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Abstract. Along with the rapid development of modern high-tech and the change
of people’s awareness of healthy life, the demand for personal healthcare services is
gradually increasing. The rapid progress of information and communication technol-
ogy and medical and bio technology not only improves personal healthcare services,
but also brings the fact that the human being has entered the era of longevity.
At present, there are many researches focused on various wearable sensing devices
and implant devices and Internet of Things in order to capture personal daily life
health information more conveniently and effectively, and significant results have
been obtained, such as fog computing. To provide personal healthcare services,
the fog and cloud computing is an effective solution for sharing health information.
The health big data analysis model can provide personal health situation reports
on a daily basis, and the gene sequencing can provide hereditary disease prediction.
However, the injury mortality and emergency diseases since long ago caused death
and great pain for the family. And there are no effective rescue methods to save
precious lives and no methods to predict the disease morbidity likelihood. The
purpose of this research is to capture personal daily health information based on
sensors and monitoring emergency situations with the help of fog computing and
mobile applications, and disease prediction based on cloud computing and big data
analysis. Through the comparison of test results it was proved that the proposed
emergency monitoring based on fog and cloud computing and the diseases predic-
tion model based on big data analysis not only gain more of the rescue time than the
traditional emergency treatment method, but they also accumulate lots of different
personal healthcare related experience. The Taian 960 hospital of PLA and the
Yanbian Hospital as IM testbed were joined to provide emergency monitoring tests,
and to ensure the CVD and CVA morbidity likelihood medical big data analysis,
the people around Taian city participated in personal health tests. Through the
project, the five network layers architecture and integrated MAPE-K Model based
EMDPS platform not only made the cooperation between hospitals feasible to deal
with emergency situations, but also the Internet medicine for the disease prediction
was built.

Keywords: EMDPS, DML, PHR, EHR, IoT, fog computing, cloud computing,
APC model

1 INTRODUCTION

Along with the rapid development of high technology and the improvement of per-
sonal healthcare, human beings have entered the era of longevity. However, the
sudden death brings great pain to the family. From the age cohort analysis, the
order of death causes is different. The top three causes of death in the children
(1–14 years old) cohort were IM (injury mortalities), CA (cancer) and congeni-
tal abnormalities, accounting for 74.28 %, in the young adults cohort (15–44 years
old) were IM, CA and CVD (cardiovascular disease), accounting for 75.97 %, in
the middle-adult and aged (over 45 years old) cohort were CVD, CA and CVA
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(cerebral vascular accident), accounting for 88.07 % [1]. Among them, most of CA
and congenital anomaly belong to genetic disease, so the proposed EMDPS (emer-
gency monitoring and diseases prediction service) model focused on the IM, CVD
and CVA emergency situations monitoring and diseases morbidity likelihood ana-
lysis.

At present, despite the continuous development of medical technology and better
rescue services, hospitals cannot accurately predict the DML (disease morbidity
likelihood) and there is no advanced corresponding method for sudden death. In
order to provide emergency forecasting and advanced rescue services the EMDPS
model was proposed, and it is composed of the following modules.
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Figure 1. Revolution trend in China healthcare industry

The first is health information sensing module, the EMDPS model using PHR
(personal health record) formation to capture information and screen emergency
situation. The concept of PHR began to be used in 1978. PHR is personal health
record generated in one’s lifetime, it includes health-related information such as life
log data, diagnostic record and genetic information and so on. Medical institutions
use EMR (electronic medical record) and EHR (electronic health record) terms
similar to PHR. EMR is a record used by a medical institution generated from
medical information.

EHR is a generalized concept shared by multiple medical institutions [2]. The
healthcare industry is developing rapidly, the healthcare technical level was upgraded
from hospital-centered Healthcare 3.0 to current Healthcare 4.0 [3]. The difference
between them is shown in Figure 1. At Healthcare 3.0, patients need to visit many
hospitals and wait for a long time. Under the environment of Healthcare 4.0, the
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mechanism of EHR, PHR and fog and cloud computing based real-time data capture
and delivery method can solve the problems of Healthcare 3.0.

