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Abstract. Differential evolution (DE) is an efficient population-based search algo-
rithm with good robustness, however, it is challenged to deal with high-dimensional
problems. In this paper, we propose an improved multi-population differential evo-
lution with best-and-current mutation strategy (mDE-bcM). The population is di-
vided into three subpopulations based on the fitness values, each of subpopula-
tions uses different mutation strategy. After crossover, mutation and selection, all
subpopulations are updated based on the new fitness values of their individuals.
An improved mutation strategy is proposed, which uses a new approach to gener-
ate base vector that is composed of the best individual and current individual. The
performance of mDE-bcM is evaluated on a set of 19 large-scale continuous opti-
mization problems, a comparative study is carried out with other state-of-the-art
optimization techniques. The results show that mDE-bcM has a competitive per-
formance compared to the contestant algorithms and better efficiency for large-scale
optimization problems.
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1 INTRODUCTION

Large-scale global optimization (LSGO), characterized by its high-dimensional de-
cision variables and time-consuming objective functions, is a ubiquitous and spon-
taneous process that frequently appears in the real world problems. It has been
increasingly considered as one of the most challenging issues in engineering opti-
mization and the most active research fields. In recent years, the corresponding
technologies that calculate the global optimal solution for LSGO have got some
significant progresses in mechanical design, environment engineering, chemical en-
gineering design, bioinformatics, image processing and other fields.

Differential evolution (DE), first proposed by Storn and Price [1, 2], is one of the
most competitive Evolutionary Algorithms (EAs) currently in use [3, 4], and it has
been applied to solve LSGO [5, 6]. Like the standard EAs, as a population-based,
heuristic and stochastic search technique, DE first generates an initial population
randomly in the feasible solution space as candidate solutions, and then generates
a next generation of population through crossover, mutation, selection and other
evolutionary operations, which move the population toward the global optimum.
Different from the standard EAs, the mutation operation of DE is realized by the
linear combination of the base vector and the difference vector of some individuals.
Because it does not need derivative information of solving problems [7], and it has
strong robustness in complex function optimization, DE receives wide attention and
application, however, with the size and complexity of LSGO growing dramatically,
the performance of DE algorithm will be terribly deteriorated. In other words, due
to the curse of dimensionality, DE has encountered great difficulties in dealing with
high-dimensional LSGO problems.

To improve performance of EAs for LSGO, numerous methods based on DE,
including DE’s variants and hybridization, were proposed. To solve slow convergence
and stagnation caused by high-dimensional in LSGO, DE algorithm is improved from
nine mechanisms, such as strategies and their adaptations, subpopulations, etc. Due
to the difference of solving problems, no algorithm has been a winner on all LSGO
benchmark functions so far [6].

In this paper, we propose a multi-populations DE with best-and-current muta-
tion strategy, called mDE-bcM, aimed at improving the search precision and solving
large-scale optimization problems. The mDE-bcM divides the population into three
subpopulations based on the fitness value, each subpopulation uses a given mutation
strategy. We propose a new improved mutation strategy that uses a linear combina-
tion of the best vector and current vector to produce the base vector. The mutation
scale factor is not a fixed value, but a random one to improve the diversity of the
population. After one evolution, every subpopulation updates on the base of the
new fitness value rank. And this technology mitigates the risk of lower diversity,
enhances the rate of convergence, promotes the whole algorithm performance. This
paper also uses two different strategies on three subpopulations, one is elitism and
the other is random migration. Elitism strategy keeps one subpopulation which has
good fitness values from participating in the evolution of the next generation, and
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it maintains the other two subpopulations to update. Random migration strategy
randomly selects ten individuals in one subpopulation which has good fitness val-
ues, five of them exchange with a random sample of five individuals in the general
population, another five exchange with a random sample of five individuals in the
poor population.

The mDE-bcM performance is evaluated on two sets of large-scale global opti-
mization benchmark functions with dimensions ranging from 50 to 1 000, the results
show that mDE-bcM is capable to solve continuous large-scale problems effectively
and produce competitive results when compared with the state-of-the-art algorithms
which are designed specifically to solve such problems.

The rest of the paper is structured as follows. Classic DE is introduced in
Section 2, a brief review of related works on multi-populations and mutation stra-
tegy is presented in Section 3, the proposed algorithm (mDE-bcM) is introduced in
Section 4, experimental set-up is presented in Section 5, experimental results and
analysis are presented in Section 6. Finally, the work is concluded in Section 7.

2 CLASSIC DIFFERENTIAL EVOLUTION

2.1 Initialization

An initial population X0 = {x1, . . . ,xNP} in DE is randomly generated in the entire
search space (unconstrained) or the feasible solution space (constrained). Based on
real number coding, the initial value of the jth decision variable of the ith individual
at generation g = 0 is generated among the prescribed lower bound xmin = {xjmin |
j = 1, . . . , D} and upper bound xmax = {xjmax | j = 1, . . . , D} by:

xji,0 = xjmin + rand(0, 1) · (xjmax − x
j
min), i = 1, 2, . . . , NP, j = 1, 2, . . . , D (1)

where D is the dimensions of the problem, NP is population size, rand(0, 1) is
a uniformly distributed random variable within the range (0, 1).

2.2 Mutation Operation

In DE, the variation vector vi,g = {vji,g | j = 1, . . . , D} is composed of a base

vector xi,r1,g = {xji,r1,g | j = 1, . . . , D} and the differential vector xi,r2,g − xi,r3,g

of two random individuals xi,r2,g and xi,r3,g in the gth generation population, the
differential vector xi,r2,g − xi,r3,g is scaled by the scale factor F . How to generate
the variation vector is called mutation strategy, the most commonly used mutation
strategies are summarized in [8]:

• DE/rand/1:
vi,g = xi,r1,g + F · (xi,r2,g − xi,r3,g) (2)

• DE/rand/2:

vi,g = xi,r1,g + F · (xi,r2,g − xi,r3,g) + F · (xi,r4,g − xi,r5,g) (3)
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• DE/best/1:
vi,g = xbest,g + F · (xi,r1,g − xi,r2,g) (4)

• DE/best/2:

vi,g = xbest,g + F · (xi,r1,g − xi,r2,g) + F · (xi,r3,g − xi,r4,g) (5)

• DE/rand-to-best/1:

vi,g = xi,g +K · (xbest,g − xi,g) + F · (xi,r1,g − xi,r2,g) (6)

• DE/rand-to-best/2:

vi,g = xi,g +K · (xbest,g − xi,g) + F · (xi,r1,g − xi,r2,g + xi,r3,g − xi,r4,g) (7)

• DE/current-to-rand/1:

vi,g = xi,g +K · (xi,r1,g − xi,g) + F · (xi,r2,g − xi,r3,g). (8)

The parameters r1, r2, r3, r4 and r5 are exclusive integers generated randomly
within the range of [1,NP], xbest,g is the individual which has the best fitness value
in the gth generation population, xi,r1,g, xi,r2,g, xi,r3,g, xi,r4,g and xi,r5,g are target
vectors selected from the gth generation population, K is randomly selected in [0, 1],
F is the scale factor.

2.3 Crossover Operation

Trial vector ui,g = {uji,g | j = 1, . . . , D} is generated by crossover operator. The DE
generally employs two kinds of crossover methods, namely binomial crossover (bin)
and exponential crossover (exp).

In binomial crossover, at least one component uji,g of trial vector ui,g is provided
randomly by the variation vector vi,g, that is as follows:

uji,g =

{
vji,g, rand(0, 1) ≤ CR or j = jrand,

xji,g, otherwise,
(9)

where j = 1, . . . , D, jrand is a randomly chosen integer in the range [1, D], CR ∈ (0, 1)
is the crossover rate.

Exponential crossover operation is as follows:

uji,g =

{
vji,g, j = 〈l〉D, 〈l + 1〉D, . . . , 〈l + L− 1〉D,
xji,g, otherwise,

(10)

where integer l ∈ [1, D], integer L ∈ [l, D] depends on the crossover probability
(CR), the angular bracket 〈l〉D denotes a modulo function with modulus D. That
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is to say, starting with lth component, L components are continuously selected from
the variation vector vi,g as the component of trial vector ui,g, the remaining D-L
components of trial vector ui,g are from xi,g.

2.4 Selection Operation

The selection operation chooses the best individual according to the fitness value
of target vector and trial vector in the gth generation population, as shown in the
following:

xi,g+1 =

{
ui,g, f(ui,g) < f(xi,g),
xi,g, otherwise,

(11)

where xi,g+1 is the next generation target vector.

3 RELATED WORK

The DE is a simple, effective, population-based optimization technique, but it
is inefficient for solving LSGO because of the computational complexity of high-
dimensional LSGO [9]. Many researches have been devoted to solve these problems,
and their research directions are mainly focused on multiple populations, mutation
strategy, parameters control, population size adaptation, problem decomposition
and so on, all of which are aimed at reducing the computational complexity in
high-dimensional LSGO.

Multiple populations are one of the most widely used methods of problem de-
composition, which can enhance the DE performance by parallel computing [10] and
enhance the population diversity by dividing the population into independent sub-
populations [11], meanwhile smaller subpopulations are efficient at quickly improving
their fitness values, but smaller subpopulations might likely dissipate diversity and
cause premature convergence [10].

