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Abstract. Inference on Knowledge Bases (KBs) is an important way to construct
more complete KBs and answer KB questions. Inference can be viewed as a process
from evidence to conclusion following specific formulas. Traditional methods usually
search on the KB to collect evidence, which cannot apply to large-scale KBs, because
the running time of searching increases radically as the scale of KBs increases. What
is worse, evidence cannot be found if one fact in it is missing, which may result in the
failure of inference. To this end, we propose a fuzzy method of estimating evidence,
which replaces searching by estimating the existence of evidence by constructing
formula embeddings, and then we merge these estimations into a probabilistic model
to infer conclusions. This method can apply to large-scale KBs, because estimating
evidence is very fast and is irrelevant to the KB scale. Estimating evidence can also
be viewed as fuzzy matching, so this method can handle the situation where facts
are missing. We evaluate this method on the knowledge base completion task, and
it achieves a better performance than state-of-the-art methods and has a shorter
running time.

Keywords: Fuzzy logic, fast inference, knowledge base completion, formula min-
ing

1 INTRODUCTION

The inference is a process from evidence to a conclusion. A typical inference on KBs
is usually to predict the missing element in a tuple, e.g., Relation (Head Entity, ?)
or Relation (?, Tail Entity), so the inference is an important way to complete KBs
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and answer KB questions. If we view a KB as direct graphs (Figure 1 a)), inference
essentially means to take usage of the graph structures to predict missing links, e.g.
Nationality(Cristiano Ronaldo1, ?). To each specific type of queries, we can extract
several frequent structures from graphs as a priori knowledge, and they are called
formulas. For example, for Nationality queries, Father(x1, x2) ∧ Nationality(x2, x3)
is a frequent structure which has a probability of supporting Nationality(x1, x3), and
it is called as a formula, where xi denotes an entity variable. Some other formulas
are shown in Figure 1 b).

Traditional inference methods usually search on the KB to collect formula in-

stances as evidence, e.g., we can find Cristiano Ronaldo
Father−−−−→ Jose Dinis Aveiro

Nationality−−−−−−→ Portugal, to support Nationality(Cristiano Ronaldo, Portugal). Search-
ing evidence cannot apply to large-scale KBs, because its computation complex-
ity is O(nl), where n is the average degree of nodes and l is the maximal length
of formula, and it may take a long time when the graph is large or dense. An-
other drawback of searching is that its matching condition is too strict. When
one or two facts of evidence are missing in the KB, the evidence cannot be found
by searching method, which may result in incorrect inference result. For example,
Son(Cristiano Ronaldo, Santos) is missing in Figure 1 a), so the evidence, Cristiano

Ronaldo
Son−−→ Santos

Nationality−−−−−−→ Portugal, cannot be found by searching, and fur-
ther result in the invalidation of the formula, Son(x1, x2) ∧ Nationality(x2, x3) ⇒
Nationality(x1, x3).

To accelerate the inference computation process, knowledge graph embedding
methods are used in inference on KBs, such as TransE [3], TransH [15] and
TransR [10]. TransE is translating embedding. TransH is translating embedding on
hyperplanes. Trans means performing translation in relation-specific entity space.
PTransE is translating embedding for relation paths. Their basic intuition is to rep-
resent entities and relations in KBs as low-rank real vectors, and almost all of them
expect that entities in one fact are close in a space specific to the relation. How-
ever, these embedding-based methods lack the explicit logic constrains and enough
evidence, which makes these methods to be more like modeling KBs than perform-
ing inference. Therefore, they are prone to be damaged by unexpected noises and
lead to unsatisfying results. Compositional training (COMP) [6] and PTransE [9]
have a preliminary attempt at merging paths into KB embedding model, but they
have not solved the above problems. COMP uses paths to improve learning KB
embeddings rather than to infer missing facts, so its performance is still unsatisfied.
PTransE still needs to search paths on KBs, so its running time is as long as the
traditional inference methods.

