Computing and Informatics, Vol. 39, 2020, 438] doi: 10.31577/cai,2020,3

MACHINE LEARNING BASED CLASSIFIER
FOR SERVICE FUNCTION CHAINS

Habib Allah KHOSRAVI, Yaghoub FARJAMI

Department of Computer Engineering

Faculty of Engineering, University of Qom

Alqadir Boulevard, Qom, Iran

e-mail: h.a.khosravi@stu.qom.ac.ir, farjami@qom.ac.ir

Abstract. Using service function chains, Internet Service Providers can customize
the use of service functions that process the network flows belonging to their cus-
tomers. Each network flow is injected into a service chain according to the flow
features. Since most of the malicious applications try not to get the proper analy-
sis by imitating some valid and famous applications, classification based on simple
flow features may waste processing power by using inappropriate service chains for
evasive flows. In this paper, we have explored an application-aware classification
approach using machine learning methods. Using CatBoost as a machine learning
method, a model is created and used for traffic classification. We have provided
some statistical reports on how this approach is compared with simple flow feature-
based approaches in malicious environments and how feature selection can impact
classification correctness. Choosing the most suitable number of features at the
right time can beat traditional approaches in classification quality and provide bet-
ter results in the service function chaining environment.

Keywords: Service function chaining, classifier, machine learning, catboost

Mathematics Subject Classification 2010: 68M10

1 INTRODUCTION

The ability to classify network traffic is crucial in the operation and management
of networks. Simple flow features like source and destination port numbers or
layer 4 protocol are traditionally used for traffic classification, or mapping flows

Machine Learning Based Classifier for Service Function Chains 411

into traffic classes. Since most modern applications use famous port numbers on
their server-side and lots of malicious applications try to evade the proper analysis
by imitating other applications features, traditional approaches have proven to be
ineffective. The solution to inefficiencies of flow-based classification approaches is to
harness application characteristics of the flows and making the network application-
aware.

By leveraging service function chaining, Internet Service Providers are able to
customize the services provided to their users, based on the type of traffic. Services
are provided as predefined chains specific to special traffic types. In an application-
aware service function chaining network, service chains are selected more accurately,
the most related flows are steered into the chains and fewer resources are wasted.
Classification of network flows in the service chaining classifier node can be based
on flow characteristics or the type of traffic (Figure . Using the latter approach,
the classifier must do a thorough analysis of the flow’s packets to detect the type
of traffic. Legacy traffic classification techniques are famous as the most expensive
task in the network and they cannot be effective in situations where applications
get frequent updates and change their signatures.

/ state

s1@) si(b) s1(n) Class 1 Service Chain

Classifier Node

state state

| @) s2b) $2(n) Class 2 Service Chain |
[pkt#1]<server_port1>--> Class1 I
[pkt#1]<server_ip2, proto2, server_port2> --> Class2 I e I
[pkt#1]<proto3, server_port3> --> Class3 Class 3 Service Chain
[pkt#n]<traffic_typed> --> Class4 I S3(a) S3(b) S3(n) |
[pkt#n]<traffic_typeS> --> ClassS | |
. | state state | e Chai |
| sa@) sa(b) sa(n) Class 4 Service Chain |
| state stat Class 5 Service Chai |
\ ss@) ssib) s5(n) ass 5 Service Chain i
Ne _7
S: Service Function (e.g., DPI, NAT, Firewall, IDS, Web Proxy, WAN
Optimizers, Traffic Shapers, Application Accelerators etc.)

S1(a): An instance of service function “a” in class 1 service chain
Downlink Uplink
Traffic Traffic

Figure 1. Service function chaining classifier node

Using machine learning algorithms in Internet traffic classification has recently
received some attention [Il 2, Bl 4, Bl [6]. These approaches assume that applications
send data in some patterns. These patterns can be used to classify traffic flows in
different application classes. Flow features like the length of the flow, packet size,
or total packet numbers can be used to find the application’s behavioral pattern.
Flow features collected in various observation windows, lead to results with different
accuracy. Finding the best observation window is a key factor in any classification
scenario [7].

This paper explores the idea of using machine learning methods in service func-
tion chaining. Using CatBoost [§], decision tree models are created to examine

412 H. A. Khosravi, Y. Farjami

classification results in different conditions. An important point to consider when
using any traffic classification method in service function chaining is that the clas-
sification should be performed at the early stages of a flow’s life. Delayed traffic
classification can impose an unnecessary burden on service functions for processing
unrelated flows. By intelligently choosing the observation window and selecting the
proper feature list, machine learning-based traffic classification at the beginning of
flow is possible. Based on what was said, the motivation for the current work is
to find a suitable solution for using machine learning methods in service function
chaining. Therefore, the contributions of the current paper are the following:

e Use of a machine learning method in a service function chaining classifier node,

e Presenting an appropriate feature list extracted from the early stages of a traffic
flow’s life,

e Providing solutions for the special challenges that are present when machine
learning methods are used in service function chaining environments,

e Proposing a machine learning-based early classification method with a high de-
tection rate in service function chaining.

Different observations window sizes at the early stages of a flow’s life are used
for creating classification models. Based on the results, the best observation window
size is selected and the desired feature list is detected. The results are compared
with a signature-based approach to prove their effectiveness.

The rest of this paper is organized as follows. Section [provides the related
work. Design and implementation details and challenges are described in Section [
The results of the experiments accompanied by a detailed explanation are provided
in Section [@ Finally, Section [5] concludes the paper.

2 RELATED WORKS

This section is dedicated to the works related to the topics that are discussed in this
paper. We have divided all the topics into two categories of service function chaining
and application-aware classification, and machine learning algorithms and tools for
traffic classification. Each category is examined individually and some of the works
done in that area are introduced. We start with service function chaining and
application-aware classification which is the area where the problem was originally
defined. We will start with the service function chaining problem statement and
also introduce some of the solutions provided to solve those issues. Then, the notion
of application-aware classification is stated and after that, some of the works done
in this area are discussed. When we are done with the service function chaining
part, we will introduce some of the works done in internet traffic classification using
machine learning algorithms.

Machine Learning Based Classifier for Service Function Chains 413
2.1 Service Function Chaining and Application Aware Classification

What serves as a service chain is the production of a related list of network functions
and, consequently, the steering of network flows among them. The use of network
service functions in traditional networks is accompanied by a set of constraints.
As some of these constraints are described below, each of which will be briefly
described [9, [10].

The first one described here is the topological dependency. The way network
services are deployed in a computer network directly affects the order in which
they are used for traffic processing and creates constraints when adding or chang-
ing network services. Another constraint present in the traditional networks is the
configuration complexity which is a consequence of topological dependency. Con-
sidering service function chaining in this environment, simple actions like chang-
ing the order of service chains requires changes to the topology. Consistent or-
dering of service functions is another constraint which is the direct consequence
of the dependency on topology. Many of the network functions work in a way
that they need to be deployed in a specific order. Whereas changing the order
in which service functions process network traffic is complex and difficult. An-
other important constraint is named the traffic selection criteria which refers to the
problem that all traffic on a particular network segment traverses all service func-
tions whether or not the traffic requires those services. Besides the aforementioned
constraints, there are some others like constrained high availability, application of
service policy, etc. that make the use of service function chaining inevitable. Ser-
vice function chaining provides a set of solutions to resolve the problems existing
in traditional networks and to make the network management more elastic and
robust [10] [T1].

The three solutions provided by the SFC working group at IETF to overcome
the above constraints are service overlay, service classification, and SFC encapsula-
tion. Service overlay is about creating service functions connectivity built on top
of the existing network topology. It will be possible to create an arbitrary topology
for connecting service functions in a required topology. Service classification and re-
classification procedures are used to select which traffic enters an overlay and alter
the sequence of service functions applied to traffic. Finally, using SFC encapsulation
enables the exchange of metadata in the data plane between different components
of the service chain [10, 12} 13}, 15].