The second is fog computing assisted IoT (Internet of Things) based personal
daily life health information capture and monitoring module. Recently, the main
services using PHR have been extended to diagnostic records, exercise information,
and gene sequencing based application fields. Along with the development of IoT,
linking multiple healthcare devices can collect a variety of personal health infor-
mation, and the integrated applications should provide more services for personal
healthcare [2]. Fog computing has emerged as an active medical service solution
because it contributes to the continuous monitoring of the health of remote patients
and the detection of emergency situations. In addition, fog computing can reduce
latency and communication costs, which is usually a huge problem in cloud com-
puting. Fog computing is used to analyze, classify and share medical information
between users and medical service providers [3]. The IoT based location position
management model that makes use of the captured data resources could ensure
the patient’s personal information security and simplify the management. Even in
emergencies, an efficient IoT healthcare service model can quickly respond using pa-
tient location information, so that hospital staff can locate patients in real time [4].
Subnet generation scheme, which collects and processes healthcare information to
servers, provides a large amount of healthcare information through IoT devices con-
nected by users. By assigning attribute values to the healthcare information sent to
the server, a subnetwork is constructed according to the attribute values, and the
related information between the subnetworks is extracted as seeds, and grouped into
hierarchical structures. The server utilizes the deep operation of grouped medical
information to extract optimized information and improve the observation speed
and accuracy of decision making [5]. For the future Point-of-Care detection model
the different sensing technologies were analyzed in detail, and that provided a path
for the design and development of healthcare point detection device and data acqui-
sition and processing in the future [6]. For the health information safe storage and
accurate analysis, it is needed to transmit a large amount of captured data to the
health cloud platform.

The third is cloud based health information delivery and secure store mod-
ule. The personal healthcare cloud platform is a platform that can browse one’s
own health records ubiquitously and input health information and management
independently. It is also a platform that can safely store and manage personal
and family health information in one’s lifetime. This platform not only provides
a reliable technical basis for the capture and utilization of personal health infor-
mation, but also provides a reliable experimental environment for the realization
of precision medicine. A novel architecture for mobile group and cloud comput-
ing for healthcare could reduce costs, improve efficiency and reduce errors. At
the same time, it could provide better consumer care and services for patients in
the field of healthcare information to make them have universal transparency [7].
Cloud-MHMS (Cloud-based M-Health Monitoring System) puts the forward frame-
work, which is used to achieve universal health information monitoring [8]. In
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terms of storage management, data analysis and data security management of
health information, there are advanced management models and algorithms pro-
posed [9, 10].

The fourth is health big data analysis based emergency monitoring and disease
prediction module. Personal healthcare platform as a new medical service tech-
nology or application tool not only improves the accuracy of diagnosis and disease
prediction, but it is also improving the quality of life. Many data analysis methods
have been applied in the field of disease prediction [11, 12]. Among them, the APC
(Age Period Cohort) model and ANN (Artificial Neural Network) based disease pre-
diction has made remarkable achievements. The APC model based on age, period
and cohort analysis needs fewer original data attributes in disease prediction, but
it better reflects the trend of health status than other models. The proposed APC
model establishes a prospective cohort model by analyzing the three impact factors
of test result for the DML prediction.

The last one is health situation visualization and rescue service module. It is
the purpose of the research that captures personal health information in real time
and provides healthcare services according to a personal health situation. The MPR
(medication possession ratio) monitoring application is a supervisor medication re-
lated decision making method to enhance the analysis function of personal health
records [13, 14], and it is a good reference for our research. In order to provide a per-
sonal healthcare more quickly, effectively and accurately, a personal health situation
visualization EMS (Emergency Monitoring Services) and DPS (Disease Prediction
Services) applications were proposed.

2 THE EMDPS NETWORK ARCHITECTURE

The fog and cloud computing assisted IoT architecture is a network scenario where
everything is connected and uniquely identified over the global information and com-
munication infrastructure [15]. The traditional IoT architectures can be decomposed
into three layers, as shown in Figure 2.

