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Abstract. Traffic light recognition in urban environments is crucial for vehicle
control. Many studies have been devoted to recognizing traffic lights. However,
existing recognition methods still face many challenges in terms of accuracy, runtime
and size. This paper presents a novel robust traffic light recognition approach
that takes into account these three aspects based on image processing and deep
learning. The proposed approach adopts a two-stage architecture, first performing
detection and then classification. In the detection, the perspective relationship and
the fractal dimension are both considered to dramatically reduce the number of
invalid candidate boxes, i.e. region proposals. In the classification, the candidate



440 M. Che, M. Che, Z. Chao, X. Cao

boxes are classified by SqueezeNet. Finally, the recognized traffic light boxes are
reshaped by postprocessing. Compared with several reference models, this approach
is significantly competitive in terms of accuracy and runtime. We show that our
approach is lightweight, easy to implement, and applicable to smart terminals,
mobile devices or embedded devices in practice.

Keywords: Traffic light recognition, color features, perspective relationship, fractal
dimension, SqueezeNet
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1 INTRODUCTION

Traffic light recognition in urban environments is crucial in many cases, such as in
detecting traffic signs during semiautomatic or fully autonomous driving [1], helping
pedestrians with some form of visual impairment [2], estimating the distance between
vehicles and detected traffic lights [3] and assisting in the correction of the map
coordinates of a floating car [4]. Thus, many studies address the problem of detecting
traffic lights, and it remains an active challenge.

Traffic light recognition belongs to the field of object recognition, i.e. object
detection in computer vision. The crucial task of object recognition requires solving
two problems: locating objects and then classifying them. Current approaches to
traffic light recognition can be divided into two categories: two-stage strategies and
one-stage strategies. Regarding the former, the region proposals are generated first.
Then, some classifiers are used to classify the region proposals. Many methods can
be used to create region proposals. The sliding window method is the easiest, but
it is time-consuming. Eventually, selective search was proposed [5, 6]. This method
combines the strengths of both an exhaustive search and segmentation. In terms
of efficiency, selective search is better than the sliding window method. However,
selective search is not sensitive to small objects, such as traffic lights, and its runtime
is longer. In contrast to the time-consuming selective search, a speed-up algorithm,
i.e. edge detection, was proposed [7]. Edge detection achieves higher object recall
and is faster to compute. However, the algorithm does not perform well when
segmenting individuals. Another study used binary semantic segmentation to detect
region proposals. However, both the precision and computing speed of the method
on a CPU need to be improved [8]. Some studies generate region proposals from
other perspectives, such as spot light detection [9], color and shape features [10, 11,
12, 13, 14], map information [15] and so on. These methods usually require making
strong assumptions and may generate many redundant candidate regions. However,
they are based primarily on image processing techniques; thus, their runtimes are
relatively short.
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In the two-stage strategy, the typical classifiers include template matching [9, 16],
the support vector machine (SVM) [17], the hidden Markov model (HMM) [18],
and deep learning [17, 19, 20]. The template matching technology is the earliest
object recognition application and is easy to operate. However, its rate of correctly
recognized traffic lights is closely related to the templates. A stiff template always
limits the adaptability of the method to individual objects, especially for dynamic
traffic lights in fisheye camera images. The SVM is a better classifier due to its self-
learning. However, the SVM performs better on small sample training sets. When
the training data becomes large, the SVM becomes time-consuming and has a very
limited accuracy when addressing a multiclassification problem. The HMM can help
in determining the current state of the traffic light detected based on the obtained
state processing. The accuracy achieved by this method is not too high. Owing to
the recent advances and performances of deep neural networks, deep learning has
been used for image classification. The very representative and popular model is the
R-CNN [21] and its accelerated versions [22, 23, 24]. The R-CNN uses the features
in the image extracted by deep learning to train the classifier. This process makes
the accuracy of object recognition optimal in effect. However, it is time-consuming
and requires much storage space. Moreover, it still has problems in identifying small
objects, such as traffic lights [25].

