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Abstract. Energy consumption is an important cost driven by growth of computing
power, thereby energy conservation has become one of the major problems faced
by cloud system. How to maximize the utilization of physical machines, reduce
the number of virtual machine migrations, and maintain load balance under the
constraints of physical machine resource thresholds that is the effective way to
implement energy saving in data center. In the paper, we propose a multi-objective
physical model for virtual machine deployment. Then the improved multi-objective
particle swarm optimization (TPSO) is applied to virtual machine deployment.
Compared to other algorithms, the algorithm has better ergodicity into the initial
stage, improves the optimization precision and optimization efficiency of the particle
swarm. The experimental results based on CloudSim simulation platform show
that the algorithm is effective at improving physical machine resource utilization,
reducing resource waste, and improving system load balance.

Keywords: Cloud computing, Pareto optimal solution, particle swarm optimiza-
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1 INTRODUCTION

Cloud computing is a distributed computing model that provides available, conve-
nient and on-demand network access to shared resource pools (such as facilities, ap-
plications, storage devices, etc.). Resources as a service is a primary form of cloud
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computing, mainly divided into infrastructure, platform and software. Through
cloud computing, consumers can use or uninstall resources anytime, anywhere, which
improves service quality and reduces operation costs.

The cloud data center uses the virtualization technology to construct computing
resources, storage resources and network resources into a dynamic virtual resource
pool. It uses virtual resource management technology to realize automatic deploy-
ment, dynamic expansion and on-demand allocation of cloud computing resources.
Generalized virtualization includes virtual memory, virtual machines, storage vir-
tualization, etc. We focus on virtualization of physical machines in this paper. As
the number of cloud users increases, more virtual machine requests are added, what
increases the pressure on physical machines. Thus cloud data center requires an
effective virtual machine deployment strategy. The deployment problem is proved
to be a non-deterministic polynomial problem, which meant we cannot find a pre-
cise solution. But with the help of some intelligent algorithms, some sub-optimal
solutions could be found [26].

Kennedy and Eberhart developed Particle Swarm Optimization (PSO), which
is considered a new swarm intelligence and evolutionary algorithm [7]. It has the
advantages of fast search speed, simple implementation, high efficiency and so on,
which has attracted the attention of the academic community. It shows its ascen-
dancy in solving practical problems. However, swarm intelligence algorithms, such
as ant colony algorithm, differential evolutionary algorithm, genetic algorithm have
the problem of local optimization.

Existing virtual machine deployment strategies only consider resource utiliza-
tion or virtual machine migration, and ignore the impact of load balancing on sys-
tem performance. In the paper, we proposed an improved multi-objective particle
swarm optimization algorithm (TPSO). The algorithm introduces chaotic strategy
into the initial stage of the iterative process, thus the particle swarm distribu-
tion has better ergodicity and uniformity. In the medium term, random group-
ing strategy is used as the core process of the algorithm. Clustering is applied
later, which increases the fineness of the end of the search and ensures convergence
normally. Multi-objective selection in the updating process of particle swarm al-
gorithm is a representative problem. Most of them add weight to the objective
function and convert it into a single objective function. We set three objective
functions, and seek the optimal solution of the algorithm by Technique for Order
Preference by Similarity to an Ideal Solution method (TOPSIS). To improve physi-
cal machine resource utilization and save cloud system energy consumption, we ap-
ply the improved algorithm to virtual machine deployment, take physical machine
resource utilization, virtual machine migration and load balance as the objective
functions.

The rest of the paper is organized as follows. Section [2] discusses related work.
Section [3] gives the resource waste model. Section [4] gives the improved algorithm
design. The experiments and results are discussed in Section [5, and the Section [g]
summarizes our work.
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2 RELATED WORK

In recent years, PSO has become a focus of researchers due to its simple structure,
few parameters and easy implementation of code, especially in image recognition,
path planning and artificial intelligence. The theoretical research of this algorithm
is mainly divided into two categories. The first category focuses on the topolog-
ical structure, parameter optimization and population diversity of the algorithm.
The second category mainly includes the combination of the algorithm and other
intelligent algorithms.

