
Computing and Informatics, Vol. 39, 2020, 193–212, doi: 10.31577/cai 2020 1-2 193

CHECKING DATA-FLOW ERRORS BASED
ON THE GUARD-DRIVEN REACHABILITY GRAPH
OF WFD-NET

Dongming Xiang

School of Information Science and Technology
Zhejiang Sci-Tech University
310018 Hangzhou, China
e-mail: flysky xdm@163.com

Guanjun Liu

Department of Computer Science
Key Laboratory of Embedded System and Service Computing (MOE)
Tongji University
201804 Shanghai, China
e-mail: liuguanjun@tongji.edu.cn

Abstract. In order to guarantee the correctness of workflow systems, it is necessary
to check their data-flow errors, e.g., missing data, inconsistent data, lost data and
redundant data. The traditional Petri-net-based methods are usually based on the
reachability graph. However, these methods have two flaws, i.e., the state space
explosion and pseudo states. In order to solve these problems, we use WFD-nets
to model workflow systems, and propose an algorithm for checking data-flow errors
based on the guard-driven reachability graph (GRG) of WFD-net. Furthermore,
a case study and some experiments are given to show the effectiveness and advantage
of our method.

Keywords: Petri net, workflow system, data-flow errors, reachability graph

Mathematics Subject Classification 2010: 68-Q60

194 D. Xiang, G. Liu

1 INTRODUCTION

Nowadays, workflow systems have been widely applied to our daily life, e.g., office
automation (OA), medical treatment and electronic commerce, etc. In order to guar-
antee the correctness of workflow systems, we not only need to verify some properties
and detect errors in the control-flows, but also model and analyze their data-flows.
As we know, the control-flows focus on the partial orders of business activities, while
the data-flows mostly include data elements, data operations (i.e., read, write and
delete) and data conditions. The existing modeling and analysis methods of work-
flow systems are mainly concerned with the error detection of control-flows. In fact,
data-flows are also greatly important in the design of workflow system. Once its
activities conduct an improper operation on data-flows in business processes, some
data-flow errors [15, 19, 28] easily take place, e.g., missing data, inconsistent data,
lost data, redundant data and unsoundness. These errors can lead to some abnormal
results, degrade the execution performance, and increase the maintenance cost, or
even result in some insecurity problems, e.g., privacy disclosure, illegal user access,
and fund loss.

There have been many studies on data-flows of workflow systems. Sadiq
et al. [19] first proposed seven kinds of data-flow anomalies, but did not provide
any detection methods. Sharma et al. [21] used BPMN (Business Process Model-
ing Notation) to model business processes and detected their data-flow errors. Guo
et al. [8] solved the data exchange problems in the inter-organizational workflows.
Sun et al. [24] calculated the dependence relationship of business processes in a UML
(Unified Modeling Language) diagram, and detected errors in each process instance
according to its data association. This work was further generalized in [15], where
a systematic graph traversal approach was proposed to detect data-flow errors.

Some Petri-net-based methods are also proposed to detect data-flow errors.
A Dual Flow Net (DFN) [27] was used to model the control- and data-flows in
an embedded system. Based on the work in [21], Awad et al. [2] mapped BPMN
into Petri net, and then detected and repaired its errors. In order to model the
concurrent read operation, contextual net [3, 16] was proposed, and its unfolding
technique was utilized to generate the minimal test suites for multi-threaded pro-
grams [13, 12]. Based on the contextual net, PN-DO (Petri net with data oper-
ation) [31] was given to detect data-flow errors of workflow systems. All of these
methods have an advantage of a great capability to specify parallelism, concurrency
and synchronization [11, 17]. However, the explicitly modeling of read/write arcs
can increase the scales and complexity of Petri nets. By comparison, WFD-net is
a workflow net [18] (a special Petri net) extended with conceptual data operations.
Its transitions are labeled by read, write, delete or guard1 functions [10, 22]. Nat-
urally, the scale of WFD-net is much more smaller than the Petri nets with data
operation arcs, e.g., contextual net and PN-DO.

1 A guard is a Boolean expression which is formed by some data elements and predi-
cates.

Checking Data-Flow Errors Based on GRG of WFD-Net 195

WFD-net has been widely used to check soundness [22], completion require-
ments [25] and data consistencies [34]. These verification/analysis methods are usu-
ally based on the classical reachability graphs [22, 32] of WFD-nets. However, they
easily suffer from the state space explosion and pseudo states. On the one hand,
a state may have an exponential number of successor states in a reachability graph
since every possible value of a guard is considered. On the other hand, the logi-
cal relation (e.g., exclusion property) between guards likely generate some pseudo
states. In order to solve these problems, we proposed the guard-driven reachability
graph (GRG) of a WFD-net in the previous work [30].

In this paper, we use GRG to check data-flow errors in a workflow system,
including missing data, inconsistent data, redundant data and lost data. We first
define these data-flow errors in a WFD-net, and propose an algorithm for checking
them. Furthermore, a case study and some experiments are given to illustrate the
effectiveness and advantage of our algorithm.

The rest of this paper is organized as follows. Section 2 presents some basic
notations. Section 3 proposes an algorithm to check data-flow errors based on the
GRG of WFD-nets. Section 4 gives a case study. Section 5 conducts a group of
experiments. The last section sums up the whole work.

