
Computing and Informatics, Vol. 39, 2020, 510–536, doi: 10.31577/cai_2020_3_510

INVESTIGATION OF PARALLEL DATA PROCESSING
USING HYBRID HIGH PERFORMANCE CPU + GPU
SYSTEMS AND CUDA STREAMS

Paweł Czarnul

Faculty of Electronics, Telecommunications and Informatics
Gdansk University of Technology, Narutowicza 11/12, 80-233
Gdansk, Poland
e-mail: pczarnul@eti.pg.edu.pl

Abstract. The paper investigates parallel data processing in a hybrid CPU +
GPU(s) system using multiple CUDA streams for overlapping communication and
computations. This is crucial for efficient processing of data, in particular incoming
data stream processing that would naturally be forwarded using multiple CUDA
streams to GPUs. Performance is evaluated for various compute time to host-
device communication time ratios, numbers of CUDA streams, for various numbers
of threads managing computations on GPUs. Tests also reveal benefits of using
CUDA MPS for overlapping communication and computations when using multiple
processes. Furthermore, using standard memory allocation on a GPU and Unified
Memory versions are compared, the latter including programmer added prefetching.
Performance of a hybrid CPU+GPU version as well as scaling across multiple GPUs
are demonstrated showing good speed-ups of the approach. Finally, the performance
per power consumption of selected configurations are presented for various numbers
of streams and various relative performances of GPUs and CPUs.

Keywords: GPGPU, overlapping computations and communication, MPS, Unified
Memory, performance, power consumption

Mathematics Subject Classification 2010: 68M20, 65Y05, 68N15

Investigation of Parallel Data Processing . . . 511

1 INTRODUCTION

In today’s high performance computing (HPC) systems, several computing devices
are typically used – multi- and many-core CPUs, GPUs, FPGAs. All have their
advantages and disadvantages depending on particular types of codes and appli-
cations [9]. Most of HPC systems nowadays feature either traditional multicore
CPU + accelerator (GPU, Intel Xeon Phi x100) or manycore CPUs (such as Intel
Xeon Phi x200 or Sunway manycore CPUs in the Sunway TaihuLight cluster). Se-
lected application examples of applications running on such systems include data
encryption and decryption algorithms [32], pattern matching for deep packet in-
spection [26], RNA secondary structure prediction [27], parallel implementation
for a DVB-RCS2 receiver [46], parallelization of large vector similarity computa-
tions [14, 11], stitching large scale optical microscopy images [4], etc. For this reason,
efficient management of computations among these processors is a key to achieving
high throughput, especially for incoming data streams that must be processed un-
der time constraints. GPGPU has become very popular for processing large data
sets in the Single Instruction Multiple Threads fashion. As long as processing in
threads does not result in too much divergence, one can achieve very high process-
ing throughput. Especially important is also fast delivering of input data from host
memory to GPU memory and results back from GPU memory to the host. This
can be achieved through overlapping communication and GPU and CPU computa-
tions by using multiple streams. This topic is investigated in this paper in detail, in
terms of performance for various numbers of streams, threads managing computa-
tions in a CPU+GPU setting, using the standard GPU memory management and
Unified Memory [34] approaches. Furthermore, as today’s HPC is not only about
performance, power consumption is also considered, in the context of performance
to power consumption ratio of various configurations.

The approach adopted in this paper includes analysis based on a custom built
benchmark, described in Section 3, that assumes input data that is composed of
multiple data chunks which are fed into CUDA streams to GPUs or processed on
multicore host CPUs. The benchmark allows for various compute time to host-
device communication time ratios, numbers of streams and threads managing com-
putations and communication and thus, depending on the values of parameters, can
be regarded as a template representative of many real world applications.

The objective of this work is to assess performance and selected performance/po-
wer characteristics of parallel processing of a data stream which is passed for compu-
tations to either GPUs using CUDA streams or to GPUs and CPU cores in a hybrid
CPU + GPU approach. The contribution includes assessment of preferred num-
bers of streams for various GPU architectures, preferred application architecture
in terms of the number of host GPU management and computing threads, assess-
ment of performance differences between standard memory management, Unified
Memory and Unified Memory with prefetching, all for various compute to commu-
nication ratios. Additionally, performance per power consumption is evaluated for
selected configurations. Furthermore, scaling from 1 to 4 NVIDIA Tesla V100 GPUs

512 P. Czarnul

of DGX Station installed at the Faculty of ETI, Gdansk University of Technology,
is presented.

The outline of the paper is as follows. Section 2 presents the existing related work
and contributions of this paper in that context, Section 3 the processing model and
design of the benchmark used for experiments, Section 4 tests and results including
testbed systems, impact of multiple streams on performance using various numbers
of threads managing computations, launching computations from multiple processes
with and without MPS, performance with and without Unified Memory, scalability
of hybrid CPU + GPU code, scaling across multiple GPUs and performance-power
consumption ratios for hybrid configurations. Finally Section 5 presents conclusions
and future work.

2 RELATED WORK

2.1 Mechanisms for Data Management in Selected GPU-Aware
Parallel Programming APIs

Overlapping computation on the GPU, CPU as well as CPU-GPU and GPU-CPU
communication is a well known technique that allows to minimize execution time
of an application using GPUs [14, 31, 13, 25]. This approach can be used for both
batch processing if the data is already available when the application starts or is
incoming to a node in possibly many data streams.

In CUDA, kernel functions are executed in parallel on a GPU by a grid which
is composed of thread blocks each of which consists of a number of threads. Blocks
within a grid and threads within a block can be lined up in 1, 2 or 3 dimensions. Vari-
ous operations (out of host-to-device communication, device-to-host communication,
kernel execution) submitted to two different streams can potentially be overlapped
in H2D, compute and D2H queues. Thus, a larger number of streams can potentially
allow better overlapping (so-called n-way in the case of n streams [41]) if there is
potential for that in the application and if the GPU and the driver support that.
Potentially kernels can also be executed in parallel, depending on their requirements
and the GPU. Unified Memory allows allocation and access to data from the host
and device sides and page migration, transparent to the user. The contribution of
the paper is how a particular configuration (with a given number of streams) for
a given GPU (GPUs of various architectures were used) benefits which is otherwise
very difficult to predict given these factors.

It should be noted that OpenCL offers a similar programming model to CUDA
but targeting systems with both GPUs as well as CPUs [13, 15]. Specifically, a kernel
can be executed on a compute device by a structure called NDRange that consists
of work groups which in turn consist of work items. Both work groups within the
NDRange and work items within a work group can be lined up in 1, 2 or 3 di-
mensions. A kernel is executed by work items in parallel within a context that is
associated with one or more devices. Input and output data are managed through
memory objects. Overlapping can be achieved using command queues, similarly to

Investigation of Parallel Data Processing . . . 513

using streams in CUDA. OpenCL version 2.0+ allows to use Shared Virtual Memory
which allows codes running on the host and a device to share data. Various modes
including coarse-grained or fine-grained with the possibility of accessing locations
concurrently if SVM atomic operations are supported. Another high level API
allowing to use GPUs in a way similar to OpenMP is OpenACC [13, 15]. OpenACC
allows to use directives for instructing parallelization of code regions, specifically
loops as well as scoping of data and synchronization. Data related directives allow
to specify allocation, releasing memory and rely on the concept of reference counters
to data.