Particle swarm optimization has performed advantages in solving practical prob-
lems and has a great development value and development space. However, due to
the quick loss of diversity, it tends to fall into local optima. In order to enhance the
performance of particle swarm, Wang et al. [23] proposed DNSPSO based on the
enhanced diversity and neighborhood search, but the neighborhood radius may af-
fect the effectiveness of the neighborhood search. For the traditional linear learning
strategy, Zhao et al. [3T] proposed a new position storage mechanism. The algorithm
efficiently and quickly seeks high-quality solutions. To avoid premature convergence
of the algorithm, Wang et al. [24] presented GOPSO by speeding up convergence
and escaping local optimization, but generalized opposition-based learning performs
badly on shifted and large scale problems. Cho et al. [I] presented a novel multi-
modal optimization algorithm, which used deterministic sampling to produce new
particles during the optimization process. This paper did not address the case in
which there are more local optima than could possibly be detected. In PSO, differ-
ent inertia weight strategies can influence the performance of algorithm. Nickabadi
et al. [I3] summarized various inertial weight strategies and proposed a new adap-
tive inertia weight strategy based on the success rate of the particles. In order
to improve the search efficiency in the complex problem spaces, Zhan et al. [29]
proposed an orthogonal learning method (OL). Through orthogonal experimental
design, the particle swarm can discover more useful information that exists in the
best experience of history and the best experience of neighbors. Based on perturb-
ing global best strategy, Zhao et al. [33] proposed an modified discrete immune
optimization algorithm. Zhao et al. [32] guided the search strategy with multi-
group information communication and sharing mechanism and multi-stage global
disturbance in their paper, they considered the population diversity and selection
pressure simultaneously. In the second category, classic intelligent algorithms in-
clude ant colony algorithm, genetic algorithm, and differential evolutionary algo-
rithm [3, @, 211 [16].

Virtual machine deployment is the process of assigning virtual machines to phys-
ical machines by the allocation strategy. Since the cloud infrastructure is completely
virtual, the deployment of virtual machines becomes a core issue for cloud systems.
To this end, a lot of research has been done on optimizing the deployment of virtual
machines. Works [8], 28, 30, 2] focused on virtual machine deployment through par-
ticle swarm optimization, most of them focused on one or two optimization goals.
Wilcox et al. [27] and Nguyen et al. [I7] mainly took into account two goals based on
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the genetic algorithm. Maurer et al. [I2] proposed a VM deployment algorithm that
used heuristic packing algorithms and forecasting techniques, they achieved the min-
imum number of physical machines and ensured a certain amount of service-level
agreement. For reducing the unnecessary migrations, Sato et al. [I8] used Auto
Regressive Model to predict virtual machine usage, but it must be evaluated on
the servers that the VMs are deployed on. For some performance bottlenecks with
MapReduce, Shabeera and Madhu Kumar [20] and Li et al. [9] optimized MapRe-
duce performance under the specified constraints. Wang et al. [25] balanced power
consumption and quality of service by controlling the number of servers and virtual
machine time sharing. Based on considering VM placement and data placement
simultaneously, Shabeera et al. [I9] proposed a meta-heuristic algorithm using ant
colony algorithm. Song et al. [22] saved data center energy by effectively utilizing
resource fragments, but they inevitably increased the number of VM migrations to
further categorize the different intervals. Pang et al. [I5] proposed a task-oriented
resource allocation method based on ACO, it can reduce the power consumption
of data center effectively on the premise of performance guarantee. Ma et al. [T1]
optimized time and power based on Genetic Algorithm, but the encoding process
is complicated and the search speed is slow. Through estimation of distribution
algorithm and genetic algorithm, Pang et al. [T4] developed an EDA-GA hybrid
scheduling algorithm, however, this paper does not consider the dynamics and un-
certainty of the cloud computing environment. For example, the computing speed
of virtual machines changes in real time.

3 RESOURCE WASTE MODEL
3.1 Problem Description

In the paper, we proposed a virtual machine deployment scheme based on particle
swarm optimization. The scheme reduces the energy consumption of the cloud sys-
tem by rationally deploying virtual machines. In the cloud system, virtual machines
are divided into the deployed virtual machines and the newly requested virtual ma-
chines. The VM deployment framework is shown in Figure [T}