Figure 2. IoT-based remote patient monitoring
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Figure 2. IoT-based system for a remote patient monitoring

The first layer is sensor, it is used for health information capture and delivery.
The second layer is gateway, for the health information monitoring, it only acts as
a relay between sensor and cloud. Gateway provides continuous, conventional and
safe communication services with sensors using different network protocols such as
Wi-Fi, ZigBee, and Bluetooth. The third layer is cloud, a broad health big data
analysis, it safely stores amount of personal daily health sensory data and accurately
predicts diseases morbidity likelihood. The latency is critical impact factor of IoT
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network performance and the case core network was added in Cisco fog and IoT
distributed architecture, as shown in Figure 3. The core network could provide paths
to carry and transfer data and network information between numerous subnetworks
and protect against network threats [16].

Figure 2. IoT-based remote patient monitoring
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Figure 3. Cisco fog and IoT distributed architecture

Considering the impact factor of network latency in emergency situations and
information feedback from the rescue service center, the mobile edge network layer
is added to the proposed EMDP architecture, as shown in Figure 4.

Figure 4. The Proposed EMDPS Networking Architecture
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Figure 4. The proposed EMDPS network architecture

The EMDP architecture consists of four layers. The emergency ubiquitously
monitoring finds a way in the fog network layer, the diseases morbidity likelihood is
analyzed in the cloud network layer, and the mobile edge network layer is an actuator
which provides the service feedback to the fog and cloud network layer.
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2.1 Sensor Network Layer

The sensor device focused on arrhythmia detection for the IM, CVD and CVA
emergency situations monitoring in the EMDP model, and PHR related information
from the personal daily health information was captured by additional devices such
as smart watch and flexible and stretchable physical sensors. Recently, flexible
and stretchable physical sensors such as temperature, pressure, and strain sensors
that can measure and quantify electrical signals generated by human activities are
attracting a great deal of attention as they have unique characteristics [17]. There
are ECG (Electrocardiogram) [18], RESP (Respiration), and NIBP (Non-Invasive
Blood Pressure), SPO2 (Surplus Pulse O2) could be detected using smart and less
smart sensor devices [19].

2.2 Fog Network Layer

Using the fog network core character of low latency and location awareness, the
very large number of fog nodes could receive emergency information in real time,
wireless, and heterogeneous ways from the sensor network layer and send it to the
mobile edge network layer [21, 22, 23]. In this way, EMDPS model could save a lot
of time to deal with emergency situations. For disease prediction, the fog layer sends
periodic PHR to the cloud network layer using a standardized data format.

2.3 Core Network Layer

The core network is similar like in traditional networks and provides paths to carry
and transfer data and network information between numerous subnetworks. The
traffic profile is the critical variation between IoT and traditional core network lay-
ers [16]. The core network layer not only provides the best network from fog to
cloud network layer but also provides QoS and data transmission security for the
EMDPS model.

2.4 Cloud Network Layer

The main task of the cloud network is to receive the PHR from fog network and
the EHR from the medical institutions, and store it safely in a standardized form
and manage it. The cloud based PHR platform configuration was proposed in the
previous research and offered the way how to provide healthcare services for aged
cohort [23, 9, 10]. In order to ensure a more efficient transmission and network
architecture the customized architecture [24], a novel architecture [7] and fine grained
access architecture [25] for the cloud network were referenced for the EMDPS cloud
network design. For the disease prediction, the APC (Age Period Cohort) model
based health big data analysis services were provided in this layer.
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2.5 Mobile Edge Network Layer

Recently, many mobile applications for the personal healthcare have appeared on
the market. The IoT application healthcare system [26], a distributed movement
prediction scheme [27] and the mobile phone based blood glucose management sys-
tem [28, 8] were researched for our mobile application services.

At the emergency situation, the mobile edge network layer analyses received
monitoring results from the fog network layer and delivers it to the family members,
neighborhood service center and special mobile vehicle service center and nearby
hospitals. Whenever received any acknowledgement from these service centers, the
mobile application sends a feedback to the user and fog network layer as soon as
possible.

