
Computing and Informatics, Vol. 39, 2020, 568–586, doi: 10.31577/cai 2020 3 568

NEW SOFTWARE TOOL FOR MODELLING
AND CONTROL OF DISCRETE-EVENT
AND HYBRID SYSTEMS USING PETRI NETS

Erik Kučera, Oto Haffner, Peter Drahoš, Ján Cigánek

Faculty of Electrical Engineering and Information Technology
Slovak University of Technology in Bratislava
Bratislava, Slovakia
e-mail: {erik.kucera, oto.haffner}@stuba.sk

Juraj Štefanovič, Štefan Kozák

Faculty of Informatics
Pan-European University
Bratislava, Slovakia
e-mail: {juraj.stefanovic, stefan.kozak}@paneurouni.com

Abstract. The main aim of the proposed paper is to design a new software tool for
modelling and control of discrete-event and hybrid systems using Arduino and sim-
ilar microcontrollers. To accomplish these tasks a new tool called PN2ARDUINO
based on Petri nets is proposed which is able to communicate with the microcon-
troller. Communication with the microcontroller is based on the modified Firmata
protocol hence the control algorithm can be implemented on all microcontrollers
that support this type of protocol. The developed software tool has been success-
fully verified in control of laboratory systems. It can also be used for education
and research purposes as it offers a graphical environment for designing control
algorithms for hybrid and mainly discrete-event systems. The proposed tool can
improve education and practice in the field of cyber-physical systems (Industry 4.0).

Keywords: Discrete-event systems, hybrid systems, system control, microcon-
troller, Firmata protocol

Mathematics Subject Classification 2010: 93C65

New Software Tool for Modelling and Control 569

1 INTRODUCTION

Development of various systems is a complex discipline that includes many activi-
ties, e.g. system design, specification of required properties, implementation, testing
and further development of the system [1]. As these operations are challenging and
important for the final product, it is appropriate and necessary to create a model
of the system [2, 3]. Development of control methods for discrete-event and hy-
brid systems belongs to modern trends in automation and mechatronics. A hybrid
system is a combination of continuous-time and discrete-event systems. Control
of such systems brings new challenges due to the necessity to join control meth-
ods of discrete-event systems (where the Petri nets formalism can be helpful) and
classic control methods of continuous-time systems [4]. With good methodology
and software modules, these approaches can be synergistically combined yielding
an appropriate and unique control system that allows harmonizing discrete-event
and continuous-time control methods (e.g. PID algorithms). Effective cooperation
of these approaches allows to control hybrid systems. This approach is useful in sys-
tems which require using different control algorithms (for example PID controllers
with different parameters) according to the state of the system. The concept of Petri
nets is capable to manage these control rules in a very efficient, robust and well-
arranged (graphical) way. This paper presents new Petri Net tools for modelling
and control of discrete-event and hybrid systems. Case studies dealing with control
of a laboratory fire alarm system and a DC motor are included.

In papers [5] and [6] authors deal with usage of hybrid and colour Petri nets for
modelling traffic on crossroads and on highways. From these authors, there are also
interesting projects in the field of manufacturing systems [7] and [8]. Unfortunately,
it is not mentioned whether the results are only theoretical models, or they were
simulated using an SW tool or deployed in practice.

An interesting software tool named Visual Object Net++ that supports hybrid
Petri nets was developed in [9]. There are many papers mainly from an author
of [10] and [11] describing capabilities of Visual Object Net++. However, this tool
is not open-source and has not been further developed.

The SW tool Snoopy [12] offers modelling based on many Petri nets classes like
stochastic, hybrid, colour, music Petri nets, etc. Using this tool, many types of
research in biology and chemistry are being solved. Unfortunately, the source code
is not available.

Coloured Petri nets are used for modelling of automated storage and retrieval
system in [13] and [14].