Lampinen first tried to apply multiple populations to DE algorithm [12], who di-
vided a population into multiple subgroups in DE calculation. Zaharie [13] proposed
a DE with a multi-population approach. Weber et al. [14] proposed a parallel dif-
ferential evolution, named SOUPDE, which was a multi-population algorithm with
a differential evolution logic. In SOUPDE, the subpopulations quickly exploited
some areas of the decision space, a new search logics, integrated shuffling and up-
dating mechanisms were introduced into the subpopulation to avoid a diversity loss
and premature convergence. Chen et al. [15] proposed a parallel differential evolu-
tion with multi-population and multi-strategy, which divided an initial population
into three subpopulations with different mutation strategies, and the subpopulations
evolved independently at first, and then communicated with each other at regular in-
tervals. Ali et al. [11] proposed a multi-population DE algorithm, called mDE-bES,
the population was divided into four independent subgroups, each with different
mutation and update strategies, a novel mutation strategy that used information
from either the best individual or a random individual was used, individuals be-
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tween the subgroups were exchanged at the end of each function evaluations epoch.
Wu et al. [16] proposed a multi-population ensemble DE, called MPEDE, which
simultaneously consisted of three mutation strategies, i.e., “current-to-pbest/1”,
“current-to-rand/1” and “rand/1”. MPEDE had three equally sized smaller indi-
cator subpopulations and one much larger reward subpopulation, each constituent
mutation strategy has one indicator subpopulation. After some iterations, the best
performing mutation strategy was determined according to the ratios between fit-
ness improvements and consumed function evaluations, the reward subpopulation
was allocated to the determined best performing mutation strategy dynamically.

All these studies show that population decomposition may be an effective and
feasible method, which can not only reduce the complexity of calculation by reducing
the population size, but also facilitate parallel calculation to improve the efficiency
of calculation.

Mutation strategy also has a significant impact on the performance of DE, for
each individual, the number of successful generations related to a certain mutation
strategy [9]. Mutation strategy is represented by DE/x/y/z. Among them, x means
the way of selecting vectors in mutation operation, its possible values are “Rand”,
“best”, “current”, “Rand to best”, etc.; y represents the number of differential
vectors in mutation operation, usually y = 1 or 2; z refers to crossover method,
mainly including binomial (bin) and exponential (exp).

In order to improve the performance of DE algorithm, some researchers have
proposed many improved mutation strategies in recent years.

Price et al. have proposed 10 mutation strategies of DE [2], including DE/rand
/1/bin, DE/rand/1/exp, DE/best/1/bin, DE/best/1/exp, DE/rand/2/bin, DE
/rand/2/exp, DE/best/2/bin, DE/best/2/exp, DE/rand-to-best/1/bin, DE
/rand-to-best/1/exp, some of them have been described in Section 2.2.

Zhang et al. [17] proposed a new DE algorithm, called JADE, with a new mu-
tation strategy “DE/current-to-pbest/1” as follows:

vi,g = xi,g + Fi · (xp
best,g − xi,g) + Fi · (xr1,g − xr2,g) (12)

where xp
best,g is an individual randomly chosen from the top 100p% individuals in

the current population, p ∈ (0, 1], and Fi is the mutation factor randomly generated
for each xi. The parameter adaptation in JADE automatically updated the con-
trol parameters, the “DE/current-to-pbest/1” used the optional archive to provide
information of progress direction by historical data.

Kong et al. [18] proposed mutation operator based on symbolic function strategy:

vi,g = (1− w)xi,g + w · (s1xbest,g + s2xr1,g) + F · (xr2,g − xr3,g) (13)

where w is a random number between 0 and 1, s1 and s2 are symbolic functions.
Zhang et al. [19] adopted a directional mutation operator, which could be com-

bined with any other DE mutation strategy:

vi,g = xr1,g + F · δr2,g (14)
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where δr2,g is a difference vector from the pool of difference vectors. If ui,g will
survive and become xi,g+1 after crossover operation, which shows that ui,g must
contain some better components than xi,g, the difference vector ui,g−xi,g should be
a descent direction at xi,g, and was saved into the pool of difference vectors.

Qiu et al. [20] proposed fractal mutation factor differential evolution (FMDE)
algorithm, which consisted of an additional mutation factor simulated by a different
Hurst index Fractal Brownian Motion (FBM), the proposed mutation strategy, im-
proved from JADE’s “DE/current-to-pbest/1”, was divided into two parts to reflect
the changes of overall and random of the target population, it is defined as follows:

vi,g = xi,g + (Fi + Fi,FBM) · (xp
best,g − xi,g + λ · (xr1,g − xr2,g)) (15)

where Fi is variation factor of the overall changes, it changes near its position pa-
rameter µF and obeys cauchy distribution, Fi,FBM is variation factor of the random
changes, λ is an additional control parameter.

Raghav et al. [21] proposed a new “Memory based DE” (MBDE) where had two
“swarm operators”, and their operators based on the pBEST and gBEST mechanism
of particle swarm optimization, their “Swarm Mutation” is as follows:

vi,g = xi,g +

∣∣∣∣∣ f(pBEST
i,g )

f(xWORST
i,g )

∣∣∣∣∣ (pBEST
i,g − xi,g

)
+

∣∣∣∣∣ f(gBEST
g )

f(xWORST
i,g )

∣∣∣∣∣ (gBEST
g − xi,g

)
(16)

where pBEST
i,g is the personal best position of the vector xi,g, g

BEST
i,g is the global best

position of the vector xi,g, f(pBEST
i,g ), f(gBEST

g ) and f(xWORST
i,g ) are the personal best

function value, the global best function value and the worst function value of vector
xi,g in the current generation g, respectively.

Different mutation strategies adapt to different types of optimization problems.
For example, DE/rand/1/exp is suitable for the optimization of multimodal func-
tions, DE/best/1/exp is suitable for the optimization of unimodal functions. To
further improve the performance of DE, multiple mutation strategies are used.

Elsayed et al. [22] proposed 4 new mutation strategies “DE/rand/3”, “DE/best
/3”, “DE/rand-to-current/2” and “DE/rand-to-best and current/2” as follows:

• DE/rand/3:

vi,g = xr1,g + Fi · ((xr2,g − xr3,g) + (xr4,g − xr5,g) + (xr6,g − xr7,g)) (17)

• DE/best/3:

vi,g = xbest,g + Fi · ((xr1,g − xr2,g) + (xr3,g − xr4,g) + (xr5,g − xr6,g)) (18)

• DE/rand-to-current/2:

vi,g = xr1,g + Fi · ((xr2,g − xi,g) + (xr3,g − xr4,g)) (19)
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• DE/rand-to-best and current/2:

vi,g = xr1,g + Fi · ((xbest,g − xr2,g) + (xr3,g − xr4,g)). (20)

These mutation strategies used three or two differential vectors, which get the
benefit of the arithmetic recombination and the random effect to investigate the
search space for both separable and non-separable unimodal test problems.

Elsayed et al. used four mutation strategies on four subpopulations, respectively.
Tong et al. [23] proposed an improved multi-population ensemble DE (IMPEDE)

and used a new mutation strategy “DE/pbad-to-pbest/1” instead of the mutation
strategy “DE/rand/1”, “DE/pbad-to-pbest/1” is defined as follows:

vi,g = xi,g + F · (xpbest,g − xpbad,g) (21)

where xpbest,g, xpbad,g are individuals randomly chosen from the best top or the bad
top 100p% individuals in the current population, respectively, p ∈ (0, 1], the new
strategy “DE/pbad-to-pbest/1” utilized the information of the bad solution (pbad)
and the good solution (pbest) to balance exploration and exploitation.

Except “DE/pbad-to-pbest/1” over subpopulation pop1, Tong et al. used “DE
/current-to-rand/1” over subpopulation pop2 , “DE/pbad-to-pbest/1” over subpop-
ulation pop3.

Xu et al. [24] proposed a new adaptive differential evolution named CAMDE,
which defined two new multi-population-based mutation operators, denoted as “DE
/current-to-nbest/u” and “DE/current-to-rand/u” as follows:

• DE/current-to-nbest/u:

vi,g = xi,g + F · (xnbest,g − xi,g) + F · (x̃r1,g − xr2,g) (22)

• DE/current-to-rand/u:

vi,g = xi,g + F · (xr2,g − xi,g) + F · (x̃r1,g − xr3,g) (23)

where xnbest,g means the non-dominated best solution, and x̃r1,g is randomly chosen
from the union Xg ∪ Yg of the main population Xg and the external population
Yg, Yg = {y1,g, . . . ,yK,g} is composed of individuals better than the corresponding
target vector xi,g, K is the maximal size of the population Yg.

In CAMDE, each of two mutation operators is selected with equal probability.

4 IMPROVED MULTI-POPULATION DIFFERENTIAL EVOLUTION
WITH BEST-AND-CURRENT MUTATION STRATEGY
(MDE-BCM)

In DE algorithm, the reasonable control parameter setting and excellent mutation
strategy directly affect the convergence of algorithm, the performance and relia-
bility of the solution. Meanwhile, different strategies and parameters setting are
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adapted to the different optimization problems. Optimizing different benchmarks
with different characteristics such as uni-modal, multi-modal, continuous, discrete,
low-dimension, high-dimension requires different mutation strategies and suitable
parameters. For these reasons, the proposed algorithm in this paper divides the
population into three subpopulations S1, S2 and S3 based on the fitness value, each
of which follows a different mutation strategy and corresponding parameters. This
technology could reduce the burden of parameter selection, increase the diversity of
population, and improve the rate of convergence of the algorithm.

The structure of mDE-bcM algorithm is written in Algorithm 1.