One of the challenges about traffic classification in service function chaining
is using application data to select the service overlay where a network flow is go-
ing to be processed. In other words, instead of using the mere port numbers or
the flow’s network-level characteristics for traffic classification, information about
applications involved in the generation of the traffic is used. Therefore, service
overlays are selected more intelligently, and using service chaining’s maximum po-
tential becomes possible [14]. A deep packet inspection (DPI) function can do the
task of application-aware service classification in a service function chaining sce-
nario.

414 H. A. Khosravi, Y. Farjami

One of the works that has made use of the output of the traffic detection function
(DPI service function) in creating service function chains is the StEERING [I6].
The result of processing the traffic in DPI and the detected applications might be
used in service chain selection for a network flow or it may alter the chain already
selected for the flow. As the detection of applications in a DPI function might not
be possible with the first received packet in flow, passing the packets to a new chain
after the detection is finished might result in an incomplete analysis in some service
functions.

SIMPLE is another solution that provides the definition of traffic routing poli-
cies between network services and translates these policies into traffic forwarding
rules [I7]. Different traffic classes along with their corresponding service function
chains are defined by the network admin which are used for creating traffic forward-
ing rules based on the current state of the underlying network. Resource manager,
dynamics handler, and rule generator are the three key components in SIMPLE
system. Resource manager is in charge of providing the state of resources available
in the network for the rule generator component which is the place where traf-
fic forwarding rules are created. Dynamics handler detects the changes in traffic
which are made by the service functions and provides the necessary information
for the rule generator to create new forwarding rules. This component uses packet
payload to find the connection between two distinct forms of one flow in the net-
work.

There is also another solution for using the result of traffic detection in software-
defined networks that has utilized the idea of delayed traffic flows [I8]. When a
new traffic flow is received at the ingress to the network, the packets are delayed
and they are mirrored to a DPI box for the traffic detection process. When the
result is provided, the traffic scheduling module installs forwarding rules in the
network and the flow packets are allowed to pass. Clearly, the solution of delayed
network flows cannot be used in high-performance networks where a huge amount
of network traffic is passing. A solution that has incorporated the traffic detection
procedures in the network controller is also available, it cannot respond to scalability
requirements in high-performance networks [I9]. Other work that has mentioned the
use of traffic detection tool results to reroute the traffic flows in the network has also
ignored the importance of all packets being processed in the network functions [20),
1.

Using DPI as a service is another work done in this area. The idea is to remove
the deep packet inspection function from service functions like IDS or Firewall and
deploy it in a separate service function. Other services in a service chain can lever-
age the metadata provided by DPI service function without running deep packet
inspection procedures themselves. Actually, what this work states is that deep
packet inspection is done in multiple service functions in a single chain and it is
the main reason for processing delay in each service. By using the idea proposed in
this work, deep packet inspection procedures are only executed once in every service
chain where other services use the results of deep packet inspection analysis in that
service [22].

Machine Learning Based Classifier for Service Function Chains 415
2.2 Machine Learning Algorithms and Tools for Traffic Classification

Machine learning refers to a set of techniques and algorithms that are able to learn
from data and make predictions on data. Such algorithms overcome the process of
following strict rules and instructions provided in a program by making data-driven
predictions and decisions, through building a model from training inputs. Machine
learning techniques can be split into three categories of unsupervised learning, su-
pervised learning, and semi-supervised learning based on the amount of labeled data
used in their training process. Since only the use of supervised learning techniques
is present in the current work, we will only focus on the works which have used
supervised learning techniques for traffic classification.

A supervised machine learning algorithm uses a labeled dataset for training.
Every instance in the dataset contains the same set of features which is mapped
to a given known label [23]. The result of the training phase is a model which can
be used to predict the label for unknown set of data with the same feature list.
To the best of our knowledge, there are no works that have specifically leveraged
a supervised machine learning algorithm in a service function chaining classifier
node. Because of that, we only discuss some works that have used a supervised
machine learning for the general idea of traffic classification.

One of the works that rely on behavioral features of internet applications which
are present at the start of the flow and do not use the packet payload to extract
any features, claims to have achieved 99.8 percent of accuracy. Considering a set
of 248 flow features from the beginning of individual network flows with different
observation windows size, it leverages feature selection algorithms to find the best
subset of features. Finally, the feature subset is used to train a model and the
model is used for classifying unknown flows. The authors believe that if the traffic
classification system is going to work near real-time with a considerable throughput,
an appropriate and small set of features must be selected from a small number of
packets in a limited duration. This work has used C4.5 decision tree since it had
a low complexity and finally, they believe using features extracted from 5 or 6 packets
in the network can achieve the highest accuracy [24]. The complete 248 features are
detailed in [25].

A solution comprised of signature-based and machine learning methods is also
proposed that claims 99.7 percent of accuracy in traffic classification [26]. After
labeling the dataset using Snort and using multiple techniques for extracting the
best set of traffic features, the model is created using a multi-classifier and it is used
for traffic classification. Although the authors have mentioned that they have not
placed a constraint on feature extraction window size, it seems like the final feature
list is dependent on the full trace of a network flow.

There is another work that has considered the use of statistical features of a flow
for traffic classification using machine learning. This work combines unsupervised
and supervised machine learning algorithms to provide a method for internet traffic
classification. It extracts traffic features and clusters them using an unsupervised
machine learning algorithm. The result is used as the training data in a supervised

416 H. A. Khosravi, Y. Farjami

machine learning algorithm and the output model is finally used for classifying un-
seen traffic flows. They claim that the method has an accuracy of 90 percent for
classifying unseen traffic flows. A set of five and eight features is selected for unidi-
rectional and bidirectional flows, respectively. Both feature lists can be provided at
the end of a flow [27].

Another solution that has proposed a two-phased machine learning approach
by using an unsupervised machine learning method for feature extraction and us-
ing a supervised machine learning algorithm for traffic classification has provided
a feature list completely dependent on the full flow trace [28].

Taking into account the related works in the two sections related to service
function chaining and machine learning techniques, the need for doing a similar
classification work in service function chaining environments is felt. This work is
allocated to the idea of using machine learning tools in the classifier node in service
function chaining.

3 DESIGN AND IMPLEMENTATION

In this section, the proposed approach for traffic classification in service chained en-
vironments is discussed. Starting from the nature of malicious traffic and inability
of the traditional approaches to classify this type of traffic, continuing with pre-
senting the architecture where the proposed approach is used and finishing with the
implementation details.

3.1 Design Challenges and Requirements

Traditionally, applications used proprietary port numbers on their server-side. Net-
work traffic was mostly not encrypted and protocols like HTTPS were not so com-
monly used. For example, port number 80 was reserved for HTTP protocol and
the protocol’s traffic was plain text. Nowadays, traffic is mostly encrypted whether
the application is malicious or not and port hopping is a common technique to
evade network analysis devices like firewalls or IDS/IPS. Malicious applications are
increasing every day and can change their traffic pattern easily.

In this situation, using simple port numbers or pattern matching approaches for
detecting applications is inappropriate and the decision made on such knowledge
cannot be trusted. So, deep packet inspection devices that utilize signature-based
approaches that need heavy processing are not suitable for some scenarios. Besides,
the nature of applications’ traffic is always changing and signatures used in the
aforementioned approaches need to be updated constantly and cannot be sufficient
in all cases. This makes it challenging for service function chaining scenarios to
use application characteristics in traffic classification. Therefore, malicious network
flows may find the chance to stay out of sight of appropriate analyzing services by
imitating benign applications’ characteristics. Besides, service resources are wasted
analyzing the wrong imitating flows. By mentioning signature-based or pattern-
based schemes, this paper refers to the approaches that utilize a set of predefined

Machine Learning Based Classifier for Service Function Chains 417

rules and signatures for traffic classification. Signatures are created by following the
strict rules and instructions provided in an application, after analyzing the appli-
cation’s traffic. The classification of a network flow is performed by comparing the
details of multiple packets in the flow with the predefined set of rules and signatures.
Examples of the commonly used signatures are the server-side port numbers used
by Internet applications and string patterns present in the applications’ data.