One of interesting research approaches is the Modelica language and the Open-
Modelica open-source tool. There is a library that supports modelling by Petri nets
in this tool. One of the advantages of OpenModelica is that a PN model can be
connected with other Modelica components. The first Petri net toolbox was in-
troduced in [15], its extension is described in [16]; an important addition (called
PNlib) including support of extended hybrid Petri nets for modelling of processes
in biological organisms is described in [17] and [18]. However, this tool was devel-

570 E. Kučera, O. Haffner, P. Drahoš, J. Cigánek, J. Štefanovič, Š. Kozák

oped primarily for the commercial tool Dymola and not for OpenModelica, so its
extensibility and applicability in scientific research are limited. In 2015, the team
that developed PNlib published a modified version of PNlib that partially worked in
OpenModelica. Unfortunately, it was not possible to use OpenModelica for control
purposes using microcontrollers because the COM port communication support was
missing.

The above survey has shown there is a lack of tools based on Petri net formalism
that support control of real systems. As a result, it was necessary to develop an orig-
inal solution for control of discrete and hybrid systems based on microcontrollers
using Petri nets formalism.

2 DESCRIPTION OF DEVELOPED SW TOOL PN2ARDUINO

As a basis for the newly-developed SW tool, the PNEditor was chosen [19]. This
tool is open-source. The developed extension of this tool is called PN2ARDUINO
and was fully tested in [20] and [21]. The main topic of this paper includes an
introduction to this developed software that can be used for control of discrete-event
and hybrid systems, and its verification on laboratory discrete-event and hybrid
systems.

Petri Net Logic in PC Petri Net Logic in Microcontroller

limited capability of real-time control real-time control

much more computation and memory re-
sources available

limited computation and memory re-
sources

code in microcontroller does not need re-
compiling

during development repeated compiling is
needed

PC must be still online independence of control unit

Table 1. Comparison of two concepts of system control using Petri nets

There are several Petri net-based control concepts. Petri net as a control logic
has to be connected with the controlled system (e.g. using a microcontroller). One
of the main aspects of the control system design is the question whether the Petri
net’s logic should be stored in the microcontroller or in the PC able to communicate
with the microcontroller. Both approaches have both advantages and disadvantages.

If the Petri net’s logic is stored in the microcontroller, the main advantage is
the control unit independence from the software application (program on a PC).
The Petri net logic is modelled using a PC, and then the Petri net is translated into
a program code which is loaded into the microcontroller. Afterwards, the PC and
the microcontroller can be disconnected. Another advantage is the capability of real-
time control. Disadvantages include limited computational and memory resources
of the microcontroller, need for repeated program compiling and its uploading into
the microcontroller (mainly during the development phase). The proposed solution
is shown in Figure 1.

New Software Tool for Modelling and Control 571

Computer Microcontroller
Petri net logic

Controlled
system

Figure 1. Basic scheme of proposed solution – Petri net’s logic in microcontroller

When the Petri net’s control logic is stored on a PC in a specialized SW ap-
plication, it is possible to control the system directly. In the microcontroller, only
the program with communication protocol is stored. This communication protocol
(in our case Firmata [22]) is used for communication between the PC and the mi-
crocontroller. This solution eliminates the necessity of recompiling and reuploading
the program during the development. The next advantage is the elimination of re-
strictions on computing and storage resources because a PC has almost unlimited
resources compared with a microcontroller. One of the disadvantages is that the
control system cannot respond in real time. The proposed solution is shown in
Figure 2. These differences are specified in Table 1.

Computer
Petri net logic

Microcontroller
Controlled

system

Figure 2. Basic scheme of proposed solution – Petri net’s logic in PC

New software module PN2ARDUINO is based on the second approach. The
Petri net runs on a personal computer. For communication between SW application
and microcontroller, the Firmata protocol [22] has been used. Firmata is a pro-
tocol designed for communication between a microcontroller and a computer (or
a mobile device like smartphone, tablet, etc.). It is based on MIDI messages [23].
This protocol can be implemented in firmware of various microcontrollers; mostly
Arduino-family microcontrollers are used. On the PC, a client library is needed.
These libraries are available for many languages like Java, Python, .NET, PHP,
etc.