We consider that collecting evidence to infer the conclusion is a good tradition,
but searching on KBs is not necessary. KB embeddings provide a possibility to
estimate evidence without searching. We exploit the embedding strategy and pro-
pose an approach which can realize quick fuzzy inference. This method represents

1 Cristiano Ronaldo is a Portuguese professional footballer of the Juventus F.C.
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Figure 1. An example of inference on the KB: a) is the knowledge graph, and the query
is what is the nationality of Cristiano Ronaldo, where Son(Cristiano Ronaldo, San-
tos) is a missing fact; b) is a set of formula operators, which are embedded and used
to estimate whether this evidence is occurring between Cristiano Ronaldo and one na-
tion.

formulas as computable operators by using pre-trained KB embeddings, and these
formula operators are used to measure the distances from holding evidence. For
example, for the formula Father(x1, x2) ∧ Nationality(x2, x3) ⇒ Nationality(x1, x3),
we use embeddings of Father and Nationality to represent the formula operator, and
then it is applied on Cristiano Ronaldo and Portugal to estimate the existence of

the evidence, Cristiano Ronaldo
Father−−−−→ Somebody

Nationality−−−−−−→ Portugal. This method
treats the evidence as a whole and only cares about whether it exists. After that, we
merge the probabilities of evidences obtained from estimation into the MLN frame-
work and infer the probability of Nationality(Cristiano Ronaldo, Portugal) is true.
To realize evidence fuzzy matching and speed up the estimation, we ignore middle
variables, e.g., the middle variable, Jose Dinis Aveiro, is replaced with Somebody.
Therefore, this method is insensitive to missing facts and can find evidence under
difficult situations where facts are missing in the evidence. When estimate one ev-
idence, the computation complexity of this method is O(1), and paths with any
length can be estimated by one step simple calculation. Therefore, our approach
can apply to large-scale KBs.

2 RELATED WORK

In general, according to the process of inference on KB, there are three types of
approaches:

1. probabilistic logic inference;

2. knowledge graph embedding;

3. formula embedding.

Especially, the third type can be viewed as the combination of logic and embed-
ding.
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2.1 Probabilistic Logic Inference

This type of methods focused on mining frequent substructure on the KB as evi-
dence, and it models the relationship between evidence and the query in different
ways. MLN [14], PSL [5] and PRA [8] are all typical probabilistic logic models.
These methods need searching or performing random walks to collecting evidence,
and then they use a probabilistic model to combine evidence to infer conclusions.
We take MLN as the example to explain, and its manner of combining evidence is
similar to our approach.

Markov Logic Network (MLN) can be viewed as a probabilistic extension
of first-order logic by attaching weights to formulas. Especially, for its discrimina-
tive version, higher weight indicates greater reward to the query that satisfies the
formula. To predict the query Y , it mines a set of formulas FY and counts these for-
mula groundings on the KB, which is the typical practice of search-based inferences.
Then MLN calculates Y ’s conditional probability as follows:

Pw(Y = y|X = x) =
1

Zy

exp

(∑
fi∈FY

wini(x, y)

)
(1)

where ni(x, y) denotes the number of true groundings of formula fi and wi is fi’s
weight. Zy =

∑
y′∈Y exp(

∑
fi∈F wini(x, y

′
)) is the normalizing term.

2.2 Knowledge Graph Embedding

Many knowledge graph embedding models are proposed in recent years, such as
RESCAL [13], SE [4], SME[2], LFM [7], TransE [3], TransH [15], TransR [10]. Al-
most all embedding-based models embed entities into a relatively low (e.g., 50) di-
mensional embedding vector space Rk while representing relations in different ways.
These models expect that correlative elements of the KB are close in the embed-
ding space, so they can be used to complete KBs. To predict the query r(h, t),
most of the embedding-based models calculate the similarity between Eh and Et

under Er, noted as fs(Eh, Et, Er), where Eh, Et and Er represent the embeddings
of h, t and r, respectively. This type of methods can be used to learning KB
embeddings before estimate evidence in our approach, but they do not represent
explicit evidence. We employ TransE as an example to explain how the embed-
ding model performs inference, and we use TransE to learn KB embeddings in our
experiments.