Recent research studies have shown that machine learning approaches can be
leveraged in the process of network traffic classification. Machine learning can be
used to construct models that learn to decide whether a network flow is malicious
or not, directly from the data and without any predefined rules [29]. Each Internet
application’s network traffic has some characteristics and behavioral patterns that
can be used to predict other unknown network flows from the same application. By
extracting historical or application-specific features from labeled network flows and
feeding them into a supervised learning algorithm, models can be created to classify
network flows.

Results show that some approaches have achieved better than 95 percent of
accuracy by using machine learning algorithms [2], 24] 26, 28]. In this work, we have
used some historical and application-specific features of network flows and created
a model to be used in a classifier node in service function chaining scenarios. By
mentioning machine learning-based schemes, the paper refers to the category of
approaches that use supervised machine learning methods for training a classifier
based on an application’s available network traces. Instead of comparing details of
a flow with predefined signatures, multiple flow characteristics are extracted and
used for making a data-driven prediction about the flow.

One of the main goals in applying service function chaining in a network is to
differentiate the services provided for network flows. As most machine learning-
based approaches proposed for traffic classification are based on features extracted
from a full flow, using machine learning methods in a service function chaining
classifier is challenging. Delayed traffic classification can cause unnecessary burdens
on unrelated services and changing a flow’s path in the middle of its life results in
an incomplete state in some service functions. Therefore, early traffic classification
is a necessity in a network applying service function chaining.

3.2 Proposed Solution

There are a lot of features that can be extracted from a total flow. Lots of them
need the flow to be finished to become available [25]. But this cannot be achieved in
service function chaining scenarios where real-time classification is needed. In this
case, flows must be classified as soon as possible to be analyzed in the corresponding
service chains. Otherwise, since some stateful services may need to inspect all the
packets in a flow, the classifier has to enable multiple services that belong to different
classes for packet inspection. Technically, some services need to store state for each
flow processed by them. When a new flow enters a service chaining network while
it has not been mapped into a class, it needs to be injected into a default chain of

418 H. A. Khosravi, Y. Farjami

multiple services belonging to different classes. This way, the state stored in those
services is complete even after classification. The natural result of using a default
service chain is that the resources on some services are wasted on unrelated packets.
Figure [2 illustrates two stages of a flow’s life in the network, before and after the
classification. The packets in the flow are steered into the default service chain until
the successful classification results are prepared for the flow. After that, only the
services corresponding to the flow specific service chain are present.

T = ————— ~
/ state state scHl \
S(a) S(c) S(d) s(f)
state state scH#2

Classifier

Node state state scH#3
S(b) S(d) S(e)
state state state scHd
S(a) S(b) s(d) s(f)
state state state scHDefault .
S(a) S(b) S(c) S(d) S(e) S(f) / i
N _7
a)
- === ~
/ state state scHl \\
[S(a) s s(d) s(f) |
|
I state state sc2 |
Classifier I =& 20 = i) :
Node ! state state SCcH3 |
i S(b) S@ S(e) -
| state state state scH4 I
: S(a) S(b) s(d) s(f) |
| state state state scHDefault |
\ S(a) S(b) s(c) s(d) S(e) s(f) /
Ny /
™ (™ ™ (™ ™ ™ ™ (™ ™ ™ ™ ™ ™ (™ (™ ™ G . -

S: Service Function (e.g., DPI, NAT, Firewall, IDS, Web Proxy, WAN
Optimizers, Traffic Shapers, Application Accelerators etc.)
S(a)is an instance of service function” a ”in the service chain

b)
Figure 2. Illustration of a flow’s life in a network a) before and b) after flow classification

Some previous work has mentioned that considering a total of 5 or 6 packets
from the start of flow can achieve the highest possible accuracy for traffic classifi-
cation [24]. In service function chaining scenarios there is a tradeoff between the
number of packets used for feature extraction and the load on the services belong-
ing to each chain (as depicted in Figure @ So, finding the best point for flow
classification (feature extraction windows size) is the key to using machine learning
algorithms in such environments.

Machine Learning Based Classifier for Service Function Chains 419

A
Load
on
Service

Packet
Number

Figure 3. The tradeoff between the packet number and the load on services

In this work, the list of features used for traffic classification is categorized into
historical and application-specific features. The list of historical features contains the
5-tuple characteristics of each flow which are the source and destination IP address,
transport layer protocol, source, and destination port numbers. By historical it
refers to the fact that network flows from specific client locations to specific server
locations may happen again. It is true most of the time that a triad of server IP
address, protocol, and the port number corresponds to a specific application server
on the Internet. If we consider the habits of the clients in using the internet, the
5-tuple feature list may lead to a good prediction result for unknown flows.

In the application-specific feature list, besides the list of historical features, the
features related to the application traffic patterns have been considered. Because
of this, only the packets containing at least one byte of data have been used for
feature extraction. By configuration, features from up to three data packets are
used for traffic classification. The list of features extracted from each data packet is
as follows:

e the size of transport layer payload (application data),

the size of the captured data from network,

the packet direction (from client or reverse),

packet number in flow,
TCP header push flag,
packet entropy.

The size of the application data in the first packets may contain important
information about the application. For example, this data is normally small for
the first packet in an SSL flow. Besides, some malicious applications may try to
segment data packets to a specific size or create messages of a specific size that can
be considered as a pattern. To consider the size of other network layers’ headers, the
size of the captured data is also considered. In most client/server applications, the
client sends the first data packet but this may be different in some other applications.

420 H. A. Khosravi, Y. Farjami

Also, it may be done by some malicious applications. This is the reason that data
packet direction is considered. To consider the number of packets without data, the
number of packets in the flow is also considered. TCP header push flag is also set
in some applications’ data packets which is also considered. Finally, packet entropy
is also used as a feature that can specify whether the data is encrypted or not. This
is an important feature for detecting some applications.

3.3 Technological and Implementation Details

The purpose of the experiments is to show how machine learning can help to classify
network flows in a malicious environment where a good percent of the flows try to
evade detection or analysis by imitating some famous applications’ patterns. Also,
to specify the best way to use machine learning algorithms in a service chaining
environment. For this reason, nine application classes of Unknown, HTTP, DNS,
HTTPS, FTP, Telnet, SSH, SMTP, and QUIC are considered. There are lots of
malicious applications that try to evade detection by leveraging some of these famous
protocols’ characteristics (using their default port number for example). The classes
have been chosen to somehow simulate the diverse nature of the Internet. All the
experiments done by using machine learning algorithms are also compared with
experiments done using a signature-based scheme where only port numbers are used
for the classification of flows. In the end, some other experiments using pattern
matching techniques are also presented.

CatBoost is a machine learning method based on gradient boosting over de-
cision trees. Gradient boosting is a machine learning technique that can be used
in classification problems by creating an ensemble of classifiers, typically decision
trees. Gradient boosting trees have some properties that can perform excellently in
network traffic classification [30]. In this work we have used CatBoost to create the
model used for traffic classification. CatBoost performs well in the classification of
traffic into several classes and it can be a great choice to be used in this work [31].

30 Gigabytes of network traffic has been captured from a company’s network
where a vast amount of malicious applications are active. The company provides
Internet access for a group of people comprising scientists, students, and other peo-
ple. The data was captured with a rate of 21 Mbps for more than four hours at
peak time. After cleaning the data by removing TCP flows without SYN packet
and removing flows with no data packets and also, removing duplicate flows, about
450 thousand flows are left. These flows are fed into two available DPI modules (one
of them is a commercial DPI and the other one is open source nDPI [32]) and they
are all labeled with classes mentioned above. Traffic flows in this data set belong
to all of the classes with different proportions. This labeled data set is used as the
train data to be fed into CatBoost and to create the model.

Two smaller traffic captures have also been prepared for running the experi-
ments. One of them is captured in a network where a mix of multiple traffic classes
is active and some malicious flows exist in it. The other one is captured in the same
network where the training data was captured. They are named mixed traffic and

Machine Learning Based Classifier for Service Function Chains 421

malicious traffic, respectively. By malicious, it refers to the fact that the rate of
using deceptive techniques by applications present in this network is higher.