2 BASIC NOTATIONS

2.1 WF-Net

A net is a triple N = (P, T, F), where P and T are two disjoint and finite sets that
are respectively called place set and transition set, and F ⊆ (P × T) ∪ (T × P)
is a flow relation. A net N with an initial marking m0 is called a Petri net or
net system [14, 33], and denoted as Σ = (N,m0). For each node x ∈ P ∪ T , its
preset and postset are denoted by •x = {y | (y, x) ∈ F} and x• = {y | (x, y) ∈ F},
respectively.

Given a net N = (P, T, F), a transition t ∈ T is enabled at a marking m if
∀p ∈ P : p ∈ •t ⇒ m(t) ≥ 1, which is denoted by m[t〉. After firing an enabled
transition t at m, a new marking m′ is generated, which is denoted as m[t〉m′, where
∀ p ∈ P :

m′(p) =

 m(p)− 1, if p ∈ •t− t•,
m(p) + 1, if p ∈ t• − •t,
m(p), otherwise.

(1)

Definition 1 (Workflow net [1]). A net N = (P, T, F) is a workflow net (WF-net)
if

1. there is one source place i and one sink place o in P such that •i = ∅ ∧ o• = ∅;
and

2. ∀x ∈ P ∪ T : (i, x) ∈ F ∗ and (x, o) ∈ F ∗ where F ∗ is the reflexive-transitive
closure of F .

196 D. Xiang, G. Liu

As a particular class of Petri net, WF-net has been widely used to model and
verify workflow systems [1].

2.2 WFD-Net

a) b)

Figure 1. WFD-net and data-flow errors

Based on WF-net, workflow net with data (WFD-net) [25, 26] is proposed to
model the control-flows and data-flows of a workflow system. That is, some data
elements, data operations and guards are added into WF-net.

In a WFD-net, D is a finite set of data elements, and G is a set of guards
over D. Var(g) denotes the set of variables in the guard g ∈ G. We assume that
∀g ∈ G : d ∈ Var(g) ⇒ d ∈ D. Two different guards g1 and g2 are exclusive
if g1 = ¬g2 and g2 = ¬g1, which is denoted by g1 ⊗ g2. In other words, g1 is
TRUE iff g2 is FALSE, and vice versa. For example, given two guards g1 and g2,
if g1(v1) : v1 > 0 and g2(v1) : v1 ≤ 0, then they are exclusive and denoted by
g1 ⊗ g2.

Definition 2 (Workflow net with data [22]). A 9-tuple N = (P, T, F,D,G,Rd,
Wr,De,Guard) is a WFD-net if

1. (P, T, F) is a WF-net;

2. D is a finite set of data elements;

3. G is a finite set of guards;

4. Rd: T → 2D is a label function of reading data;

5. Wr: T → 2D is a label function of writing data;

Checking Data-Flow Errors Based on GRG of WFD-Net 197

6. De: T → 2D is a label function of deleting data; and

7. Guard: T → G is a label function of assigning a guard in G to each transition.

For example, Figure 1 a) is a WFD-net, where D = {v1, v2, v3}, G = {g1(v1),
¬g1(v1)}, Guard(t1) = g1(v1), Guard(t3) = ¬g1(v1), Rd(t1) = {v1}, Wr(t2) = {v2}
and De(t4) = {v1}. Moreover, g1 ⊗ ¬g1 and Var(g1) = Var(¬g1) = {v1}.

As for a WFD-net, a state is generally called a weak configuration, and it includes
a marking and the evaluations of data and guards.

Definition 3 (Weak configuration). Let N = (P, T, F,D,G,Rd,Wr,De,Guard)
be a WFD-net. c = 〈m,σ, η〉 is a weak configuration, where

1. m is a marking of (P, T, F);

2. σ : D → {>,⊥} assigns a defined value (>) or an undefined value (⊥) to each
data element; and

3. η : G→ {TRUE,FALSE,⊥,>} assigns TRUE, FALSE, an undefined value (⊥)
or a defined value (>) to each guard.

In a weak configuration, (σ, η) represents a data state. Besides, we use the
guards labeled with ∗ to represent their defined values (>). As shown in Figure 1 b),
c1 = 〈m1, σ1, η1〉 = 〈[p1 + p2], {v1}, {∗g1}〉 is a weak configuration of the WFD-net
in Figure 1 a), where σ1(v1) = > and ∗g1 represents that η1(g1) = >.

Given the definition of WFD-net, we discuss its weak firing rules of an enabled
transition at a weak configuration.

Definition 4 (Weak enabling/firing rules). Let N = (P, T, F,D,G,Rd,Wr,De,
Guard) be a WFD-net. t ∈ T is enabled at a weak configuration c = 〈m,σ, η〉,
which is denoted by c[t〉, if

1. m[t〉;
2. ∀d ∈ Rd(t) : σ(d) = >; and

3. ∀d ∈ Var(Guard(t)): σ(d) 6= ⊥ and η(Guard(t)) ∈ {TRUE,>}.

After firing an enabled transition t at c, a weak configuration c′ = 〈m′, σ′, η′〉 is
generated, where

1. m[t〉m′;
2. ∀d ∈ De(t) : σ′(d) = ⊥;

3. ∀d ∈ Wr(t) \De(t) : σ′(d) = >;

4. ∀d ∈ D \ (De(t) ∪Wr(t)) : σ′(d) = σ(d);

5. ∃g ∈ Guard(t) : Var(g) ∩Wr(t) = ∅ ⇒ η′(g) = TRUE; and

6. ∀g ∈ G,∀d ∈ Var(g) : (σ′(d) = > ⇒ η′(g)>)∧((g /∈ Guard(t)∧Var(g)∩Wr(t) =
∅)⇒ η′(g) = η(g)).