Algorithm 1 Pseudo code of mDE-bcM

Set CR = 0.9, F = 0.5; Initialize NP, Gm, D; Set g = 0;
Initialize the population randomly distributed in the solution space;

for i = 1 to NP do
Calculate f(xi,0) for each individual xi,0 in initial population X0;

end for
Rank xi,0 based on f(xi,0);
Partition initial population X0 into S1, S2, S3 with the same size NP/3;
while (g < Gm) do

for each xi,g in Sk (k = 1, 2, 3) do
vi,g = mutation(xi,g);
ui,g = crossover(xi,g,vi,g);
xi,g+1 =selection(xi,g,ui,g);
Calculate f(xi,g+1) for each new individual xi,g+1 in subpopulation Sk;

end for
Xg+1 =

⋃k
1 Sk, (k = 1, 2, 3);

Rank xi,g+1 based on f(xi,g+1);
Partition Xg+1 into new S1, S2, S3 with the same size;
Update the best archive of S2 and S3 by selecting randomly 10 individuals

from S1;
Set g = g + 1;

end while

The mDE-bcM algorithm is described as follows.

4.1 Multiple Subpopulations

The mechanism of multi-population ensures that each subpopulation is not affected
by the interference of other subpopulations in the process of evolution. Moreover,
it also improves the diversity of the population to a certain degree. If the diver-
sity of one subpopulation get worse, individuals with a large difference in the other
two subpopulations do not get worse because they are evolved independently, the
diversity of the population will be improved through migration among subpopula-
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tions. Meanwhile, multi-population also makes it possible to parallelize which can
effectively reduce the computational time.

4.2 Evolutionary Process

The mDE-bcM firstly initializes the entire population by randomly generating indi-
viduals with D dimensions, then the fitness values are calculated and sorted for all
individuals. Based on the fitness values, the population is divided into three sub-
populations that are S1, S2 and S3. the size of each subpopulation is NP1 = NP/3.
S1 is a subpopulation with better fitness, S2 is a subpopulation with general fitness,
S3 is a subpopulation with poor fitness. Three subpopulations evolve respectively
and concurrently within each subpopulation. After crossover, mutation and selec-
tion, three subpopulations S1, S2 and S3 are combined into one population, the
fitness values of individuals in the combined population are recalculated and all
individuals are sorted, then combined population is divided into three subpopula-
tions according to the fitness values. Finally, the algorithm enters the next itera-
tion.

4.3 Best and Current Mutation Strategy

Traditional mutation strategy in dealing with high-dimensional problems can not
get good convergence effect. Inspired by a greedy mutation strategy “DE/current-
to-pbest/1” in [11], we proposed a new mutation strategy called “DE/best-and-
current/1”.

Different from the classic mutation strategy which selects one of the population
members as the base vector, and also different from mDE-bES in [11] which selects
the best or a random individual as the base vector, we use a linear combination
of the best vector xbest,g and current vector xi,g. Mutation scale factor F also is
a random value, instead of a fixed value. Mutant vector vi,g is created as follows:

vi,g = (a1xbest,g + a2xi,g) + rand(0, 1) · (xr1,g + xr2,g) (24)

where r1, r2 are random exclusive integers within the interval [1,NP/3], a1, a2 are
scalars randomly selected between (0, 1), and a1 + a2 = 1.

In order to avoid the degradation of the offspring, S1 is an elitist-population, it
adopts the traditional mutation strategy “DE/rand/1”. S2 and S3 use a random
migration strategy and user-defined best-and-current mutation strategy (as shown
in formula (24), the random migration strategy randomly selects 10 individuals from
S1, 5 of them are xbest,g in S2 and 5 of them are xbest,g in S3. Then, S1, S2 and S3
evolve in parallel using two different evolution strategies.
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5 EXPERIMENTAL SET-UP

5.1 Benchmark Functions

The algorithm was tested on 19 benchmark large-scale global continuous optimiza-
tion functions (F1–F19). The functions were taken from the special issue of Soft
Computing on scalability of evolutionary algorithms [25, 26], the dimensions of
these functions in the special issue were 50, 100, 200, 500 and 1 000, respectively,
the optimal solutions for all these functions are known. Each function runs 25 times
independently to evaluate the performance of the algorithm. The definitions of the
functions F1–F11 are shown in Table 1. In Table 2, the functions F12–F19 are gen-
erated by hybridizing a non-separable function Fns with other function F ′ using
a splitting mechanism that defines the ratio of variables which are evaluated by Fns

using parameter mns.

F Name Definition Range f(x∗)

F1 Shif. Sphere Function f1(x) =
∑D

i=1 x
2
i [−100, 100]D −450

F2 Shif. Schwefel Problem 2.21 f2(x) = maxi∈[1,D] |xi| [−100, 100]D −450

F3 Shif. Rosenbrock’s Function f3(x) =
∑D

i=1(100(x2i + xi+1)
2 + (xi − 1)2) [−100, 100]D 390

F4 Shif. Rastrigin’s Function f4(x) =
∑D

i=1[x
2
i − 10 cos(2πxi) + 10] [−5, 5]D −330

F5 Shif. Griewank’s Function f5(x) = 1
4000

∑D
i=1 x

2
i −

∏D
i=1 cos xi√

i
+ 1 [−600, 600]D −180

F6 Shif. Ackley’s Function
f6(x) = −20exp

(
−0.2

√
1
D

∑D
i=1 x

2
i

)
−exp

(
1
D

∑D
i=1 cos(2πxi) + 20 + e

) [−32, 32]D −140

F7 Shif. Schwefel’s Problem 2.22 f7(x) =
∑D

i=1 |xi|+
∏D

i=1 |xi| [−10, 10]D 0

F8 Shif. Schwefel’s Problem 1.2 f8(x) =
∑D

i=1(
∑i

j=1 xj)
2 [−65.536, 65.536]D 0

F9 Shif. Extended f10
f9(x) =

(∑(D−1)
i=1 f10(xi, xi+1)

)
+ f10(xD, x1)

f10(x) = (x2 + y2)0.25(sin2(50(x2 + y2)0.1) + 1)
[−100, 100]D 0

F10 Shif. Bohachevsky
f10(x) =

∑D
i=1[x

2
i + 2x2i+1 − 0.3 cos(3πxi)

−0.4 cos(4πxi+1) + 0.7]
[−15, 15]D 0

F11 Shif. Schaffer f11(x) =
∑D−1

i=1 (x2i + x2i+1)
0.25(sin2(50(x2i + x2i+1)

0.1) + 1) [−100, 100]D 0

Table 1. Properties of functions F1–F11

Function Fns F ′ mns Range f(x∗) Function Fns F ′ mns Range f(x∗)

F12 F9 F1 0.25 [−100, 100]D 0 F16 F9 F1 0.75 [−100, 100]D 0
F13 F9 F3 0.25 [−100, 100]D 0 F17 F9 F3 0.75 [−100, 100]D 0
F14 F9 F4 0.25 [−5, 5]D 0 F18 F9 F4 0.75 [−5, 5]D 0
F15 F10 F7 0.25 [−10, 10]D 0 F19 F10 F7 0.75 [−10, 10]D 0

Table 2. Properties of functions F12–F19 (functions F12–F19 are hybridized by a non-
separable function Fns with other function F ′)
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5.2 Parameter Settings

During experimentation, control parameters of the mDE-bcM algorithm are set as
follows based on parameter tuning simulation results:

Number of subpopulations is set to 3.
The population size (NP = 60) is maintained constant during the evolution

process.
DE crossover operator: binomial.
Crossover rate: CR = 0.9.
The mDE-bcM and other DE variants were coded in Matlab environment.
The computations were carried out using a PC with Intel(R) Core(TM) i3-

2350M @2.3 GHz CPU and 2 GB RAM while running Matlab R2012a on 64-bit
Windows operating system.

6 NUMERICAL RESULTS AND DISCUSSIONS

6.1 Simulation Results

The error values (f(x) − f(x∗)) for all test functions, including the best, median,
mean, worst values and standard deviation, are reported in Tables 3 and 4, where
f(x) is the global optimum we found, f(x∗) is the global optimum in Tables 3 and 4,
and dimensions D = 50, 100, 200, 500 and 1 000. The error values (f(x)−f(x∗)) was
adopted as a performance metric of algorithms. The number of function evaluations
(FEs) for each category of dimensions for these problems is set as 30 000.

D Values F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

Best 4.62E−97 4.04E−44 4.90E+01 0.00E+00 0.00E+00 8.88E−16 1.32E−49 3.94E−81 1.76E−23 1.76E−23
Median 1.55E−94 5.83E−43 4.90E+01 0.00E+00 0.00E+00 8.88E−16 1.07E−47 2.04E−79 1.24E−22 1.24E−22

50 Mean 2.05E−92 8.26E−43 4.90E+01 0.00E+00 0.00E+00 8.88E−16 4.44E−47 8.30E−79 1.87E−22 1.87E−22
Worst 1.59E−91 3.18E−42 4.90E+01 0.00E+00 0.00E+00 8.88E−16 2.02E−46 6.89E−78 5.58E−22 5.58E−22
Std 2.71E−93 1.16E−43 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.25E−47 2.92E−79 3.83E−23 3.83E−23

Best 7.18E−195 2.13E−86 9.90E+01 0.00E+00 0.00E+00 8.88E−16 2.00E−97 1.06E−159 4.88E−47 0.00E+00
Median 1.68E−190 1.99E−85 9.90E+01 0.00E+00 0.00E+00 8.88E−16 9.96E−96 1.82E−157 3.34E−46 0.00E+00

100 Mean 1.42E−188 3.07E−85 9.90E+01 0.00E+00 0.00E+00 8.88E−16 1.07E−94 6.65E−157 6.52E−46 0.00E+00
Worst 9.55E−188 1.44E−84 9.90E+01 0.00E+00 0.00E+00 8.88E−16 5.30E−94 8.03E−156 2.07E−45 0.00E+00
Std 0.00E+00 1.10E−85 0.00E+00 0.00E+00 0.00E+00 0.00E+00 4.04E−95 9.30E−158 1.46E−46 0.00E+00