TransE represents relations as translations in the entity vector space Rk, and
assumes that if r(h, t) holds, then the embedding of the tail entity t should be
close to the embedding of the head entity h plus some vector that depends on the
relationship r. TransE’s similarity function is:

fr(h,t) = −‖Eh + Er − Et‖22. (2)
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TransE employs a margin-based ranking loss to learn the KB embeddings. TransE
assumes that fr(h,t) is larger than other fr(h,t′ ) or fr(h′ ,t), where r(h, t) exists in the

KB but r(h, t
′
) or r(h

′
, t) does not and designs its loss function L as follows:

L =
∑

fs∈KB

∑
f ′
s∈KB

′

[γ + f
′

s − fs]+ (3)

where KB and KB
′

represent a true fact set and a false fact set according the KB,
respectively. The symbol [. . .]+ means the final results always bigger than 0. When
the number in [] is less than zero, the final result is 0. When the number in [] is
bigger than 0, the final result is the number.

2.3 Formula Embedding

Embedding formulas is latest research subject, and researchers focus on combining
logic and embedding which is also our purpose. Compositional training (COMP) [6],
PTransE [9], SePLi [17] and RNN model [12] are all representative models, and they
are related to our method of embedding paths.

COMP wants to learn KB embeddings by using facts and paths, simultaneously.
COMP represents paths in two ways:

1. RESCAL based: a path is represented as a matrix, which equals the produce of
relations in it;

2. TransE based: a path is represented as a vector, which equals the sum of relations
in it.

COMP constructs a dataset of paths by performing random walks on the KB, and
then the path dataset and the original KB are used to learn KB embeddings.

PTransE has a similar method to represent paths, which is also based on
TransE. PTransE designs its loss function by combining both original query loss
and path loss, and designs its loss function as follows:

L = L(h, r, t) +
1

Z

∑
p∈P (h,t)

R(p|h, t)L(p, r) (4)

where L(h, r, t) is the query loss and the second term is the path loss. P (h, t) is the
set of paths from h to t, and R(p|h, t) is a kind of probability of path p. PTransE
uses the similarity between the path p and the relation r to define the path loss.
However, L(p, r) is irrelevant with entities in the query, so it is like the weight of p
rather than its loss.

3 OUR APPROACH

We first describe our fuzzy inference model. We gradually propose three types
of evidence under three assumptions and explain why we finally employ formula
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operators as evidence. Then we describe the method of estimating evidence by KB
embeddings.

3.1 Evidence-Based Inference Model

A typical inference method usually designs a model to combine evidence to infer
the conclusion, and they define, collect and filter evidence according to their own
models. How to define and acquire evidence is of crucial importance for correct
inference. When we infer a query, Relation(Head Entity, Tail Entity), evidence can
be all visible information which is related to the query. For the above example in
Figure 1, the part of knowledge graph connected to Cristiano Ronaldo or Portugal
is the whole evidence. We propose the first assumption as follows:

Assumption 1. A connected subgraph including both Head Entity and Tail Entity
is the whole evidence for predicting any relation between these two entities. If
another subgraph is also evidence, there must be missing facts between these two
subgraphs.

The assumption can be proved easily, because any irrelevant entity or fact in the
KB is useless for predicting the query. When another subgraph affects the inference
result, We can always add a link under a relation type to connect entities in these
two subgraph. The assumption give the first glance of of the importance of missing
facts. Under Assumption 1, an inference model is shown as:

fr(h,t),s = W (r(h, t), s) · (1−D(s)) (5)

where r(h, t) is the query, s is the subgraph evidence, and W (r(h, t), s) is the weight
of inferring r(h, t) from s. D function represents the distance from finding evidence,
and it is defined by the specific method of acquiring evidence. When the method
fully finds s, D(s) = 0, and when the method never find s, D(s) = 1.

Although the connected subgraph contains complete and original information,
the whole structure is too sparse and difficult to used by learning models. To solve
the problem of sparse feature, We split the evidence graph into independent parts.
The most intuitive and convenient substructure is path (where path is a general
path which may contain reverse edges), so we make the following assumption.