Normally, it will receive periodical PHR and EHR analysis result from the cloud
and provide health visualization service for the users. Because of the high morbidity
likelihood of diseases such as CVD and CVA, it will send the related analysis reports
and notify on the health situation the user medical institutions and family members.
When any request from the user healthcare supporter is received, it sends a feedback
to the cloud platform for the deep analysis and it decides on the further healthcare
service.

3 THE EMDPS PLATFROM ARCHITECTURE

The IBM’s MAPE-K model is an alternative computing model that provides auto-
mated management components for computational units and specifies system be-
haviors. The MAPE-K (Monitor-Analysis-Plan-Execute plus Knowledge) model is
specified on the level of four different computing components: Monitor, Analyze,
Plan, and Execute with the access to a partially or fully shared knowledge base, as
shown in Figure 5. The Monitor captures health information from sensors, and it is
the closest to the sensor devices, also it can determine events attributes [29]. The
Analyze selects the data formation and analysis model. The Plan is in charge of
selecting or generating a procedure for the system. The Execute provides necessary
changes in the system and determines the behavior of the system [30].

Sensor Actuator

Figure 5. IBM’s MAPE-K Model
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Analyze Plan

ExecuteMonitor

Sensor Actuator

Figure 6. HICH Enhanced MAPE-K Model
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System
Management

Analyze Plan

ExecuteMonitor

Figure 5. IBM’s MAPE-K model

To fulfill the desired closed-loop behavior for resource management, the en-
hanced MAPE-K model was proposed in HICH (Hierarchical Fog-Assisted Com-
puting Architecture for Healthcare IoT) [15], in which a new component System
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Management is integrated. The four MAPE-K components are enabled with feed-
back in the model. The feedback is received from Execute, System Management is
used to periodically tune the computing components with respect to the inputs and
the computations in the model, as shown in Figure 6.

Sensor Actuator

Figure 5. IBM’s MAPE-K Model
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Figure 6. HICH Enhanced MAPE-K Model

Knowledge

System
Management

Analyze Plan

ExecuteMonitor

Figure 6. The HICH enhanced MAPE-K model

To efficiently deal with emergencies the mobile edge network layer was added to
the EMDPS architecture. According to the characteristics of the proposed EMDPS
architecture, the MAPE-K model was proposed, also based on the HICH model,
integrating the Analyze separated by fog and cloud layer, and EMS and DPS as
the Plan. As the result, it not only retains the MAPE-K model original function
but also implements the HICH model system management function. Focused on the
emergencies and network latency, the EMDPS model using distributed computing
method replaced the original Plan components using EMS and DPS, as shown in
Figure 7.
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Figure 7. The EMS and DPS Integrated MAPE-K Model
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Figure 7. The EMDPS integrated MAPE-K model

3.1 EMDPS Platform Architecture

The proposed EMDPS platform is designed to provide a personal health care and
related medical services. The service users are divided into three different groups.
The main user group includes people and patients who want to receive their personal
health care through the platform. The second user group is the family members and
the personal health manager. The third user group represents medical institutions,
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healthcare centers and emergency response service providers. All the platform users
are connected and communicate through the web site and mobile applications.

The main user group are people who use the personal smart devices to detect
physical fitness and healthy ingredients, such as BPG (Blood Pressure Gauge), BGM
(Blood Glucose Meter), and so on. And these personal health information will be
sent to the gateway server of the residence community health care center. The
EMDPS platform partitions the health data analytics into two parts: the emergency
data analysis running on fog nodes and PHR based diseases prediction analysis in
the cloud.

The EMDPS platform provides EMS and DPS on mobile edge node and the
knowledge is distributed to different layers. The EMDPS deploys EMS and DPS
closed System Management base of emergency situations. The preselection could
be determined according to the emergency monitoring parameters. The EMDPS
Platform can be used to different resource system management, although the focus
is on the network traffic management to efficiently deal with a personal health
emergency situation and accuracy prediction of diseases morbidity likelihood, as
shown in Figure 8.
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Figure 8. The Proposed EMDPS Platform ConfigurationFigure 8. The proposed EMDPS platform configuration

In order to solve the problem of the network delay, the EMDPS platform uses
the proposed five-layer network architecture. To deal with EM and DP situations
correctly, the EMDPS platform uses integrated MAPE-K model.