It is denoted as c[t〉c′.

198 D. Xiang, G. Liu

For example, the transition t0 in Figure 1 a) is enabled at the initial weak config-
uration c0 and c0[t0〉c1, where c0 = 〈[i],−,−〉 and c1 = 〈[p1 + p2], {v1}, {∗g1}〉. After
firing the transition t0 and writing a new value into the data v1, the evaluations of
g1 is not definite because v1 is associated with this guard. We assign a defined value
(>) to this guard in c1. Thus, firing t0 generates one unique weak configuration in
Figure 1 b).

According to the enabling and firing rule of transitions, the may-reachability of
WFD-net is defined as follows.

Definition 5 (May-reachability [22]). Let N = (P, T, F,D,G,Rd,Wr,De,Guard)
be a WFD-net. c1 and c2 are two configurations.

1. There is a may-step from c1 to c2, denoted by c1 →may c2, if there is a transition
t ∈ T and a set of configurations C such that: c1[t〉C ∧ c2 ∈ C.

2. c2 is may-reachable from c1 if there exists a sequence of configurations c(1), . . . ,
c(n) such that c1 →may c(1) →may · · · →may c(n) →may c2. It is denoted as
c1 →∗may c2.

The set of may-reachable configurations from c is denoted by R(c). For example,
there is a may-step from c0 to c1 in Figure 1 b), and the configuration c6 = 〈[p3 +
p4], {v1, v2}, {g1}〉 is may-reachable from c0.

2.3 Guard-Driven Reachability Graph

Although the classical reachability graph [22] is a fundamental method of analyz-
ing and verifying a WFD-net, it easily suffers from the problems of state space
explosion and pseudo configurations due to its guard evaluations and their exclusive
relations [30]. Hence, we propose the guard-driven reachability graph (GRG) based
on the weak configurations and the weak firing rules.

Definition 6 (Guard-driven reachability graph, GRG). Let N = (P, T, F,D,G,
Rd,Wr,De,Guard) be a WFD-net and c0 be its initial weak configuration. GRG(N)
= (V +, E+, `+) is the guard-driven reachability graph of N , where

1. V + = R(c0);

2. E+ = {(c, c′) | c, c′ ∈ R(c0) ∧ ∃t ∈ T : c[t〉c′}; and

3. `+ : E+ → T ×G such that `+(c, c′) = 〈t,Guard(t)〉 if (c, c′) ∈ E+ and c[t〉c′.

For example, Figure 1 b) is the GRG of the WFD-net in Figure 1 a), where
c0, c1 ∈ V +, e0 = (c0, c1) ∈ E+ and `+(e0) = 〈t0,TRUE〉.2

In the guard-driven reachability graph of a WFD-net, the guard as the condi-
tion of enabling a transition determines the unique successor state when firing the

2 If Guard(t0) = ∅, we use 〈t0,TRUE〉 to represent this case.

Checking Data-Flow Errors Based on GRG of WFD-Net 199

transition. Therefore, the idea of guard-driven reachability graph is to show the
execution of a WFD-net by the evaluations of guards.

3 DATA-FLOW ERRORS DETECTION METHOD BASED
ON THE GRG OF WFD-NET

3.1 Data-Flow Errors

Data-flow errors are caused by improper data operations in workflow systems, which
mainly include missing data, redundant data, lost data, and inconsistent data. We
first define these data-flow errors in a WFD-net.

1. Missing Data

Missing data occurs when a business process of workflow systems is reading or
deleting some data, but this data is not existing at this time.

Definition 7 (Missing Data). A WFD-net N with an initial weak-configura-
tion c0 has an error of missing data if ∃t ∈ T , ∃c ∈ R(c0) : c = 〈m,σ, η〉 ∧ ¬c[t∧
m[t〉 ∧ ∃d ∈ Rd(t) ∪De(t) : σ(d) = ⊥.

For example, the transition t5 in Figure 1 is not enabled at the reachable weak-
configuration [p3 + p4; v2; g1] because it cannot read the data from v3 since this
data has never been written into any values. At this time, missing data oc-
curs.

2. Inconsistent Data

The error of inconsistent data usually occurs in a concurrent workflow system
when one business process is reading or writing or deleting some data, but an-
other process is concurrently writing or deleting this data. Notice that two tran-
sitions t1 and t2 in a bounded WFD-net are concurrent at a weak-configuration
c = 〈m,σ, η〉, if they satisfy that c[t1〉 ∧ c[t2〉 ∧ (•t1 ∩ •t2 = ∅ ∨ ∀p ∈ •t1 ∩ •t2 :
m(p) ≥ 2) [29]. This is denoted by t1‖ct2.

Definition 8 (Inconsistent Data). The error of inconsistent data takes place
in a WFD-net if two concurrent transitions t1 and t2 satisfy ∃c ∈ R(c0) :
(Rd(t1) ∪Wr(t1) ∪De(t1)) ∩ (Wr(t2) ∪De(t2)) 6= ∅.

For example, two transitions t2 and t4 in Figure 1 are concurrently writing into
the data v2 at the reachable weak-configuration [p1 + p2; v1; ∗g1]. At this time,
inconsistent data occurs.

3. Redundant Data

Redundant data occurs if a data is never read before it is deleted or the business
process terminates.