In contrast to the two-stage strategy, the one-stage architecture is quite differ-
ent, as it does not use any prior knowledge of the object locations. It uses algorithms
to directly output categories and the corresponding positioning. The more popu-
lar models include YOLO [26] and the SSD [27]. YOLO, that is, “You Only Look
Once”, is a unified and real-time object detector that uses only a single deep neu-
ral network to detect objects in images. The smaller version of YOLO, i.e. fast
YOLO, performs well when conducting real-time object detection in a video [28].
However, YOLO makes more localization errors and lags behind state-of-the-art
detection systems in terms of accuracy [26]. Thus, an improved YOLO approach,
i.e. YOLO v2 (also called YOLO 9000), was proposed. Compared with YOLO,
YOLO v2 uses a novel multiscale training method, runs at varying sizes, and of-
fers an easy tradeoff between speed and accuracy [29]. Then, an advanced YOLO
approach, i.e. YOLO v3, was presented. YOLO v3 is obviously faster than the ref-
erence approaches when realizing the same accuracy [30]. From YOLO to YOLO
v3, the speed increases, while the accuracy does not, especially regarding the loca-
tion precision. The SSD model appeared after the YOLO model. The SSD com-
pletely eliminates proposal generation and subsequent pixel or feature resampling
stages and encapsulates all computations in a single network, which makes the SSD
easy to train and optimize. The experimental results show that the SSD has com-
petitive accuracy relative to that of the comparison models and is much faster.
However, the SSD is not very good at or even unable to perform small object recog-
nition. In addition, similar to the YOLO model, the size of the SSD is also very
large.

Overall, the two-stage approaches have higher precision and a longer runtime,
while the one-stage methods have lower precision but a shorter runtime. Deep
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learning has high precision, but its model is usually very large, which is extremely
disadvantageous for devices with lower memory and weaker processors outside the
laboratory. Moreover, deep learning does not seem to be compatible with the accu-
racy and runtime.

In this paper, our approach takes a two-stage architecture to ensure high recog-
nition accuracy. We used image processing to generate the region proposals and
then applied the deep convolution neural network (CNN) to classify them. To re-
duce the runtime, we further optimized the detector by considering the perspective
relationship and the fractal dimension. To decrease the model size, we introduced
the lightweight SqueezeNet model, which strongly compresses the dimensions of the
feature map [31]. Finally, based on the ground-truth image dataset, the performance
of our approach was tested.

2 MATERIALS AND METHODS

2.1 Dataset Description

To evaluate our traffic signal recognition approach, two datasets for real scenes
were employed. The first dataset includes data that we collected, which were de-
rived from the position-image synchronous data captured by the driving recorder
on a floating car. The time interval of the image set is 5 s. The dataset was
recorded in the urban areas of Nantong and contained red, green and blue (RGB)
color images. The image quality of the dataset is relatively high and has a resolu-
tion of 800 × 600 pixels. The dataset contains more than 700 images and more
than 1 000 traffic lights. The scenes in the dataset can be divided into simple
scenes and complex scenes. In the former, the traffic signals are exposed to the
sky and are easily identifiable. In the latter, the backgrounds of traffic signals
are diverse and may include trees, buildings, piers, and billboards. Moreover,
the taillights of cars and outdoor lights resemble traffic signals from a distance,
which causes further interference. In this situation, traffic signals are not recogniz-
able.

The latter dataset is the publicly available benchmark dataset of the La Route
Automatise (LaRA) benchmark provided by de Charette et al. [9]. The camera
applied in the LaRA dataset has a focal length of 12 mm and a resolution of 640×480
pixels. The image color mode of the dataset is RGB full color. This dataset has been
recorded in French urban areas and has more than 11 000 frames, many of which are
stationary. To strengthen the difference between two adjacent frames, we resampled
the source dataset every 5 frames. In the resampled data, some very blurry frames
will be removed manually. The final resampled data contain more than 1 500 frames
and more than 2 000 traffic lights. Use of the dataset allows a comparison between
our approach and the reference methods.
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2.2 Method Schema

2.2.1 Detector

A traffic light has a few special and important features, such as its border shape,
lamp holder color and light color, which help people to distinguish it in real scenes.
However, in image processing, the traffic light border shape is difficult to extract
because it is easily affected by the illumination intensity, the light size and distur-
bances from background pixels. At night or when the traffic light is either very small
or embedded in foliage, the traffic light border shape is very difficult to estimate.
The illumination intensity and the light size also significantly affect the lamp holder
color in the image. By contrast, the traffic light color, which is noteworthy and
unique whether at day or at night, is relatively stable and is applied to locate the
candidate regions of traffic lights.

The images in RGB mode are first converted to the hue, saturation, and value
(HSV) color space. Compared with the RGB color space, the HSV color space is
more suitable for segmentation and is more robust against illumination variation [12].
In this section, the regions of red, green and yellow are extracted to create the
candidate boxes, i.e. the region proposals, that contain the traffic lights. The desired
color is extracted from an image based on the HSV values resulting from the statistics
of the positive samplings (Figure 1).