3.2 Emergency Monitoring Method

The sensors could periodically capture personal health information and transmit
the monitoring report to the gateway (fog layer), see the report format in Table 1.
There are two types of monitoring reports from the Monitor component, the one is



Fog and Cloud Computing Assisted IoT Model Based EMDPS 15

emergency and the other is PHR. When it is an emergency, the emergency report
with blood pressure, location and remarks will be sent to the fog node as soon as
possible.

Manual Situation Systolic Pressure Remarks

Emergency PHR High Normal, Low IM Diseases
1 0 1 0 1 0

Diastolic Pressure Location Family

Low Normal, High System Located Personal Located Contact None
Monitor

1 0 1 0 1 0

Table 1. Emergency report on sensor layer monitor

As soon as the fog receives the emergency report from the sensor layer, it will
analyze the personal information mapping to the captured report information and
send EMS as a plan to the mobile edge layer for the user, the report format is
presented in Table 2. There are several previous researches for the fog computing
and health data analysis [31], for the goal of an efficient emergency monitoring report
and accuracy service, which defined several critical factors for the rescue.

Manual Situation Blood Pressure Location

Emergency Systolic Diastolic None Map Add
1 sy di null ad

Age Gender EMS
Age None Male Female Others FM HEC VSC

Analyze

ag Null 1 0 null null null null

Table 2. Emergency report on fog layer analysis

In the emergency situation, EM method uses five impact factors for the res-
cue. The first is blood pressure, it will determine the user health situations of IM
or disease. The second is gender, the third is age. The range of normal blood
pressure varies according to sex and age factor and all the information could be
helpful for rescue service. The fourth is user location information, it will be send
to the service center in real time and used to contact rescue service staff and family
member. The last one is EMS, it will contact FM (family member), HEC (hospi-
tal emergency center) and VS (vehicle service center) such as DIDI vehicle service
center. The emergency monitoring report will also send system feedback to the
cloud for the continuous rescue service and EMS mapping with platform PHR and
EHR.

3.3 Disease Prediction Method

It is difficult to share personal EHR from the medical institutions, so the daily
personal health information collected by EMDPS platform and medical reports col-
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lected by medical research institutes are used as data sources for disease prediction
test. The DPS focus on CVD and CVD morbidity likelihood prediction in this re-
search to prevent sudden death from the diseases. In order to better share personal
health information and easy to exchange utilization, the standardized PHR model is
proposed based on general PHR, hospital EHR and medical reports; see the report
format in Table 3.

Manual Situation Gender Age Temperature Puls Rate
Analyze PHR Null Null Null Null

0 (Times/M)
Height Weight BMI Blood Pressure Respiratory Rate

Null Null Null sy di Null
General

(cm) (kg) (Kg/m2) Null Null (Times/Min)
Physical Training Eating

1. Daily, 1. Balanced,
2. More than Once a Week, 2. Buckwheat,
3. Occasionally, 3. Vegetarian,
4. No Exercise. 4. Halophilic,

5. Oil Loving,
6. Sugar Tolerance.

Smoking Drinking
1. Never, 1. Never,
2. Quit, 2. Occasionally,
3. Smoking. 3. Often,

Habits

4. Daily.
CVD Heart Disease

1. None, 1. None,
2. Ischemic Stroke, 2. Myocardial Infarction,
3. Cerebral Hemorrhage, 3. Angina Pectoris,
4. Subarachnoid Hemorrhage, 4. Revascularization of Coronary Artery,
5. Transient Ischemic Attack, 5. Congestive Heart Failure,
6. Others. 6. Anterior Cardiac Pain, 7. Others.