200 D. Xiang, G. Liu

Definition 9 (Redundant Data). Σ has an error of redundant data if one of
the following two conditions holds:

1. ∃c1, c2 ∈ R(c0), ∃t1 ∈ T , ∃v ∈ D : c1[t1〉c2 ∧ v ∈ Wr(t1)∧ (∀c3 ∈ R(c2), ∀t2 ∈
T : c3[t2〉 → v /∈ Rd(t2));

2. ∃c1, c2 ∈ R(c0), ∃t1, t2 ∈ T , ∃σ ∈ T ∗, ∃v ∈ D : c1[t1σ〉c2[t2〉∧v ∈ Wr(t1)∧v ∈
De(t2) ∧ (∀t3 ∈ σ : v /∈ Rd(t3)).

For example, the transition t2 in Figure 1 is to overwrite the data v2 at the
reachable weak-configuration [p1 +p2; v1; ∗g1]. But the data has never been read
until the business process terminates. Therefore, there is an error of redundant
data.

4. Lost Data

Lost data means that once a data element is written into a value by a transition,
it will never be read before it is written again by some follow-up transitions. In
other word, the first value of this data element cannot be referenced again by
other activities.

Definition 10 (Lost Data). Σ has an error of lost data if ∃c1, c2 ∈ R(c0),
∃t1, t2 ∈ T , ∃σ ∈ T ∗, ∃v ∈ V : c1[t1σ〉c2[t2〉 ∧ v ∈ Wr(t1) ∩ Wr(t2) ∧ (∀t3 ∈
σ : v /∈ Rd(t3).

For example, the transition t0 in Figure 1 writes a data value into v1 at the initial
weak-configuration. But this data is never be read before it is overwritten by t3.
Therefore, this is an error of lost data.

3.2 The Algorithm for Checking Data-Flow Errors Based on GRG

In order to check the above data-flow errors in a workflow system, we propose
an algorithm based on GRG, which is shown in Algorithm 1.

• According to the definition of missing data, we can easily check this data-flow
error by traversing each weak-configuration.

• At a weak-configuration, if two concurrent transitions are concurrently con-
ducting some data operations on a data element, we can find out an error of
inconsistent data.

• If an enabled transition is to write some value into a data element at a weak-
configuration, we can traverse all successors of this weak-configuration. Then,
the weak-configurations related to the operations on this data are obtained by
the function

FindRWDConfigs(v, c′, GRG(Σ), CT).

That is, we traverse all weak-configurations reachable from c′, and obtain three
reachable weak-configuration sets cr, cw and cd, where cr (resp. cw, cd) is the set

Checking Data-Flow Errors Based on GRG of WFD-Net 201

Procedure 1 FindRWDConfigs(v, c′, GRG(Σ), CT)

1: if c′ /∈ CT then
2: CT .add(c′);
3: Get all edges from c′, i.e., E2 = {(c′, c′′) | (c′, c′′) ∈ E};
4: if E2 6= ∅ then
5: for each (c′, c′′) ∈ E2 do
6: if c′[t′〉c′′ or c′[ct

′〉c′′ then
7: if v ∈ Rd(t′) then
8: cr.add(c′);
9: end if

10: if v ∈ Wr(t′) then
11: cw.add(c′);
12: end if
13: if v ∈ De(t′) then
14: cd.add(c′);
15: end if
16: if v /∈ Rd(t′) ∪ Er(t′) ∪ De(t′) then
17: FindRWD(v, c′′, GRG(Σ), CT);
18: end if
19: end if
20: end for
21: end if
22: end if

end Procedure 1

of reachable weak-configurations at which there is a read (resp. write, delete) op-
eration. Finally, according to these weak-configurations, we determine whether
there is an error of redundant data or lost data.

It is noted that GRG can effectively reduce the state space and avoid pseudo
states since it fully considers the characters of guard functions. As a result, Algo-
rithm 1 only needs to traverse a smaller state space to detect data-flow errors in
comparison with the classical reachability graph in [22]. Moreover, it also prevents
from some negative influence by pseudo states.

4 CASE STUDY

Our checking method for data-flow errors can be applied in the static program
analysis. Figure 2 is a multi-thread program, and it is used to detect the errors
of data inconsistency in the related work [9]. As our case study in this paper, we
utilize it to check data-flow errors.

We first use a WFD-net to model this program, which is shown in Figure 3 a).
Tables 1 and 2 list the related transitions and guards. Meanwhile, if we respec-

202 D. Xiang, G. Liu

Algorithm 1 Data-flow error detection algorithm

Require: A WFD-net N
Ensure: All data-flow errors.
1: Initialize C] = ∅; /∗ The detected weak-configurations. ∗/
2: Construct a GRG of N , i.e., GRG(N) = (V +, E+, `+).
3: for each c ∈ R(c0) such that c /∈ C] do
4: C].add(c);
5: if ∃t ∈ T : ¬c[t ∧m[t〉 ∧ ∃d ∈ Rd(t) ∪De(t) : σ(d) = ⊥ then
6: print Missing data;
7: end if
8: −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
9: if ∃t1, t2 ∈ T : t1||t2 ∧ (Rd(t1) ∪Wr(t1) ∪ De(t1)) ∩ (Wr(t2) ∪ De(t2)) 6= ∅

then
10: print Inconsistent Data between t1 and t2;
11: end if
12: −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
13: Get all edges from c, i.e., E1 = {(c, c′) | (c, c′) ∈ E+};
14: for each (c, c′) ∈ E1 do
15: if c[t〉c′ and Wr(t) 6= ∅ then
16: for each v ∈ Wr(t) do
17: CT = ∅; /∗ The traversed weak-configurations ∗/
18: Set cr = cw = cd = ∅;
19: FindRWDConfigs(v, c′, GRG(Σ), CT);

