average
number of rows and columns in web tables are 13 and 5. We run four methods
respectively to augment four query tables in Table 2 and compare their perfor-
mance. Under different coverage threshold (varying from 0.1 to 0.8), their coverage,
precision, consistency and reliability are compared. The evaluation metrics are as
follows.

cov =
|values found |

#Cells(Q)
, (11)

pre =
|values found

⋂
values truth|

|values found |
, (12)

con =

1, if |AT | = 1,

1− | log10JavgSim(t1, t2) ≥ 0.1KavgSim(t1,t2)
0.1 |, otherwise,

(13)

where avgSim(t1, t2) = avg
∑

t1,t2∈AT

SRD(t1,t2)+TMD(t1,t2)
2

.

Coverage is the ratio of filled values to values to be filled. Precision is the fraction
of correctly filled values that have been really filled. Values extracted from Wikipedia
are regarded as truth values. Consistency is measured by the average value of
similarity between any two answer tables. Obviously, answer tables having high
consistency will receive a high similarity. Semantic relevance and table matching
degree between two tables are considered for evaluating their similarity. Inspired
by F-measure, reliability is defined as harmonic mean of coverage, consistency and
precision.

relia =
3 ∗ cov ∗ pre ∗ con

cov ∗ pre + pre ∗ con + cov ∗ con
. (14)

4.1.1 Evaluation for Quality of Result Tables

We have implemented four methods for entity augmentation: EACC, EATSP, EA-
WOS and DMA. Figures 4, 5, 6 show respectively coverage, consistency, and pre-
cision for four query tables. We varied results by considering different coverage
threshold from 0.1 to 0.8.

From Figures 4, 5, 6, we have the following observations:

1. With the increase of γ, the coverage results of four methods are increasing. In
most cases, the coverage of EATSP and DMA is higher than that of others under
different coverage thresholds. Answer tables in EATSP and DMA should only
match with the query table, while answer tables in EACC and EAWOS should
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Figure 4. Coverage values on four datasets

Figure 5. Precision values on four datasets

meet consistent matching relationships with each other, which causes less answer
tables to be left in the clique. On most datasets, EATSP’s coverage is higher than
that of DMA, because EATSP considers indirectly matching tables in addition
to the directly matching ones, and DMA only considers directly matching tables.

2. On four datasets, the precision of EACC and EAWOS is obviously higher than
that of others, because two methods all get answer tables based on matching
relationships between web tables. By comparison, EACC is better than EA-
WOS. EACC considers consistent matching relationships either in semantics or
in value, but EAWOS only considers table matching relationships in value, which
greatly reduces precision. EATSP gets answer tables based on topic sensitive

Figure 6. Consistency values on four datasets
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pagerank algorithm (TSP), considering mainly schema level features among ta-
bles and text features on web page. Due to ambiguity of entity and redundancy
of web page information, EATSP gets lower precision. In Figure 5, EACC based
on consistent matching degree significantly outperforms EATSP, EAWOS and
DMA, which confirms that precision results could be improved by considering
consistent matching relationship.

3. For we evaluate the consistency mainly based on the average similarity value
between answer tables, the consistency value reaches the highest when there is
only one answer table. With the increase of coverage threshold, most consistency
results of four algorithms on four datasets decrease due to the increasing number
of answer tables. In most cases, the consistency results of our EACC are greater
than EAWOS, EATSP and DMA, because EACC selects answer tables not only
considering consistent matching degree between each candidate table and the
query table but also consistent matching degree among answer tables.

Experimental results show that EACC algorithm based on consistent matching
degree significantly outperforms EATSP, EAWOS and DMA in precision and con-
sistency even though the coverage of EACC is a little lower than that of three other
algorithms in some cases.

4.1.2 Evaluation for Reliability of Result Tables

Based on coverage, precision and consistency, we can get the reliability of result
tables under different coverage thresholds using Equation (14). Figure 7 shows the
experimental results.

Figure 7. Reliability values on four datasets

With the increase of coverage thresholds, the general trends of reliability results
for four algorithms are increasing. For reliability which is the harmonic mean of pre-
cision, coverage and consistency, EACC has the highest reliability. As the threshold
grows, the reliabilities of four algorithms reach highest (0.81 for EACC, 0.76 for
EATSP, 0.78 for EAWOS and 0.695 for DMA).