Figure 1. Color statistics of traffic lights in RGB mode

Suppose the triple (h, s, v) represents the HSV value of every pixel in an image;
the expected color needs to satisfy the empirical relationships. In Figure 1, the range
of each component in the color triple is calculated. Then, there is a slight change
in the range. This process is performed to cover the traffic light color as much as
possible and to find as many candidate regions as possible (Figure 2 b)).

To detect the red lights, the color thresholds were set as follows.

0 ≤ hred1 < 15, 115 ≤ sred1 ≤ 255, 115 ≤ vred1 ≤ 255, (1)
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165 ≤ hred2 ≤ 180, 120 ≤ sred2 ≤ 255, 90 ≤ vred2 ≤ 255. (2)

To extract the green and yellow lights, the color thresholds were set as shown
below.

55 ≤ hgreen < 90, 60 ≤ sgreen ≤ 255, 90 ≤ vgreen ≤ 255, (3)

15 ≤ hyellow ≤ 25, 195 ≤ syellow ≤ 255, 205 ≤ vyellow ≤ 255. (4)

During the color extraction, the candidate regions, i.e. the approximate posi-
tions of the traffic lights, were detected (Figure 2 b)), and the corresponding binary
images were created. To further calculate the profiles of the candidate regions,
the CHAIN APPROX SIMPLE contour approximation algorithm in OpenCV was
applied. In the algorithm, by compressing the horizontal, vertical, and diagonal
segments and leaving only the end points, as little key pixels as possible are used
to present the outlines. According to the contours of the candidate regions, the
homologous bounding rectangle can be calculated. Then, the candidate box was
estimated as follows.

bw = int(w′ · c · k), bh = int(h′ · c · k), (5)

w′ = min(w, h), h′ = min(w, h) (6)

where bw and bh are the width and height of the candidate box, respectively. w and h
are the width and height of the bounding rectangle, respectively. The coefficient c
is the ratio of the traffic light width to the lamp holder border width. In this paper,
c equals 2.0. The zoom factor k ranges from 1.0 to 1.5. It can expand the background
pixel information around the traffic light and can contribute to determining whether
or not the candidate region contains the traffic light.

In the candidate boxes, some contain traffic lights, while some contain noise
(Figure 2 c)). Apparently, some candidate boxes do not contain traffic lights because
their size is inappropriate. To remove the obvious noise, the size estimation formula
for the traffic lights was used. Depending on the perspective, everything looks small
at a distance and large up close. Thus, a mathematical relationship exists between
the light width and the corresponding y-coordinate value (Figure 3).

bw′ = −0.101 · y + 38.43 + t (7)

where bw′ denotes the estimated box width, y denotes the y-coordinate value, and
t denotes the tolerance. When bw is less than bw′, the candidate box is most likely
noise. With this process, noisy boxes that are obviously smaller or larger than the
normal size will be removed (Figure 2 d)). At the same time, some indistinguish-
able disturbance terms, e.g., some countdowns of traffic lights, are also removed
(Figure 2 d)). Obviously, this process is carried out to reduce the number of false
positives and shorten the runtime for recognizing traffic lights.
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Figure 2. Sample detections of traffic lights in an image. a) is the original image, b) rep-
resents the candidate regions, c) represents the rough candidate boxes, d) represents the
candidate boxes processed via size-noise reduction based on the perspective relationship,
e) represents the candidate boxes processed via overlap removal with IOU, and f) repre-
sents the candidate boxes further processed via texture-noise reduction with the fractal
dimension.

Figure 3. Relationship between the light width and the corresponding y-coordinate value

During the image processing above, multiple candidate boxes may be covering
each other around the same traffic light. To remove the overlapping boxes, the
intersection over union (IOU) method was applied, and the threshold was set to 0.6.
As a result, the remaining candidate boxes became small in number but contained
nearly all traffic lights (Figure 2 e)).

Now, the detector is quite qualified for the detection task. To further shorten
the runtime of the proposed approach, we need to reduce the backgrounds of the
candidate boxes. In Figure 2 e), some candidate boxes do not visibly contain traffic
lights. We can make this judgment by the image texture. The fractal dimension
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is a useful feature for texture segmentation in image processing [32]. The box-
counting approach is one of the most frequently used techniques for estimating the
fractal dimension of an image and is defined below.

F = lim
r→0

log(Nr)

log(1/r)
(8)

where F is the fractal dimension and Nr is the least number of boxes that must
completely cover the broken lines in the scale r. Before calculating the fractal
dimension, the image first needs to be processed by the Sobel filter. Then, the
image is transformed to binarization. Thus, the gray plane is converted to the
broken lines in two dimensions (Figure 4). By calculating the numbers of white and
black pixels, respectively, the ratio equation is as follows.