Assessment of benefits and the performance of Unified Memory was done pre-
viously in [22], but it was only for batch type input data for applications such as
verification of Goldbach’s conjecture, 2D heat transfer analysis and adaptive numer-
ical integration. That research was then extended with evaluation of not only the
basic Unified Memory code against the standard approach but also Unified Memory
with prefetching [23]. Results were presented for four applications: Sobel and image
rotation filters as well as stream image processing and computational fluid dynamic
simulation. Tests were performed on Pascal and Volta architecture GPUs, specif-
ically NVIDIA GTX 1080 and NVIDIA V100 cards. Furthermore, evaluation of
Unified Memory oversubscription over the standard manual management approach
was provided, generally showing slight benefits of the latter, if implemented effi-
ciently. In those contexts, the contribution of this paper is assessment of impact
of the number of streams with Unified Memory, assessment of NVIDIA MPS’s per-
formance and consideration of power consumption with the number of streams in
parallel processing with CUDA.

2.2 Selected Works on Efficiency of Using Multiple Streams
Using GPUs

There are studies in the literature on efficiency of using multiple streams using
GPUs. For instance, paper [20] investigates the impact of using various numbers
of streams on the performance of such an application with a theoretical formula
for the best number of streams. It was considered in terms of the number of itera-
tions of a loop within a kernel. Tests were performed for GTX 280 and GTX 480
cards which are not widely used anymore. GPU architectures have also changed
considerably since then. In paper [12], the author analyzed and compared the per-
formance of processing on a GPU using 1, 2 and 4 streams for modern GPUs:
mobile NVIDIA GeForce 940MX, desktop GTX 1060, server Tesla K20m and Tesla
V100. Tests were performed for various compute time to host-device communication
time ratios proving large benefits of using 2 or 4 streams for overlapping commu-
nication and computations and showing relative performances of the tested GPUs.
Compared to [20] this paper contributes by analysis on newer GPUs, considera-
tion of Unified Memory approach and performance to power consumption analysis.
Compared to [12] this paper brings testing using more streams, multi-threaded and
single-threaded applications, MPS as well as performance to power consumption

514 P. Czarnul

considerations. Apart from multiple streams, concurrent kernel execution is also
possible on GPUs. Paper [45] investigates approaches such as context switching,
manual context funneling and automatic CUDA context funneling but tests were
performed on older CUDA 4 and earlier versions and demonstrated that automatic
CUDA context funneling (sharing a context among process threads) is very efficient.
Work [29] proposes a detailed computation-bound single kernel performance model
for understanding the resource scheduling system with CUDA streams and focuses
on multi-kernel concurrency. Similarly, paper [8] investigates conditions needed for
concurrent execution of kernels simultaneously.

2.3 Using Multiple Streams for Various Applications

Deployment of multi-stream processing for GPU based systems for particular ap-
plications has been analyzed in the literature. In paper [43] authors focus on per-
formance improvement through more effective overlapping of communication and
computations using OpenMP as well as multiple CUDA threads. Many threads
control each GPU and the authors have launched 4 CUDA streams for each pair
of neighboring GPUs to overlap communication and computation of inner domain
points. A 3D stencil use case was used to demonstrate benefits over previous solu-
tions. Tests were performed on Kepler and Fermi cards. Compared to that work,
this paper considers a model with independent input data chunks rather than geo-
metric Single Program Multiple Data paradigm [13], considers more streams, Unified
Memory and power consumption for a more recent Pascal card. In paper [19] au-
thors focus on improvement of performance of Sparse matrix-vector multiplication
(SpMV) code using many GPUs installed within a node. Optimization is performed
using multiple OpenMP threads that control particular GPUs as well as multiple
CUDA streams for overlapping. Benefits of such improved approach using 2 GPUs
are shown against a naive 1 GPU system implementation for a variety of sparse
matrices. Compared to that approach, this paper considers hybrid CPU+GPU pro-
cessing, investigates multiple streams, Unified Memory and performance to power
consumption ratios. Paper [35] proposes a multi-stream implementation of stereo
disparity estimation and anaglyph video frame generation using GPUs. Specifi-
cally, multiple threads are started using Pthreads, each of which manages a certain
number of streams. Performance is presented for a thread count between 1 and
8 and the number of streams between 1 and 8 showing considerable speed-ups of
the solution with 100 frames per second for 1 024 × 1 024 color images. GeForce
GTX780 cards where used for experiments. Paper [38] contributes by proposal of
a parallel CPU + GPU code for image formation in scanning transmission electron
microscopy. Similarly to this work, an algorithm for parallelization using multi-
core CPUs and GPUs are provided, with assessment of benefits from using multiple
CUDA streams. In that context, this paper contributes by analysis of various num-
bers of streams, Unified Memory and performance to power consumption ratios for
similar computations. Utilization of CUDA streams for parallel implementation of
a genetic algorithm is presented in paper [39]. Data stream processing accelerated

Investigation of Parallel Data Processing . . . 515

using GPUs in the context of DBMSes is discussed in [36] for data representation
better matching the GPU architecture. Similarly, this paper contributes by consid-
eration of various stream and thread CPU + GPU configurations, Unified Memory
and performance to power consumption ratios.

2.4 Selected Frameworks and Environments for Processing Data
Using GPUs

Paper [24] provides analysis of programming environments for processing large
amounts of data efficiently. Specifically, the work investigates programmability vs.
performance such that programs can increase their performance at the cost of de-
creasing programmability. Java and Stream API, C/C++ and OpenMP, C/C++
and CUDA (with and without CUDA streams) are compared. Power-aware com-
putations for data processing is also an important research topic considered to-
day [16]. There exist frameworks that provide higher than OpenMP, CUDA and
MPI programming abstractions to processing data streams using GPUs, good per-
formance and relatively easy-to-use programming models. Available solutions for
data streaming include, in particular, Spark [47], Storm [28, 21], Storm working
in a geographically distributed and highly variable environment [6], FastFlow [2],
extension of FastFlow for a network of multi-core workstations [1], Flink [5, 18],
PiCo [33], Thrill [3]. Paper [48] describes GStream that is a scalable framework
suited for a cluster of GPUs with GStream API over CUDA, Pthreads and MPI.
It is demonstrated for benchmarks such as FIR, MM, FFT, IS and LAMMPS that
it offers very good speed-ups, only slightly worse that raw CUDA. For this and the
following high level approaches, the contributions of this paper can be used for im-
provement of performance of lower level building blocks and mapping computations
onto GPUs and CPUs as well as optimization of CPU-GPU communication. An-
other general data processing platform utilizing GPUs is G-Storm [7] which can be
used for various applications and data types and provides a high level programming
approach. It handles data transfers and resource allocation automatically. If data is
to be further used on the same GPU in subsequent operations, it will not be copied
back and forth between the host and the GPU. G-Storm very much relies on CUDA
MPS that allows to create a single context that can be used from many processes on
the host. It should be noted that this paper evaluates gains from MPS and shows
benefits of multi-threaded and CUDA multi-stream approach for even better per-
formance and such can be used to improve existing systems. Paper [40] proposes an
efficient real-time system for processing large amounts of high frequency data such
as video and text. The approach integrates Hadoop for parallel processing, Spark
for the real-time component and GPUs for processing. Matrix type data is pro-
cessed on GPUs similarly to MapReduce. The authors conclude that the proposed
solution is faster than CPU MapReduce. Such a system could also benefit from low
level optimization between host and GPUs presented in this paper. Work [44] pro-
poses a CPU+GPU system for processing a large number of incoming data streams
with hard real-time constraints. A scheduler running on the CPU side distributes

516 P. Czarnul

streams among CPUs and GPUs for high utilization of the system in order to meet
the constraints. The solution was evaluated using an AES-CBC encryption kernel
on thousands of streams proving over 80% more data processing rate than a single
GPU system. Paper [42] presents KernelHive that can be used to optimize schedul-
ing and execution of processing using a stream of multiple independent data chunks
on hybrid CPU +GPU systems. Efficient multithreaded data stream processing in
a workflow management system called BeesyCluster, either within a high perfor-
mance workstation or even spanning multiple clusters, is presented in paper [10].
In that context, the contribution of this paper is optimization of internal building
blocks for efficient GPU management and consideration of power consumption as
well.