The virtual machine deployment solution proposed in this paper monitors the re-
source state of physical machines, including CPU, memory, and network bandwidth.
Suppose we set n physical machines in the cloud environment. The threshold of the
physical machine (PM) is represented by the triplet as R; = {RS, R}, RF}, where
ch represents the CPU threshold, Rj-‘/[ represents the memory threshold, Rf rep-
resents the bandwidth threshold. There are m virtual machines. Virtual machine
(VM) requirements are represented by the triplet as V; = {Vjc, VjM , VjB }, where Vjc
represents the CPU requirement, VjM represents the memory requirement, VjB rep-
resents the bandwidth requirement. m = m, + mg, m, and m, indicate the number
of newly requested virtual machines and deployed virtual machines, respectively.
The matrix represents the deployment of the virtual machine. Each term in the
matrix x;; is 0 or 1. If z;; = 1, representing the i*" VM is deployed on the j* PM.
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Cloud System

Figure 1. Deployment framework for VMs

If z;; = 0, it is not deployed there. The matrix is expressed as follows:

T1 T12 T1n
T2 T22 Ton

(1)
Tml Tm2--- Tmn

3.2 Objective Functions and Constraint Functions

The objective functions are as follows:
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The constraint functions are as follows:

Zl’ij =1, (5)
=1

Z‘/jc X Tij < R]C, (6)
i=1
> VM xay; < R (7)
i=1

i=1

Equation (2]) represents virtual machine utilization. Equation represents
the number of migrations of the virtual machine. Equation @ represents the load
imbalance, where C\sc, Myse, and B, represent the average utilization of the system
CPU, memory, and bandwidth, respectively. Correspondingly, Cjyse;, Mjyse and
Bjuse respectively represent the CPU, memory and bandwidth utilization of the ;™
physical machine. Equation (5)) means that the same VM can only be deployed
on one PM. Equations @, @, indicate that the resource requirements (CPU,
memory and bandwidth) of virtual machines on the same physical machine do not
exceed its corresponding threshold.

3.3 Chaos Strategy

Chaos is a motion system synthesized when both the deterministic and random com-
ponents of the system are clearly present, and it is a contradictory unity that exists
objectively. Chaos optimization algorithm is a search algorithm that transforms
variables from chaotic space to solution space. The algorithm has the advantages of
global asymptotic convergence, easy to escape the local optimum, and fast conver-
gence speed. To improve the ergodicity and uniformity, we use the chaos strategy
to initialize the particle swarm.

3.4 Pareto Optimal Solution

Pareto optimality is an ideal state in the process of resource allocation. In some
multi-objective models, Pareto optimality does not exist. We can only weigh each
target to choose a solution from the Pareto front. In the data center, when we in-
crease the utilization of physical machines, migrating virtual machine is inevitable,
however, excessive virtual machine migration is bound to increased energy consump-
tion. At the same time, load balance also interacts with them, which is obviously an
optimal problem in Pareto. We use the TOPSIS method to optimize this problem
in virtual machine dynamic deployment.
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4 IMPROVED ALGORITHM DESIGN
4.1 Classic Particle Swarm Optimization

PSO belongs to one of swarm intelligence and evolutionary algorithms. The main
idea of particle swarm optimization is that through multiple iterations, particles
use their own experience and the experience of the group to gradually find the best
solution to the problem. Unlike genetic algorithms, particle swarms do not use
selection. Normally, all members of the group can survive from the beginning of
the experiment to the end. Through multiple iterations and interactions between
individuals, the optimal solution to the problem is obtained [5].

In each iteration, the best experience of each particle in the search space is
called the individual extreme value pBest. The best experience of the population
is the current global optimal solution of the entire particle swarm, called the global
extremum gBest. All particles adjust themselves through individual optimal values
and global optimal values. The formula is as follows:

Via(t + 1) = Vig(t) + 71 x c1 x (Pia(t) — Xia(t)) + 12 X ca x (Pya(t) — Xia(t)), (9)
Xia(t +1) = Via(t) + Xia(t). (10)

The formula @D is the particle velocity update formula, which contains three
parts. The first part is the speed of the t™ generation, called the particle inertia
speed part. The second part updates the speed through the individual optimal value,
which is the individual cognitive part. The third part updates the speed through the
group optimal value, which is the social cognitive part. Formula is the particle
position update formula.

4.2 Improved Multi-Objective Particle Swarm
Optimization Algorithm Design

Kennedy claimed that particle swarms with large neighborhoods achieve better at
solving simple problems, while particle swarms with small neighborhoods may im-
plement better at solving complex problems [6]. In the paper, we improved the
traditional PSO. Firstly, chaotic algorithm initializes the particle swarm. The first
ninety percent of the iterative process uses a random grouping strategy, and then
the last ten percent uses clustering convergence.