For each traffic capture the following set of experiments is performed. At first,
the traffic is fed into a signature-based classifier where only port numbers are used
to detect flows (the port number is used as a representative for signature-based
methods). For each traffic class, its default port number(s) is used as the signature.
After the classification of a flow, packets are sent into a service chain specific to that
class where they are processed. Besides the signature-based classification, multiple
tests are done using machine learning algorithms. One test is done only using
historical features. After that, three tests are done with application-specific features
extracted from one, two, or three data packets.

There is a difference between a flow classified in Unknown class and an unclas-
sified flow. For a flow that is classified as unknown, we can say for sure that it
does not belong to any other class. But, for an unclassified flow, nothing can be
said about its class. Therefore, for flows classified to Unknown class no services are
used and the traffic is passed unprocessed. The results of the tests are compared to
two main parameters. The first one is the quality of classification of flows and the
second one is the load on each service chain and consequently, on services.

4 EVALUATION RESULTS

In this section, we investigate the results of the tests mentioned above for the three
metrics of accuracy, recall, and precision. Accuracy is about the number of flows
predicted correctly in each test. Technically, it specifies the number of flows cor-
rectly predicted in a class and correctly predicted not in a class. Recall considers
the number of flows in each class which is predicted correctly. In other words, it
specifies the number of flows that are actually in a class and have been correctly
predicted. Finally, precision specifies what percent of the positive predictions are
correct. Figure [presents the formulas for calculating accuracy, recall and preci-
sion. As mentioned above, two data sets are prepared to run the tests. Before
we run the tests, each data set is examined using the same DPI modules that we
used for labeling the training data and these results are used for evaluating each
metric. After that, each data set is once tested in a signature-based scenario and
then in multiple machine learning scenarios. The average value of accuracy, recall,
and precision are calculated for each type of test and when the result of all tests
is examined, the average values are compared to find the best approach for traf-
fic classification. In the end, the amount of traffic load on service chains is also
investigated.

Figure [f] presents the results of the signature-based tests on two mixed and ma-
licious data sets. Mixed data set refers to the traffic captured in an environment
where a mix of benign and malicious applications are active with a broad list of ap-
plications and the malicious data set refers to the traffic captured in an environment
where a vast amount of active applications are malicious. The results for mixed and

422 H. A. Khosravi, Y. Farjami

True Positive + True Negative

Accuracy = — - — -
True Positive + True Negative + False Positive + False Negative
True Positive
Recall = — -
True Positive + False Negative
.. True Positive
Precision =

True Positive + False Positive

Figure 4. Formulas for calculating accuracy, recall, and precision

malicious traffics are distinguished using their colors. Results of accuracy, recall,
and precision are all depicted in Figure [5

As can be seen in Figure 5] all application classes except HTTPS and Unknown
result a high accuracy of more than 90 percent. This means that with respect
to those classes, most traffic flows are predicted correctly in a signature-based ap-
proach. The reason for a lower accuracy in HTTPS class is the fact that this port
number is the most popular port number between malicious applications and all
the applications that need to hide themselves from the sight of network analysis
devices. The accuracy for the Unknown class is also low because the failure in clas-
sifying HTTPS traffic results in decreased accuracy for the Unknown class. A large
number of Unknown flows must be classified in HTTPS class which is the result of
evasive techniques employed in malicious applications.

Like the accuracy, we can see a high value of recall for most classes except the
Unknown class. A low value of recall for class Unknown implies a high percentage of
unknown flows which are incorrectly classified in other classes. The value presents
the percentage of correctly predicted Unknown flows. Aside from the Unknown
class, we see a lower recall for class HI'TP compared with other classes. This
implies that also for HTTP traffic there are some flows that have not used their
default port number which is port number 80. This must be true since there are
many HTTP servers running on port numbers 8080 or some other ports similar
to this one. For HTTPS class we see a very high value of recall. The reason for
this one is that almost all HT'TPS traffic has used its default port number and
nearly all of these flows are predicted correctly. Since some of the traffic classes
were not present in the malicious traffic data, they are depicted without the value
of recall.

By looking at the precision results in Figure [, we will come up with more
interesting conclusions. A low value of precision for a specific class is the result of
some other flows incorrectly predicted in this class. As we can see, the class Unknown
has a high value of precision while classes like HT'TPS, SSH, or QUIC have resulted
in lower values of precision. This means that a large number of Unknown flows
have incorrectly been predicted as other classes. This is where we can see the track
of malicious applications trying to mitigate other application properties. Classes

Machine Learning Based Classifier for Service Function Chains 423

QUIC Precision
QUIC Recall
QUIC Accuracy
SMTP Precision
SMTP Recall
SMTP Accuracy
SSH Precision
SSH Recall

SSH Accuracy

Telnet Precision

Telnet Recall

Telnet Accuracy

FTP Precision
FTP Recall

FTP Accuracy
HTTPS Precision
HTTPS Recall
HTTPS Accuracy
DNS Precision
DNS Recall

DNS Accuracy
HTTP Precision
HTTP Recall

HTTP Accuracy
Unknown Precision
Unknown Recall

Unknown Accuracy

o
]
o
N
(=}
@
[=}
2]
[=]
g

120

m Mixed Data m Malicious Data

Figure 5. Results for signature-based scenario

without a precision value are also present since no traffic flow has used their default
port number.

Besides the above discussion, we can see lower values in almost all metrics for
the mixed data compared to the malicious data. This can emphasize the fact that
the same trend of using evasive techniques is active in both networks.

After discussing the signature-based detection scheme, it is time to consider the
results of machine learning-based experiments. Machine learning-based detection
using a historical feature list (flow characteristics as mentioned before) is considered
first. When speaking about a historical feature list, tracking the type of flows from
specific clients to specific servers on the Internet is considered. When the model
is created based on the type of flows originated from some clients to servers on

424 H. A. Khosravi, Y. Farjami

the Internet, it can predict unseen flows from the same clients to the same servers
based on what it has seen historically. Based on the similarities of the new flows’
characteristics with the flows used in model creation, new flows can be classified.
As mentioned in the previous section, the historical feature list is the 5-tuple
of source/destination IP address, protocol, and source/destination port numbers
extracted for each flow. Figure [f] compares the results for the machine learning-
based classification using historical features in both mixed data and malicious data.

QUIC Precision
QUIC Recall
QUIC Accuracy
SMTP Precision
SMTP Recall
SMTP Accuracy
SSH Precision
SSH Recall

SSH Accuracy

Telnet Precision
Telnet Recall

Telnet Accuracy

FTP Precision
FTP Recall

FTP Accuracy
HTTPS Precision
HTTPS Recall
HTTPS Accuracy
DNS Precision
DNS Recall

DNS Accuracy
HTTP Precision
HTTP Recall
HTTP Accuracy
Unknown Precision

Unknown Recall

Unknown Accuracy

(=)
]
o
N
[=]
=]
[=]
o]
[=]
8

120

® Mixed Data m Malicious Data

Figure 6. Results for historical features based scenario

Before we speak about the results presented in Figure [f] it should be reminded
that the data set used to create the model for all the experiments was provided in
a network with malicious traffic where lots of flows on famous port numbers are of

Machine Learning Based Classifier for Service Function Chains 425

other unknown protocols. So, we can look for the effects of such a phenomenon in
all experiments.

As it can be seen in Figure [0 the accuracy results for all traffic classes in
malicious data are more than 90 percent while we see lower values of accuracy for
some classes in mixed data. Since this experiment only considers the historical
data for creating the model and the malicious data set was captured in the same
networks as the training data, the higher accuracy for malicious data is justifiable.
A high value of accuracy for the malicious traffic implies that the use of historical
information in a network may be effective in application classification.

We can see a similar result comparing recall between mixed and malicious traf-
fics. For most of the classes the value of recall for mixed traffic is less than the
value of recall for malicious traffic. We believe this must also be the result of the
difference between networks where training data and the mixed data are captured.
As an exception, we can see that the DNS class has resulted a better recall for the
mixed traffic data. Clearly, the list of DNS servers in all the networks all over the
world is similar. This is the reason the amount of recall is not lower for mixed data.
Also, the presence of a lot of malicious applications in the malicious network may
cause a lower recall for that case since there may be some traffic flows trying to
mitigate DNS traffic while they are not actually DNS.