3 PROCESSING MODEL AND DESIGN OF BENCHMARK

This section presents the custom-developed application benchmark that is represen-
tative of various applications run on GPUs or in a hybrid CPU + GPU environ-
ment. Many variables have been considered and can be changed in the proposed
processing model and as such were used for subsequent tests. Design of the bench-
mark application is shown in Figure 1. It is assumed that the application processes
a sequence of input data packets such that two data packets serve as input to
a processing function that produces output data. This general assumption corre-
sponds to many real life applications, depending on relative sizes of output and
input data, e.g. multiplication, addition or other operations on matrices that are
important computational steps in various artificial intelligence applications such as
deep neural network training. Parallelization involves the following elements and
ideas:

1. At a high level of parallelism, OpenMP threads are spawned – one thread per
each GPU and additionally one thread managing computations on a multi-core
CPU(s). These threads fetch input data from memory in a critical section and
pass for computations either to a GPU or the CPU(s). This scheme, working in
a loop, effectively supports dynamic load balancing among compute devices.

2. Nested OpenMP parallelism is used for parallelization with many threads on the
CPU(s).

3. Input data can be stored in regular RAM from which it can be sent to GPU’s
global memory explicitly or stored in previously allocated space in Unified Mem-
ory. In the latter case, prefetching can be turned on for enabling overlapping
computations with host-device communication. In the case of the Unified Mem-
ory based version, streams are still used for maximum concurrency of opera-
tions [34].

The benchmark allows to set various modes and parameters and correspondingly
allows to mimic behavior of various applications following the assumed processing
pattern:

Investigation of Parallel Data Processing . . . 517

Figure 1. Proposed processing framework

1. memory mode – several modes are possible:

(a) allocation of host memory std using cudaHostAlloc() with flag cudaHost
AllocPortable that does allow subsequent overlapping computations and
communication in various streams,

(b) allocation of memory UM using Unified Memory (UM) by calling
cudaMallocManaged() that allows to use the same pointer from both host
threads to write input data, from a kernel to read input data and write
output results as well as from the host to read output.

518 P. Czarnul

(c) allocation of memory UMprefetch using Unified Memory with data prefetch-
ing through cudaMemPrefetchAsync() for streams to be used in subsequent
steps,

2. compute time to host-device communication time ratio that corresponds to the
computational time on a given input data chunk divided by the communication
time of this data chunk (CPU-GPU-CPU),

3. output-input ratio that denotes the ratio of the size of output data to the size
of input data,

4. stream count – the number of streams per one GPU used,
5. host thread count – the number of threads among which computations are sched-

uled on CPU(s) cores,
6. GPU count 〈ids of GPUs〉 – the number and ids of GPU(s) to be used for

computations.

In each experiment, unless otherwise noted, data chunk was 256KB in size and
1.6GBs of data was processed. In the test we assumed 1 024 threads per block and
the total number of threads was 262 144. In the GPU kernel function, a thread
fetches its unique index in a grid and processes data from two input arrays into
a result stored in its own location (depending on its index) in an output array.
Specifically, it computes averages of selected vector elements of the two input ar-
rays and computes a distance between the averages which is added to the final
output. All arrays are stored in global memory and the kernel uses 3 variables as
temporary indices and one variable as a loop counter. Compute time to host-device
communication time ratio is configured with a proper number of iterations of the
aforementioned loop.

4 EXPERIMENTS AND TESTS

4.1 Testbed Systems

For experiments, we used the benchmark described in Section 3 run on three modern
multicore CPU(s) + GPUs workstations. Specifications of the systems are listed in
Table 1. Testbeds 1 and 2 feature 2 Intel Xeon CPUs+2 NVIDIA GPUs, of various
generations while testbed 3 an Intel Xeon CPU+ 4 NVIDIA Tesla V100 cards used
for testing scaling across multiple GPUs.

For each particular configuration, unless otherwise noted, 10 tests were per-
formed and the average value is presented.

4.2 Impact of Multiple Streams on Performance

The purpose of the following experiments is to determine the impact of using multiple
streams for overlapping computations and communication and finally execution time
of a GPU enabled application.

Investigation of Parallel Data Processing . . . 519

Testbed 1 2 3
CPUs 2 × Intel Xeon

CPU E5-2620v4
@2.10GHz

2 × Intel(R)
Xeon(R) CPU E5-
2640 @2.50GHz

Intel(R) Xeon(R)
CPU E5-2698 v4
@2.20GHz

CPUs – total
number of physi-
cal/logical cores

16/32 12/24 20/40

System memory
size (RAM) [GB]

128 64 256

GPUs 2 × NVIDIA GTX
1070 (Pascal)

2 × NVIDIA Tesla
K20m (Kepler)

4 × NVIDIA Tesla
V100 (Volta)

GPUs – total
number of CUDA
cores

2× 2 048 2× 2 496 4× 5 120

GPU Compute
capability

6.1 3.5 7.0

GPU memory size
[MB]

2× 8 192 2× 5 120 4× 16 384

Operating system Ubuntu Linux
version 4.15.0-36-
generic

CentOS Linux
version 3.10.0-
862.9.1.el7.x86_64

Ubuntu Linux
version 4.4.0-83-
generic

Compiler/version CUDA compilation
tools, release 9.1,
V9.1.85, gcc 7.3.0

CUDA compilation
tools, release 9.1,
V9.1.85, gcc 4.8.5

CUDA compilation
tools, release 9.0,
V9.0.176, gcc 5.4.0

Table 1. Testbed configurations

The following tests have been performed for several values of compute time to
host-device communication time ratio, for several GPU cards and for the number of
streams between 1 and 32. Additionally, two different ways of launching computa-
tions on a GPU are presented and compared:

A: One thread per GPU managing computations through one or more streams. In
this case, the thread launches CPU-GPU communication, kernel and GPU-CPU
communication asynchronously through streams one after another.

B: As many threads as the number of streams are launched per GPU, each of
which launches CPU-GPU communication, kernel, GPU-CPU communication
in a separate stream. Threads need to synchronize while fetching new input
data packets.

Figure 2 presents the results for these versions for particular numbers of threads
and streams used for testbed 1 while Figure 3 does so for testbed 2. It can be seen
that, in general, best results were obtained using one dedicated host thread per GPU
launching communication and computations to multiple streams with 2 streams for
testbed 1. For testbed 2 the same implementation offers best results with 2+ streams
with small differences between the number of streams larger than 2–4. At the same

520 P. Czarnul

time, we can see very small deviations between runs (10 measured) for testbed 2 (de-
fault affinity values are presented). For testbed 1, we can observe larger deviations
for configurations with multiple host threads launching operations on the GPU (we
present threads/close affinity values). These differences might stem from various
operating system settings and a compiler version as the CUDA versions were the
same.