CVA Others
1. None, 2. Dissecting Aneurysms, Null

Diseases

3. Arterial Occlusive Diseases, 4. Others.
Personal Medical History

Cases Cause of Null
of Treatment Family Medical History

Cause of Null
Table format based on National Standards for Basic Public Health Services (Third Edition).
National Health and Family Planning Commission, Feb 2017.

Table 3. Disease prediction report on cloud analysis

The APC (Age Period Cohort) is a generalized model proposed in 1939. It has
three impact factors: age, period and cohort. The age factor impacts the results
with the personal physiological changes and the accumulation of social experiences or
social status changes. The period has impact on the result considering the lifetime
and living surrounding. The cohort changes result from the cross-impact of the
personal experience and social layer.

However, the APC model is a generalized linear model. There is a complete
linear relationship between age and period and cohort variables, the period equals
sum of the age and cohort value. The model design matrix is a singular matrix
with non-full rank. The matrix is irreversible, so the unique solution of model
parameters cannot be obtained. Therefore, as there is an “unrecognizable problem”,
a large number of parameter estimates exist. The method has been proposed [32],
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in which IE (intrinsic estimator) proposed by Fu does not need prior information
assumptions, and it is close to the results of traditional generalized linear model.
The endogenous factor estimator is convergent and unique, which is suitable for
APC model parameter estimation [33].

The APC model based on time series can achieve the goal of disease predic-
tion through the coefficients of each cohort. The basic form of the APC model is
Formula (1).

ln[E(rijk)] = ln(Θijk/Nijk) = υ + αi + θj + γk + εijk (1)

where E(rijk) is the expected value of disease morbidity likelihood for the age co-
hort (i), the period (j) and the birth cohort (k), the Θijk represents the expected
value of disease morbidity likelihood for the i age cohort observed in the j period,
and Nijk represents the population in the corresponding age, period and birth co-
hort. The υ is the intercept of the regression model, the αi is the impact of the ith

age cohort, the θj is the impact of the jth period, the γk is the impact of the kth

cohort and the εijk is the random error.
The proposed disease prediction uses the IE integrated APC model and the

7 284 males’ and 8 593 females’ physical examination reports as the test sample
data. In the test result, the CVA and CVD were marked as “2”, and normal as “1”.
The whole test was carried out with STATA 15, and the final results are shown in
Table 4.

In the Age cohort, both men and women have a tendency to increase the
risk of disease with age, but women may suffer from CVA and CVD earlier than
men, which is related to the fact that women are more likely to suffer from hy-
pertension and other diseases. Overall, Age growth has a significant impact on
the DML. In the Period cohort, we can see the DML downward trend, which
means the personal healthcare service and the people’s awareness of health is grow-
ing.

In the birth cohort, we see a more complex result. It means that the male’s DML
shows a growth trend, on the contrary, there is a downward trend regarding females.
The results are closely related to the personal lifestyle, bad habits such as smoking
and drinking can lead to diseases, females pay more attention to health. Despite of
that a higher CVA and CVD morbidity likelihood was noticed. According to the
PHR analysis, the CVA and CVD morbidity likelihood was obtained. The proposed
APC model is more suitable for personal disease prediction, but even having the
insufficient sample data will lead to prediction accuracy.

The traditional APC model can predict disease through the age, period and
birth cohort. It is observed from the data set that the smoking and drinking is the
influence factor causing CVA and CVD.

For the test, 500 male and 100 female data were selected from the source data.
Each group of data consists of two different user data of the same age, period and
birth, but one of them is smoking or drinking. Calculate the ln[E(rijk)] of each data
according to Formula (1), and then take the ln[E(rijk)] difference of two different
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Male Female
Cohort

Coef. OIM Std.Err. Coef. OIM Std.Err.