Following the same pattern, we see lower precision for the test with the mixed
data. Lower precision shows a lower percentage of correct positive predictions which
can be justified considering the different networks mixed and malicious traffic where
captured.

Considering the mixed data traffic, we can see that the precision for HTTPS
and SSH classes is lower than the other classes. Comparing the result of precision
in these classes in the mixed data with the same classes in the malicious traffic, we
see much better results for the malicious data. This emphasizes the fact that the
characteristics of these application classes are desirable with malicious applications
and the lack of historical information about the traffic can result in lower precision
when predicting application classes.

We saw the effects of using historical features in flow classification both for
mixed and malicious traffic. Now we want to enter some features related to the
actual application payload into the experiments. These features are listed in the
previous section and they are categorized based on the number of data packets
where the flow classification takes place. First, we look at the results where only the
first data packet is considered. Figure [7] presents the results for this experiment.

It can be seen that adding some application payload features to the model can do
the magic where the accuracy results for all classes in both data sets are more than
90 percent. This result presents the power of a good machine learning scheme when
application-specific features are considered for classification. We can see that when
application payload characteristics are added to the model, the difference between
the accuracy for mixed data and malicious data is reduced.

Now that we have seen the result of using application-specific features in flow
classification, it is time to increase the number of features by using more data

426 H. A. Khosravi, Y. Farjami

QUIC Precision
QUIC Recall
QUIC Accuracy
SMTP Precision
SMTP Recall
SMTP Accuracy
SSH Precision
SSH Recall

SSH Accuracy

Telnet Precision
Telnet Recall

Telnet Accuracy

FTP Precision
FTP Recall

FTP Accuracy
HTTPS Precision
HTTPS Recall
HTTPS Accuracy
DNS Precision
DNS Recall

DNS Accuracy
HTTP Precision
HTTP Recall

HTTP Accuracy
Unknown Precision
Unknown Recall

Unknown Accuracy

o
]
o
N
(=}
@
[=}
2]
[=]
g

120

m Mixed Data m Malicious Data
Figure 7. Results for application-specific features based scenario with one packet

packets in flow classification. Figure [§ presents the classification results when the
classification is done as the second data packet is received in the flow and features
related to the application payload are from the first and the second data pack-
ets.

Before speaking about the results presented in Figure[§] it should be noted that
in any traffic data set, there may be some flows with only one data packet. So,
when considering the second data packet for flow classification, some of the flows
remain unclassified until they finish. The results presented in the above table are
only considering the classified flows and unclassified ones are ignored. So, if for
example it says that 10 percent of the flows are in HTTP class, it is referring to the
set of classified flows and not the unclassified ones.

Machine Learning Based Classifier for Service Function Chains 427

QUIC Precision
QUIC Recall
QUIC Accuracy
SMTP Precision
SMTP Recall
SMTP Accuracy
SSH Precision
SSH Recall

SSH Accuracy

Telnet Precision
Telnet Recall

Telnet Accuracy

FTP Precision
FTP Recall

FTP Accuracy
HTTPS Precision
HTTPS Recall
HTTPS Accuracy
DNS Precision
DNS Recall

DNS Accuracy
HTTP Precision
HTTP Recall
HTTP Accuracy
Unknown Precision
Unknown Recall

Unknown Accuracy

o
]
o
N
(=}
@
[=}
2]
[=]
g

120

m Mixed Data m Malicious Data
Figure 8. Results for application-specific features based scenario with two packets

Considering the results presented in Figure [§], we see the accuracy of more than
95 percent in all application classes. Compared to the results of experimenting
with only one data packet, we can also see an increase in the value of recall for
almost all classes. This result can also be observed for precision values. Some
incompatible results for some of the classes (like the reduced recall for SSH) may
be judged by the one packet flows which are omitted from the results in the current
figure.

Finally, we want to consider one more data packet in the flow classification
procedure. As the third data packet is added to the procedure, more features specific
to that packet are added to the model. Besides, as mentioned above, the natural
consequence of waiting for more packet until traffic classification, is the reduction in

428

H. A. Khosravi, Y. Farjami

the number of classified flows. Figure [9] presents the result of the experiment using
three data packets where only the classified flows are considered to calculate the

values.

QUIC Precision
QUIC Recall
QUIC Accuracy
SMTP Precision
SMTP Recall
SMTP Accuracy
SSH Precision
SSH Recall

SSH Accuracy
Telnet Precision
Telnet Recall
Telnet Accuracy
FTP Precision
FTP Recall

FTP Accuracy
HTTPS Precision
HTTPS Recall
HTTPS Accuracy
DNS Precision
DNS Recall

DNS Accuracy
HTTP Precision
HTTP Recall
HTTP Accuracy
Unknown Precision
Unknown Recall
Unknown Accuracy

(=)
]
=
o
[=]
[=)]
<
[e]
=]
8

120

® Mixed Data m Malicious Data

Figure 9. Results for application-specific features based scenario with three packets

Surprisingly, we see a reduction in calculated metrics for different classes com-
pared to the previous tests. Although the reason may be that some valid flows
with less than two data packets have been omitted from the results and the amount
of true positive results has been reduced, it seems like using two data packets for
feature extraction cannot result as good as approaches using fewer data packets. It
should also be mentioned that commonly DNS flows only have two data packets
consisting of a request packet and a response packet. Also, the existence of HTTP

Machine Learning Based Classifier for Service Function Chains 429

flows with only one request packet and only one response packet is common. These
sentences are mentioned to emphasize the previous statement.

Table[I]provides a numerical representation of all the results. A result of 100 per-
cent for accuracy refers to the fact that all the corresponding flows in test data were
correctly classified and no false positive or false negative cases were present. For
recall, a result of 100 percent means that there were no false negative cases present
and a value of 100 percent for precision means that there were no false positives.
For recall and precision, a value of 0 percent means that no true positive cases were
present and none of the positive cases were correctly classified.

Signature- Historical | Application | Application | Application

Based Features Features #1 | Features #2 | Features #3
wn s} wn s} s}

= =] = =] =

g 2 2 2 2
£ S g ks £ g g ks £ g
S & G X S X G X S &
= = = = = = = = = =

Precision | 69.87 | 75 95.22 1 94.68 | 96.53 | 92.71 | 99.34 | 95.74 | 99.29 | 95.65
Recall 100 | 99.13|91.28 | 77.39 | 89.45 | 77.39 | 87.72 | 78.95 | 87.42 | 77.88
Accuracy | 98.54 | 99.92 | 99.55 | 99.93 | 99.53 | 99.93 | 99.66 | 99.94 | 99.67 | 99.94
Precision | 0 99.42 | 0 97.06 | O 68.01 |0 72.61 10 67.35
Recall 0 98.27 |0 24190 44.28 | 0 448110 39.76
Accuracy | 100 |99.97 | 100 |98.87| 100 |99.12 100 |99.23 100 |99.28
Precision | 100 | 80.75 | 100 | 36.62 | 75 32.64 | 100 |25.74| 100 |26.15
Recall 100 100 100 100 100 | 96.92 | 100 |98.37 100 | 98.28
Accuracy | 100]99.93 | 100 |99.51|99.98|99.43 | 100 |99.24 | 100 |99.3
Precision | 0 98.89 |0 0 0 0 0 0 0 0

SMTP | QUIC

SSH

Recall 0 100 |0 0 0 0 0 0 0 0
Accuracy | 100 | 100 |100 |99.81|100 |99.81|100 |99.81|100 |99.81
Precision | 0 100 |0 100 |0 100 |0 100 |0 100