4.3 Launching Computations from Multiple Processes Using MPS

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 130

 140

 150

 160

 170

 1 2 4 8 16 32

ex
ec

ut
io

n
ti

me
 [

s]

number of streams

multiple streams per thread, compute/comm ratio=1.01
multiple streams per thread, compute/comm ratio=2.02
multiple streams per thread, compute/comm ratio=9.98

multiple streams per thread, compute/comm ratio=19.95
multiple threads/streams, compute/comm ratio=1.01
multiple threads/streams, compute/comm ratio=2.02
multiple threads/streams, compute/comm ratio=9.98
multiple threads/streams, compute/comm ratio=19.95

Figure 2. Comparison of implementations with various numbers of threads and streams
on a GPU, testbed 1, bars represent standard deviation

Investigation of Parallel Data Processing . . . 521

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 260

 280

 300

 1 2 4 8 16 32

ex
ec

ut
io

n
ti

me
 [

s]

number of streams

multiple streams per thread. compute/comm ratio=1.05
multiple streams per thread. compute/comm ratio=2.02
multiple streams per thread compute/comm ratio=9.83

multiple streams per thread compute/comm ratio=19.66
multiple threads/streams, compute/comm ratio=1.05
multiple threads/streams, compute/comm ratio=2.02
multiple threads/streams, compute/comm ratio=9.83
multiple threads/streams, compute/comm ratio=19.66

Figure 3. Comparison of implementations with various numbers of threads and streams
on a GPU, testbed 2, bars represent standard deviation

In case there is no dedicated parallel application available for parallel processing
of incoming data streams to a computer node, it is probable that several processes
working in parallel will try to submit the work for processing on a GPU that will
be shared in such a case. This may lead to inefficiency of the processing. One
solution would involve writing a dedicated multi-stream application as analyzed in
this paper. An alternative approach has been made available by NVIDIA through
Multi Process Service (MPS) that tries to overlap CPU-GPU communication and
processing on a GPU from various contexts. It does not require code modifications
which is a considerable advantage. Details of its usage can be found in [13]. Figures 4

522 P. Czarnul

and 5 present the results of using the MPS enabled configuration vs the standard
configuration for testbed 1 and testbed 2, respectively. Five tests were performed
for each configuration and the average value is presented. The results really indicate
that the solution improves execution time visibly, except for smaller compute time
to host-device communication time ratio for testbed 1. In these tests, two different
processes were launched in parallel on the number of data chunks half the sizes of the
cases shown in Figures 2 and 3. It should be noted that the best results obtained for
2 streams shown in Figure 2 still offer better execution times while the ones shown
in Figure 3 show practically the same or marginally a better performance compared
to the one with MPS.

 0

 20

 40

 60

 80

 100

 120

 140

 160

compute/comm
 ratio=2.02,

 no MPS

compute/comm
 ratio=2.02,

 MPS

compute/comm
 ratio=19.95,

 no MPS

compute/comm
 ratio=19.95,

 MPS

Ex
ec

ut
io

n
ti

me
 [

s]

25.21 25.76

145.12
135.52

Figure 4. Comparison of performance with and without NVIDIA MPS, testbed 1

4.4 Performance with Unified Memory

Since the latest cards and CUDA versions offer the benefit of easier programming
with Unified Memory, this experiment is to show the performance of Unified Memory
based implementation compared to previous best cases. The test involves setting
input data on the host and launching a kernel that processes data packets on the
GPU. Subsequently, results are read from the host side in order to find the maximum
of results and display to the user.

The basic UM enabled version was further optimized using data prefetching
(we denote this version by UMprefetch). Specifically, the data packet to be pro-
cessed in a subsequent step in a given stream is prefetched using a call to function
cudaMemPrefetchAsync(...) on the two input buffers.

Investigation of Parallel Data Processing . . . 523

 0

 50

 100

 150

 200

 250

 300

compute/comm
 ratio=2.02,

 no MPS

compute/comm
 ratio=2.02,

 MPS

compute/comm
 ratio=19.66,

 no MPS

compute/comm
 ratio=19.66,

 MPS

Ex
ec

ut
io

n
ti

me
 [

s]

42.46 39.15

274.19

246.82

Figure 5. Comparison of performance with and without NVIDIA MPS, testbed 2

Figure 6 presents comparison between std, UM and UMprefetch versions for
1 GPU on testbed 1 while Figure 7 presents comparison between std, UM and
UMprefetch versions for 2 GPUs on testbed 1, data size proportionally smaller
than in the previous tests. It can be seen that prefetching really improves the
performance but still the standard memory optimized multi-stream version offers the
best performance. This is in line with some previous works comparing performance
of Unified Memory to standard based versions showing generally similar or worse
performance in [22], [30] and [37] in return for an easier programming model. This
paper confirms it for various compute time to host-device communication time ratios,
numbers of streams and 1 and 2 GPUs.

4.5 Scalability of Hybrid CPU + GPU Code

The purpose of the following experiments (using standard memory management)
is to show scalability of the hybrid parallel code on the two testbeds with 1 GPU,
2 GPUs as well as host threads engaged for computations, for various GPU/CPU
performance ratios. The latter can vary depending on an application. In this case,
2 streams per GPU were used for testbed 1 and 4 streams per GPU for testbed 2.
The same thread affinities and binding as in Section 4.2 were used.

524 P. Czarnul

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 1 2 4 8 16 32

ex
ec

ut
io

n
ti

me
 [

s]

number of streams

UMprefetch compute/comm ratio=19.95
UM compute/comm ratio=19.95

std mem compute/comm ratio=19.95
UMprefetch compute/comm ratio=10.18

UM compute/comm ratio=10.18
std mem compute/comm ratio=10.18

UMprefetch compute/comm ratio=2.02
UM compute/comm ratio=2.02

std mem compute/comm ratio=2.02

Figure 6. Comparison of standard memory (std), Unified Memory (UM) and optimized
Unified Memory (UMprefetch) implementations – testbed 1, 1 GPU, bars represent stan-
dard deviation

The results presented in Figure 8 for testbed 1 and in Figure 9 for testbed 2
allow to assess GPU/CPU performances for which adding host threads for compu-
tations brings visible savings in execution times. It can be noticed that 2 GPUs
configurations achieve relatively better performance than proportional scaling from
1 GPU configurations, apparently due to using one of the GPUs for display as well.
Scaling from 1 to 2 GPUs is clearly visible. Increasing the number of host threads
decreases application execution time at rates very much depending on GPU to CPU
performances, with practically no gains when using 2 GPUs and GPU/CPU per-

Investigation of Parallel Data Processing . . . 525

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 1 2 4 8 16 32

ex
ec

ut
io

n
ti

me
 [

s]

number of streams

UMprefetch, compute/comm ratio=19.95
UM, compute/comm ratio=19.95
std, compute/comm ratio=19.95

UMprefetch, compute/comm ratio=10.18
UM, compute/comm ratio=10.18
std, compute/comm ratio=10.18

UMprefetch, compute/comm ratio=2.02
UM, compute/comm ratio=2.02

std, compute/comm ratio=2.02

Figure 7. Comparison of standard memory (std), Unified Memory (UM) and optimized
Unified Memory (UMprefetch) implementations – testbed 1, 2 GPUs, bars represent stan-
dard deviation

formance ratio around 30 for testbed 1. It should be kept in mind that in case
some CPU cores are used for computations, still as many threads as the number
of GPUs are used for management of computations on the GPUs. Furthermore,
the threads managing computations on the GPUs and the CPUs fetch next data
packets synchronizing on an OpenMP critical section which also decreases potential
speed-ups.