On the Arduino side, the Standard Firmata 2.3.2 version is used, the client
application on the PC is based on Firmata4j 2.3.3 library which is programmed in
Java. The advantage of using Firmata consists in the possibility of using another
microcontroller compatible with Firmata.

PN2ARDUINO extends PNEditor with many features. For Petri nets modelling,
there is a possibility of adding time delays to transitions, and capacity for places.
Also, the automatic mode of transitions firing was added for automatic control
purposes as the only manual mode is available in PNEditor.

In PN2ARDUINO, a new module is added to PNEditor to enable communi-
cation with the compatible microcontroller. This module consists of two parts.
The first part establishes connection with the microcontroller by setting the COM
port where the microcontroller is connected. The second part provides a capability
of adding Arduino components to Petri net places and transitions. The following

572 E. Kučera, O. Haffner, P. Drahoš, J. Cigánek, J. Štefanovič, Š. Kozák

User

Adding of a
transition to

the net

Adding of time

delay to the
transition

Start
automatic

mode

Adding of PWM
output

Adding of
servo

Adding of

message
sending

capability

Adding of custom
SYSEX message

sending capability

«extend»

«extend»

Figure 3. PN2ARDUINO – use-case diagram

types of Arduino components are supported: digital input and output, analog in-
put, servo control, PWM output, message sending, and custom SYSEX message [22]
sending.

The use-case diagram of the developed SW tool is depicted in Figure 3, and the
class diagram is shown in Figure 4.

As it was stated, transitions and places can be associated with Arduino compo-
nents. Digital and analog inputs serve as enabling conditions for Petri net transi-
tions. Digital and PWM outputs and messages are used as executors of the respective
actions.

The interesting functionality is the capability of sending custom SYSEX mes-
sages. The user has to enter a SYSEX command (0x00 - 0x0F) and optionally
also the content of the message. The message is sent when the token comes to the
place or when the transition is fired. SYSEX messages have been used e.g. in the

New Software Tool for Modelling and Control 573

«interface»

Subject

+ registerArduinoListeners (arduinoListener : ArduinoListener)

+ removeArduinoListener (arduinoListener : ArduinoListener)

+ notifyArduinoListeners (sourcePlaces : List<Node>, transition :

Node, destinationPlacse : List<Node>)

+ notifyArduinoListenersPhase1 (sourcePlaces : List<Node>,

transition : Node)

+ notifyArduinoListenersPhase2 (transition : Node,

destinationPlaces : List<Node>)

Marking

+ registerArduinoListeners (arduinoListener : ArduinoListener)

+ removeArduinoListener (arduinoListener : ArduinoListener)

+ notifyArduinoListeners (sourcePlaces : List<Node>, transition :

Node, destinationPlacse : List<Node>)

+ notifyArduinoListenersPhase1 (sourcePlaces : List<Node>,

transition : Node)

+ notifyArduinoListenersPhase2 (transition : Node,

destinationPlaces : List<Node>)

«interface»

ArduinoListener

+ update (sourcePlaces : List<Node>, transition : Node,

destinationPlaces : List<Node>)

+ updatePhase1 (sourcePlaces : List<Node>, transition :

Node)

+ updatePhase2 (transition : Node, destinationPlaces :

List<Node>)

ArduinoController

+ update (sourcePlaces : List<Node>, transition : Node,

destinationPlaces : List<Node>)

+ updatePhase1 (sourcePlaces : List<Node>, transition :

Node)

+ updatePhase2 (transition : Node, destinationPlaces :

List<Node>)

ArduinoComponent

type: ArduinoComponentType

settings: ArduinoComponentSettings

arduinoManager: ArduinoManager

+ activate ()

+ deactivate ()

+ fire ()

+ isEnabled (): boolean

RootPflow

arduinoListeners:

ArrayList<ArduinoListener>

+ getArduinoListeners ():

ArrayList<ArduinoListener>

«use»

«call»

Figure 4. PN2ARDUINO – class diagram

proposed hybrid control example in the last section of this article. Here, the SY-
SEX message notifies the microcontroller that a different PID control algorithm is
to be used. Then the PID algorithm is switched, and the controlled system remains
stable.