Recall 0 100 |0 3.1 0 543 |0 234 |0 2.34

Accuracy | 100 | 100 | 100 |[99.73|100 |99.74|100 |99.73|100 |99.73
Precision | 56.32 | 41.09 | 87.42 | 42.27 | 99.93 | 98.46 | 99.93 | 99.07 | 100 | 98.97
Recall 100 | 100]99.16 |99.6 |99.16 | 97.41 | 99.54 | 96.68 | 99.93 | 97.05
Accuracy | 81.39 | 78.4 |96.37 | 79.44 | 99.78 | 99.38 | 99.88 | 99.4 | 99.98 | 99.45
Precision | 99.2 | 87.29 | 98.22 | 99.97 | 99.58 | 99.97 | 100 | 99.99 | 100 | 100

Recall 100] 99.98 | 43.34 | 85.9 | 61.84 | 97.94 | 95.83 | 99.67 | 81.55 | 97.06
Accuracy | 99.95 | 96.45 | 96.58 | 96.56 | 97.73 | 99.49 | 99.77 | 99.94 | 99.7 | 99.95
Precision | 97.98 | 93.8 | 97.99 | 84.15| 97.5 | 96.53 | 98.04 | 95.05 | 96.53 | 93.22
Recall 99.32 | 89.76 | 99.49 | 92.93 | 99.66 | 91.43 | 99.64 | 89.22 | 99.49 | 83.53
Accuracy | 99.75 | 98.1 |99.77 | 97.12 | 99.74 | 98.62 | 99.8 | 98.85 | 99.88 | 98.97
Precision | 99.83 | 94.59 | 93.47 | 82.12 | 95.37 | 95.48 | 98.58 | 95.9 | 98.4 |95.48
Recall 64.95 | 44.94 | 93.64 | 52.48 | 99.34 | 98.73 | 99.58 | 98.73 | 99.68 | 98.66
Accuracy | 79.63 | 72.8 |92.27 | 72.08 | 96.76 | 97.17 | 99.1 | 98.09 | 99.24 | 98.23

Unknown | HTTP | DNS HTTPS| FTP Telnet

Table 1. Results of precision, recall, and accuracy for all scenarios

430 H. A. Khosravi, Y. Farjami

After discussing the results of traffic prediction in each test for different applica-
tion classes, it is time to compare different approaches for traffic classification and
choosing the most suitable one. The average value for each metric is calculated for
all tests and a separate diagram is created for each metric. Figure[I0 Figure [[1] and
Figure [I2] present the results of accuracy, recall and precision, respectively.

We can see in Figure [I0] that for the malicious traffic, accuracy has been in-
creased by each new test where the lowest accuracy has been experienced in the
signature-based test and the highest one is experienced when three data packets
are used for feature extraction. The results for the mixed data are similar to the
results of malicious traffic as the highest accuracy is achieved when three data pack-
ets are used for feature extraction but they have an interesting difference. As we
can see, the accuracy has been reduced when using the historical machine learning
approach for mixed data. As mentioned previously, the reason for this phenomenon
is that the network where malicious traffic has been captured is the same as the
network where the training data was captured. Therefore, the flow characteristics
may not follow the same pattern historically. It should also be mentioned that the
accuracy for all tests using the application-specific features has reached 99 percent
and the difference between tests with two data packets and three data packets is
negligible.

100.00 9928 2280 9983
99.19 99.36 99.41

98.00
96.00 95.47
94.00
93.95 9367
92.00
90.00
Signature ML ML Pktl MLPkt2 ML Pkt3

Based Historical

—o—Mixed Data —e—Malicious Data

Figure 10. Comparing accuracy for malicious and mixed data

As we can see in Figure[[T] the amount of recall is almost the same for both data
sets when the signature based approach is utilized at first. For the mixed data we
see a reduction in recall value as the tests proceed with the lowest value experienced
with historical features approach. For the malicious data, the highest recall value
is experienced when two data packets are used for feature extraction and it reduces
when the number of packets is increased to three. We believe the reason that the
value of recall for malicious data is more than the recall for mixed data is the choice
of feature list and the fact that malicious data is captured in the same network as
the training data.

Machine Learning Based Classifier for Service Function Chains 431

97.05
100.00 94.04 9157 94.68
90.00 gy 4
80.00
70.00 6.19 76.10 74.32
60.00 66.95
50.00
Signature ML ML Pktl MLPkt2 ML Pkt3

Based Historical

—e—Mixed Data —e—Malicious Data

Figure 11. Comparing recall for malicious and mixed data

100.00 99.31 99.04

90.00 87.20

20.00 85.65 . 85.51 84.60
79.61
70.00
60.00
Signature ML ML Pktl ML Pkt2 ML Pkt3

Based Historical

—e—Mixed Data —e—Malicious Data

Figure 12. Comparing precision for malicious and mixed data

Like the results presented for recall, the precision value starts almost the same
for both data types when the signature-based approach is tested, the lowest value
for the mixed data is when historical features machine learning approach is tested
and the highest value for the malicious data is seen when two data packets are used
for testing the application-specific machine learning approach. Again, it seems like
the fact that malicious data is captured in the same network as the training data
has had a positive effect on the results.

The reason that signature-based tests for both malicious and mixed data are
almost the same is that no feature related to the network environment is used in
those tests. Based on the above experiments, we can see that when the training data
and the test data are both captured in the same network, we can get the best results
with the application-specific features approach when two data packets are used for
feature extraction. Considering the case of service function chaining, this theory

432 H. A. Khosravi, Y. Farjami

may not be the best choice. To make sure, we need to investigate how different
approaches affect the load in the network.

Now that we have discussed the classification results in multiple experiments, it
is time to discuss about the load imposed on service chains prepared for application
classes. When the classification of a flow is done on one of its packets, that packet
and the packets after that will all be injected into the chain prepared for the cor-
responding class. Flows classified in Unknown protocols class are not processed in
any chain and their packets are passed unprocessed. If classification is postponed to
data packets after the first one, packets in that flow must be processed in all services
(in all chains) so the flow receives a complete service and the state created in those
services is not incomplete.

Figure [[3] presents the amount of load on all service chains in all experiments for
mixed and malicious data sets. The load is calculated as the percentage of all data
packets (where the actual processing is done) that have entered all service chains
over the total number of data packets.

100.00 91.65
80.00
60.00 259
40.00 50-‘5\'___,_/"
38.76 3% 3840 4356
20.00 '
0.00
Signature ML ML Pktl ML Pkt2 ML Pkt3

Based Historical

—e—Mixed Data —e—Malicious Data

Figure 13. Comparison of load on service chains for mixed and malicious data

What can be seen in the above chart is that as we track the experiments until
the one using the application-specific features on the first data packet, the amount
of load on all service chains is decreased and gets more meaningful. The reason is
that flow classification is becoming more accurate and the resources are not wasted
for processing unrelated packets. But as we go on to the experiments using the
second and the third data packets, we see an increase in the load imposed on service
chains. The reason for this increase is that as the classification is postponed to
future data packets, unclassified flows must be processed in all service chains so
that the services in the correct service chain do not miss any packets. So, while
adding delay to classification time may help in better classification, it results in
more load on service chains which is contrary to the main purpose of service chaining
idea.

Machine Learning Based Classifier for Service Function Chains 433

The total trend of the diagram is the same for mixed and malicious traffic data
but the load on service chains is higher when testing with the malicious data in
contrast with the mixed. The reason for the higher load when using malicious
data is not necessarily the result of correctness in classification. A greater pro-
portion of Unknown traffic may be present in the mixed data and when a flow is
classified as Unknown, it will not be processed in any of the service chains. So,
the variation of traffic classes in a traffic data set can impact the load on service
chains.

Before we finish this part and in order to make more powerful results, we have
made another comparison between another signature-based classification method
and the machine learning methods. This signature-based method is pattern match-
ing. We have labeled the malicious data set with three classes of Unknown, Google,
and Instagram and used the same data set in multiple experiments to see how ma-
chine learning can be compared with other signature-based methods. Figure [I4]
presents the results of accuracy, recall, and precision from five experiments using
pattern matching and machine learning methods. As we can see, the accuracy is
around 95 percent in all the experiments which means that if we consider the cor-
rectness of all predictions on network flows, a very good result has been provided.
Even if we consider recall, we can see that pattern matching has achieved a value
as good as the best machine learning methods.