4.3 Chaos Mapping

By using the sensitivity and ergodicity of the initial value of chaotic mapping, a parti-
cle is randomly initialized, and then the initial value of multiple particles is obtained
by chaotic mapping. Chaos mapping is used to expand the initial particle swarm,
changes the extraction process of initial particle swarm. Tent mapping has simple
structure and good traversal property. The mapping steps are as follows.
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Tent mapping:

2x,, 0<z, <0.5,
Tnt1 = (11)

2(1 —x,), 05<az, <L

Step 1. Randomly initialize particle 4, the speed is Viq = (vi1, vs2, . .., viq) and the
position is Xy = (241, Tia, - - -, Tid)-

Step 2. The particle 7 is iterated b times respectively according to Equation ,
that is, b initial particles’ velocity vectors and position vectors are obtained.

Step 3. The b particles in Step 2 are still iterated ¢ times according to Equation
to get the initial particle swarm p, p = b X ¢, and get their velocity vectors and
position vectors.

4.4 Inertia Weight

The value of the inertia weight affects the convergence speed and convergence accu-
racy. When w is large, the particle swarm tends to be globally optimized. On the
contrast, if w is small, particle swarms tend to be locally optimized. According to
the influence of w value on the search results, we use the linear decrement method
to set the w value in this paper. As shown in the following formula:

W = Wax — (Wmax — Wiin) X \/t/total t (12)

where Wpay 18 0.95, Wy, is 0.05, total t represents the total number of iteration, and
t represents the current number of iteration. The particle swarm search area is large
in the early period. In the later period, the particle swarm switched from global
search to local search as w slowly decreases, and the algorithm does not converge
too fast.

4.5 Random Grouping and Clustering Convergence

Two particles are not sufficient to construct a good swarm, while five particles show
better local search ability and reduce global search ability. Three particles achieve
a balance between them, the swarms show better global search ability [I0]. The iter-
ative process of the particle swarm algorithm is first updated by a random grouping
strategy. Three particles form a small group, and the particles are randomly reorga-
nized every 5 generations. The steps for random grouping are shown in Algorithm [T}
In the later stage of the improved particle swarm optimization. The k-means
clustering algorithm based on Euclidean distance is used to converge the particle
swarms. The k values are successively reduced to 1, that is, they are merged into one
particle swarm. After each cluster center is stabilized, the particle swarm is updated
within each group. The cluster convergence steps are shown in Algorithm 2]
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Algorithm 1 Random grouping iteration process
Require: m: Small group members; n: Small groups’ number; D: Regrouping
period; total_t: The total number of iteration;
Ensure: swarm p
initial m = 3 and D = 5;
Initialize p = 3 X n particles by chaos strategy;
Grouping the population randomly;
for i = 1;0.9 x total_t do
Update each small group by formula (9), (10);
if mod(z, D) == 0 then
Regroup the small group randomly;
end if
end for

Algorithm 2 Cluster convergence iteration process
Require: e: Each swarm’s population; D: Regrouping period;
Ensure: optimal particle
initial e = 6 and D = 5;
2: for i = 0.9 x total t; total t || k = l,e = e+ 6 do
Select k = p/e particles as the initial centroid ;

4: repeat

Assign each point to the nearest centroid;
6: Form k clusters;

Recalculate the centroids of each cluster;
8: until The center of mass does not change;

Use the information in the group to update the velocity and position;
10: if mod(z, D) == 0 then
Clustering regroup the swarms randomly
12: end if
end for

4.6 Pareto Optimal Solution Design

The TOPSIS method is an effective multi-index evaluation method. The basic
principle is to sort by calculating the relative distance between each object and
the best and worst solutions. In this paper, it is applied to particle selection with
multi-objective optimal value in TPSO algorithm. The strategy is as follows.

The decision matrix is as follows:

V11012 V13
V21V22 V23

v = (13)

Up1Up2  Up3
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where v;; represents the function value of the deployment strategy of i particle in
the j*™ objective function.

Step 1. Process the objective function to the same trend.
h=1/h. (14)

Step 2. Vector normalization normalizes the decision matrix V.

(i=1,2,....p;5 =1,2,3). (15)

Step 3. Determine the ideal and the negative ideal solution.

Ideal solution:

S*—{(mmx”>|i—1,27...,p}—{x1+,x2+,x§}. (16)

1<

Negative ideal solution:

S_{<1II<1?<)(le]>|i1,2,...,p}{I1_,I2_,1'g}. (17)

Step 4. Determine the distance of each solution to the actual solution.