Age 40 −0.03007 0.06761 −0.04307 0.07887

Age 45 −0.02556 0.05431 −0.01834 0.05186

Age 50 −0.04382 0.05478 −0.04237 0.05198

Age 55 −0.0494 0.04889 −0.04465 0.05058*

Age 60 −0.05107 0.03423 0.00053 0.03582

Age 65 −0.0458** 0.02369 0.00703 0.0257*

Age 70 0.02934* 0.01697 0.015703 0.01706

Age 75 0.033*** 0.0165 0.01408 0.01402

Age 80 0.04023* 0.02303 0.01339 0.019***

Age 85 0.091*** 0.03575 0.02566 0.03144

Period 2005 0.028*** 0.01247 0.01473 0.0127

Period 2010 −0.00376 0.00604 −0.00692 0.00538

Period 2015 −0.018*** 0.01254 −0.015*** 0.01234

Birth 1925 −0.01836 0.04652 0.00896 0.0464

Birth 1930 −0.03144 0.02871 0.02014 0.02917

Birth 1935 −0.03102 0.0194 0.01277 0.02001

Birth 1940 −0.0104 0.0177 0.0109 0.0181

Birth 1945 0.00385 0.02324 0.00641 0.02345

Birth 1950 0.03012 0.03204 −0.0296 0.03218

Birth 1955 0.0289 0.41947 −0.048*** 0.04226

Birth 1960 0.01233 0.05335 −0.01994 0.05121

Birth 1965 0.123*** 0.0585 −0.00241 0.05694

Birth 1970 0.1084** 0.05547 −0.066*** 0.05755

Birth 1975 0.256*** 0.10157 0.02922 0.0662

Birth 1980 0.22342 0.12878 0.07748 0.06619

(*** p < 0.0001; ** p < 0.001; * p < 0.05; OIM.std.err:
The square root of Coef’s variance.
The Coef’s calculates based on the observed information matrix
in the maximum likelihood estimation.)

Table 4. Disease prediction report on cloud analysis

user data in each cohort, and adjust the effect of these factors on the results using
the Formula (2).

εijk =
n∑
1

(ln[EA(rijk)] − ln[EB(rijk)])/n (2)

where εijk is the impact value of smoking on the results,
∑n

1 (ln[EA(rijk)]
− ln[EB(rijk)]) is the result of different habit of n groups in the same period, age
and cohort, and n is the total number of groups. The impact value of drinking on
the result can be calculated in the same way.
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The influence of single factor (smoking or drinking) and multiple factors (drink-
ing and smoking) to the test result is not simply cumulative outcome. In this case,
we selected 200 male and 100 female groups sample data for the test. The influence
of smoking using Formula (3) and the influence of drinking using Formula (4) also
the multiple factors using Formula (5). The influence of smoking and drinking on
diseases is shown in Table 5.

lnsmoke = ln(θijk/Nijk) = υ + αi + θj + γk + εsmoke, (3)

lndrink = ln(θijk/Nijk) = υ + αi + θj + γk + εdrink, (4)

lns+d = ln(θijk/Nijk) = υ + αi + θj + γk + εs+d. (5)

Male Female
Habit

Coef. OIM Std. Err. Coef. OIM Std. Err.

Smoke 0.10369 0.06192 0.12469 0.06197

Drink 0.09635 0.07362 0.10394 0.10377

Smoke + Drink 0.13681 0.09684 0.14332 0.08251

Table 5. The influence of smoking and drinking on diseases

Different prediction models can be selected by classifying the user data, but the
accuracy has not been improved as expected after adding the intercept influence
factors. The less control data groups of the same period, age and cohort cause the
inaccuracy of the result simulation. At the same time, the lack of the number of
women smoking and drinking control groups and the disproportion with men lead
to the inaccuracy of the result. Today, the number of women smoking and drinking
control groups is not enough.

4 EMPDS PERSONAL HEALTCARE SERVICES

The implemented healthcare services based on proposed EMDPS model are shown
in Figure 9.

The EMDPS platform consists of two main services.
The one is the emergency monitoring service. In order to provide this service,

the management service node has been setup in the campus big data center and
hospital data center, and also the residential community center.