A main window of PN2ARDUINO consists of a quick menu, main menu, canvas
for Petri net modelling and log console. PN2ARDUINO supports two modes –
a design mode and a control mode, the control mode can be manual or auto-
matic.

Firstly, it is necessary to initialize communication with Arduino (Setup board

in the menu). Then it is possible to add Arduino component to the place or to the
transition (Figure 5). The example of analog input is shown in Figure 6.

Time politics are also supported – it is possible to add time delay to the transi-
tions which can be deterministic or stochastic.

574 E. Kučera, O. Haffner, P. Drahoš, J. Cigánek, J. Štefanovič, Š. Kozák

Figure 5. PN2ARDUINO – adding of Arduino component

Figure 6. PN2ARDUINO – analog input

3 CASE STUDY: CONTROL OF LABORATORY
DISCRETE-EVENT SYSTEM

For verification of the developed software tool and discrete-event systems control
method it was necessary to design a laboratory model of such a system. A fire
alarm model was built. The scheme can be seen in Figure 7.

The fire alarm model consists of an active buzzer, photo-resistor, three resistors
and an NPN transistor. The NPN transistor is mandatory for active buzzer connec-
tion. The LED of Arduino in pin 13 is also used. A photo-resistor was used instead
of a smoke sensor to simplify the experiment.

Next, the behaviour of the system has to be defined. When the photoresistor
detects an excessive lighting (experimentally determined as an input value greater

New Software Tool for Modelling and Control 575

Figure 7. The scheme of laboratory model of fire alarm

than 799 on the analog pin of Arduino Uno which resolution is from 0 to 1 023)
the intermittent tone of the buzzer is turned on. This tone alternates with LED
lighting. When the value on the analog pin drops below 800, the sound and light
effects stop. This is repeated cyclically.

p1 - alarm does not detect fire p2 - fire alarm is active

p3 - fire alarm is active

t1 - alarm is turned on

t5 - alarm is turned off

t4 - alarm is turned off

t2 - alarm makes a noise
t3 - signal light blinks

Figure 8. PN for fire alarm (initial marking)

Initial marking of modelled timed Petri Net interpreted for control (or sometimes
called as interpreted timed Petri net) in PN2ARDUINO is shown in Figure 8.

576 E. Kučera, O. Haffner, P. Drahoš, J. Cigánek, J. Štefanovič, Š. Kozák

Places of the Petri net (Figure 8 – Figure 10) correspond to the following states:

• p1 – alarm does not detect fire,

• p2 and p3 – alarm is active (fire was detected).

Transitions of Petri net (Figure 8 – Figure 10) correspond with the following
actions/events:

• t1 – alarm is turned on,

• t2 – alarm makes a noise,

• t3 – signal light blinks,

• t4 and t5 – alarm is turned off.

The token in place p1 corresponds to the state when the fire alarm is not activated
because the photo-resistor has not detected the light intensity threshold.

p1 - alarm does not detect fire p2 - fire alarm is active

p3 - fire alarm is active

t1 - alarm is turned on

t5 - alarm is turned off

t4 - alarm is turned off

t2 - alarm makes a noise
t3 - signal light blinks

Figure 9. PN for fire alarm (t1 is fired)

When a value greater than 799 is detected on the analog pin of Arduino, the
transition t1 is fired. This transition is associated with Arduino component Analog
Input where the range of input values is set. The transition is enabled depending
on this range.

p1 - alarm does not detect fire p2 - fire alarm is active

p3 - fire alarm is active

t1 - alarm is turned on

t5 - alarm is turned off

t4 - alarm is turned off

t2 - alarm makes a noise
t3 - signal light blinks

Figure 10. PN for fire alarm (t2 is fired)

New Software Tool for Modelling and Control 577

In Figure 9, the token is in the place p2. Transition t2 is associated with Arduino
component Digital Output (pin 8 in this case) where the buzzer is connected. This
transition has also associated the function of a time delay (2 seconds) which means
that the transition firing (and buzzer sound effect) lasts for 2 seconds.