Assumption 2. All paths connecting Head Entity and Tail Entity are the whole
evidence for predicting any relation between these two entities. If an unconnected
path is evidence, it always can link Head and Tail Entity by adding facts to it.

This assumption splits the connected subgraph in Assumption 1 into several
paths between head entity and tail entity, and these paths are used in the subsequent
inference model independently. Similar to Assumption 1, when an unconnected
path may have a contribution on inferring the query, we can make it connected
by adding links under one specific relation. For example, the unconnected path
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Santos
Nationality−−−−−−→ Portugal in Figure 1 does not connect to Cristiano Ronaldo, and

then we can add a link from Cristiano Ronaldo to Santos under Son relation to
make it connected. Such situations of missing facts are common in KBs. Under
Assumption 2, we also give an inference model, as:

fr(h,t),P =
1

Z

∑
pi∈P

wi · (1−D(pi)) (6)

where P is the set of paths connecting h and t, wi is the weight of pi, and Z =∑
pi∈P wi is the normalizing constant. D(pi) is the distance from finding pi, and

the range of D(pi) is also [0,1]. For traditional search-based methods, D(pi) in
Equation (6) has only two values: 1 or 0. When a fact is missing from pi, D(pi) is
always 1. Therefore, search-based methods cannot handle all paths in Assumption 2.

To hold paths with missing facts, we find that estimating whether some paths
exist between entities is easier than searching them exactly. Therefore, we extract
relation sequences from paths, and treat them as formula operators to estimate
paths between entities. For example, we can obtain the relation sequence Colleague

→ Club → Location as an operator from the path Cristiano Ronaldo
Colleague−−−−−→

Pepe
Club−−→ Real Madrid CF

Location−−−−−→ Spain, and we can use the formula operator to
estimate whether such paths exist between any other two entities. Therefore, we
propose the third assumption.

Assumption 3. All types of formula operators existing between Head Entity and
Tail Entity are the whole evidence for predicting any relation between these two
entities.

This assumption takes a formula operator as a whole by ignoring middle entities
and only cares about whether a type of paths occurs. According to Assumption 2,
if one middle entity is useful, we can always construct another path which is from
Head Entity to Tail Entity and passes the middle entity. There are two advantages
of Assumption 3:

1. we can use one distance to estimate the existence of one path type and ignore
the number of paths.

2. Paths under the same relation sequence share weights, which reduces the feature
sparsity.

We change the inference model in Equation (6) as follows:

fr(h,t),Fr =
1

Z

∑
fri∈Fr

wri · (1−D(fri)) (7)

where Fr is the set of formula operators for inferring relation r, and D(fri) is the
distance from formula operator fri occurring. A formula operator is not a path but
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a set of paths, and the distance D(fri) is used to estimate whether there is at least
one path under this formula operator.

These three assumptions are layers of the progress. They define three forms of
evidence: connected subgraph, path, and formula operator, and these three types of
evidence should contain all information required by corresponding inference model.
Inference models treat these evidence as features and employ a linear model to
merge evidence by attaching weights to them. The simple linear model requires the
representation of evidence containing dependency and interactions between elements
in KBs, and the evidence representation decides how to acquire evidence and how
to define the distance function D.

3.2 Estimate Evidence

We propose our approach under Assumption 3 and represent formula operators as
computable real vectors to estimate evidence and quickly calculate distance function
D(fri) in Equation (7). To make formula operators computable, we propose to
represent them by KB embeddings.

Embedding means representing each entity in KB as a low-dimension numeric
vector, and different dimensions of the vector may implicitly represent different as-
pects of an entity. Relations in KB usually have relevant representations, such as
vectors, matrixes and tensors. Entities interact under a specific relation by perform-
ing arithmetical operations between entity embeddings and relation’s representation.