526 P. Czarnul

 0

 20

 40

 60

 80

 100

 120

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

ex
ec

ut
io

n
ti

me
 [

s]

number of computational host threads

1 GPU + x host threads, GPU/CPU perf=1.01
2 GPUs + x host threads, GPU/CPU perf=1.01

1 GPU + x host threads, GPU/CPU perf=2
2 GPUs + x host threads, GPU/CPU perf=2

1 GPU + x host threads, GPU/CPU perf=30.13
2 GPUs + x host threads, GPU/CPU perf=30.13

Figure 8. Performance of a hybrid GPU+CPU implementation for various GPU/CPU
performances and numbers of host threads, testbed 1

 0

 50

 100

 150

 200

 250

 0 2 4 6 8 10 12 14 16 18 20 22 24

ex
ec

ut
io

n
ti

me
 [

s]

number of computational host threads

1 GPU + x host threads, GPU/CPU perf=1.93
2 GPUs + x host threads, GPU/CPU perf=1.93
1 GPU + x host threads, GPU/CPU perf=0.965
2 GPUs + x host threads, GPU/CPU perf=0.965

1 GPU + x host threads, GPU/CPU perf=9.65
2 GPUs + x host threads, GPU/CPU perf=9.65

Figure 9. Performance of a hybrid GPU+CPU implementation for various GPU/CPU
performances and numbers of host threads, testbed 2

Investigation of Parallel Data Processing . . . 527

4.6 Performance-Power Consumption Ratio

In today’s high performance computing systems, power consumption has become
an important topic. It is considered in designs of future clusters for which the
total power consumption is suggested not to exceed 20MW for 1 Exaflop/s [17].
In this context, we analyze the performance to power consumption for the various
configurations analyzed in this paper, specifically for:

1. various numbers of streams involved when using 1 GPU,

2. GPU + CPU configurations with various numbers of host threads involved in
computations.

GPU performance was calculated as the inverse of the sum of data chunk CPU-
GPU communication, processing and GPU-CPU result transfer times. CPU perfor-
mance was calculated as the inverse of data chunk processing time on the CPU(s).
Average power consumption of various configurations was measured using a hard-
ware meter within a 10 minute period for each configuration. A bash script was used
to run a particular configuration. Figure 10 shows normalized performance com-
puted as inverse of execution time divided by average power consumption through
application run for 1 GPU and various numbers of streams. Normalization of per-
formance was done by dividing results by quotients of compute time to host-device
communication time ratios of various configurations. It can be seen that normalized
performance per power consumption has its maxima depending on compute time to
host-device communication time ratio. It is interesting to note that for 2+ numbers
of streams the best normalized ratios are observed for compute time to host-device
communication time ratio 9.98 and lower for the other ratios.

Furthermore, the performance by power consumption is shown for 1 and 2 GPU
configurations with addition of various numbers of host threads used for computa-
tions using testbed 1. The results for the GPU/CPU performance ratio of around 30
are shown in Figure 11. It can be seen that, while execution times slightly decrease,
as shown in Figure 8 before, the performance-power consumption ratio goes down
due to too little improvement of execution times thanks to CPU compared to its
power consumption. Had the computational power been better compared to GPUs,
the ratio would have been better for higher numbers of host threads. Such a simula-
tion was performed and its results are shown in Figure 12 for a smaller GPU/CPU
relative performance ratio. It can be seen from the tests that for GPU/CPU per-
formance equal to 2 using more host threads offers benefits in terms of perfor-
mance/power consumption.

4.7 Scaling Across Multiple GPUs

The following experiments demonstrate how the code scales across GPUs in testbed 3
with 4 NVIDIA Tesla V100 Volta series GPU cards. Firstly, Figure 13 presents how
the numbers of streams affect performance for the largest configuration shown in

528 P. Czarnul

2*10-6

4*10-6

6*10-6

8*10-6

10*10-6

12*10-6

14*10-6

16*10-6

18*10-6

 1 2 4 8 16 32

No
rm

al
iz

ed
 p

er
fo

rm
an

ce
/p

ow
er

 c
on

su
mp

ti
on

 [
1/

(W
s)

]

number of streams

multiple streams per thread, compute/comm ratio=1.01
multiple streams per thread, compute/comm ratio=2.02
multiple streams per thread, compute/comm ratio=9.98
multiple streams per thread, compute/comm ratio=19.95

Figure 10. Normalized performance by power consumption for 1 GPU and various num-
bers of streams, testbed 1

12*10-6

14*10-6

16*10-6

18*10-6

20*10-6

22*10-6

24*10-6

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

pe
rf

or
ma

nc
e/

po
we

r
co

ns
um

pt
io

n
[1

/(
Ws

)]

number of computational host threads

2 GPUs + x host threads, GPU/CPU perf=30.13
1 GPU + x host threads, GPU/CPU perf 30.13

Figure 11. Performance by power consumption for 1 and 2 GPU configurations and various
numbers of host threads, GPU/CPU performance = 30.13, testbed 1

Investigation of Parallel Data Processing . . . 529

14*10-6

16*10-6

18*10-6

20*10-6

22*10-6

24*10-6

26*10-6

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

pe
rf

or
ma

nc
e/

po
we

r
co

ns
um

pt
io

n
[1

/(
Ws

)]

number of computational host threads

2 GPUs + x host threads, GPU/CPU perf=2
1 GPU + x host threads, GPU/CPU perf=2

Figure 12. Performance by power consumption for 1 and 2 GPU configurations and various
numbers of host threads, GPU/CPU performance = 2, testbed 1

 0

 5

 10

 15

 20

 25

 30

 35

 40

 1 2 4 8 16 32

ex
ec

ut
io

n
ti

me
 [

s]

number of streams

1 GPU
2 GPUs
4 GPUs

Figure 13. Execution time vs number of streams for various numbers of GPUs, largest
case from Figure 2, testbed 3

530 P. Czarnul

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

1 GPU 2 GPUs 4 GPUs

Ex
ec

ut
io

n
ti

me
 [

s]

std
UM

UMprefetch

Figure 14. Execution time vs memory management solutions for various numbers of GPUs,
largest case from Figure 2, 8 streams per GPU, testbed 3

Figure 2. Then, assuming 8 streams per GPU which (the configuration which already
gives small execution times on the flat parts of the chart), execution times are shown
for the standard memory management, UM and UMprefetch as in the previous
cases. It can be seen in Figure 14 that, again, the UM version offers visible overhead
over the standard memory management version. UMprefetch, thanks to manual
prefetching, offers performance half-way between these two versions for 1 GPU.
For 2 and 4 GPUs, it is worse than the standard memory management version by
about 30% of the difference between the other two versions.

5 CONCLUSIONS AND FUTURE WORK

In the paper we analyzed the performance and performance to power consump-
tion ratio of multi-stream data processing on modern multicore CPU+ GPU sys-
tems. Using a benchmark that allows to set up various compute time to host-device
communication time ratios, number of streams, number of threads managing com-
putations it was possible to assess performance of various configurations on mod-
ern testbeds with Intel Xeon CPUs and NVIDIA Tesla K20m, GTX 1070 Pascal
and Tesla V100 Volta series cards. The benefits of using a properly implemented
multi-stream code were shown compared to GPU computations managed by various
threads or processes for various numbers of streams. Furthermore, the benefits of
such code compared to standard Unified Memory and Unified Memory with prefetch-
ing were shown showing performance gains at the cost of increased programming

Investigation of Parallel Data Processing . . . 531

effort. Additionally, the gains from using NVIDIA Multi Process Service have been
presented for multi-process configurations. The performance to power consumption
ratios have been shown for various numbers of streams and compute time to host-
device communication time ratios as well as for hybrid CPU+GPU configurations
for various numbers of computational threads on the host and relative GPU and
CPU performances. Scalability of the code was presented between 1 and 4 GPUs
using NVIDIA Tesla V100 cards.