100.00 97_% 94.76 98.76 98.91 99.17

- P -
90.00 95.8 94.84 9555 9671
9432 9465 9515
80.00
70.00 76.45
60.00 66.05
64.25
50.00
Pattern ML ML Pktl ML Pkt2 ML Pkt3

Matching Historical

—e—Accuracy —e—Recall Precision

Figure 14. Comparing accuracy, recall and precision when using machine learning meth-
ods against pattern matching

The most interesting part of the result is about precision where the pattern
matching method presents weaker results compared to some other methods. The
DPI module used for labeling the data set leveraged the same pattern matching
procedure, but after the application protocol is totally parsed. In other words,
the module has intelligently compared each signature pattern with the most appro-
priate location in packet payload. There are some applications that try to evade
detection by using signatures of famous applications in their payload. For example,

434 H. A. Khosravi, Y. Farjami

a malicious application which uses HTTPS protocol can mention Google in subject
alternative name section in its certificate. To avoid the complexities of protocol pars-
ing in DPIs, the pattern matching method used in current experiment has blindly
searched for each pattern in the whole packet payload. The reason for a low preci-
sion is that there are some flows that have been classified in one of these classes by
mistake.

5 CONCLUSIONS

The current work focused on using machine learning techniques in a service func-
tion chaining classifier node by leveraging a method named CatBoost. Taking into
account the new evasive techniques used by malicious applications active on the
Internet, the traditional classification methods like signature-based detection are
believed to be ineffective. There needs to be a way for classifying the unknown ap-
plication flows without following the strict instructions provided by the signatures
for known applications. Machine learning can help to classify unknown applica-
tion flows only by considering the data itself and without the use of application
signatures.

By selecting a list of historical and application-specific features and using a la-
beled data set, we used CatBoost to create models that are used for classifications
of unseen network flows in a service function chaining environment. The classified
flows were forwarded into a predefined service chain composed of specific services
to the selected class where they are processed according to the actual application
type. Considering the quality of traffic classification and the load imposed on ser-
vices, there exists a challenge for selecting the number of packets for extracting the
application-specific features. As more packets are considered before the classifica-
tion of a network flow, more features are available, and possibly, higher quality is
achieved.

In our experiments, we have found out that taking into account the service
function chaining problem statement, the best number of data packets considered
for feature extraction is one. Although selecting one more data packet can slightly
increase the classification quality, we believe that the amount of load saved by using
only one packet can have more benefits in a service chaining environment. For
example, a lower load on service chains can make space for more throughput in
the network. This is while the difference in classification quality between methods
using one and two data packets is not much at least in respect to accuracy. Also,
based on the selection of features extracted from each flow, it is clear that the
classification quality will increase if training data and test data are captured in the
same network.

Finally, it can be said that using a machine learning method with proper se-
lection of its properties can be a good replacement for traditional signature-based
classification and to avoid the expensive, complex procedures of deep packet inspec-
tion modules.

Machine Learning Based Classifier for Service Function Chains 435

REFERENCES

1]

2]

8]

[4]

(6]

(7]

8]
[9]

[10]

[11]

[12]

[13]

MCGREGOR, A.—HALL, M.—LORIER, P.—BRUNSKILL, J.: Flow Clustering Using
Machine Learning Techniques. In: Barakat, C., Pratt, I. (Eds.): Passive and Active
Network Measurement (PAM 2004). Springer, Berlin, Heidelberg, Lecture Notes in
Computer Science, Vol. 3015, 2004, pp. 205-214, doi: [10.1007/978-3-540-24668-8_21.

MOORE, A. W.—ZUEV, D.: Internet Traffic Classification Using Bayesian Analysis
Techniques. 2005 ACM SIGMETRICS International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS’05), Banff, Alberta, Canada, June
2005. ACM SIGMETRICS Performance Evaluation Review, Vol. 33, 2005, No. 1,
pp- 50-60, doi: 10.1145/1071690.1064220.

ErTtaAM, F.—Avci, E.: A New Approach for Internet Traffic Classi-
fication: GA-WK-ELM. Measurement, Vol. 95, 2017, pp. 135-142, doi:
10.1016/j.measurement.2016.10.001.

Aceto, G.—Cruonzo, D.—MONTIERI, A.—PESCAPE, A.: Multi-Classification
Approaches for Classifying Mobile App Traffic. Journal of Network and Computer
Applications, Vol. 103, 2018, pp. 131-145, doi: [10.1016/j.jnca.2017.11.007.

AcETO, G.—C1uoNzo, D.—MONTIERI, A.—PESCAPE, A.: Mobile Encrypted
Traffic Classification Using Deep Learning: FExperimental Evaluation, Lessons
Learned, and Challenges. IEEE Transactions on Network and Service Management,
Vol. 16, 2019, No. 2, pp. 445458, doi: |10.1109/TNSM.2019.2899085.

LoTroLLAHI, M.—SIAVOSHANI, M. J.—SHIRALI HOSSEIN ZADE, R.—
SABERIAN, M.: Deep Packet: A Novel Approach for Encrypted Traffic Classification
Using Deep Learning. Software Computing, Vol. 24, 2020, No. 3, pp. 1999-2012, doi:
10.1007/s00500-019-04030-2.

ErRMAN, J.—MAHANTI, A.—ARLITT, M.: QRPO05-4: Internet Traffic Identifica-
tion Using Machine Learning. IEEE Globecom 2006, San Francisco, CA, USA, 2006,
pp. 1-6, doi: [10.1109/GLOCOM.2006.443.

CatBoost Web Site. Available at: https://tech.yandex.com/catboost/.
GHAZNAVI, M.—SHAHRIAR, N.—KaMmALI, S.—AHMED, R.—BouTABA, R.: Dis-
tributed Service Function Chaining. IEEE Journal on Selected Areas in Communica-
tions, Vol. 35, 2017, No. 11, pp. 2479-2489, doi: [10.1109/JSAC.2017.2760178.
QUINN, P.—NADEAU, T.: Problem Statement for Service Function Chaining. IETF,
2015, available at: http://tools.ietf.org/html/rfc7498.html.

BHAMARE, D.—JAIN, R.—SAMAKA, M.—ERBAD, A.: A Survey on Service Func-
tion Chaining. Journal of Network and Computer Applications, Vol. 75, 2016,
pp. 138-155, doi: [10.1016/].jnca.2016.09.001

HALPERN, J.—PIGNATARO, C.: Service Function Chaining (SFC) Architecture.
IETF, 2015, available at: https://www.rfc-editor.org/rfc/pdfrfc/rfc7665.
txt.pdf.

Li, H—Wu, Q.—HuAaNGg, O.—BoOUCADAIR, M. et al.: Service Function Chain-
ing (SFC) Control Plane Components and Requirements. IETF, 2016, available at:
https://tools.ietf.org/pdf/draft-ietf-sfc-control-plane-03.pdfl

https://doi.org/10.1007/978-3-540-24668-8_21
https://doi.org/10.1145/1071690.1064220
https://doi.org/10.1016/j.measurement.2016.10.001
https://doi.org/10.1016/j.jnca.2017.11.007
https://doi.org/10.1109/TNSM.2019.2899085
https://doi.org/10.1007/s00500-019-04030-2
https://doi.org/10.1109/GLOCOM.2006.443
https://tech.yandex.com/catboost/
https://doi.org/10.1109/JSAC.2017.2760178
http://tools.ietf.org/html/rfc7498.html
https://doi.org/10.1016/j.jnca.2016.09.001
https://www.rfc-editor.org/rfc/pdfrfc/rfc7665.txt.pdf
https://www.rfc-editor.org/rfc/pdfrfc/rfc7665.txt.pdf
https://tools.ietf.org/pdf/draft-ietf-sfc-control-plane-03.pdf

436

[14]

[15]

[16]

[17]

18]

[19]

[20]

[21]

[22]

[23]

[24]

H. A. Khosravi, Y. Farjami

Using Service Classification to Build an Application-Aware NFV Infrastructure for
Virtual CPE Services. 2015, available at: https://embedded.communities.intel.
com/docs/DOC-8603.