At first, wearable devices collect users’ health information and the detected
information will be automatically stored in the mobile by personal health care ap-
plication. The application will intelligently judge the collected health information.
Such as blood pressure, it will judge systolic blood pressure and diastolic blood pres-
sure checking whether the measured values are in the normal range. If the blood
pressure passes beyond the standard value reaching the hazard value then the ap-
plication will trigger the emergency and sends the analyze request to the service
node.
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Secondly, when the fog service node receives EMS service it will send an EMS
report to the medical institutes and a family member and also to a special vehicle
service center.

At last, when the service center confirms the information, they will respond to
the fog service node and request the stored user’s personal health information and
corresponding scheme from the cloud node.

The other one is the diseases prediction service. Because a large amount of
a personal health information is collected every day and personal network conditions
are different, it needs the support of cloud computing to safely store and analyze
the daily health big data.

At first, the fog node analyzes the users’ health information and if there is none
emergency the collected data is sent to the cloud platform. Secondly, the collected
personal daily health information will be modified to a standardized format and
encrypted stored in the cloud storage. Finally, the results of APC based disease
prediction model analysis will be sent to related medical institutions and to a per-
sonal user.

5 TEST RESULT COMPARISON

The EMS focuses on rescue time reduction, and the DPS is focused on diseases
accurate prediction and effective personal healthcare services. So the test results
are compared with the traditional services regarding the time of the rescue service
and modified healthcare services.
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5.1 Emergency Monitoring Test Results

The emergency treatment service is analyzed in the following four steps. At first, it
is emergency detection. The second step is a call for help to medical institutes and
contacting a family member, and also a special healthcare vehicle service. The third
step is transportation by the ambulance to the hospital. The last step is preparation
of the rescue. The statistical results of the time spent in the whole process are shown
in Table 6.

In this test, the distance between CVD patient and hospital was five kilometers
and when systolic blood pressure is higher than the standard value by 10 points or
diastolic blood pressure is lower than the standard value by 10 points the emergency
situation will be triggered.

Emergency Treatment Traditional Rescue Service EMS Based Rescue Service
>= 1 <= 30

Emergency Detection Seek help
minutes

Sensors
Seconds

1. Call 120 first aid >= 1 <= 30
2. Contact family members minutes seconds
3. Special vehicle service <= 60

Call for Help
No service

Fog System

seconds
>= 30 Mobile APP, <= 18

Moving (5 km) Round Trip Delay
minutes Nearly One Way Delay minutes
>= 3

Preparation of Rescue Situation analysis
minutes

Fog System Gear up

Total Nearly 35 minutes Hardly 19 minutes

Table 6. Comparative analysis of rescue service time

5.2 PHR and EHR Based Healthcare Services

The structure of ontology based cohort DB was provided for the PHR and EHR
services [34], and the smart sensor and mobile device based PHR general services
and medical institutions providing EHR extended services are proposed, as shown
in Figure 10. In this case the additional healthcare services can provide an effective
emergency monitoring and diseases prediction services about a personal daily life
for medical institutes.

6 CONCLUSIONS

The goal of this research is the cross-application of the advanced information and
communication technology and medical technology to provide EMS and DPS, and
use these services to reduce the sudden mortality rate.

The proposed EMDPS platform embodies three aspects of the technological
advantages. The first one is the network service, the fog computing layer in the
proposed network architecture can solve network latency problem, and the core layer
provides advanced data security and delivery service, and the mobile edge computing
layer provides real-time healthcare services at hand. The second one is the proposed
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Figure 10. The PHR and EHR based Healthcare Services
Figure 10. The PHR and EHR based healthcare services

EMDPS platform architecture, it is focused on the EM and DP services based on
EMDPS integrated MAPE-K model. From the EM method, DP method, the plan
management and the system management the platform has greatly advanced. The
last one is mobile EMDP service model, it can provide real-time healthcare services
ubiquitously.

Although the proposed EMDPS is a scientific platform advanced in specific
services, still more detailed and deep research is needed to achieve the accurate
disease prediction and prevention. Hence, the goal of the extended future research
is to develop a biotechnology integrated healthcare platform to get closer to the
precision medicine.
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