Best 0.00E+00 3.41E−163 1.99E+02 0.00E+00 0.00E+00 8.88E−16 1.52E−161 0.00E+00 0.00E+00 0.00E+00
Median 0.00E+00 1.05E−162 1.99E+02 0.00E+00 0.00E+00 8.88E−16 4.69E−161 0.00E+00 0.00E+00 0.00E+00

200 Mean 0.00E+00 1.03E−162 1.99E+02 0.00E+00 0.00E+00 8.88E−16 4.82E−161 0.00E+00 0.00E+00 0.00E+00
Worst 0.00E+00 1.55E−162 1.99E+02 0.00E+00 0.00E+00 8.88E−16 9.20E−161 0.00E+00 0.00E+00 0.00E+00
Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 5.64E−162 0.00E+00 0.00E+00 0.00E+00

Best 0.00E+00 3.62E−163 4.99E+02 0.00E+00 0.00E+00 8.88E−16 1.51E−161 0.00E+00 0.00E+00 0.00E+00
Median 0.00E+00 1.07E−162 4.99E+02 0.00E+00 0.00E+00 8.88E−16 5.42E−161 0.00E+00 0.00E+00 0.00E+00

500 Mean 0.00E+00 1.05E−162 4.99E+02 0.00E+00 0.00E+00 8.88E−16 5.79E−161 0.00E+00 0.00E+00 0.00E+00
Worst 0.00E+00 1.55E−162 4.99E+02 0.00E+00 0.00E+00 8.88E−16 1.17E−160 0.00E+00 0.00E+00 0.00E+00
Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 7.68E−162 0.00E+00 0.00E+00 0.00E+00

Best 0.00E+00 3.87E−163 9.99E+02 0.00E+00 0.00E+00 8.88E−16 1.71E−161 0.00E+00 0.00E+00 0.00E+00
Median 0.00E+00 1.10E−162 9.99E+02 0.00E+00 0.00E+00 8.88E−16 5.99E−161 0.00E+00 0.00E+00 0.00E+00

1 000 Mean 0.00E+00 1.08E−162 9.99E+02 0.00E+00 0.00E+00 8.88E−16 6.46E−161 0.00E+00 0.00E+00 0.00E+00
Worst 0.00E+00 1.55E−162 9.99E+02 0.00E+00 0.00E+00 8.88E−16 1.36E−160 0.00E+00 0.00E+00 0.00E+00
Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 9.14E−162 0.00E+00 0.00E+00 0.00E+00

Table 3. Experimental results obtained by mDE-bcM on functions F1–F10
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D Values F11 F12 F13 F14 F15 F16 F17 F18 F19

Best 7.47E−24 7.80E−23 3.70E+01 3.61E−49 2.16E−23 1.20E+01 3.48E−24 1.17E−45 3.61E−49
Median 6.55E−23 4.59E−22 3.70E+01 2.66E−47 1.18E−22 1.20E+01 3.19E−23 1.24E−44 2.66E−47

50 Mean 1.07E−22 6.56E−22 3.70E+01 1.48E−46 1.69E−22 1.20E+01 4.27E−23 2.48E−44 1.48E−46
Worst 3.24E−22 1.90E−21 3.70E+01 7.37E−46 4.76E−22 1.20E+01 1.20E−22 1.04E−43 7.37E−46

Std 2.27E−23 1.19E−22 0.00E+00 5.16E−47 3.23E−23 0.00E+00 8.31E−24 2.36E−45 5.16E−47

Best 4.02E−47 7.06E−45 8.70E+01 4.35E−97 8.64E−46 1.20E+01 6.39E−48 3.09E−90 4.35E−97
Median 4.54E−46 6.65E−44 8.70E+01 2.83E−95 8.34E−45 1.20E+01 7.86E−47 9.52E−89 2.83E−95

100 Mean 1.33E−45 1.12E−43 8.70E+01 5.84E−94 1.17E−44 1.20E+01 1.59E−46 3.56E−87 5.84E−94
Worst 4.74E−45 3.91E−43 8.70E+01 3.19E−93 3.62E−44 1.20E+01 5.11E−46 2.99E−86 3.19E−93

Std 3.04E−46 2.67E−44 0.00E+00 1.56E−94 2.13E−45 0.00E+00 3.33E−47 3.28E−87 1.56E−94

Best 0.00E+00 0.00E+00 1.87E+02 1.28E−161 0.00E+00 1.20E+01 0.00E+00 9.04E−168 1.28E−161
Median 0.00E+00 0.00E+00 1.87E+02 4.21E−161 0.00E+00 1.20E+01 0.00E+00 1.34E−166 4.21E−161

200 Mean 0.00E+00 0.00E+00 1.87E+02 4.39E−161 0.00E+00 1.20E+01 0.00E+00 3.51E−166 4.39E−161
Worst 0.00E+00 0.00E+00 1.87E+02 8.68E−161 0.00E+00 1.20E+01 0.00E+00 2.05E−165 8.68E−161

Std 0.00E+00 0.00E+00 0.00E+00 5.56E−162 0.00E+00 0.00E+00 0.00E+00 0.00E+00 5.56E−162

Best 0.00E+00 0.00E+00 4.87E+02 1.52E−161 0.00E+00 1.20E+01 0.00E+00 1.76E−171 1.52E−161
Median 0.00E+00 0.00E+00 4.87E+02 5.45E−161 0.00E+00 1.20E+01 0.00E+00 4.05E−170 5.45E−161

500 Mean 0.00E+00 0.00E+00 4.87E+02 5.77E−161 0.00E+00 1.20E+01 0.00E+00 7.99E−170 5.77E−161
Worst 0.00E+00 0.00E+00 4.87E+02 1.17E−160 0.00E+00 1.20E+01 0.00E+00 4.55E−169 1.17E−160

Std 0.00E+00 0.00E+00 0.00E+00 7.65E−162 0.00E+00 0.00E+00 0.00E+00 0.00E+00 7.65E−162

Best 0.00E+00 0.00E+00 9.87E+02 1.76E−161 0.00E+00 1.20E+01 0.00E+00 4.66E−173 1.76E−161
Median 0.00E+00 0.00E+00 9.87E+02 5.85E−161 0.00E+00 1.20E+01 0.00E+00 9.61E−172 5.85E−161

1 000 Mean 0.00E+00 0.00E+00 9.87E+02 6.35E−161 0.00E+00 1.20E+01 0.00E+00 6.07E−171 6.35E−161
Worst 0.00E+00 0.00E+00 9.87E+02 1.36E−160 0.00E+00 1.20E+01 0.00E+00 4.19E−170 1.36E−160

Std 0.00E+00 0.00E+00 0.00E+00 9.33E−162 0.00E+00 0.00E+00 0.00E+00 0.00E+00 9.33E−162

Table 4. Experimental results obtained by mDE-bcM on functions F11–F19

Tables 3 and 4 show that there are 11 functions where median values are equal
to 0, then 4 functions whose median values are less than 10E−160, and 4 functions
where median values are worse than 10E−160 in 19 functions, when D = 1 000.
But when D = 50, there are 2 functions whose median values are equal to 0, and
17 functions whose median values are worse than 10E−160, what shows that the
algorithm mDE-bcM performs well in solving high-dimensional problems.

Tables 3 and 4 also show that there are 10 functions whose median values are
equal to 0, 5 functions whose median values are less than 10E−160, and 4 functions
whose median values are worse than 10E−160 in 19 functions, when D > 200,
which shows that the algorithm mDE-bcM performs well when the dimension D
exceeds 200.

But Tables 3 and 4 also reveal that the mDE-bcM appears to have difficulties on
function F3 (Shifted Rosenbrock’s function), F5 (Shifted Griewank’s function), F6

(Shifted Ackley’s function), F13 (hybrid composition function) and F16 (hybrid com-
position function), regardless of the dimension. Functions F3 and F6 are multimodal
functions, functions F13 and F16 are hybrid composition functions and hybridized
by a non-separable function F9 with other function F3 or F1. This shows that
the algorithm mDE-bcM performs poorly on some multimodal functions, although
it performs well on multimodal function F4. If it is used in multimodal function
optimization, premature convergence must be avoided.

In Table 3 and 4, the mean error is better than its corresponding median, which
means that individuals are evenly distributed in the population, without much worse
values.
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F17  F18  F19

F13 F14 F15 F16

 F9 F10 F11 F12

F5 F6 F7 F8

 F1  F2 F3
 F4

Figure 1. The best value and the mean value, where dimension D = 500, the test functions
are from F1 to F19

The best values and the mean values of 19 test functions are shown in Figure 1,
where dimension D = 500, number of iteration is 30 000. The horizontal axis is
the number of iterations (FEs), and the vertical axis is the error values of fitness
(log).

From Figure 1, the continuous optimization process of the mDE-bcM on func-
tions F1–F19 can be observed, showing that the mDE-bcM has excellent performance
on most functions. But the best error and mean error were rapidly reduced in the
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early stages of iteration and slowly changed in the later stages of iteration on F3,
F6, F13 and F17, uniformly reduced on other functions. By analyzing individuals in
population, we observed that rapid convergence occurred on F3, F6, F13 and F17, ap-
proximate optimal solutions are found after about 300 generations, and after that,
improvements are very slow, and more generations only consume the processing
time, what shows that the mDE-bcM has general performance on these functions.
In fact, a single mutation strategy always performs poorly.