To make embedding of a formula operator contain its relations’ information
and share information with other related formula operators, we exploit the idea of
TransE [3], COMB [6] and PTransE [9]. TransE represents relations as translations
in the entity vector space Rk, and assumes Eh +Er = Et when r(h, t) holds. COMB
and PTransE treat a path as a normal relation, and have Eh +Ep = Et when p(h, t)

holds. For a path h
r1−→ x

r2−→ t, we can get Eh + Er1 = Ex and Ex + Er2 = Et. We
rewrite the second equation as Ex = Et − Er2 and use it to eliminate the middle
variable x, and then we get Eh +Er1 +Er2 = Et. Er1 +Er2 is naturally used as the
representation of the formula operator → r1 → r2 →. More generally, we define
one formula operator as Ef =

∑
ri∈pEri .

We also treat a formula operator as a translation. When a formula operator f
occurs between h and t, we expect Eh to be close to Et under Ef . Therefore,
we define the D(fri) in Equation (7) as D(fri) = |Eh + Efri

− Et|, and use it
to estimate the probability of existing at least one path under fri between h and

t. For example, if we want to know whether there is at least one path
Father−−−−→ x

Nationality−−−−−−→ between Cristiano Ronaldo and Portugal, we just calculate distance by
‖EC.Ronaldo +Efather +Enationality −EPortugal‖22 and ignore who Cristiano Ronaldo’s

father is. When the grounding path Cristiano Ronaldo
Father−−−−→ José Dinis Aveiro

Nationality−−−−−−→ Portugal exists in the KB, the distance should be close to 0.
We prove the correctness of the estimating algorithm. When we find a path

p = e1
r1−→ e2

r2−→ . . .
rn−→ en+1 by search on the KB graph, if all facts ri(ei, ei+1) ∈ p
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exist in the KB, we can declare the path p exist. This criterion can be viewed as
a necessary and sufficient condition, and we add up each fact’s distance to existence
as the path distance.

D(p) =
∑

ri(ei,ei+1)∈p

‖Eei + Eri − Eei+1
‖

≥ ‖
∑

ri(ei,ei+1)∈p

Eei + Eri − Eei+1
‖

= ‖Ee1 +
∑
ri∈f

Eri − Eei+1
‖

= ‖Ee1 + Ef − Eei+1
‖

(8)

where ‖ · ‖ can be any norm function as a fact distance. According to triangle
inequality for norms, the sum of norms is greater than or equal to the norm of the
sum, so we can get the second line. The middle entities can be eliminated and there
are only relations left as the third line, and the sequence of relations can be viewed
as a formula operator. Coincidentally, we have Ef =

∑
ri∈f Eri and finally get the

forth line. The path p’s real distance D(p) must be greater than or equal to the
distance of the formula operator D(f) = ‖Ee1 + Ef − Eei+1

‖. When D(f) = 0, we
can get all facts ‖Eei + Eri − Eei+1

‖ = 0, what indicates that the path p exists.
Therefore, it is reasonable that we employ D(f) = ‖Ee1 + Ep − Eei+1

‖ to estimate
whether there is at least one path under formula operator f .

Dataset Relation Entity Train Valid Test

WN18 18 40 943 141 442 5 000 5 000
FB15K 1 345 14 951 483 142 50 000 59 071

Table 1. Statistics of WN18 and FB15K

Before estimating formula operators, this approach needs firstly mining a set
of formula operators for each relation type. We employ the Depth-First-Search
(DFS) algorithm to traverse the KB graph several times to count frequent relation
sequence, and limit the maximum length of paths. Then we simply rank the formula
operators by occurrence number, and choose top-K as the set of formula operators.
How to mine formula operators is not a focus of this paper, so we avoid missing
useful formula operators just by choosing a large K.