R =
N(pix = 255)

N(pix = 255) + N(pix = 0)
(9)

where R is the ratio and N(pix = 255) and N(pix = 0) denote the number of pixels,
with values equal to 255 and 0, respectively.

The conspicuous texture discrepancy between traffic lights and backgrounds can
be quantified by calculating the fractal dimension and the R value (Figure 4). The
fractal dimension of traffic lights principally ranges from 1.3 to 2.0. However, the
fractal dimension range for backgrounds is from 0 to 2. Thus, a threshold line
can be drawn to distinguish them. The R value is also helpful in distinguishing
traffic lights and backgrounds. As shown in Figure 4 g), the fractal dimension of the
image was high, indicating that the texture of the image was rough. The spatial
distribution of the texture may be similar to that of traffic lights, which makes it
difficult to distinguish the texture. However, its R value was evidently lower than
that of traffic lights. Therefore, the texture noise can be further eliminated by the
R value.

2.2.2 Classifier

Once the candidate boxes are generated, the classification task can begin. In this
paper, the candidate boxes contain four states, i.e. the backgrounds, red lights,
green lights and yellow lights. To distinguish them, SqueezeNet was employed.
Among the SqueezeNet modules, the fire module, which is comprised of a squeeze
convolution layer and an expand layer, is the building block. It can enable the CNN
to preserve accuracy on a limited budget of parameters [31]. SqueezeNet begins
with a standalone convolution layer (conv1), followed by 8 fire modules (fire2–9), and
finally ending with a conv layer (conv10). The number of filters per fire module from
the beginning to the end is gradually increased. Moreover, SqueezeNet performs
max-pooling with a stride of 2 after layers conv1, fire4, fire8, and conv10. According
to the SqueezeNet architecture, we reproduced it with the TensorFlow library. The
size of the input image was adjusted to 64 × 64. The channel of each layer retained
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Figure 4. Texture discrepancy between traffic lights and backgrounds

its original value. The number of categories was set to 4. The learning rate was set
to 0.0001. The input images were first processed by the equalization method before
training SqueezeNet.

2.2.3 Postprocessing

The candidate boxes were transformed into classified boxes after processing them
with the classifier. At this step, several overlaps may still exist among the boxes.
To collapse them, the non-maximum suppression (NMS) method was needed. NMS
is a key postprocessing step in many computer vision tasks. On the basis of the
sorted scores, it uses an iterative procedure to retain only one box per group,
corresponding to the precise local maximum of the response function, ideally ob-
taining only one detection per object [33]. Then, the perspective relationship
(Equation (7)) was used again to slightly reshape the boundaries of the recognized
traffic lights. The overall processes of the entire method are summarized in Fig-
ure 5.

2.3 Reference Methods

The performance of the proposed approach is compared with that of several popular
approaches. One approach is YOLO v3, which was briefly introduced in the first
section. YOLO v3 still imitates the mechanism of the human visual system. It
strives to predict what objects are present and where they are by looking at an image
only once. Similar to the previous versions, YOLO v3 regards object detection as
a single regression problem, straight from image pixels to bounding box coordinates
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Figure 5. Flow chart of the proposed approach

and class probabilities. The codes of YOLO are open. According to the instructions,
YOLO v3 is used on the Linux platform.

Other approaches include the de Charette approach [9], DeepTLR model [19],
FusionTLR model [25], Bayesian algorithm [35], Haltakov approach [11], and Siogkas
approach [36]. These approaches, which have been validated using a publicly avail-
able dataset, are applied to evaluate our method. Details about these approaches
are provided in the corresponding literature.

2.4 Evaluation Metrics

The approaches used to evaluate the recognition performances are defined as follows:

Acc = (TP + TN)/(TP + TN + FP + FN), (10)

Pre = TP/(TP + FP), (11)

Rec = TP/(TP + FN), (12)

F1 = 2 · (Pre× Rec)/(Pre + Rec) (13)

where Acc is the accuracy, TP is the number of true positives, TN is the number of
true negatives, FP is the number of false positives, and FN is the number of false
negatives. Pre is the precision, and Rec is the recall. According to the Pre and Rec
values, the F1 score is calculated.
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When compared with other models, the metric ‘AUC’, i.e. the area-under-the-
curve, of the precision-recall curves was also used in addition to the above indicators.