In addition, the curve is interrupted on F4, F5 and F10, because the error values
(f(x)− f(x∗)) are less than 0 and the vertical axis is logarithmic.

Overall, the mDE-bcM was able to optimize on 2 functions at D = 50, 3 func-
tions at D = 100, 11 functions at D = 200, 11 functions at D = 500, and 11
functions at D = 1 000. It was also able to obtain high quality results for the rest
of the functions at different dimensions with small errors.

In summary, the mDE-bcM has excellent performance on most functions, espe-
cially in high dimension, although it encounters difficulties in a few functions.

6.2 Parameter Tuning

In this subsection, we will evaluate the sensitivity of the proposed algorithm to
some parameters. The decision variables to be adjusted in mDE-bcM include the
population size (NP) and mutation strategies.

In these tests, we varied NP at a time while keeping the other parameters fixed,
or used different strategies in the evolutionary process. We performed 25 indepen-
dent runs for every set of parameters. In order to test the effect of the population
size (NP) and mutation strategies more clearly, the population was not grouped,
only one population was used.

Table 5 shows results of parameter tuning while population size NP changes
from 30 to 300, where D = 500. Figure 2 shows comparison between our best-
and-current mutation strategy and 7 classic mutation strategies, where NP = 60,
D = 500.

NP 30 60 90 180 300

F1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.28E−189
F3 4.99E+02 4.99E+02 4.99E+02 4.99E+02 4.99E+02
F4 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
F7 1.41E−161 1.51E−161 1.73E−161 3.95E−158 4.87E−95
F8 0.00E+00 0.00E+00 0.00E+00 1.27E−258 3.34E−155
F15 1.08E−161 1.52E−161 1.60E−161 4.27E−159 1.01E−94
F19 2.45E−169 1.76E−171 6.06E−172 5.02E−154 7.32E−94

Table 5. Population size (NP) tuning. The data in Table 5 are the average of 25 calcula-
tions, where D = 500.

Table 5 exhibits different errors during the fitness evaluations while the mDE-
bcM selects different population size NP, it is obvious that better results can be
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obtained where NP < 90, and optimal results can be obtained on most functions
while NP = 60. Bigger population size makes it easier for individuals in the popu-
lation to carry more abundant genes, maintain the diversity of the population and
quickly obtain high-quality solutions, but it also means that more extra fitness eval-
uations are done, what consumes more computing time. A smaller population size
means shorter computing time, but it leads to poor population diversity and calcu-
lation success rate. Although the mDE-bcM can also obtain better results on some
functions while NP = 30, as a compromise, we select NP = 60 in this paper, and
sub-population size is 20 after grouping.

The mean values of our best-and-current mutation strategy and other 7 mutation
strategies on functions F1, F2, F6, F7, F8 and F9 are shown in Figure 2.
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Figure 2. Comparisons between our best-and-current mutation strategy and 7 mutation
strategies on functions F1, F2, F6, F7, F8 and F9

Figure 2 illustrates that our best-and-current mutation strategy performs better
than most traditional mutation strategies, because its base vector is linear combi-
nation of the best vector xbest,g and current vector xi,g, instead of the best vector
xbest,g or the random/current vector xi,g, so it inherits two excellent genes of the
parent as base vectors at the same time. Like other methods, best-and-current mu-
tation strategy also converges rapidly on functions F1, F2, F6 and F7, that means
the mDE-bcM and other mutation strategies fall into prematurity and individuals
become the same, test results on 19 functions also show that a single mutation
strategy will always perform poorly on some functions, so it is necessary to adopt
multiple mutation strategies or combinations of them.
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6.3 Computational Complexity Analysis

The mDE-bcM divides initial populationX0 into three subpopulations S1, S2 and S3,
subpopulation size is reduced to NP/3, then mDE-bcM carries out the evolutionary
operations such as crossover, mutation and selection in parallel, but it is still a serial
algorithm structure between two runs, so computational complexity is determined
by the number of calls to genetic operators, as shown in the following [27, 28]:

O(D ·NP/3 ·Gm). (25)

In mDE-bcM, the outer loop controls the number of iterations and its maximum
value is Gm, and the inner loop controls the number of individuals involved in
evolution and its maximum value is NP/3, each individual contains D components.
In formula (25), D and Gm are necessary for high dimension and high precision,
so reducing the number of individuals from NP to NP/3 can effectively reduce the
computational complexity, which is the value of multiple populations with parallel
computing.

6.4 Comparison with Other State-of-the-Art Optimization Techniques

In this section, we compared mDE-bcM with two groups of state-of-the-art opti-
mization algorithms, which is because these two groups of algorithms were tested
on SOCO 2011 [25, 26]. Like the analysis in literature [29], different algorithms
have different performance in different test function suites, no algorithm is always
excellent in all test function suites. For example, MOS-CEC2013 [30] performs
best on the CEC 2010 benchmark suite [31] and CEC 2013 benchmark suite [32],
but ranks 6th on the SOCO 2011 benchmark suite, MOS-SOCO2011 [33] performs
best on the CEC 2010 benchmark suite, but ranks 4th on the SOCO 2011 bench-
mark suite and 8th CEC 2013 benchmark suite. On the other hand, the algorithms
from the first group are all tested in different dimensions, which can reflect the
ability of the algorithm to deal with large-scale optimization problems in different
dimensions, whereas the algorithms from the second group are all tested in the di-
mension of 1 000, which only reflects the high-dimensional processing ability of the
algorithm.

For this reason, both groups of algorithms were tested by researchers on 19
benchmark large-scale global continuous optimization functions, these functions
were taken from the special issue of Soft Computing on scalability of evolution-
ary algorithms [25, 26], the algorithms from the first group were compared in [11],
whereas the algorithms from the second group were compared in [34].

We have also used the Friedman test for multiple comparisons to check differ-
ences among the considered algorithms, the statistical methods include:

1. Overall ranking according to the Friedman test: we firstly rank each algorithm
according to its mean value for each function, then compute its average ranking
on all the functions.
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2. # Best: This is the number of functions for which each algorithm obtains the
best results compared to all the other algorithms.

3. nWins: This is the number of our mDE-bcM is better than, similar to and worse
than that of the corresponding algorithm according to the Wilcoxon Signed Rank
Test in a pair-wise comparison [35].

4. The Friedman test: The Friedman test can detect whether there are significant
differences between the behavior of multiple algorithms.

The comparison algorithms in the first group are as follows:

1. The classic DE algorithm [1]. The strategy is “DE/rand/1/exp”, CR = 0.9,
F = 0.5.

2. Real-coded Genetic Algorithm (CHC) [36]. It is a real-coded genetic algorithm
using interval-schemata as an analysis tool and was tested by 13 test func-
tions.

3. CMA-ES [37]. It introduced a restart-CMA evolution strategy and was evalu-
ated on 25 test functions of the CEC 2005 whose dimension D = 10, 30 and
50. In CMA-ES, the default population size prescribed for the (µW , λ)-CMA-ES
grew with logD and equaled to λ = 10, 14, 15 for D = 10, 30, 50, respectively.
On multi-modal functions, the optimal population size λ could be considerably
greater than the default population size.

4. MA-SSW [38]. Molina et al. proposed a memetic algorithm based on local
search chains for high dimensionality, MA-SSW-Chains used the Subgrouping
Solis Wets’ algorithm as its local search method, in which only a random sub-
set of the variables was explored and this subset would change after a certain
number of evaluations. MA-SSW-Chains is considered to be one of the best
algorithms in CEC 2010 benchmark suite.

5. MTS-LS1 [39]. It introduced multiple agents to search the solution space and was
evaluated on 7 test functions of the CEC 2008 special session and competition
on large scale global optimization. Each agent in MTS-LS1 did an iterated local
search using one of three candidate local search methods and might find its way
to a local optimum or the global optimum. MOS-SOCO2011 based on MTS-
LS1 is considered to be one of the best algorithms in SOCO 2011 benchmark
suite.

6. SaDE [7]. In SaDE, the trial vector generation strategies with their associated
parameters values were gradually self-adapted by learning from previous suc-
cessful experiences. SaDE was evaluated on 26 test functions, two of which were
chosen from [40].

7. EvoPR [41]. Rahnamayan et al. proposed the evolutionary path relinking
(EvoPR) to finding a global optimum of multi-modal functions and uncon-
strained large-scale problems, EvoPR was tested on 19 test functions for the
special issue of Soft Computing on scalability of evolutionary algorithms and
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other metaheuristics for large scale continuous optimization problems [25] with
dimensions ranging from 50 to 1 000.

8. mDE-bES [11]. The mDE-bES utilized exponential crossover, and divided the
population into four subgroups, each of which employed a certain modified mu-
tation strategy, CR ∈ [0.2, 0.9] and F ∈ [0.5, 0.9].

The algorithms from the first group were initially tested on different functions,
but were finally tested on the same initial population, same benchmark suite F1–F19
and same stopping rule in [11], and dimension changed from 50 to 1 000, but G-CMA-
ES is not evaluated at dimension 1 000.

The comparison algorithms in the second group are from literature [29, 34].
[29] provided a comprehensive comparison of the performance of several algorithms
evaluated on the CEC 2010, CEC 2013 and SOCO 2011 benchmark suites, [34]
compared its algorithm CCJADE with six state-of-the-art algorithms, according
to their analysis, the algorithms with excellent performance in recent years are as
follows:

1. MOS-CEC2013 [30]. MOS-CEC2013 is a hybrid algorithm that combines a po-
pulation-based search algorithm, a Genetic Algorithm (GA), with two powerful
local searches (the Solis Wets’ algorithm and a variation of the MTS-LS1 local
search). It was the champion of the competition on LSGO used the CEC 2013
LSGO benchmark suite in 2013 which defined 15 test functions with dimension
1 000 or 905 in [32].