In summary, even though the coverage of EACC is a little lower than that
of three other algorithms in some cases, EACC has highest precision, consistency



Gathering Information on the Web by Consistent Entity Augmentation 1059

and reliability, which will be helpful for returning consistent entity augmentation
results. According to above comparison experiments, we come to the conclusion
that our answer table selection method based on consistent matching degree either
in semantics or in value is helpful for returning effective and consistent result table
for entity augmentation queries.

4.1.3 Evaluation for Runtime Performance

We evaluate the runtime performance of the given four methods. We give the run-
time performance with the increase of coverage thresholds in Figure 8.

Figure 8. Runtime values on different coverage thresholds

In Figure 8, with the increase of coverage threshold, EACC’s runtime has the
most obvious growth trend and relatively high runtime. That is because EACC costs
a lot of time in searching semantics and creating cliques meeting the requirement
of coverage. EAWOS’s runtime is obviously lower than EACC, because selection of
answer tables in EAWOS does not consider semantics. In Figure 8, we can find that
the runtime of EATSP varies little under different coverage thresholds, for it just
calculates matching degree between each candidate and the query table, no matter
what coverage threshold is. DMA is a naive method that attempts to directly match
the user query table with the web tables, which takes the least time.

Although EACC takes much time for searching semantics and creating cliques
meeting the requirement of coverage, it has prominent performance in precision,
consistency and reliability for entity augmentation. The experiments demonstrate
that consistent matching relationship proposed by this paper is much helpful for
settling entity inconsistency problem caused by existing methods. Using parallel
algorithms to improve the efficiency of consistent entity augmentation method is
our future work.
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4.2 Performance of Consistent Entity Augmentation

Web tables are assumed as EAB relations in existing entity augmentation techniques.
InfoGather is such a typical entity augmentation system proposed by Mohamed
Yakout, that is based on graphical models and topic sensitive pagerank algorithm.
To compare our algorithm EACC with InfoGather, we use coverages of result tables
returned from InfoGather as EACC’s coverage thresholds.

Different from InfoGather which answers n-ary queries by splitting attributes
into pieces, our EACC method augments entities by building consistent γ-coverage
cliques based on consistent matching degree.

We do experiments to compare the performance of EEAC and InfoGather, in-
cluding their coverage, precision, consistency and reliability. The experimental re-
sults are given in Figure 9.

Figure 9. Entity augmentation comparison between EACC and InfoGather
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From Figure 9, we have the following observations:

1. The coverages of InfoGather on four datasets are higher than that of EACC.
EACC requires answer tables to have consistent matching relationships not only
with each other but also with the query table, which certainly decreases the
number of answer tables.

2. The average precisions (over all four datasets) of EACC and InfoGather are
0.86 and 0.71, respectively, demonstrating that EACC significantly outperforms
InfoGather in precision. The consistency of EACC is also higher than that of In-
foGather because InfoGather composes the result table from many data sources
on a per-entity basis. And, InfoGather augments entities by splitting tables
into several EAB relations, which can easily lead to entity inconsistency. Our
EACC can get higher precision and higher consistency by considering semantic
relevance and consistent matching relationships between tables.

3. Consequently, for reliability which is the harmonic mean of precision, coverage
and consistency, our EACC method performs better than InfoGather. In Fig-
ure 9, the result set on Song dataset has the largest coverage difference between
EACC and InfoGather. However, it has the minimum reliability difference be-
tween EACC and InfoGather. By observation, we find Song is the largest among
four datasets. In fact, the larger the dataset is, the more answer tables there will
be. Due to the restriction of consistent matching relationship, EACC will get
less answer tables than InfoGather. Meanwhile, EACC will get higher precision
and consistency. So, as the harmonic mean, the reliability difference between
two methods on Song dataset will be smaller.

In summary, our method EACC performs much better than InfoGather in pre-
cision and consistency. Experimental results demonstrate that our entity augmen-
tation framework has high accuracy and reliability, meanwhile ensuring also entity
consistency.

5 RELATED WORK

At present, a large body of research work is about web search and data integration.
Entity augmentation refers to extend attribute content based on entity or other
known information, which helps people to obtain information they are interested in
by web tables.