2.5 Experimental Situation

The image dataset was divided into two parts: training data and verification data.
In the training data, the training samples created by the detector contain the red
lights, green lights, yellow lights and backgrounds. The backgrounds account for
nearly 94 %. To balance the sample ratios, we used some strategies to process
the positive sample data. These strategies include moving the four borders of the
traffic light separately, graying the image, scaling the image, using a Gaussian filter,
sharpening the image, equalizing the image, stretching the image to the left and
right, and stretching the image upward and downward. Based on the image dataset,
the model training and verification platform was a single-core CPU @ 2.5 GHz.

3 RESULTS ANALYSIS

3.1 Classifier Performance

The classifier, i.e. SqueezeNet, used in the proposed approach was trained 25 000
times by learning the training datasets (Figure 6). The corresponding weight files
were produced per 2 500 times. The accuracy varied sharply before 3 000 iterations
and gently after. The maximum value of the accuracy was 0.973, which appeared
near the 22 000th iteration. The variation in the loss function curve was acute from
beginning to end. However, the trend of the loss curve was clear. At the 12 500th

iteration, the minimum value appeared, and the corresponding accuracy was 0.968.
After that, the change was slightly dramatic. However, the trend of the loss curve
was not affected.

Figure 6. Training curve of the classifier

The validation dataset was used to evaluate the classification performance. Fig-
ure 7 shows the precision and recall of the classifier at different iterations. Before the
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7 500th iteration, the manifestation, i.e. distinguishing the four types of candidate
boxes, was unsatisfactory. In this stage, the classifier distinguished the red traffic
lights and the green traffic lights comparatively easily. However, for the yellow traffic
lights and the backgrounds the situation was terrible. The precision of distinguish-
ing backgrounds was lower than 0.8, and the recall was higher than 0.9. The recall
of distinguishing the yellow traffic lights was lower than 0.7, and the precision was
higher than 0.87. These results indicate that more yellow traffic lights were falsely
classified as backgrounds by the classifier. After that the 7 500th iteration, the clas-
sifier produced better classification results. Both the precision and the recall when
distinguishing the four types of candidate boxes were high. Figure 8 also provides
the overall classification accuracy and the corresponding F1 score. Obviously, at the
12 500th iteration, the performance of the classifier was the best. The performance
when distinguishing red traffic lights was inferior to that when distinguishing green
traffic lights but better than that when distinguishing yellow traffic lights.

Figure 7. Precision a) and recall b) of the classifier

Figure 8. Overall classification accuracy and F1 score of the classifier

3.2 Recognition Evaluation

The verification images were used to evaluate the recognition performance of the
proposed approach. The F1 score varied with the IOU threshold (Figure 9). Obvi-
ously, the overall recognition accuracy declined with increasing IOU. The situation
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Figure 9. Relationships between the recognition accuracy and the IOU

remained the same for each type of traffic light. However, irrespective of the change
in the IOU, the average IOU curve always exceeded 0.6. When the IOU was lower
than 0.1, the total F1 score maximum value was 0.951, and the corresponding av-
erage IOU was 0.611. In the figure, when the IOU falls between 0.1 and 0.3, the
total F1 score only slightly varied and was always higher than 0.9. When the IOU
varied from 0.3 to 0.45, the total F1 score was always greater than 0.8. When the
IOU was between 0.45 and 0.6, the total F1 score was always greater than 0.6.

These results suggest that the performance of the proposed approach in terms
of recognizing traffic lights was satisfactory. The estimation of the light boundaries
by the proposed approach was also approbatory. Moreover, the red traffic light
recognition performance achieved by the proposed approach was inferior to the per-
formance of green traffic light recognition but superior to that of yellow traffic light
recognition.

The runtime of the proposed approach was analyzed (Figure 10). After the ad-
dition or removal of modules, the runtimes of the corresponding approaches were
compared. In Figure 10 a), the total runtime of the ‘full’ approach was the shortest,
followed by that of the ‘perspective’ approach, while the longest was that of the
‘none’ approach. In the runtime list of each approach, the elapsed time of the de-
tector was the shortest. However, the detector of the ‘fractal’ approach had a longer
elapsed time than that of the other approaches, which was associated with the fractal
computation. Relative to the others, the detector of the ‘fractal’ approach required
extra time to accomplish the fractal-computation task. Multiple values needed to
be calculated in each candidate box to estimate the fractal dimension. Thus, the
stage of the ‘fractal’ approach was somewhat time-consuming.