/∗ As shown in Procedure 1, it is used to compute cr, cw and cd ∗/
20: if cw 6= ∅ then
21: print Lost Data;
22: end if
23: −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
24: if cd 6= ∅ then
25: print Redundant Data;
26: end if
27: −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
28: if cr = cw = cd = ∅ then
29: print Redundant Data;
30: end if
31: −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
32: end for
33: end if
34: end for
35: end for

Checking Data-Flow Errors Based on GRG of WFD-Net 203

Figure 2. Pseudo-codes of a multi-thread program

Transition ID Codes Read Data Write Data

t0 x = y = 0 – x, y
t1 a = x x a
t2 b = y y b
t3 x = 1 – x
t4 y = 2 – y
t5 if(y > 0) y –
t6 if(x > 0) x –
t7 y = a + 1 a y
t8 y = 0 – y
t9 x = b + 2 b x
t10 x = 1 – x
t11 x = a + 1 a x
t12 x = 0 – x
t13 y = b + 2 b y
t14 y = 1 – y
t15 assert1(x == y) x, y –
t16 assert2(x == y) x, y –
t17 end – –

Table 1. Program codes and data operations

tively use a PN-DO, a contextual net and a Petri net without read/write arcs to
model this program, we can get a comparison between them, which are shown in
Figure 3 and Table 3. It is clear that WFD-net needs a smaller space than oth-
ers.

ID Guard ID Guard

t7 g1(y) : y > 0 t8 ¬g1(y) : y <= 0

t9 g2(x) : x > 0 t10 ¬g2(x) : x <= 0

Table 2. Guards over transitions

204 D. Xiang, G. Liu

a) WFD-net b) PN-DO

c) Contextual net d) Petri net without read/write arcs

Figure 3. Different Petri nets for modeling the multi-thread program in Figure 2

Checking Data-Flow Errors Based on GRG of WFD-Net 205

Nodes (Place & Transition) Arcs

WFD-net [22, 26, 30] 36 38
PN-DO [31] 40 64
Contextual net [12] 40 74
Petri net without read/write arcs [2] 40 86

Table 3. The comparison between WFD-net and another Petri nets

a)

b)

Figure 4. a) GRG graph; b) the classical reachability graph

206 D. Xiang, G. Liu

(Weak) Configurations Arcs Time [ms]

RG 261 712 1 001
GRG 66 133 266

Table 4. The result comparison between RG and GRG

Figure 5. Our developed tool

As for the WFD-net in Figure 3 a), we utilize our tool [29] (see Figure 5) to con-
struct its guard-driven reachability graph (GRG) and classical reachability graph
(CRG), which are respectively shown in Figures 4 a) and 4 b). Table 4 gives a com-
parison between them in terms of state space and running time. Obviously, the
former has an advantage over the latter.

Based on the GRG in Figure 4 a), we check the data-flow errors according to
Algorithm 1. Table 5 lists these results. From these results, we can see that there
exist some errors of inconsistent data because t3 and t9 (resp. t10) are concurrent at
the weak-configuration S13 and they satisfy Wr(t3)∩Wr(t9) = {x} (resp. Wr(t3)∩
Wr(t10) = {x}). The transitions t4 and t7 (resp. t8) also suffer from the errors of
inconsistent data. Moreover, t11 (resp. t12) overwrites some data into x at weak-
configurations S+

1 after firing t3, and t13 (resp. t14) overwrites some data into y
at weak-configurations S+

2 after firing t4. Therefore, there are some errors of lost
data.

Checking Data-Flow Errors Based on GRG of WFD-Net 207

Data-Flow Errors Weak-Configurations Illustration

Missing Data – –
Inconsistent Data S13 t3 and t9 (or t10) concurrently

write some data into x
S15 t4 and t7 (or t8) concurrently

write some data into y
Redundant Data – –
Lost Data S+

1 : {S16, S17, S23, S24, S31, S32, t11 (resp. t12) overwrites some
S39, S40, S45–S48, S52, S53, data into x
S57, S58}

S+
2 : {S11, S12, S19, S20, S28, S29, t13 (resp. t14) overwrites some
S37, S38, S45–S48, S54, S55, data into y
S60, S61}

Table 5. The result of checking data-flow errors

5 EXPERIMENTS

We do a set of experiments in order to compare RG- and GRG-based methods for
checking data-flow errors in terms of state space and runtime.

In our experiments, a tool is developed to generate RGs and GRGs of any
bounded WFD-nets. It is based on PIPE (Platform Independent Petri Net Edi-
tor) [6], which is an open source tool of Petri net. Our tool can draw, edit, import
and export a WFD-net.

Our experimental benchmarks are listed as follows:

• KIT 3 is a data set of BPMN 2.0 process models that describes 11 scenarios
(including the business processes BP1 ∼ BP11) with data specifications.

• SystemC, blanc2010race illustrates a SystemC (a modeling language) module.

• AddGlobal, Sinha2010Staged is an example of concurrency bugs when multi-
threads access shared variables.

We utilize a PC with Intel Core i5-2400 CPU (3.10 GHz) and 4.0 GB memory
to do experiments. We first use WFD-nets to model these benchmarks in our tool,
and then respectively obtain their RGs and GRGs.