3.3 Objective Formalization

We rewrite Equation (7) as the score function for a triplet r(h, t), as:

fr(h,t),F r = 1− 1

Z

∑
fr
i ∈Fr

wr
i · ‖Eh + Efr

i
− Et‖22 (9)
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Dataset WN18 FB15K

Metric Mean Rank Hits@10(%) Mean Rank Hits@10(%)
Raw Filt Raw Filt Raw Filt Raw Filt

2.a INS*(MLN) 329 319 55.5 66.33 242 226 49.2 60.3

RESCAL 1 180 1 163 37.2 52.8 828 683 28.4 44.1
2.b TransE 263 251 75.4 89.2 243 125 34.9 47.1

TransH 401 388 73.0 82.3 212 87 45.7 64.4
TransR 238 225 79.8 92.0 198 77 48.2 68.7

2.c COMB 504 491 78.1 90.7 212 92 39.9 52.6

2.d FIEE 133 127 93.5 96.9 221 76 49.8 68.6

Table 2. Knowledge base completion results

where wr
i measures the correlation between formula operator f r

i and the query re-
lation r, and wr

i > 0 represents positive correlation to predicting the query and
wr

i < 0 represents negative correlation. Especially, to take advantage of the im-
plicit relationship between entities as TransE does, we treat r itself as a spe-
cial formula operator. In Equation (9), only w is parameter and needs to be
learnt by training model, while we use embedding E pre-trained by TransE and
never change them. We employ a margin-based rank loss to training model, as:

L =
∑

fs∈KB

∑
f ′
s∈KB

′

[γ +
∑
pri∈Pr

wr
i · (Df ′

s
(pri )−Dfs(p

r
i ))]+ (10)

where Dfs(p
r
i ) and Df ′

s
(pri ) represent path distances of true and false queries, respec-

tively.

4 EXPERIMENTS AND ANALYSIS

We have compared our approach with several state-of-the-art methods on KB com-
pletion (KBC) task. We predict the missing h or t for a fact r(h, t) in the test
set. The detail evaluation method is to replace t in r(h, t) by all entities in the KB
to form left testing set Qleft, and methods need to rank the right answer at the
top of the list. Similarly, we produce the right testing set Qright. We perform the
experiments on both WN18 and FB15K datasets which were subsets sampled from
WordNet[11] and Freebase [1], respectively, and Table 1 shows statistics of them.
We report the mean of those true answer ranks and the Hits@102 under both ‘raw’
and ‘filter’ as TransE does.

For comparison, we employ 3 types of methods as baselines:

1. search-based method: MLN [14];

2. embedding-based methods: RESCAL [13], TransE [3], TransH [15], TransR [10];

3. embedding and path method: COMB [6].

2 The proportion of correct entities ranked in the top 10.
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Figure 2. The running time and performance of estimating evidence

We employ INS* [16] as the implement of MLN model. For embedding meth-
ods, we use reported results directly since the evaluation datasets are identical.
We also implement COMB algorithm, and generate its path query dataset ran-
domly.

We call our approach as FIEE (Fuzzy Inference by Estimate Evidence). For
our approach, we select different parameters for two datasets. We use stochastic
gradient descent (SGD) to learn embeddings and weights, and we employ validate
set to select parameters. We select the learning rate λ among {0.001, 1e-4, 1e-5,
1e-6}, the margin γ among {0.125, 0.25, 0.5, 1}, the dimensionality of entity and
relation k among {50,100}, the L2 regularization coefficient among {0.1, 1, 10} and
the maximum length of paths lmax among {2,3,4,5,6,7} for WN18 and {2,3,4} for
FB15K. Optimal configurations are: λ = 0.001, γ = 0.5, k = 50, L2 = 10 and
lmax = 4 for WN18; λ = 0.001, γ = 1.0, k = 100, L2 = 0.1 and lmax = 3 for
FB15K.
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4.1 Our Method vs. State-of-the-Art Methods

Table 2 shows the KBC results on both WN18 and FB15K, and we can obtain the
following observations.

1. FIEE achieves good performances on both WN18 and FB15K. For WN18, our
approach outperforms all state-of-the-art methods on all metrics. It indicates
that our approach is effective for knowledge inference.

2. Comparing FIEE with INS in Table 2 a), FIEE outperforms INS on all metrics.
It indicates our fuzzy inference is more robust to missing facts than search-based
inference. Noise paths can weaken INS seriously and its performance gets worse
as the number of candidates grows, which is described in [16]. On the other
hand, FIEE treats all entities in the KB as candidates, which implies fuzzy
inference can weaken the negative effect of noise paths.