Web tables are important data source for gathering information by entity aug-
mentation. Compared to other data sources such as knowledge base and crowdsourc-
ing with human intelligence, web tables are more open and comprehensive. To our
best knowledge, WEBTABLES system presented by Cafarella et al. is the first work
on using the wealth of web tables [1, 2]. The authors extracted a large scale corpus
of web tables and proposed several applications for such a corpus. They introduced
AcsDB which enables several novel applications such as schema auto-complete, at-
tribute synonym finding and join-graph traversal. According to user-supplied key-
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words, WEBTABLES returns a list of web tables based on relevance ranking, and
users can browse and filter useful information in the tables. WEBTABLES system
gives us a chance to know the huge potential of web tables. Based on WEBTABLES
system, Balakrishnan et al. display web table data as rich snippets in search engine
results [15].

To integrate structured data, some researchers proposed to collect information
from various data sources into a single table according to a set of keywords. Ca-
farella et al. proposed Octopus to integrate structured data [16]. Octopus used web
search API to retrieve a ranked list of matching tables and integrated tables into
a single table according to user interactions. MultiJoin algorithm was proposed to
implement EXTEND operator in Octopus, which could find matching web tables
for each queried entity independently and then cluster the web tables found. Pimp-
likar et al. presented a search engine which returned a multi-column result table in
response to a keyword query without any known entities [17]. To achieve the table
query, they mainly want to know if a web table is relevant to the query table, and
if so, label each column of the web table with the query column to which it maps.
The authors converted this task into a graphical model which took mappings of all
candidate table columns into consideration. In the recent years, human intelligence
has been introduced in the information processing and management. Park et al.
implemented CrowdFill for collecting structured data from the crowd [18, 19], in
which the interaction between workers and requesters is realized by Amazon Me-
chanical Turk. A partially-filled table is shown in CrowdFill to all participating
workers, and workers contribute by filling in empty cells, as well as upvoting and
downvoting data entered by other workers to return requesters the results collec-
tion.

There are also some studies for augmenting missing information in tables. Gupta
et al. proposed an end to end system named WWT [20], which consolidated a table
from a few example rows by harnessing the huge corpus of information-rich but un-
structured lists on the web. InfoGather [7] is a system to augment binary tables. It
identifies not only tables directly matched with the query table but also tables indi-
rectly matched with the query table, what greatly improves the coverage of entity
augmentation. InfoGather+ [21] is an improvement on InfoGather, which answers
entity augmentation queries accurately for numeric and time varying attributes. It
assigns labels for time and units of measurements of tables, and propagates labels
among two connected nodes in semantic graph. However, InfoGather+ also argues
that tables are entity-attribute binary relations, which hence leads to semantic frag-
mentation. Besides, Lehmberg et al. designed Search Join, a search engine achieving
the search, join and composition of tables [8, 9, 10]. Eberius et al. use consistent
set covering to solve the diversity of query results, and return users top-k result
tables [22]. The authors proposed to process these queries in top-k fashion, in which
they produced multiple minimal consistent solutions from which the user can choose
to resolve the uncertainty of the data sources and methods used. However, all above
systems consider the entity column as the only basis to augment another attribute
column, ignoring the association between attributes and correlation between tuples.
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For entity augmentation, a major challenge is the fact that many web tables have
missing or non-informative column labels. To solve the problem, Braunschweig et al.
proposed to identify and extract column specific information from the context of web
tables [23]. They proposed a heuristic approach to extract column specific context
information for relational tables on the Web. And, He et al. focus on automatic
discovery of attribute synonyms [24]. They mainly consider attribute synonymy
from query click logs and web table attribute name co-occurrences. The authors
formalized the problem as an optimization problem on a graph, with the attribute
names being the vertices and the positive and negative evidences from query logs and
web table schemas as weighted edges. They developed a linear programming based
algorithm to solve the problem. The method of discovering attribute synonyms is
beneficial to improve the accuracy and coverage of entity augmentation. For some
web tables with small size, Lehmberg et al. proposed that stitching web tables into
a larger one could improve matching quality [25]. Above works are orthogonal to
the problem of entity augmentation in this paper.

6 CONCLUSIONS

In this paper, we present the EACC framework to achieve consistent entity aug-
mentation queries by using web tables as data source. In order to solve the entity
inconsistency problem in existing technology, we propose the consistent matching
relationship which should be hold between answer tables, and convert the problem
of entity augmentation into the problem of building consistent γ-coverage cliques.
Experimental results demonstrate that our entity augmentation framework has high
accuracy and reliability, meanwhile ensuring the entity consistency. There are some
future works, such as using parallel algorithms to improve the efficiency of big data
processing, using the crowdsourcing platform to make full use of human intelligence
to verify or correct result tables, and so on.
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