3
St = Z vy — ) (18)
Jj=1

3

j=1

Step 5. Calculate the relative closeness of each solution to the ideal solution.
Cr = 57 /(S5 +57)- (20)

Step 6. Prioritize the scheme according to the size of C}'. The one with the highest
relative closeness is the selected particle.

4.7 Virtual Machine Coding

The m virtual machines to be deployed are first coded from 1 to m. Then we
obtain the correspondence between the virtual machines and the physical machines
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through the TPSO algorithm. Finally, the virtual machines are deployed on the
corresponding physical machines according to the mapping relationship. Thereby
we achieve the optimization goal. For example, X;; = (1,5,4,2,3,6...) means:
Virtual machines No. 1, 5, 4, 2, 3, and 6 are deployed on physical machines No. 1,
2, 3, 4, 5, and 6, respectively, and so on. The value of the particle position vector
represents a deployment strategy of the virtual machine. The deployment scenarios
for a VM resource is shown in Figure 2|

Rl | R2 [ R3 | R4 | R5 | R6 | R7

V1

V2

V3 Xz=1

V4

V5

V6

Figure 2. Deployment scenarios for a VM resource

4.8 Improved Algorithm Steps

Step 1. Set the number of particles, iterations, the learning factor, the inertia
weight, the velocity threshold, and the position threshold.

Step 2. Initialize to generate p particles, and the chaotic mapping initializes the
initial position and velocity of the particles in the population.

Step 3. Randomly group the particles. The adaptive values of the particles in each
population are calculated in turn according to the objective function Formu-
las ([2), (3). () under constraint conditions (F)), (), (7)), (8).

Step 4. Record the individual extremum of every particle in each small group, cal-
culate and record the global extremum of each small group by TOPSIS method.

Step 5. Update the particle’s velocity with the individual extremum and the global
extremum obtained by Step 4 and Equation @D Update the particle’s location

by Equation .
Step 6. Regroup the swarms randomly every 5" generation.
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Step 7. Determine if the number of iterations reaches 0.9 x total_t, and if it is
reached, go to Step 8. Otherwise go to Step 3 to continue.

Step 8. Update particles position and speed through cluster convergence until the
end of the iteration.

5 EXPERIMENT

CloudSim is a tool set for simulating cloud computing environment and evaluating
resource scheduling algorithms. We select the CloudSim simulation platform for
simulation experiments in this paper, and combine the physical model of cloud
computing resource scheduling — the improved particle swarm algorithm with the
resource model in CloudSim. Finally, we implement the TPSO algorithm with the
inheritance classes in the basic CloudSim class.

The experimental environment of this paper was set as follows: compile en-
vironment JDK 1.8, compile software Eclipse 4.6, and simulate cloud computing
environment CloudSim 3.0.

The experimental parameters were set as follows: 200 physical machines, 400 vir-
tual machines. All physical machines were homogeneous: CPU with 10 processing
units, 20 GB of memory, 100 M bandwidth. We divided 400 VMs into four types,
and each type of request had 100 each. We set the request for 400 virtual ma-
chines to arrive randomly after each optimization. For different configuration of the
algorithms, the requests arrived in the same order. CloudSim resource scheduling
mechanism is shown in Figure [3|
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Figure 3. Resourse scheduling mechanism of CloudSim

We designed two experiments with CloudSim. The first experiment compares
TPSO with single-objective PSO and DMS-PSO. The second experiment com-



=

VM Deployment Strategy Based on Improved PSO in Cloud Computing 95

pares the classic particle swarm optimization algorithm and the Round-Robin Al-
gorithm (RR).

5.1 Experiment 1
In Experiment 1, we test the performance of the TPSO by six ten-dimensional

benchmark functions. The equations are as follows:

1. Sphere Function

where z € [—5.12,5.12]7.
2. Rosenbrock’s Function

D—-1

Fo) = 37 1002 — i) + (2 — 1]

i=1

where z € [—2.048,2.048]7.
3. Ackley’s Function

f(x) = —20exp | —0.2

1 2 1 2
2 : _
;:1 z? | —exp < ;:1 cos(27ml)> +20+e

Sl

where z € [—32.768, 32.768]".
4. Griewank’s Function
2

D 22 n ;
f(z) :;4000 _ECOS (\ﬂ) +1

where z € [—600, 600].