3. Comparing FIEE with embedding-based methods in Table 2 b), FIEE outper-
forms them on metrics except Mean Rank(raw) and Hits@10(filt) on FB15K
dataset. It indicates that introducing explicit logic constrains into the embed-
ding model can improve the KBC performance, and it shows that knowledge
graph embedding models have limited inference ability.

4. Comparing FIEE with COMB in Table 2 c), FIEE outperforms COMB. It in-
dicates that paths used as evidence have more effect than used as additional
training data, though both of them have the same way of representing paths.
Comparing TransE, COMB has no obvious advantage, which also indicates that
COMB cannot utilize structure information completely.

5. The best performance of our approach occurs when the maximum path length
is 4 for WN18 and 3 for FB15K. This implies there would be more noise when
the path length increases in both estimating evidence and the KBC task.

6. Our approach’s performance on FB15k is not as good as on WN18. We think
the reason may be that FB15K has much more relation types than WN18, which
means there would be huge size of formula operators in FB15K. Therefore, it
is hard to cover all correlative and meaningful formula operators, and some of
ones we selected may be noise.

4.2 Comparison on Running Time

To prove our approach’s absolute predominance on running time, we design an
experiment to compare the running time of our estimating algorithm and Depth-
First-Search algorithm.

We construct a dataset which contains 10 000 various true or false (1:1) path
instances with length from 1 to 10, and run FIEE 100 times on it to estimate paths.
As comparison, DFS algorithm searches same path instances 100 times, and we
compare their running times.
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Figures 2 a) and 2 b) show methods’ running times on WN18 and FB15K, re-
spectively. We show logarithms of running time and find the running time of DFS
increasing exponentially with the growth of path length. Especially on FB15K,
DFS cannot finish in 72 hours when path length reaches 6. However, our approach’s
running time almost remains unchanged with path length increasing and always is
under 1 second. It shows our approach’s victory by great superiority on running
time and indicates that our approach is high-efficient for estimating evidence no
matter how long it is.

4.3 Estimate Evidence

The performance of estimating formula operators has an important effect on the
KBC result, so we take an experiment to evaluate our approach’s performance on
it. We still employ the dataset in running time experiment and use estimating path
existence to approximate formula operators. Figure 2 c) shows the precision on both
WN18 and FB15k, and we can obtain the following observations:

1. Our approach achieves a good performance on estimating paths, which proves
our approach can replace searching paths on the large-scale graph.

2. The precision is reducing with the growth of path length both in WN18 and
FB15k. For WN18, when the length reached 5, the precision was less than 70 %.
There are two reasons of this phenomenon:

(a) there are cascading errors which are mentioned in [6], and the longer the
path is, the larger the cascading error is;

(b) there may be missing facts in paths, and the longer the path is, the more
facts are missing.

The interesting thing is that the first reason has adverse effect on KBC task,
while the second reason is reverse. There is an optimum maximum length of
paths for each specific KB.

3. The precision of estimating path existence on FB15K is higher than the precision
on WN18, but the KBC performance on WN18 is better. It further proved that
our approach can handle paths with missing facts, and these paths can improve
KBC performance.

5 CONCLUSION AND FUTURE WORK

This paper presents a novel method, called FIEE, to perform fuzzy inference by es-
timating evidence. FIEE treats relation sequences as computable formula operators
to estimate path existence between entities. FIEE never searches on KBs, so its
running time is short and it can be applied to large-scale KBs. Estimating evidence
can also be viewed as fuzzy matching, so this method can handle the situation where
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facts are missing. We evaluate our approach on the KBC task, and it achieves good
performances on both WN18 and FB15K datasets.

In future, we will explore the following research directions:

1. The precision of estimation is not very high, and we think the reason is that the
method of representing formula operator is not good enough, so we need explore
better representation of formula operators.

2. In this paper, we still need to get formula types before learning the inference
model, and then we want to deal with them simultaneously.
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