The results can be generalized as follows. For the considered data stream pro-
cessing application and various compute to communication ratios, using multiple
streams, at least 2 offered visible benefits, with best results using one dedicated host
thread per GPU launching communication and computations to multiple streams.
Some configurations result in best execution times for 2, 4, 8 or even 16 streams
but we can note that benefits over 4 streams, if any, are very small. Secondly, we
confirmed that using NVIDIA MPS gives visible benefits especially for larger com-
pute to communication ratio. Furthermore, for various compute to communication
ratios we confirmed that Unified Memory brings visible overhead over the standard
memory management implementation while a Unified Memory version with manual
prefetching ranks between the two. For CPU + GPU codes, increasing the number
of computational host threads up to the number of available logical processors de-
creases application execution time at rates very much depending on GPU to CPU
performances with considerable gains with CPU performance in the same order as
the one of the GPU. It has been shown that the observed performance per power
consumption varies with the number of streams, GPU to CPU performance ratio
and the number of computational host threads.

These results can be used as guidelines for best performance implementations
for various applications as the tests are of generic nature and, depending on values
of particular aforementioned parameters, are representative of many applications.
Specifically, obtained results can be used for implementation of building blocks for
data stream frameworks using multi-core CPUs and GPUs, especially multi CUDA
stream communication optimization.

Future work includes extending the scope of the conducted tests performed on
systems with NVIDIA Tesla V100, specifically regarding various CPU + GPU con-
figurations, tests for various compute/communication ratios, as well as extending
tests to larger V100 based systems such as NVIDIA DGX-1 featuring 8 V100 GPUs.
More experiments with thread affinities will be conducted, with research of their
impact for particular codes. Additionally, we plan to incorporate the outcomes of
this work into higher level frameworks such as KernelHive [42] and possibly others
and investigate the impact of Unified Memory oversubscription compared to the
traditional implementation model.

Acknowledgments

The research in the paper has been partially supported by the Statutory Funds
of Electronics, Telecommunications and Informatics Faculty, Gdansk University of

532 P. Czarnul

Technology, Poland. Additionally, the author would like to express his gratitude to
Aleksandra Preiss from Gdansk University of Technology.

REFERENCES

[1] Aldinucci, M.—Campa, S.—Danelutto, M.—Kilpatrick, P.—Tor-
quati, M.: Targeting Distributed Systems in Fastflow. In: Caragiannis, I. et al.
(Eds.): Euro-Par 2012: Parallel Processing Workshops. Springer, Berlin, Heidelberg,
Lecture Notes in Computer Science, Vol. 7640, 2013, pp. 47–56, doi: 10.1007/978-3-
642-36949-0_7.

[2] Aldinucci, M.—Danelutto, M.—Kilpatrick, P.—Torquati, M.: Fastflow:
High-Level and Efficient Streaming on Multicore. Chapter 13. In: Pllana, S.,
Xhafa, F. (Eds.): Programming Multi-Core and Many-Core Computing Systems.
Wiley-Blackwell, 2017, pp. 261–280, doi: 10.1002/9781119332015.ch13.

[3] Bingmann, T.—Axtmann, M.—Jöbstl, E.—Lamm, S.—Nguyen, H.C.—
Noe, A.—Schlag, S.—Stumpp, M.—Sturm, T.—Sanders, P.: Thrill: High-
Performance Algorithmic Distributed Batch Data Processing with C++. 2016
IEEE International Conference on Big Data (Big Data), 2016, pp. 172–183, doi:
10.1109/BigData.2016.7840603.

[4] Blattner, T.—Keyrouz, W.—Chalfoun, J.—Stivalet, B.—Brady, M.—
Zhou, S.: A Hybrid CPU-GPU System for Stitching Large Scale Optical Microscopy
Images. 2014 43rd International Conference on Parallel Processing, 2014, pp. 1–9, doi:
10.1109/ICPP.2014.9.

[5] Carbone, P.—Katsifodimos, A.—Ewen, S.—Markl, V.—Haridi, S.—
Tzoumas, K.: Apache Flink™: Stream and Batch Processing in a Single Engine.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering,
Vol. 38, 2015, No. 4, pp. 28–38.

[6] Cardellini, V.—Grassi, V.—Presti, F. L.—Nardelli, M.: On QoS-Aware
Scheduling of Data Stream Applications over Fog Computing Infrastructures. 2015
IEEE Symposium on Computers and Communication (ISCC), 2015, pp. 271–276,
doi: 10.1109/ISCC.2015.7405527.

[7] Chen, Z.—Xu, J.—Tang, J.—Kwiat, K.A.—Kamhoua, C.A.—Wang, C.:
GPU-Accelerated High-Throughput Online Stream Data Processing. IEEE Trans-
actions on Big Data, Vol. 4, 2018, No. 2, pp. 191–202, doi: 10.1109/TB-
DATA.2016.2616116.

[8] Cruz, R.—Drummond, L.—Clua, E.—Bentes, C.: Analyzing and Estimating
the Performance of Concurrent Kernels Execution on GPUs. XVIII Simpósio em Sis-
temas Computacionais de Alto Desempenho (WSCAD 2017), 2017, pp. 136–147.

[9] Cullinan, C.—Wyant, C.—Frattesi, T.: Computing Performance Bench-
marks among CPU, GPU, and FPGA. Worcester Polytechnic Institute, E-
project-030212-123508, 2012. https://web.wpi.edu/Pubs/E-project/Available/
E-project-030212-123508/unrestricted/Benchmarking_Final.pdf.

[10] Czarnul, P.: A Model, Design, and Implementation of an Efficient Multithreaded
Workflow Execution Engine with Data Streaming, Caching, and Storage Con-

https://doi.org/10.1007/978-3-642-36949-0_7
https://doi.org/10.1007/978-3-642-36949-0_7
https://doi.org/10.1002/9781119332015.ch13
https://doi.org/10.1109/BigData.2016.7840603
https://doi.org/10.1109/ICPP.2014.9
https://doi.org/10.1109/ISCC.2015.7405527
https://doi.org/10.1109/TBDATA.2016.2616116
https://doi.org/10.1109/TBDATA.2016.2616116
https://web.wpi.edu/Pubs/E-project/Available/E-project-030212-123508/unrestricted/Benchmarking_Final.pdf
https://web.wpi.edu/Pubs/E-project/Available/E-project-030212-123508/unrestricted/Benchmarking_Final.pdf

Investigation of Parallel Data Processing . . . 533

straints. The Journal of Supercomputing, Vol. 63, 2013, No. 3, pp. 919–945, doi:
10.1007/s11227-012-0837-z.

[11] Czarnul, P.: Benchmarking Performance of a Hybrid Intel Xeon/Xeon Phi Sys-
tem for Parallel Computation of Similarity Measures Between Large Vectors. Inter-
national Journal of Parallel Programming, Vol. 45, 2017, No. 5, pp. 1091–1107, doi:
10.1007/s10766-016-0455-0.

[12] Czarnul, P.: Benchmarking Overlapping Communication and Computations with
Multiple Streams for Modern GPUs. In: Ganzha, M., Maciaszek, L., Paprzycki, M.
(Eds.): Communication Papers of the 2018 Federated Conference on Computer
Science and Information Systems (FedCSIS 2018), Poznań, Poland, 2018. Annals
of Computer Science and Information Systems, Vol. 17, 2018, pp. 105–110, doi:
10.15439/2018F17.