5. Rastrigin’s Function

D
= Z x? — 10 cos(27x;) + 10)
i=1

where z € [-5.12,5.12]7.

6. Welerstrass Function

f(z) = Z ( Z [ak cos(2mb* (z; + OS))]) - D Z [ak cos(2mbF- 0.5)]

i=1 k=0 k=0

where a = 0.5, b = 3, kyayx = 20, z € [—0.5,0.5]".
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We use functions 1-6 to test the algorithm’s optimization ability, global search
ability, convergence speed, and whether it is liable to fall into a local optimum. The
experimental results are as follows.

Functionl
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Figure 4. Results achieved under functionl
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Figure 5. Results achieved under function2

As shown in Figures [ B] [6] [, B P} the six functions are based on experimental
results under different iterations. The particle group by chaotic initialization has er-
godicity and uniformity. In the early stage, groups constantly exchange information
among small groups through random groupings. The late clustering convergence
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Figure 6. Results achieved under function3
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Figure 7. Results achieved under function4

makes the particle group more directional. Experiments show that the improved
method TPSO is compared with two single-objective algorithms DMS-PSO and
PSO, which is feasible and effective.

5.2 Experiment 2

In the second experiment, we tested and analyzed the performance of the multi-
objective optimization algorithm TPSO for virtual machine resource deployment.
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We compared the multi-objective optimization algorithm TPSO with the traditional
optimization algorithm PSO and the Round-Robin algorithm RR. The comparison
was made from three aspects: resource utilization rate f1, virtual machine migration
number f2 and load balance rate f3. Among them, the PSO had the same attention
to the three goals, each accounting for 1/3. On the CloudSim platform, simula-
tion experiments were carried out to record relevant data, and the experimental
results were compared and analyzed. Finally, we obtained the experimental results
distribution of the three algorithms.
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Figure [I0] shows the resource utilization of the three algorithms under different
service requests. It proves that our proposed algorithm TPSO is effective and the re-
source utilization is higher than the other two algorithms. Figure [[1]shows the times
of virtual machine migrations. The virtual machine is migrated 220 times under
PSO, and the virtual machine is migrated 160 times under TPSO. The proposed al-
gorithm has fewer virtual machine migrations than PSO algorithm. Figure[12]shows
the load imbalance for three algorithms at different iterations. It can be found from
Figure [[2] that the load imbalance of the TPSO algorithm is smaller than the other
two algorithms, indicating that the property of the TPSO algorithm in load balance
is better than other two algorithms. This is because the RR algorithm has poor
dynamic adaptability, its efficiency is relatively low. The PSO algorithm lacks a re-
source selection mechanism and is liable to fall into local optimality. The population
of TPSO algorithm has better ergodicity and uniformity.
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Figure 10. Resource using rate under different algorithms
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Figure 11. Migration times under different algorithms

The results of Experiment 2 show that the initial particle swarm distribution
is more ergodic and uniform, maintaining the diversity of the population. Random
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Figure 12. Load imbalance under different algorithms

grouping strategy is used in the medium term. These particles are frequently re-
grouped to exchange information among groups. Later clustering refined search.
With keeping stability, the TOPSIS method selected the Pareto optimal solution.
The Pareto optimal solution has better distribution and convergence. Compared
to other two algorithms, TPSO has achieved better results in resource utilization,
migration times and load balance.

6 CONCLUSIONS

Cloud computing improves the data center resource utilization through virtualiza-
tion technology. As a key technology of cloud computing, virtual machine deploy-
ment algorithm has important research significance. The existing virtual machine
deployment strategy only considers maximizing resource utilization and virtual ma-
chine migration, ignoring the impact of load balance on system performance. In
the paper, we propose an improved multi-objective particle swarm optimization to
balance the three goals (resource utilization, virtual machine migration, and load
balance) to optimize data center performance.

The TPSO algorithm firstly initializes the particle swarm by chaos, making the
population distribution have ergodicity and uniformity. We use the small group
iterative update in the middle stage, these small groups are frequently regrouped
to exchange information among groups, and later use clustering to converge the
particle swarm algorithm, increasing the refinement of the late search. We de-
signed two experiments: Experiment 1 compares the improved method TPSO with
single-objective algorithms DMS-PSO and PSO, and verifies the effectiveness of the
improved method. Experiment 2 compares TPSO with RR and PSO algorithm.
The experimental results show that the algorithm balances the three objectives of
resource utilization, virtual machine migration and load balance, and optimizes data
center performance.
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