2. MOS-SOCO2011 [29, 33]. MOS-SOCO2011 combined a Differential Evolution
(DE) algorithm and the first of the local searches of the MTS algorithm (MTS-
LS1), and used the Multiple Offspring (MOS) framework which made the seam-
less combination of multiple search algorithm in a dynamic way. It obtained the
best overall results among all the algorithms included in the 2011 special issue
of the Soft Computing journal.

3. jDElscop [42]. The jDElscop was a self-adaptive DE algorithm that used three
different DE strategies (DE/rand/1/bin, DE/rand/1/exp and DE/best/1/bin),
a sign-change control mechanism for the F parameter and a new population size
reduction mechanism. It was the runner-up in the 2011 special issue of the Soft
Computing journal.

4. GaDE [43]. GaDE was a generalization of the adaptive DE algorithm, which
used a probability distribution to adapt the value of each of the parameters
of the algorithm for each of the individuals of the population. It obtained the
third place among all the algorithms included in 2011 special issue of the Soft
Computing journal.

5. DECC-G [44]. The DECC-G was a cooperative coevolution algorithm, which
divided large problems into small components that were optimized independently
by certain EAs. It won the second place in the competition on LSGO in 2013
and the fourth place in 2015.
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6. CCJADE [34]. The CCJADE used a surrogate-assisted CC (SACC) optimizer,
in which fitness surrogates are exploited within the low-dimensional subcompo-
nents resulting from the problem decomposition, and it was tested on the SOCO
2011 benchmark suite where D = 1 000.

7. L-SHADE [45]. The L-SHADE further extended SHADE with Linear Popu-
lation Size Reduction (LPSR), which continually decreased the population size
according to a linear function, and L-SHADE was evaluated on CEC2014 bench-
marks.

8. LM-CMA-ES [46]. The LM-CMA-ES was a computationally efficient limited
memory Covariance Matrix Adaptation Evolution Strategy for large scale opti-
mization, which sampled candidate solutions according to a covariance matrix
reproduced from m direction vectors selected during the optimization process,
the decomposition of the covariance matrix into Cholesky factors could reduce
the time and memory complexity of the sampling. LM-CMA-ES could efficiently
solve fully non-separable problems and reduce the overall run-time.

The algorithms from the second group were initially tested on different functions,
but were finally tested on the same functions at dimension 1 000 in [34].

Because of the difference of the running environment, such as hardware plat-
form, programming language and program efficiency, etc., the performance of dif-
ferent algorithms is very different, and the test results in different environments are
actually not comparable. Therefore, the test results of the algorithms in the first
group are coming from [11], the test results of the algorithms in the second group
are coming from [34], because they give the best results that these algorithms can
get.

The comparison results of the mDE-bcM and the first group of algorithms is
shown in Tables 6, 7, 8, 9 and 10, we run for 25 times on every function F1 − F19,
where D changes from 50 to 1 000. Results highlighted in boldface show the best
mean values for each function. As suggested in the special issue [25], all values below
1.00E−14 are approximated to 0.00E+00.

Tables 6, 7, 8, 9 and 10 show that the proposed mDE-bcM has superior per-
formance compared with the first group of algorithms on functions F1 − F19, while
D changes from 50 to 1 000. As indicated in Tables 6, 7 and 8, the mDE-bcM can
obtain optima except functions F3, F13 and F17, where D changes from 50 to 200.
In Tables 9 and 10, the mDE-bcM can obtain optima except functions F3 and F13,
where D changes from 500 to 1 000. The number of times the mDE-bcM can obtain
the optimal solution is higher than that of other algorithms.
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DE CHC CMA-ES MA-SSW MTS-LS1 SaDE EvoPR mDE-bES mDE-bcM

F1 0.00E+00 1.67E−11 0.00E+00 0.00E+00 0.00E+00 2.68E+01 1.22E−02 0.00E+00 0.00E+00
F2 8.84E−11 6.19E+01 2.75E−11 7.61E−02 8.84E−14 1.21E+02 3.71E−01 1.52E+01 0.00E+00
F3 1.63E+02 1.25E+06 7.97E−01 4.79E+01 1.63E+02 7.46E+04 1.12E+02 4.76E−05 4.90E+01
F4 0.00E+00 7.43E+01 1.05E+02 r1.19E−01 0.00E+00 1.07E+01 4.96E−02 1.77E+01 0.00E+00
F5 7.68E−03 1.67E−03 2.96E−04 0.00E+00 7.68E−03 1.87E−01 5.13E−02 0.00E+00 0.00E+00
F6 0.00E+00 6.15E−07 2.09E+01 4.89E−14 0.00E+00 4.63E−02 6.85E−03 3.97E−14 0.00E+00
F7 0.00E+00 2.66E−09 1.01E−10 0.00E+00 0.00E+00 0.00E+00 2.63E−02 0.00E+00 0.00E+00
F8 9.56E−12 2.24E+02 0.00E+00 3.06E−01 9.65E−12 6.92E+05 2.08E+02 1.64E−09 0.00E+00
F9 1.03E+02 3.10E+02 1.66E+01 2.94E+02 1.03E+02 3.00E−02 8.02E+00 0.00E+00 0.00E+00
F10 0.00E+00 7.30E+00 6.81E+00 0.00E+00 0.00E+00 2.94E−02 4.80E−02 0.00E+00 0.00E+00
F11 1.04E+02 2.16E+00 3.01E+01 r4.49E−03 1.04E+02 8.35E−02 9.68E+00 1.15E−08 0.00E+00
F12 1.34E+01 9.57E−01 1.88E+02 0.00E+00 1.34E+01 4.80E+01 r2.27E+00 0.00E+00 0.00E+00
F13 2.94E+01 2.08E+06 1.97E+02 3.02E+01 2.94E+01 3.42E+09 4.22E+01 2.50E−01 3.70E+01
F14 5.52E+01 6.17E+01 1.09E+02 0.00E+00 5.52E+01 4.22E+03 9.97E−01 9.60E+00 0.00E+00
F15 0.00E+00 3.98E−01 9.79E−04 0.00E+00 0.00E+00 8.50E−03 6.38E−02 0.00E+00 0.00E+00
F16 4.06E+01 2.95E−09 4.27E+02 4.06E−03 4.06E+01 1.36E+01 5.63E+00 0.00E+00 0.00E+00
F17 2.17E+02 2.26E+04 6.89E+02 2.60E+01 2.17E+02 2.36E+05 6.77E+01 2.42E−01 1.20E+01
F18 5.65E+01 1.58E+01 1.31E+02 0.00E+00 5.65E+01 2.72E+01 1.62E+00 5.65E−05 0.00E+00
F19 0.00E+00 3.59E+02 4.76E+00 0.00E+00 0.00E+00 1.15E−01 5.03E−02 0.00E+00 0.00E+00

Table 6. Comparison of mDE-bcM and the first group of algorithms for 25 runs on func-
tions F1–F19, where D = 50

DE CHC CMA-ES MA-SSW MTS-LS1 SaDE EvoPR mDE-bES mDE-bcM

F1 3.79E+00 3.56E−11 0.00E+00 0.00E+00 1.09E−12 3.13E+01 4.34E−02 0.00E+00 0.00E+00
F2 7.58E+01 8.58E+01 1.51E−10 7.01E+00 4.66E−10 1.26E+02 3.30E+00 4.00E+01 0.00E+00
F3 1.27E+02 4.19E+06 3.88E+00 1.38E+02 2.32E+02 1.11E+05 3.98E+02 4.90E−01 9.90E+01
F4 2.85E+00 2.19E+02 2.50E+02 1.19E−01 1.05E−12 1.58E+01 1.07E−01 1.87E+01 0.00E+00
F5 3.05E−01 3.83E−03 1.58E−03 0.00E+00 6.70E−03 3.53E−01 3.92E−02 0.00E+00 0.00E+00
F6 4.34E−01 4.10E−07 2.12E+01 6.03E−14 1.20E−12 8.32E−02 2.50E−04 1.44E−13 0.00E+00
F7 0.00E+00 1.40E−02 4.22E−04 0.00E+00 0.00E+00 0.00E+00 9.17E−02 0.00E+00 0.00E+00
F8 4.74E+02 1.69E+03 0.00E+00 3.48E+01 1.43E−03 2.83E+05 2.27E+03 2.32E−03 0.00E+00
F9 3.71E−03 5.86E+02 1.02E+02 5.63E+02 2.20E+02 3.00E−02 2.91E+01 0.00E+00 0.00E+00
F10 0.00E+00 3.30E+01 1.66E+01 0.00E+00 0.00E+00 4.73E−02 2.05E−01 0.00E+00 0.00E+00
F11 8.58E−04 7.32E+01 1.64E+02 1.09E−01 2.10E+02 3.05E−01 2.60E+01 0.00E+00 0.00E+00
F12 2.71E+00 1.03E+01 4.17E+02 3.28E−03 3.91E+01 3.79E+01 5.01E+00 5.36E−04 0.00E+00
F13 5.87E+01 2.70E+06 4.21E+02 8.35E+01 1.75E+02 3.42E+09 1.40E+02 8.50E+00 8.70E+01
F14 2.21E+00 1.66E+02 2.55E+02 0.00E+00 2.04E+02 3.92E+03 1.24E+00 1.16E+01 0.00E+00
F15 0.00E+00 8.13E+00 6.30E−01 0.00E+00 0.00E+00 3.99E−02 6.56E−02 0.00E+00 0.00E+00
F16 3.52E+00 2.23E+01 8.59E+02 1.61E−02 1.04E+02 1.96E+01 8.29E+00 0.00E+00 0.00E+00
F17 1.58E+01 1.47E+05 1.51E+03 9.92E+01 4.17E+02 2.34E+05 1.97E+02 6.65E−03 1.20E+01
F18 8.76E−01 7.00E+01 3.07E+02 0.00E+00 1.22E+02 3.05E+01 3.34E+00 4.46E−01 0.00E+00
F19 0.00E+00 5.45E+02 2.02E+01 0.00E+00 0.00E+00 2.71E−01 1.43E−01 0.00E+00 0.00E+00

Table 7. Comparison of mDE-bcM and the first group of algorithms for 25 runs on func-
tions F1–F19, where D = 100

With the increase of dimension, the mDE-bcM has more obvious advantages,
the number of functions on which it can obtain the optimal value is increasing, while
the ability of other algorithms to obtain the optimal value is decreasing. Therefore,
we can conclude that mDE-bcM is more suitable for dealing with large-scale high-
dimension optimization problems.