The elapsed time of the classifier was longest and directly affected the total
runtime of each approach. In fact, in this stage, the elapsed time was related to
the classifier-self and the number of candidate boxes. The former, i.e., the classifier
distinguishing each candidate box, was approximately 5.5 ms. The latter was not
constant. When the number of candidate boxes was large, the elapsed time of the
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classifier was necessarily long, and vice versa. When neither the perspective relation
module nor the fractal dimension module was used, the number of candidate boxes
was very large. Conversely, the number of candidate boxes was small. Thus, the
elapsed time of the ‘none’ approach was the longest, followed by that of the ‘fractal’
approach, while the shortest was that of the ‘all’ approach. Therefore, the two
modules played important roles in reducing the runtime (Figure 10 b)). The time
compression ratio of the perspective relation module was as high as 0.57 and that of
the fractal dimension module was 0.29. Using the two modules synchronously, the
time compression ratio was as high as 0.62. Finally, the average runtime needed to
process a single image for the ‘full’ approach was approximately 240 ms, indicating
that the proposed approach can process four images per second. When detecting
traffic lights under the offline condition, the proposed approach was very fast. Even
so, the proposed approach can completely satisfy the practical requests for some
online tasks requiring real-time image processing, such as processing the floating car
data from the low frequency (> 30 s) to the high frequency (1–10 s).

Figure 10. Analysis of runtime. In the figures, ‘perspective’ denotes the approach contain-
ing the perspective relation module; ‘fractal’ denotes the approach containing the fractal
dimension module; ‘all’ denotes the approach containing the two modules; and ‘none’ rep-
resents the approach without the two modules.

Figure 11 shows the performance in recognizing the different sizes of traffic lights.
The minimum resolution of the proposed approach for recognizing the traffic lights
was set to five pixels. When the size of the traffic lights was lower than 8 pixels,
the F1 score was always higher than 0.92. When the size of the traffic lights was
expanded to 11 pixels, the proposed approach yielded its best results. Then, the F1
score of the proposed approach declined. This decline is related to the chromatism
of traffic lights, which is frequently caused by light pollution. For example, when
the backlight behind the traffic light is too bright, the traffic light color becomes
lighter. In this case, the proposed approach can do nothing due to the existence
of chromatism. The statistics showed that larger traffic lights were more likely to
be impacted by light pollution than smaller lights, which explains the phenomenon
above. From another perspective, the proposed approach has prominent advantages
in recognizing small traffic lights.
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Figure 11. Traffic light size recognition performance achieved by using the proposed ap-
proach

4 DISCUSSION

4.1 Comparison with the Other Reference Models

A comparison of the recognition results of different approaches based on the LaRA
dataset is shown in Table 1. Compared with state-of-the-art approaches, the F1
score of the proposed approach was slightly lower than that of the Bayesian al-
gorithm but higher than the scores of other approaches. The recognition perfor-
mance of the proposed approach in the reference models is superior. Similar to
the Bayesian algorithm and de Charette approach, the precision of the proposed
approach was higher than that of the recall. This finding shows that the error
rate for traffic signals recognized by the proposed approach was lower than the
omission rate. However, opposite results were obtained for the Haltakov approach,
Siogkas approach and DeepTLR model. During the verification, we discovered that
some traffic signals appeared very small and some light textures were vague. In
addition, the similarity between the traffic signals and the backgrounds due to the
lower image quality hindered detection. These factors reduced the recall of the
proposed approach and increased the omission rate. In addition to comparing the
F1 scores, the area under the curve (AUC) indicators were also compared. Specif-
ically, a comparison between the proposed approach and the FusionTLR model
was performed. The red light recognition performance achieved by the FusionTLR
model was obviously better than the green light recognition performance. How-
ever, the case of the proposed approach was completely different. For the LaRA
dataset, some red signals that were quite small and blurry were very similar to
the backgrounds. Thus, their detection using the proposed approach was diffi-
cult.

The runtime costs were also analyzed. The runtime of the proposed approach
was approximately 120 ms per image on the LaRA dataset, which is longer than
that of most approaches and indicates that the proposed approach based on the
current implementation was relatively disadvantaged in processing the video im-
ages.
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Approach Precision Recall F1 AUCRed AUCGreen Platform Reference

Bayesian
algo.

0.987 0.947 0.966 [35]

FusionTLR 0.920 0.893 CPU [25]

Haltakov
approach

0.728 0.801 0.763 CPU [11]

Siogkas
approach

0.612 0.938 0.741 CPU [36]

DeepTLR 0.856 0.907 0.881 GPU [19]

de Charette
approach

0.845 0.535 0.655 CPU [9]

Ours 0.904 0.897 0.900 0.898 0.930 CPU

Table 1. Comparison of the proposed approach with state-of-the-art methods using the
LaRA dataset

Furthermore, we compared the proposed approach with the other more famous
object detection model, i.e. the YOLO model. The validation results revealed that
the performances of YOLO were unsatisfactory on both our datasets and the LaRA
dataset. The statistical results showed that both the precision and recall of YOLO
were lower than those of the proposed approach. A comparison of their vision
results is shown in Figure 12. Subplot (a) shows that the proposed approach can
distinguish the red and yellow lights better. However, YOLO falsely classified the
yellow lights as red lights. In subplot (b2), mistakes and omissions in recognizing
the traffic lights occurred when using YOLO. This observation indicates that YOLO
is unsuitable for detecting small objects, which is in agreement with the viewpoints
of some studies [20, 25].