[13] Czarnul, P.: Parallel Programming for Modern High Performance Computing
Systems. 1st Edition. Chapman and Hall/CRC, Taylor&Francis, 2018. ISBN: 978-
1138305953.

[14] Czarnul, P.: Parallelization of Large Vector Similarity Computations in a Hybrid
CPU + GPU Environment. The Journal of Supercomputing, Vol. 74, 2018, No. 2,
pp. 768–786, doi: 10.1007/s11227-017-2159-7.

[15] Czarnul, P.—Proficz, J.—Drypczewski, K.: Survey of Methodologies, Ap-
proaches, and Challenges in Parallel Programming Using High Performance Comput-
ing Systems. Scientific Programming, Vol. 2020, 2020, Art. No. 4176794, 19 pp., doi:
10.1155/2020/4176794.

[16] Danelutto, M.—De Sensi, D.—Torquati, M.: A Power-Aware, Self-Adaptive
Macro Data Flow Framework. Parallel Processing Letters, Vol. 27, 2017, No. 1,
Art. No. 1740004, doi: 10.1142/S0129626417400047.

[17] Dongarra, J.: Challenges for Exascale Computing. PARA 2010: State of the Art
in Scientific and Parallel Computing, Reykjavík, Iceland, June 2010. http://www.
netlib.org/utk/people/JackDongarra/SLIDES/para-06102.pdf.

[18] Friedman, E.—Tzoumas, K.: Introduction to Apache Flink: Stream Processing
for Real Time and Beyond. 1st Edition. O’Reilly Media, Inc., 2016.

[19] Guo, P.—Zhang, C.: Performance Optimization for SpMV on Multi-GPU Systems
Using Threads and Multiple Streams. 2016 International Symposium on Computer
Architecture and High Performance Computing Workshops (SBAC-PADW), 2016,
pp. 67–72, doi: 10.1109/SBAC-PADW.2016.20.

[20] Gómez-Luna, J.—González-Linares, J.M.—Benavides, J. I.—Guil, N.: Per-
formance Models for Asynchronous Data Transfers on Consumer Graphics Process-
ing Units. Journal of Parallel and Distributed Computing, Vol. 72, 2012, No. 9,
pp. 1117–1126, doi: 10.1016/j.jpdc.2011.07.011.

[21] Jain, A.: Mastering Apache Storm: Real-Time Big Data Streaming Using Kafka,
Hbase and Redis. Packt Publishing, 2017.

[22] Jarząbek, Ł.—Czarnul, P.: Performance Evaluation of Unified Memory and Dy-
namic Parallelism for Selected Parallel CUDA Applications. The Journal of Super-
computing, Vol. 73, 2017, No. 12, pp. 5378–5401, doi: 10.1007/s11227-017-2091-x.

https://doi.org/10.1007/s11227-012-0837-z
https://doi.org/10.1007/s10766-016-0455-0
https://doi.org/10.15439/2018F17
https://doi.org/10.1007/s11227-017-2159-7
https://doi.org/10.1155/2020/4176794
https://doi.org/10.1142/S0129626417400047
http://www.netlib.org/utk/people/JackDongarra/SLIDES/para-06102.pdf
http://www.netlib.org/utk/people/JackDongarra/SLIDES/para-06102.pdf
https://doi.org/10.1109/SBAC-PADW.2016.20
https://doi.org/10.1016/j.jpdc.2011.07.011
https://doi.org/10.1007/s11227-017-2091-x

534 P. Czarnul

[23] Knap, M.—Czarnul, P.: Performance Evaluation of Unified Memory with
Prefetching and Oversubscription for Selected Parallel CUDA Applications on
NVIDIA Pascal and Volta GPUs. The Journal of Supercomputing, Vol. 75, 2019,
No. 11, pp. 7625–7645, doi: 10.1007/s11227-019-02966-8.

[24] Ko, B.—Han, S.—Park, Y.—Jeon, M.—Lee, B.: A Comparative Study of Pro-
gramming Environments Exploiting Heterogeneous Systems. IEEE Access, Vol. 5,
2017, pp. 10081–10092, doi: 10.1109/ACCESS.2017.2708738.

[25] Kreutz, J.: CUDA Streams, Events and Asynchronous Memory Copies.
April 2017. GPU Programming@Jülich Supercomputing Centre, https:
//www.fz-juelich.de/SharedDocs/Downloads/IAS/JSC/EN/slides/cuda/
09-cuda-streams-events.pdf?__blob=publicationFile.

[26] Lee, C.-L.—Lin, Y.-S.—Chen, Y.-C.: A Hybrid CPU/GPU Pattern-Matching
Algorithm for Deep Packet Inspection. PLoS ONE, Vol. 10, 2015, No. 10,
Art. No. e0139301, 22 pp., doi: 10.1371/journal.pone.0139301.

[27] Lei, G.—Dou, Y.—Wan, W.—Xia, F.—Li, R.—Ma, M.—Zou, D.: CPU-GPU
Hybrid Accelerating the Zuker Algorithm for RNA Secondary Structure Prediction
Applications. BMC Genomics, Vol. 13, 2012, No. S-1, Art. No. S14, doi: 10.1186/1471-
2164-13-S1-S14.

[28] Leibiusky, J.—Eisbruch, G.—Simonassi, D.: Getting Started with Storm.
O’Reilly Media, Inc., 2012.

[29] Li, H.—Yu, D.—Kumar, A.—Tu, Y.-C.: Performance Modeling in CUDA
Streams – A Means for High-Throughput Data Processing. 2014 IEEE Interna-
tional Conference on Big Data (Big Data), 2014, pp. 301–310, doi: 10.1109/Big-
Data.2014.7004245.

[30] Li, W.—Jin, G.—Cui, X.—See, S.: An Evaluation of Unified Memory Technology
on NVIDIA GPUs. 2015 15th IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing, 2015, pp. 1092–1098, doi: 10.1109/CCGrid.2015.105.

[31] Luitjens, J.: CUDA Streams: Best Practices and Common Pitfalls. nVidia, GPU
Technology Conference, 2014. http://on-demand.gputechconf.com/gtc/2014/
presentations/S4158-cuda-streams-best-practices-common-pitfalls.pdf.

[32] Marks, M.—Jantura, J.—Niewiadomska-Szynkiewicz, E.—Strzel-
czyk, P.—Gozdz, K.: Heterogeneous GPU&CPU Cluster for High Performance
Computing in Cryptography. Computer Science, Vol. 13, 2012, No. 2, pp. 63–79, doi:
10.7494/csci.2012.13.2.63.

[33] Misale, C.—Drocco, M.—Tremblay, G.—Aldinucci, M.: PiCo: A Novel
Approach to Stream Data Analytics. In: Heras, D.B. et al. (Eds.): Euro-Par 2017:
Parallel Processing Workshops. Springer, Cham, Lecture Notes in Computer Science,
Vol. 10659, 2018, pp. 118–128, doi: 10.1007/978-3-319-75178-8_10.

[34] nVidia. CUDA Toolkit v10.0.130 Programming Guide. October 2018, https://docs.
nvidia.com/cuda/cuda-c-programming-guide/index.html.