The average ranking, the number of functions with best results and the nWins
value for mDE-bcM and the first group of algorithms are reported in Table 11.
Limited to space, we only give the statistical results at dimension 1 000.
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DE CHC CMA-ES MA-SSW MTS-LS1 SaDE EvoPR mDE-bES mDE-bcM

F1 8.55E+00 8.34E−01 0.00E+00 0.00E+00 2.29E+00 2.03E+01 8.03E−02 0.00E+00 0.00E+00
F2 1.05E+02 1.03E+02 1.16E−09 3.36E+01 4.54E−09 1.03E+02 8.03E+00 4.15E+01 0.00E+00
F3 3.32E+05 2.01E+07 8.91E+01 2.50E+02 1.69E+02 4.82E+04 2.91E+02 1.35E+02 1.99E+02
F4 6.98E+00 5.40E+02 6.48E+02 4.43E+00 2.34E−12 6.25E+00 3.52E−01 9.27E−13 0.00E+00
F5 4.05E−01 8.76E−03 0.00E+00 0.00E+00 5.42E−03 6.43E−02 2.68E−02 0.00E+00 0.00E+00
F6 7.14E−01 1.23E+00 2.14E+01 1.19E−13 2.38E−12 2.73E−02 6.22E−01 0.00E+00 0.00E+00
F7 0.00E+00 2.59E−01 1.17E−01 0.00E+00 0.00E+00 0.00E+00 3.82E−02 0.00E+00 0.00E+00
F8 5.76E+03 9.38E+03 0.00E+00 7.23E+02 1.42E+01 4.47E+05 1.34E+04 8.71E−01 0.00E+00
F9 8.79E−03 1.19E+03 3.75E+02 1.17E+03 4.27E+02 3.00E−02 6.22E+01 0.00E+00 0.00E+00
F10 4.19E−02 7.13E+01 4.43E+01 0.00E+00 0.00E+00 1.59E−02 1.04E+00 0.00E+00 0.00E+00
F11 5.07E−03 3.85E+02 8.03E+02 3.50E−01 4.28E+02 4.89E−03 5.93E+01 0.00E+00 0.00E+00
F12 3.61E+00 7.44E+01 9.06E+02 1.75E−02 8.42E+01 4.63E+01 1.00E+01 0.00E+00 0.00E+00
F13 1.49E+02 5.75E+06 9.43E+02 1.68E+02 2.53E+02 3.16E+09 1.71E+02 9.45E+01 1.87E+02
F14 4.75E+00 4.29E+02 6.09E+02 9.76E−01 3.98E+02 4.09E+03 3.75E+00 1.20E+01 0.00E+00
F15 0.00E+00 2.14E+01 1.75E+00 0.00E+00 0.00E+00 5.38E−03 3.80E−01 0.00E+00 0.00E+00
F16 3.70E+00 1.60E+02 1.92E+03 6.02E−02 1.97E+02 9.49E+00 1.74E+01 0.00E+00 0.00E+00
F17 2.23E+01 1.75E+05 3.36E+03 7.55E+01 6.07E+02 2.36E+05 1.56E+02 8.39E−02 1.20E+01
F18 2.37E+00 2.12E+02 6.89E+02 4.29E−04 2.34E+02 1.69E+01 8.85E+00 8.93E−11 0.00E+00
F19 4.19E−02 2.06E+03 7.52E+02 0.00E+00 0.00E+00 1.00E−01 2.15E+00 0.00E+00 0.00E+00

Table 8. Comparison of mDE-bcM and the first group of algorithms for 25 runs on func-
tions F1–F19, where D = 200

DE CHC CMA-ES MA-SSW MTS-LS1 SaDE EvoPR mDE-bES mDE-bcM

F1 2.46E+01 2.84E−12 0.00E+00 0.00E+00 5.77E−12 1.34E+01 0.00E+00 3.92E−13 0.00E+00
F2 1.44E+02 1.29E+02 3.48E−04 7.86E+01 5.34E−06 9.23E+01 2.04E+01 4.56E+01 0.00E+00
F3 1.12E+05 1.14E+06 3.58E+02 6.07E+02 2.20E+02 2.62E+04 5.97E+02 4.16E+02 4.99E+02
F4 1.63E+01 1.91E+03 2.10E+03 1.78E+02 5.62E−12 1.31E+00 1.45E+00 1.91E−11 0.00E+00
F5 4.73E−01 6.98E−03 2.96E−04 0.00E+00 4.24E−03 7.48E−03 3.03E−02 1.83E−13 0.00E+00
F6 1.06E+00 5.16E+00 2.15E+01 2.63E−13 6.18E−12 4.63E−01 1.21E+00 3.56E−14 0.00E+00
F7 0.00E+00 1.27E−01 7.21E+153 4.69E−14 1.46E−12 0.00E+00 8.06E−03 0.00E+00 0.00E+00
F8 6.70E+04 7.22E+04 2.36E−06 1.32E+04 6.16E+03 3.21E+05 7.05E+04 5.48E+02 0.00E+00
F9 1.12E−02 3.00E+03 1.74E+03 2.53E+03 1.00E+03 3.00E−02 1.75E+02 0.00E+00 0.00E+00
F10 2.93E−01 1.86E+02 1.27E+02 2.80E−01 0.00E+00 8.41E−03 3.29E+01 0.00E+00 0.00E+00
F11 2.43E−01 1.81E+03 4.16E+03 4.21E+01 1.00E+03 2.22E−03 1.77E+02 0.00E+00 0.00E+00
F12 1.16E+01 4.48E+02 2.58E+03 2.55E+01 2.47E+02 4.61E+01 1.73E+01 0.00E+00 0.00E+00
F13 4.02E+02 3.22E+07 2.87E+03 4.00E+02 5.05E+02 2.97E+09 5.75E+02 3.23E+02 4.87E+02
F14 1.16E+01 1.46E+03 1.95E+03 5.65E+01 1.10E+03 3.91E+03 9.00E+00 1.68E+01 0.00E+00
F15 4.19E−02 6.01E+01 2.82E+262 5.53E+00 1.08E−12 2.84E−03 2.25E+00 0.00E+00 0.00E+00
F16 1.32E+01 9.55E+02 5.45E+03 1.08E−01 4.99E+02 5.82E+00 4.87E+01 0.00E+00 0.00E+00
F17 6.94E+01 8.40E+05 9.59E+03 1.38E+02 7.98E+02 2.38E+05 3.94E+02 6.65E+01 1.20E+01
F18 3.87E+00 7.32E+02 2.05E+03 2.41E−03 5.95E+02 9.43E+00 3.28E+01 0.00E+00 0.00E+00
F19 8.39E−02 1.76E+03 2.44E+06 0.00E+00 0.00E+00 1.00E−01 5.00E+01 0.00E+00 0.00E+00

Table 9. Comparison of mDE-bcM and the first group of algorithms for 25 runs on func-
tions F1–F19, where D = 500

In Table 11, the algorithm that obtains the best ranking, number of functions
with the best results and the nWins value is mDE-bcM, followed by mDE-bES. The
average ranking of mDE-bcM is 1.21, the numbers of functions that mDE-bcM is
better than that of DE, CHC, MA-SSW, MTS-LS1, SaDE, EvoPR, mDE-bES are
18, 19, 18, 13, 18, 19, 8, respectively. This shows that mDE-bcM has obviously good
optimization performance.