4.2 Strategies for Further Model Optimization

4.2.1 Improving the Recognition Accuracy

The recognition accuracy of the proposed approach depends on the candidate box
quality of the detector and the classification accuracy of the classifier. The candidate
boxes produced by our detector did not ensure coverage of all traffic lights. The
statistics showed that the probability of the candidate boxes covering all traffic lights
was approximately 0.98. The reason for this was that our detector was sensitive
to the image color, which was closely related to the image quality. Many factors
affect the image quality of an on-vehicle camera. The major elements contain image
blurring due to shaking of the camera, color distortion due to light pollution, and
the lower resolution of the camera. Upon encountering poor image quality, omission
may occur for the candidate boxes. Therefore, further optimization of our detector
will be studied in future work.

In the subsequent classification, a deep CNN, i.e. SqueezeNet, was applied.
SqueezeNet is small and has a high classification precision. However, in this paper,
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Figure 12. Vision results on 1) our validation dataset and 2) the LaRA validation dataset
obtained by a) the proposed approach and b) the YOLO model

there is an upper limit to its classification precision. When training SqueezeNet,
we found some difficulty in exceeding the F1 score of 0.97 regardless of how the
training samples were adjusted. Thus, we designed and developed a new and simple
but highly efficient deep CNN classifier, denoted as SimpleNet. SimpleNet contains
two convolution layers, two pooling layers and two fully connected layers. The loss
function uses cross entropy. After tens of thousands of iterations, the F1 score of
SimpleNet can reach 0.985, which is then very difficult to exceed. Figure 13 shows
the misclassifications between the classifiers. Obviously, both classifiers faced the
same major challenges in distinguishing the backgrounds and traffic lights. However,
the misclassification error between the interiors of the traffic lights was lower for the
classifiers. Although SimpleNet has better classification performance, its file size is
large, and the runtime is long. Therefore, some tradeoff among the model runtime,
accuracy and size must occur.

By examining the classification data, we found that the contexts around some
traffic lights were inadequate. This inadequacy caused the backgrounds to be sim-
ilar to the traffic lights, especially for small traffic lights. The smallest resolution
of the proposed approach was 5 pixels. When the size further decreased, the traffic
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Figure 13. Analysis of the misclassification of classifiers

lights became very similar in appearance to the backgrounds. As a result, it was
difficult to detect them by human eyes. This situation makes some traffic light de-
tection systems meaningless because the on-vehicle camera was too far away from
the traffic lights. Usually, human eyes require an increase in context information,
i.e., expansion of the visual boundaries, to recognize small objects. However, this
increase did not significantly improve the classifier performance because too many
contextual data will overwrite the features of traffic lights. This deficiency stems
from the fact that the classification by the CNN is based on the local image tex-
ture [34]. Thus, to resolve this problem, the use of contextual data to improve the
classification performance of our classifier will be researched in future work.

4.2.2 Reducing the Runtime

Compared with that of the other traffic light recognition approaches, the runtime
of the proposed method is slightly longer. However, the runtime of the proposed
method can be considerably reduced in theory.

First, the proposed approach adopts serial computing technology, i.e. single-
thread sequential processing, in the implementation. In the candidate box classifi-
cation, the classifier sequentially classifies the candidate boxes. If more candidate
boxes exist, the serial processing mechanism of the classifier will lead to accumu-
lation of the runtime. Therefore, the overall runtime will be longer. In fact, no
correlation among the candidate boxes exists, which is good for parallel computing.
Under a single-core CPU, the processing of a single candidate box with our classifier
requires approximately 5.5 ms. If multiprocess is used, according to Figure 10 a), the
total time needed by the proposed approach to process a single image should not
exceed 25 ms to ensure that video image processing and online real-time processing
are possible. Therefore, in theory, it is feasible to use parallel computing to optimize
the proposed approach, and the computational efficiency after the optimization will
be significantly improved.
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Second, for video images, the target tracker technology, which has a runtime
advantage when processing frame images, can be coupled to our model. The mul-
tiple trackers were initialized at first by the traffic light boxes recognized by the
proposed approach in the previous frame image and were then used to find the
new positions of traffic lights in the next frame image and update the target po-
sition corresponding to each tracker, thereby improving the traffic light detection
efficiency.