HaNTOUTI, H.—BENAMAR, N.: Analysis of Service Function Chaining Forwarding
Methods, Advances and Drawbacks. The Fourth International Workshop on RFID
and Adaptive Wireless Sensor Networks (RAWSN 2016), Marrakesh, Morocco, May
2016.

ZHANG, Y.—BEHESHTI, N.—BELIVEAU, L.—LEFEBVRE, G.—MANGHIR-
MALANI, R.—MIiSHRA, R.—PATNEYT, R.—SHIRAZIPOUR, M.—SUBRAHMA-
NIAM, R.—TRUCHAN, C.—TATIPAMULA, M.: StEERING: A Software-Defined
Networking for Inline Service Chaining. 2013 215 IEEE International Confer-
ence on Network Protocols (ICNP), Goettingen, Germany, 2013, pp. 1-10, doi:
10.1109/ICNP.2013.6733615.

Qazi, Z.A.—Tu, C.-C.—CHiaANG, L.—Mriao, R.—SEKAR, V.—Yu, M.:
SIMPLE-fying Middlebox Policy Enforcement Using SDN. ACM SIGCOMM
Computer Communication Review, Vol. 43, 2013, No. 4, pp. 27-38, doi:
10.1145/2534169.2486022.

JEoNG, S.—LEgE, D.—Hvyun, J.—L1, J.—Hong, J. W.-K.: Application-Aware
Traffic Engineering in Software-Defined Network. 2017 19*" Asia-Pacific Network
Operations and Management Symposium (APNOMS), Seoul, South Korea, 2017,
pp. 315-318, doi: 10.1109/APNOMS.2017.8094144.

Li, G.—DonG, M.—OtA, K.-—Wu, J.—L1, J.—YE, T.: Deep Packet Inspection
Based Application-Aware Traffic Control for Software Defined Networks. 2016 IEEE
Global Communications Conference (GLOBECOM), Washington, DC, USA, 2016,
pp. 1-6, doi: 10.1109/GLOCOM.2016.7841721.

L1, G.—Zuou, H.—Li, G.—FENG, B.: Application-Aware and Dynamic Secu-
rity Function Chaining for Mobile Networks. Journal of Internet Services and In-
formation Security (JISIS), Vol. 7, 2017, No. 4, pp. 21-34, doi: [10.22667/J1I-
S15.2017.11.30.021L

Li, G.—Zuou, H.—FENG, B.—L1, G.: Context-Aware Service Function Chaining
and Its Cost-Effective Orchestration in Multi-Domain Networks. IEEE Access, Vol. 6,
2018, pp. 34976-34991, doi: 10.1109/ACCESS.2018.2848266.

BREMLER-BARR, A.—HARCHOL, Y.—HAY, D.—KORAL, Y.: Deep Packet Inspec-
tion as a Service. Proceedings of the 10®" ACM International Conference on Emerging
Networking Experiments and Technologies (CoNEXT '14), Sydney, Australia, 2014,
pp. 271-282, doi: [10.1145/2674005.2674984.

KorsiaNnTis, S. B.: Supervised Machine Learning: A Review of Classification Tech-
niques. Informatica, Vol. 31, 2007, No. 3, pp. 249-268.

Li, W.—MOORE, A. W.: A Machine Learning Approach for Efficient Traffic Classi-
fication. 2007 15" International Symposium on Modeling, Analysis, and Simulation
of Computer and Telecommunication Systems, Istanbul, Turkey, 2007, pp. 310-317,
doi: 10.1109/MASCOTS.2007.2.

https://embedded.communities.intel.com/docs/DOC-8603
https://embedded.communities.intel.com/docs/DOC-8603
https://doi.org/10.1109/ICNP.2013.6733615
https://doi.org/10.1145/2534169.2486022
https://doi.org/10.1109/APNOMS.2017.8094144
https://doi.org/10.1109/GLOCOM.2016.7841721
https://doi.org/10.22667/JISIS.2017.11.30.021
https://doi.org/10.22667/JISIS.2017.11.30.021
https://doi.org/10.1109/ACCESS.2018.2848266
https://doi.org/10.1145/2674005.2674984
https://doi.org/10.1109/MASCOTS.2007.2

Machine Learning Based Classifier for Service Function Chains 437

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

MOORE, A. W.—ZUEV, D.—CROGAN, M.: Discriminators for Use in Flow-Based
Classification. September 2005, available at: https://gmro.qmul.ac.uk/xmlui/
bitstream/handle/123456789/5050/RR-05-13.pdf.

JamiL, H. A.—Ar1, B. M.—HAMDAN, M.—OsMAN, A.E.: Online P2P Inter-
net Traffic Classification and Mitigation Based on Snort and ML. European Jour-
nal of Engineering Research and Science, Vol. 4, 2019, No. 10, pp. 131-137, doi:
10.24018/ejers.2019.4.10.1534L

VLADUTU, A.—COMANECI, D.—DOBRE, C.: Internet Traffic Classification Based
on Flows’ Statistical Properties with Machine Learning. International Journal
of Network Management, Vol. 27, 2017, No. 3, Art.No. €1929, 14 pp., doi:
10.1002/nem.1929.

Bakunsui, T.—GHITA, B.: On Internet Traffic Classification: A Two-Phased Ma-
chine Learning Approach. Journal of Computer Networks and Communications,
Vol. 2016, 2016, Art. No. 2048302, 21 pp., doi: 10.1155/2016/2048302.

Wanag, M.—Cur, Y.—WAaANG, X.—XI1A0, S.—JIANG, J.: Machine Learning for
Networking: Workflow, Advances and Opportunities. IEEE Network, Vol. 32, 2018,
No. 2, pp. 92-99, doi: 10.1109/MNET.2017.1700200.

Bacgul, S.—FanG, X.—KALAIMANNAN, E.—BAcGu1, S. C.—SHEEHAN, J.: Com-
parison of Machine-Learning Algorithms for Classification of VPN Network Traffic
Flow Using Time-Related Features. Journal of Cyber Security Technology, Vol. 1,
2017, No. 2, pp. 108-126, doi: 10.1080/23742917.2017.1321891.

BAKHAREVA, N.-—SHUKHMAN, A.—MATVEEV, A.—POLEZHAEV, P.—USHAKOV,
Y.—LEGASHEV, L.: Attack Detection in Enterprise Networks by Machine Learning
Methods. 2019 International Russian Automation Conference (RusAutoCon), Sochi,
Russia, 2019, pp. 1-6, doi: 10.1109/RUSAUTOCON.2019.8867696.

nDPI: Open and Extensible LGPLv3 Deep Packet Inspection Library. Ntop, available
at: https://www.ntop.org/products/deep-packet-inspection/ndpi/.

https://qmro.qmul.ac.uk/xmlui/bitstream/handle/123456789/5050/RR-05-13.pdf
https://qmro.qmul.ac.uk/xmlui/bitstream/handle/123456789/5050/RR-05-13.pdf
https://doi.org/10.24018/ejers.2019.4.10.1534
https://doi.org/10.1002/nem.1929
https://doi.org/10.1155/2016/2048302
https://doi.org/10.1109/MNET.2017.1700200
https://doi.org/10.1080/23742917.2017.1321891
https://doi.org/10.1109/RUSAUTOCON.2019.8867696
https://www.ntop.org/products/deep-packet-inspection/ndpi/

438

H. A. Khosravi, Y. Farjami

Habib Allah KHOSRAVI received his B.Sc. degree in informa-
tion technology engineering from the University of Mazandaran
in 2012. He received his M.Sc. degree in computer networks
from the University of Isfahan in 2014 and is currently a Ph.D.
student in the University of Qom. His research interests include
computer networks, network security and distributed systems.

Yaghoub FARJAMI is Professor of computer science in the Uni-
versity of Qom. He received his Ph.D. degree from the Sharif
University of Technology in Tehran, Iran. His research inter-
ests include computer security, artificial intelligence and machine
learning, cryptocurrencies, etc.