Based on GRGs, we can check data-flow errors. Table 6 presents the results of
our experiments for all benchmarks. Obviously, the scale of GRG is much smaller
than RG. Meanwhile, our GRG-based method spends less time to produce a GRG
than the RG-based method. Naturally, the former has an advantage over the latter
in terms of checking data-flow errors.

3 http://dbis.ipd.kit.edu/2134.php, von2014detecting

http://dbis.ipd.kit.edu/2134.php

208 D. Xiang, G. Liu

Benchmark
RG GRG

ErrorsNos. of Nos. of Time of Nos. of Nos. of Time of
States Arcs RG States Arcs GRG

BP1 13 13 75.2 12 12 60.8 R

BP2 17 18 70.6 16 16 65.8 R

BP3 21 28 85.2 17 21 73.1 –

BP4 15 14 70.3 15 14 69.4 –

BP5 10 11 67.7 9 9 59.3 R

BP6 23 43 73.3 18 30 62.7 R

BP7 12 13 51.4 11 11 42.6 R

BP8 103 103 318.5 29 28 71.8 –

BP9 16 15 55.5 14 13 49.7 R

BP10 36 40 73.3 30 32 66.0 –

BP11 111 218 1 042.3 29 34 73.2 R

SystemC 33 62 76.6 25 39 62.5 I, L

AddGlobal 50 101 125.1 30 37 72.8 I, L
1 Time: (ms).
2 Errors: “I” denotes inconsistent data, “L” represents lost data, and “R” means redundant data.

Table 6. Experimental results

6 CONCLUSION

Petri net is widely used to check data-flow errors in workflow systems. As a special
kind of Petri net, WFD-net is prominent in the modeling of control- and data-
flows of business processes. Hence, we use a WFD-net to model workflow systems
and its reachability graph to check data-flow errors in this paper. However, the
classical reachability graphs of WFD-nets easily suffer from the problems of state
space explosion and pseudo states. In order to avoid these problems, we propose
a GRG-based method for checking data-flow errors. On one hand, our modeling
method of WFD-net takes a smaller space than contextual net and PN-DO. On the
other hand, our GRG-based method can effectively reduce the state space and avoid
pseudo states in comparison with the classical reachability graph.

In the future work, we plan to do the following studies:

1. we utilize some existing techniques to reduce the scale of GRG, e.g., binary
decision diagram (BDD) [5], abstraction [20] and partial order reduction [7];
and

2. we explore the unfolding-based technique of WFD-net [30] to check data-flow
errors.

Acknowledgements

This paper was supported by Zhejiang Provincial Natural Science Foundation of
China (Grant No. LQ20F020002), and in part by the Key Laboratory of Embedded

Checking Data-Flow Errors Based on GRG of WFD-Net 209

System and Service Computing (Ministry of Education) (Grant No. ESSCKF 2019-
02).

REFERENCES

[1] van der Aalst, W. M. P.—van Hee, K. M.—ter Hofstede, A. H. M.—
Sidorova, N.—Verbeek, H. M. W.—Voorhoeve, M.—Wynn, M. T.: Sound-
ness of Workflow Nets: Classification, Decidability, and Analysis. Formal Aspects of
Computing, Vol. 23, 2011, No. 3, pp. 333–363, doi: 10.1007/s00165-010-0161-4.

[2] Awad, A.—Decker, G.—Lohmann, N.: Diagnosing and Repairing Data Anoma-
lies in Process Models. In: Rinderle-Ma, S., Sadiq, S., Leymann, F. (Eds.): Business
Process Management Workshops (BPM 2009). Springer, Berlin, Heidelberg, Lecture
Notes in Business Information Processing, Vol. 43, 2009, pp. 5–16, doi: 10.1007/978-
3-642-12186-9 2.

[3] Baldan, P.—Bruni, A.—Corradini, A.—König, B.—Rodŕıguez, C.—
Schwoon, S.: Efficient Unfolding of Contextual Petri Nets. Theoretical Computer
Science, Vol. 449, 2012, pp. 2–22, doi: 10.1016/j.tcs.2012.04.046.

[4] Blanc, N.—Kroening, D.: Race Analysis for SystemC Using Model Checking.
ACM Transactions on Design Automation of Electronic Systems (TODAES), Vol. 15,
2010, No. 3, Art. No. 21, doi: 10.1145/1754405.1754406.

[5] Butler, J. T.—Sasao, T.—Matsuura, M.: Average Path Length of Binary Deci-
sion Diagrams. IEEE Transactions on Computers, Vol. 54, 2005, No. 9, pp. 1041–1053,
doi: 10.1109/TC.2005.137.

[6] Dingle, N. J.—Knottenbelt, W. J.—Suto, T.: PIPE2: A Tool for the
Performance Evaluation of Generalised Stochastic Petri Nets. ACM SIGMET-
RICS Performance Evaluation Review, Vol. 36, 2009, No. 4, pp. 34–39, doi:
10.1145/1530873.1530881.

[7] Bokor, P.—Kinder, J.—Serafini, M.—Suri, N.: Supporting Domain-
Specific State Space Reductions Through Local Partial-Order Reduction. 2011 26th

IEEE/ACM International Conference on Automated Software Engineering (ASE
2011). IEEE Computer Society, 2011, pp. 113–122, doi: 10.1109/ASE.2011.6100044.