[35] Picos, K.—Díaz-Ramírez, V.H.—Tapia, J. J.: Real-Time 3D Video Process-
ing Using Multi-Stream GPU Parallel Computing. Research in Computing Science,
Vol. 80, 2014, pp. 87–95.

https://doi.org/10.1007/s11227-019-02966-8
https://doi.org/10.1109/ACCESS.2017.2708738
https://www.fz-juelich.de/SharedDocs/Downloads/IAS/JSC/EN/slides/cuda/09-cuda-streams-events.pdf?__blob=publicationFile
https://www.fz-juelich.de/SharedDocs/Downloads/IAS/JSC/EN/slides/cuda/09-cuda-streams-events.pdf?__blob=publicationFile
https://www.fz-juelich.de/SharedDocs/Downloads/IAS/JSC/EN/slides/cuda/09-cuda-streams-events.pdf?__blob=publicationFile
https://doi.org/10.1371/journal.pone.0139301
https://doi.org/10.1186/1471-2164-13-S1-S14
https://doi.org/10.1186/1471-2164-13-S1-S14
https://doi.org/10.1109/BigData.2014.7004245
https://doi.org/10.1109/BigData.2014.7004245
https://doi.org/10.1109/CCGrid.2015.105
http://on-demand.gputechconf.com/gtc/2014/presentations/S4158-cuda-streams-best-practices-common-pitfalls.pdf
http://on-demand.gputechconf.com/gtc/2014/presentations/S4158-cuda-streams-best-practices-common-pitfalls.pdf
https://doi.org/10.7494/csci.2012.13.2.63
https://doi.org/10.1007/978-3-319-75178-8_10
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

Investigation of Parallel Data Processing . . . 535

[36] Pinnecke, M.—Broneske, D.—Saake, G.: Toward GPU Accelerated Data
Stream Processing. In: Saake, G., Broneske, D., Dorok, S., Meister, A. (Eds.): Pro-
ceedings of the 27th GI-Workshop Grundlagen von Datenbanken (GvD 2015), Gom-
mern, Germany, May 26–29, 2015, CEUR Workshop Proceedings, CEUR-WS.org,
Vol. 1366, 2015, pp. 78–83.

[37] Pirjan, A.—Petrosanu, D.-M.: Improving Parallel Programming in the Compute
Unified Device Architecture Using the Unified Memory Feature. Journal of Informa-
tion Systems and Operations Management, Vol. 8, 2014, No. 2, pp. 352–362.

[38] Pryor Jr., A.—Ophus, C.—Miao, J.: A Streaming Multi-GPU Implementa-
tion of Image Simulation Algorithms for Scanning Transmission Electron Microscopy.
Advanced Structural and Chemical Imaging, Vol. 3, 2017, No. 1, Art. No. 15, doi:
10.1186/s40679-017-0048-z.

[39] Radford, D.—Calvert, D.: A Comparative Analysis of the Performance of
Scalable Parallel Patterns Applied to Genetic Algorithms and Configured for
NVIDIA GPUs. Procedia Computer Science, Vol. 114, 2017, pp. 65–72, doi:
10.1016/j.procs.2017.09.009.

[40] Rathore, M.M.—Son, H.—Ahmad, A.—Paul, A.—Jeon, G.: Real-Time Big
Data Stream Processing Using GPU with Spark Over Hadoop Ecosystem. Inter-
national Journal of Parallel Programming, Vol. 46, 2018, No. 3, pp. 630–646, doi:
10.1007/s10766-017-0513-2.

[41] Rennich, S.: CUDA C/C++. Streams and Concurrency, 2011, NVIDIA,
http://on-demand.gputechconf.com/gtc-express/2011/presentations/
StreamsAndConcurrencyWebinar.pdf, accessed on July 19, 2017.

[42] Rościszewski, P.—Czarnul, P.—Lewandowski, R.—Schally-Kacpr-
zak, M.: KernelHive: A New Workflow-Based Framework for Multilevel High
Performance Computing Using Clusters and Workstations with CPUs and GPUs.
Concurrency and Computation: Practice and Experience, Vol. 28, 2016, No. 9,
pp. 2586–2607, doi: 10.1002/cpe.3719.

[43] Sourouri, M.—Gillberg, T.—Baden, S. B.—Cai, X.: Effective Multi-GPU
Communication Using Multiple CUDA Streams and Threads. 2014 20th IEEE Interna-
tional Conference on Parallel and Distributed Systems (ICPADS), 2014, pp. 981–986,
doi: 10.1109/PADSW.2014.7097919.

[44] Verner, U.—Schuster, A.—Silberstein, M.—Mendelson, A.: Scheduling
Processing of Real-Time Data Streams on Heterogeneous Multi-GPU Systems. Pro-
ceedings of the 5th Annual International Systems and Storage Conference (SYS-
TOR ’12), 2012, Art. No. 8, 12 pp., doi: 10.1145/2367589.2367596.

[45] Wang, L.—Huang, M.—El-Ghazawi, T.: Exploiting Concurrent Kernel Execu-
tion on Graphic Processing Units. 2011 International Conference on High Performance
Computing and Simulation, 2011, pp. 24–32, doi: 10.1109/HPCSim.2011.5999803.

[46] Wang, Y.—Wang, F.—Li, R.—Dou, Y.: An Efficient CPU-GPU Hybrid Parallel
Implementation for DVB-RCS2 Receiver. Concurrency and Computation: Practice
and Experience, Vol. 30, 2018, No. 19, Art. No. e4529, 14 pp., doi: 10.1002/cpe.4529.

[47] Zaharia, M.—Xin, R. S.—Wendell, P.—Das, T.—Armbrust, M.—
Dave, A.—Meng, X.—Rosen, J.—Venkataraman, S.—Franklin, M. J.—

https://doi.org/10.1186/s40679-017-0048-z
https://doi.org/10.1016/j.procs.2017.09.009
https://doi.org/10.1007/s10766-017-0513-2
http://on-demand.gputechconf.com/gtc-express/2011/presentations/StreamsAndConcurrencyWebinar.pdf
http://on-demand.gputechconf.com/gtc-express/2011/presentations/StreamsAndConcurrencyWebinar.pdf
https://doi.org/10.1002/cpe.3719
https://doi.org/10.1109/PADSW.2014.7097919
https://doi.org/10.1145/2367589.2367596
https://doi.org/10.1109/HPCSim.2011.5999803
https://doi.org/10.1002/cpe.4529

536 P. Czarnul

Ghodsi, A.—Gonzalez, J.—Shenker, S.—Stoica, I.: Apache Spark: A Unified
Engine for Big Data Processing. Communications of the ACM, Vol. 59, 2016, No. 11,
pp. 56–65, doi: 10.1145/2934664.

[48] Zhang, Y.—Mueller, F.: GStream: A General-Purpose Data Streaming Frame-
work on GPU Clusters. 2011 International Conference on Parallel Processing (ICPP),
2011, pp. 245–254, doi: 10.1109/ICPP.2011.22.

Paweł Czarnul received his Ph.D. in computer science in 2003
and D.Sc. in computer science in 2015, both from the Gdansk
University of Technology, Poland. His research interests include:
high performance computing, distributed information systems
and processing, artificial intelligence. He is author of over 80 pub-
lications in the area of parallel and distributed processing, includ-
ing book entitled Parallel Programming for Modern High Per-
formance Computing Systems, Chapman and Hall/CRC, 2018.
He is currently Head of Computer Architecture Department and
Vice Dean of the Faculty of ETI, Gdansk University of Techno-
logy, Poland.

https://doi.org/10.1145/2934664
https://doi.org/10.1109/ICPP.2011.22