Finally, for on-vehicle camera images, the location of traffic lights has a certain
regularity. In some areas, a high probability of traffic lights exists, while in other
areas, the probability might be small or equal to zero. For example, the probability
of a traffic light appearing above the horizon in an image is large. In contrast, traffic
lights typically do not appear below the horizon. Therefore, an invalid scan of the
algorithm can be prevented by setting the view boundary appropriately, thereby
improving the detection efficiency and quality.

In addition, using a GPU for calculations may also significantly improve the
efficiency of the proposed approach. Therefore, according to the above strategies,
further optimization of the proposed approach to reduce the runtime will be per-
formed in future studies.

4.3 Potential for Migrating to Embedded Devices

Currently, automatic recognition of traffic signs is very important for vehicle au-
tomatic driving or assisted driving. Traffic sign recognition systems have become
an integral part of Advanced Driver Assistance Systems (ADAS). Fast, robust and
real-time automatic traffic sign detection and recognition can significantly increase
driving safety. Although many traffic signal recognition methods are available, they
are not easily migrated to embedded devices because the hardware performance of
embedded devices is generally lower than the computer conditions in the labora-
tory.

With the constraint, the proposed approach should meet the specified conditions.
First, the proposed approach has a high accuracy rate and recall rate in terms of
the recognition performance and has better performance in reference approaches.
Second, the proposed approach has the potential to improve the time efficiency in
terms of the cost calculation. According to the previous analysis, when multiple pro-
cesses are employed for parallel classification and the target tracker technology has
been adopted, this approach is fully applicable to online real-time recognition tasks.
Last, the proposed approach is lightweight. The total size of the approach, including
the trained weight file, does not exceed 10 MB. The approach only depends on the
OpenCV and Tensorflow libraries during implementation; thus, it has minimal de-
pendence on third-party development libraries and implementation is simple. These
characteristics enable the proposed approach to have great potential for migration
to embedded devices.

Similar to other methods, the proposed approach inevitably contains some pa-
rameters and coefficients, such as the hue, saturation and value (HSV) thresholds



458 M. Che, M. Che, Z. Chao, X. Cao

applied to extract the traffic signal candidate regions, the coefficients for estab-
lishing the perspective relationship equation, and the fractal and R thresholds
applied for texture denoising. The optimal values of these parameters and coef-
ficients may be related to the test environments. When migrating from one re-
gion to another region, these parameters and coefficients may need to be adjusted
slightly to obtain better recognition results. However, if the training data are suf-
ficient, these parameters and coefficients will yield global values or local optimal
values classified by region in the form of a list. The same situation applies to
the weight file of the classifier. The proposed approach at this time can address
the variability of the scenarios as much as possible and no additional setting is
required.

In future work, the model migration research for embedded devices, such as
Raspberry Pi with ARM chip, will be investigated, and a comparative analysis will
be performed with the existing ADAS products.

5 CONCLUSION

We proposed an approach to detect traffic lights by using a combination of image
processing and deep learning. First, we designed a detector to create candidate
boxes that can cover all traffic lights based on image processing. In the process,
the perspective relationship and the fractal dimension were both considered to dra-
matically reduce the number of invalid candidate boxes. Then, the candidate boxes
were transformed into classified boxes by using the classifier. Finally, the traffic
light boxes were produced from the classified boxes via postprocessing. Overall, the
approach occupies a small amount of storage space.

We trained and validated the proposed approach on our dataset and the LaRA
dataset. Several state-of-the-art methods were employed as the reference approaches.
The results showed that the performance of the proposed approach in terms of rec-
ognizing traffic lights was satisfactory. In addition, estimation of the light boundary
by the proposed approach was approbatory.

The red traffic light recognition performance achieved by the proposed approach
was inferior for green traffic lights but superior for yellow traffic lights. The proposed
approach has prominent advantages in recognizing small traffic lights.

Compared with the reference models, the proposed approach has a significant
competitive advantage in terms of the recognition accuracy. Under the current
serial program architecture, the proposed approach was relatively disadvantaged in
processing video images. However, the runtime of the proposed approach can be
further greatly reduced in future work by using parallel computing to carry out
optimization.

Furthermore, the proposed approach was very small regarding the model size.
The file size of the proposed approach including the CNN weight file was less
than 10 MB. Thus, this approach can be used on smart terminals, mobile devices or
embedded devices in the future.
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