[8] Guo, X.—Sun, S. X.—Vogel, D.: A Dataflow Perspective for Business Process
Integration. ACM Transactions on Management Information Systems, Vol. 5, 2014,
No. 4, Art. No. 22, 33 pp., doi: 10.1145/2629450.

[9] Huang, J.—Zhang, C.—Dolby, J.: CLAP: Recording Local Executions to
Reproduce Concurrency Failures. ACM SIGPLAN Notices, Vol. 48, 2013, No. 6,
pp. 141–152, doi: 10.1145/2499370.2462167.

[10] Jensen, K.—Kristensen, L. M.: Coloured Petri Nets: Modelling and Vali-
dation of Concurrent Systems. Springer Science and Business Media, 2009, doi:
10.1007/b95112.

[11] Jiang, F.-C.—Hsu, C.-H.—Wang, S.: Logistic Support Architecture with Petri
Net Design in Cloud Environment for Services and Profit Optimization. IEEE
Transactions on Services Computing, Vol. 10, 2017, No. 6, pp. 879–888, doi:
10.1109/TSC.2016.2514506.

https://doi.org/10.1007/s00165-010-0161-4
https://doi.org/10.1007/978-3-642-12186-9_2
https://doi.org/10.1007/978-3-642-12186-9_2
https://doi.org/10.1016/j.tcs.2012.04.046
https://doi.org/10.1145/1754405.1754406
https://doi.org/10.1109/TC.2005.137
https://doi.org/10.1145/1530873.1530881
https://doi.org/10.1109/ASE.2011.6100044
https://doi.org/10.1145/2629450
https://doi.org/10.1145/2499370.2462167
https://doi.org/10.1007/b95112
https://doi.org/10.1109/TSC.2016.2514506

210 D. Xiang, G. Liu

[12] Kähkönen, K.—Heljanko, K.: Testing Programs with Contextual Unfoldings.
ACM Transactions on Embedded Computing Systems (TECS), Vol. 17, 2018, No. 1,
Art. No. 23, doi: 10.1145/2810000.

[13] Kähkönen, K.—Saarikivi, O.—Heljanko, K.: Unfolding Based Automated
Testing of Multithreaded Programs. Automated Software Engineering, Vol. 22, 2015,
No. 4, pp. 475–515, doi: 10.1007/s10515-014-0150-6.

[14] Luan, W.—Qi, L.—Zhao, Z.—Liu, J.—Du, Y.: Logic Petri Net Synthesis for Co-
operative Systems. IEEE Access, Vol. 7, 2019, pp. 161937-161948, doi: 10.1109/AC-
CESS.2019.2950971.

[15] Meda, H. S.—Sen, A. K.—Bagchi, A.: On Detecting Data Flow Errors in Work-
flows. ACM Journal of Data and Information Quality, Vol. 2, 2010, No. 1, Art. No. 4,
31 pp., doi: 10.1145/1805286.1805290.

[16] Montanari, U.—Rossi, F.: Contextual Nets. Acta Informatica, Vol. 32, 1995,
No. 6, pp. 545–596, doi: 10.1007/BF01178907.

[17] Moutinho, F.—Gomes, L.: Asynchronous-Channels within Petri Net-Based GALS
Distributed Embedded Systems Modeling. IEEE Transactions on Industrial Informat-
ics, Vol. 10, 2014, No. 4, pp. 2024–2033, doi: 10.1109/TII.2014.2341933.

[18] Pradhan, A.—Joshi, R. K.: A Taxonomy of Consistency Models in Dynamic Mi-
gration of Business Processes. IEEE Transactions on Services Computing, Vol. 11,
2018, No. 3, pp. 562–579, doi: 10.1109/TSC.2017.2735413.

[19] Sadiq, S.—Orlowska, M.—Sadiq, W.—Foulger, C.: Data Flow and Valida-
tion in Workflow Modelling. Proceedings of the 15th Australasian Database Confer-
ence (ADC ’04), Vol. 27, Australian Computer Society, Inc., 2004, pp. 207–214.

[20] Schlich, B.: Model Checking of Software for Microcontrollers. ACM Transactions
on Embedded Computing Systems, Vol. 9, 2010, No. 4, Art. No. 36, 27 pp., doi:
10.1145/1721695.1721702.

[21] Sharma, D.—Pinjala, S.—Sen, A. K.: Correction of Data-Flow Errors in Work-
flows. Proceedings of the 25th Australasian Conference on Information Systems
(ACIS), 2014, 10 pp.

[22] Sidorova, N.—Stahl, C.—Trčka, N.: Soundness Verification for Concep-
tual Workflow Nets with Data: Early Detection of Errors with the Most Pre-
cision Possible. Information Systems, Vol. 36, 2011, No. 7, pp. 1026–1043, doi:
10.1016/j.is.2011.04.004.

[23] Sinha, N.—Wang, C.: Staged Concurrent Program Analysis. Proceedings of the
Eighteenth ACM SIGSOFT International Symposium on Foundations of Software
Engineering (FSE ’10), 2010, pp. 47–56, doi: 10.1145/1882291.1882301.

[24] Sun, S. X.—Zhao, J. L.—Nunamaker, J. F.—Sheng, O. R. L.: Formulating the
Data-Flow Perspective for Business Process Management. Information Systems Re-
search, Vol. 17, 2006, No. 4, pp. 374–391, doi: 10.1287/isre.1060.0105.