The Friedman test reported a p-value = 9.42E−14 for Table 10, which is below
the significance level α = 0.05, and it means that there are statistical differences
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DE CHC MA-SSW MTS-LS1 SaDE EvoPR mDE-bES mDE-bcM

F1 3.71E+01 1.36E−11 0.00E+00 1.15E−11 3.49E+01 4.00E−05 8.24E−13 0.00E+00
F2 1.63E+02 1.44E+02 1.39E+02 2.25E−02 1.43E+02 3.21E+01 5.97E+01 0.00E+00
F3 1.59E+05 8.75E+03 1.22E+03 2.10E+02 1.62E+05 1.12E+03 9.00E+02 9.99E+02
F4 3.47E+01 4.76E+03 1.58E+03 1.15E−11 3.21E+01 4.08E+02 4.03E+01 0.00E+00
F5 7.36E−01 7.02E−03 5.92E−04 3.55E−03 6.33E−01 3.72E−02 0.00E+00 0.00E+00
F6 8.70E−01 1.38E+01 1.46E−09 1.24E−11 4.28E−01 1.97E+00 1.28E−12 8.88E−16
F7 0.00E+00 3.52E−01 6.23E−13 0.00E+00 0.00E+00 1.50E−04 0.00E+00 0.00E+00
F8 3.15E+05 3.11E+05 7.49E+04 1.23E+05 3.08E+05 2.15E+05 7.98E+03 0.00E+00
F9 6.26E−02 6.11E+03 5.99E+03 1.99E+03 3.00E−02 4.07E+02 0.00E+00 0.00E+00
F10 1.67E−01 3.83E+02 2.09E−05 0.00E+00 1.47E−01 3.86E+02 0.00E+00 0.00E+00
F11 4.42E−02 4.82E+03 5.27E+01 1.99E+03 4.56E−01 3.96E+02 0.00E+00 0.00E+00
F12 2.58E+01 1.05E+03 9.48E−02 5.02E+02 3.43E+01 3.23E+01 0.00E+00 0.00E+00
F13 8.24E+04 6.66E+07 1.02E+03 8.87E+02 3.27E+09 1.13E+03 6.34E+02 9.87E+02
F14 2.39E+01 3.62E+03 7.33E+02 2.23E+03 3.71E+03 4.31E+02 2.45E+01 0.00E+00
F15 2.11E−01 8.37E+01 1.16E−13 0.00E+00 1.11E−01 1.26E+02 0.00E+00 0.00E+00
F16 1.83E+01 2.32E+03 2.19E+00 1.00E+03 2.37E+01 8.44E+01 0.00E+00 0.00E+00
F17 1.76E+05 2.04E+07 3.26E+02 1.56E+03 1.62E+05 6.75E+02 1.88E+02 1.20E+01
F18 7.55E+00 1.72E+03 2.58E+01 1.21E+03 3.54E+01 1.95E+02 2.49E−01 0.00E+00
F19 2.51E−01 4.20E+03 1.56E−12 0.00E+00 9.32E−01 2.03E+02 0.00E+00 0.00E+00

Table 10. Comparison of mDE-bcM and the first group of algorithms for 25 runs on
functions F1–F19, where D = 1 000

DE CHC MA-SSW MTS-LS1 SaDE EvoPR mDE-bES mDE-bcM

Ranking 4.58 6.37 3.42 3.42 4.79 4.79 1.79 1.21
# Best 1 0 1 5 1 0 10 17
nWins-better 18 19 18 13 18 19 8 –
nWins-similar 1 0 1 4 1 0 9 –
nWins-worse 0 0 0 2 0 0 2 –
p-value 2.21E−05 1.31E−05 2.21E−05 4.50E−03 2.21E−05 1.31E−05 1.14E−02 –

Table 11. Average ranking, number of functions with the best results, nWins value and
the Friedman test for mDE-bcM and the first group of algorithms for 25 runs on functions
F1–F19, where D = 1 000

as the negation of the null hypothesis. Used mDE-bcM as the control algorithm,
further the Friedman tests show that mDE-bcM have been significant differences
with other 7 algorithms.

The comparison results of mDE-bcM and the second group of algorithms are in
Table 12, we run for 25 times on every function F1 − F19, where D = 1 000, except
for our mDE-bcM, FEs is 5× 106.

The average ranking, the number of functions with best results and the nWins
value for mDE-bcM and the second group of algorithms are reported in Table 13.

In Table 13, the algorithms that obtain the best ranking are mDE-bcM and
MOS-SOCO2011, number of functions with the best results is mDE-bcM, followed
by MOS-SOCO2011, and the numbers of functions that mDE-bcM is better than
that of MOS-CEC2013, MOS-SOCO2011, jDElscop, GaDE, DECC-G, CCJADE,
L-SHADE and LM-CMA-ES are 14, 3, 9, 15, 15, 12, 18 and 18, respectively. This
shows that mDE-bcM and MOS-SOCO2011 have the same performance, but they
have significant advantages over other algorithms.
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MOS-CEC2013 MOS-SOCO2011 jDElscop GaDE DECC-G CCJADE L-SHADE LM-CMA-ES mDE-bcM
F1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 3.26E−06 1.80E−15 7.82E−04 2.16E−13 0.00E+00
F2 1.10E+02 5.88E−01 2.46E+01 5.46E+01 1.31E+03 1.38E+02 4.55E+01 1.49E+02 0.00E+00
F3 7.39E+00 7.09E+01 8.51E+02 9.47E+02 1.09E+00 3.74E+02 1.64E+03 6.04E+02 9.99E+02
F4 0.00E+00 0.00E+00 2.39E−01 3.79E−02 2.16E+11 8.62E−01 1.71E+03 1.62E+04 0.00E+00
F5 0.00E+00 0.00E+00 0.00E+00 5.91E−04 8.30E+06 4.85E−04 6.07E−03 1.13E−13 0.00E+00
F6 0.00E+00 0.00E+00 1.16E−12 2.55E−14 9.63E−01 3.28E−13 1.92E+00 1.99E+01 8.88E−16
F7 2.56E−12 0.00E+00 0.00E+00 0.00E+00 Inf 0.00E+00 1.34E+00 4.22E+569 0.00E+00
F8 5.98E+03 1.66E+05 3.17E+04 1.55E+04 1.11E+05 1.92E+06 5.76E+04 1.66E−06 0.00E+00
F9 2.51E+03 0.00E+00 9.21E−08 4.29E−04 1.78E+01 9.47E−01 1.84E+03 9.17E+03 0.00E+00
F10 1.58E+00 0.00E+00 0.00E+00 3.36E−01 1.94E+02 0.00E+00 3.41E+02 5.63E+02 0.00E+00
F11 2.54E+03 0.00E+00 4.98E−08 8.58E−04 1.76E+01 8.68E−01 1.89E+03 9.22E+03 0.00E+00
F12 9.99E+02 0.00E+00 0.00E+00 2.90E−12 0.00E+00 4.46E+00 1.27E+03 2.69E+03 0.00E+00
F13 1.23E+03 1.69E+02 6.67E+02 7.19E+02 3.86E+03 9.82E+01 2.40E+03 3.17E+03 9.87E+02
F14 3.37E+03 0.00E+00 4.03E−01 7.72E−03 1.59E+02 3.46E−01 2.65E+03 1.28E+04 0.00E+00
F15 1.93E−12 0.00E+00 0.00E+00 8.40E−02 1.84E+01 0.00E+00 2.11E+01 3.45E+418 0.00E+00
F16 8.02E+03 0.00E+00 0.00E+00 1.67E−12 0.00E+00 3.92E+00 2.23E+03 5.38E+03 0.00E+00
F17 3.55E+11 6.71E+01 1.71E+02 2.18E+02 1.98E+02 7.83E+00 2.80E+03 7.60E+03 1.20E+01
F18 2.03E+03 0.00E+00 3.28E−12 1.31E−07 8.43E+00 5.89E−01 9.12E+02 5.68E+03 0.00E+00
F19 2.05E+03 0.00E+00 0.00E+00 2.10E−01 1.12E+02 0.00E+00 2.57E+02 9.65E+04 0.00E+00

Table 12. Comparison of mDE-bcM and the second group of algorithms for 25 runs on
functions F1–F19, where D = 1 000

MOS-CEC2013 MOS-SOCO2011 jDElscop GaDE DECC-G CCJADE L-SHADE LM-CMA-ES mDE-bcM

Ranking 4.11 1.68 2.37 3.00 4.63 3.16 5.53 6.05 1.68
# Best 4 14 8 2 4 6 0 0 15
nWins-better 14 3 9 15 15 12 18 18 –
nWins-similar 3 13 8 2 3 4 0 0 –
nWins-worse 2 3 2 2 1 3 1 1 –
p-value 2.70E−03 1 3.48E−02 1.60E−04 3.00E−03 2.01E−02 1.31E−05 9.62E−05 –

Table 13. Average ranking, number of functions with the best results, nWins value and the
Friedman test for mDE-bcM and the second group of algorithms for 25 runs on functions
F1 − F19, where D = 1 000

The Friedman test reported a p-value = 6.51E−14 for Table 12, which is below
the significance level α = 0.05, and means that there are statistical differences
as the negation of the null hypothesis. Used mDE-bcM as the control algorithm,
further the Friedman tests show that mDE-bcM has been significant differences with
MOS-CEC2013, GaDE, CCJADE, L-SHADE and LM-CMA-ES, for jDElscop and
DECC-G, the p-values are nonetheless very close to the significance level, but for
MOS-SOCO2011, the p-value = 1 shows that there are not significant differences
between mDE-bcM and MOS-SOCO2011, MOS-SOCO2011 is indeed a competitive
algorithm.

It is worth noting that MOS-CEC2013 performs very well on the CEC 2013
benchmark suite, but generally on the SOCO 2011 benchmark suite, which proves
once again the limitation of the algorithm in solving the problem.

7 CONCLUSIONS

This research proposes a new algorithm called mDE-bcM for solving large-scale
global optimization problems. The mDE-bcM divides the population into three
subpopulations with the fitness values, the second and the third of which employs
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a modified mutation strategy called best-and-current mutation strategy, three sub-
populations evolved independently and then fused after one evolution. The mDE-
bcM was tested on a set of benchmark functions provided for the Soft Computing
special issue on scalability of evolutionary algorithms for large-scale continuous op-
timization problems. After comparing with other 16 state-of-the-art algorithms
in use, it shows a very competitive performance on the SOCO 2011 benchmark
suite.

For future work, we intend to use ensemble mutation strategies and success
rate of mutation strategies for difficult problems, and test our algorithm on extra
sets of competitive LSGO benchmarks, such as presented in the CEC ’11 [47] and
CEC ’13 [32] special sessions.
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