[25] Trcka, N.—van der Aalst, W.—Sidorova, N.: Workflow Completion Patterns.
2009 IEEE International Conference on Automation Science and Engineering (CASE
2009), 2009, pp. 7–12, doi: 10.1109/COASE.2009.5234170.

[26] Trčka, N.—van der Aalst, W. M. P.—Sidorova, N.: Data-Flow Anti-
Patterns: Discovering Data-Flow Errors in Workflows. In: van Eck, P., Gordijn, J.,

https://doi.org/10.1145/2810000
https://doi.org/10.1007/s10515-014-0150-6
https://doi.org/10.1109/ACCESS.2019.2950971
https://doi.org/10.1109/ACCESS.2019.2950971
https://doi.org/10.1145/1805286.1805290
https://doi.org/10.1007/BF01178907
https://doi.org/10.1109/TII.2014.2341933
https://doi.org/10.1109/TSC.2017.2735413
https://doi.org/10.1145/1721695.1721702
https://doi.org/10.1016/j.is.2011.04.004
https://doi.org/10.1145/1882291.1882301
https://doi.org/10.1287/isre.1060.0105
https://doi.org/10.1109/COASE.2009.5234170

Checking Data-Flow Errors Based on GRG of WFD-Net 211

Wieringa, R. (Eds.): Advanced Information Systems Engineering (CAiSE 2009).
Springer, Berlin, Heidelberg, Lecture Notes in Computer Science, Vol. 5565, 2009,
pp. 425–439, doi: 10.1007/978-3-642-02144-2 34.

[27] Varea, M.—Al-Hashimi, B. M.—Cortés, L. A.—Eles, P.—Peng, Z.: Dual
Flow Nets: Modeling the Control/Data-Flow Relation in Embedded Systems. ACM
Transactions on Embedded Computing Systems, Vol. 5, 2006, No. 1, pp. 54–81, doi:
10.1145/1132357.1132360.

[28] Von Stackelberg, S.—Putze, S.—Mülle, J.—Böhm, K.: Detecting Data-
Flow Errors in BPMN 2.0. Open Journal of Information Systems, Vol. 1, 2014, No. 2,
pp. 1–19.

[29] Xiang, D.—Liu, G.—Yan, C.—Jiang, C.: Detecting Data Inconsistency Based
on the Unfolding Technique of Petri Nets. IEEE Transactions on Industrial Informat-
ics, Vol. 13, 2017, No. 6, pp. 2995–3005, doi: 10.1109/TII.2017.2698640.

[30] Xiang, D.—Liu, G.—Yan, C.—Jiang, C.: A Guard-Driven Analysis Approach
of Workflow Net with Data. IEEE Transactions on Services Computing, 2019, doi:
10.1109/TSC.2019.2899086.

[31] Xiang, D.—Liu, G.—Yan, C.—Jiang, C.: Detecting Data-Flow Errors Based on
Petri Nets with Data Operations. IEEE/CAA Journal of Automatica Sinica, Vol. 5,
2018, No. 1, pp. 251–260, doi: 10.1109/JAS.2017.7510766.

[32] Yang, B.—Liu, G.—Xiang, D.—Yan, C.—Jiang, C.: A Heuristic Method
of Detecting Data Inconsistency Based on Petri Nets. 2018 IEEE International
Conference on Systems, Man, and Cybernetics (SMC), 2018, pp. 202–208, doi:
10.1109/SMC.2018.00045.

[33] You, D.—Wang, S.—Seatzu, C.: Verification of Fault-Predictability in Labeled
Petri Nets Using Predictor Graphs. IEEE Transactions on Automatic Control, Vol. 64,
2019, No. 10, pp. 4353–4360, doi: 10.1109/TAC.2019.2897272.

[34] Zou, J.—Liu, X.—Sun, H.—Zeng, J.: Live Instance Migration with Data Con-
sistency in Composite Service Evolution. 2010 6th World Congress on Services, IEEE,
2010, pp. 653–656, doi: 10.1109/SERVICES.2010.76.

https://doi.org/10.1007/978-3-642-02144-2_34
https://doi.org/10.1145/1132357.1132360
https://doi.org/10.1109/TII.2017.2698640
https://doi.org/10.1109/TSC.2019.2899086
https://doi.org/10.1109/JAS.2017.7510766
https://doi.org/10.1109/SMC.2018.00045
https://doi.org/10.1109/TAC.2019.2897272
https://doi.org/10.1109/SERVICES.2010.76

212 D. Xiang, G. Liu

Dongming Xiang received his Ph.D. degree in computer scien-
ce and technology from Tongji University, Shanghai, China, in
2018. He is currently Lecturer with the Department of Com-
puter Science and Technology, Zhejiang Sci-Tech University. His
research interests include model checking, Petri nets, business
process management, and service computing.

Guanjun Liu received his Ph.D. degree in computer software
and theory from Tongji University, Shanghai, China, in 2011. He
was Post-Doctoral Research Fellow with the Singapore Univer-
sity of Technology and Design, Singapore, from 2011 to 2013. He
was Post-Doctoral Research Fellow with the Humboldt Univer-
sity zu Berlin, Germany, from 2013 to 2014, supported by the
Alexander von Humboldt Foundation. He is currently Profes-
sor with the Department of Computer Science and Technology,
Tongji University. He has authored over 80 papers including
15 papers in IEEE/ACM Transactions and one book entitled

Liveness of Petri Nets and Its Application (Tongji University Press, 2017). His research
interests include Petri net theory, model checking, Web service, workflow, discrete event
systems, and information security.