In Figure 10, the token is in the place p3 (Figure 10). Transition t3 is associated
with Arduino component Digital Output (pin 13 in this case) where the build-in
LED is connected. The time delay is set to 1 second, i.e. the LED diode is turned
on for 1 second.

This process is repeated cyclically, and it stops when the value on the analog
pin drops under 800. Then the transition t4 or t5 is fired and the token moves to
the place p1 when the fire alarm does not detect the fire.

We can conclude that the ability of discrete-event control with PN2ARDUINO
was successfully verified and can be generalized for other applications.

4 CASE STUDY: CONTROL OF LABORATORY HYBRID SYSTEM

To verify the proposed software tool for hybrid systems control it was necessary to
find an appropriate laboratory model. A DC motor with encoder was chosen; its
parameters are in Table 2. An incremental encoder is used to measure speed for the
feedback. The measured speed of the DC is the process value.

Actuators Conditions

Rated voltage 6.0 V (DC)

Humidity range 0 %–90 %

Temperature range −20 ◦C ∼ +60 ◦C

No-Load Characteristics

No-load current ≤ 200 mA

No-load speed 185± 10 % rpm

Load Characteristics

Rated load 0.0883 N.m

Rated current ≤ 550 mA

Rated speed 135± 10 % rpm

Starting torque 0.4413 N.m

Locked-rotor current ≥ 2.0 A

Table 2. Specification of DC motor

The DC motor was connected to Arduino Uno using a motor shield module
based on dual full bridge driver L298. Using the motor shield, it is possible to
independently control speed and direction of rotation of the DC motor. For speed
measurement the hardware interruptions functionality of Arduino Uno has been
used.

The speed of the motor is set by a pin denoted “PWM A”. When the input
is set to “PWM = 255” the Arduino program shows 186 rpm which approximately
corresponds with parameters as stated by the manufacturer.

578 E. Kučera, O. Haffner, P. Drahoš, J. Cigánek, J. Štefanovič, Š. Kozák

The next step was measurement of the steady state I/O characteristics. The
input (armature) voltage ranges from 0 V to 5 V which corresponds to a PWM
signal from 0 to 255 (8-bit resolution), the sampling period was chosen – 0.05 s.

The resulting steady state I/O characteristics is in Figure 11.

u
PWM

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260

y
 [

]
rp

m

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

Steady state I/O characteristics

Figure 11. Steady state I/O characteristics of DC motor

To be able to use linear dynamic models, the working points had to be chosen
from linear parts of the I/O characteristics. Two working points have been chosen
(uP1 ,yP1) and (uP2 ,yP2) where:

uP1 = 80→ yP1 = 140 rpm, (1)

uP2 = 170→ yP2 = 174 rpm. (2)

Since the controller has been designed for a real system (fast dynamics, large
noise, uncertainties), the controller parameters were tuned using practice-oriented
design methods. The designed PID controller was implemented using the Arduino
PID Library [24]. Creation of a PID class object has the following syntax:

• PID (&Input, &Output, &Setpoint, Kp, Ki, Kd, Direction)

– Input: controlled variable (double), rpm of the motor

– Output: control variable (double), in this case input voltage – PWM (0–255)

– Setpoint: setpoint (double), desired rpm of the motor

– Kp, Ki, Kd: tuning parameters (double >= 0)

New Software Tool for Modelling and Control 579

– Direction: Either DIRECT or REVERSE – determines which direction the
output will move when faced with a given error.

GR GP

Arduino

y ()velu ()Outputew ()Setpoint

-
PID Process

Figure 12. Block diagram of PID controller in a feedback loop

The closed-loop scheme is in Figure 12. The monotype font was used for variables
names in the Arduino program. The Setpoint is the desired speed (rpm). Due to
the used data type in the Arduino program (long), multiples of ten of the setpoint
are used. Using an extra order enables to deal with an equivalent of a number with
one decimal place. Output is the control variable ranging between 0 and 255 (8 bits)
corresponding to the input voltage between 0 V and 5 V (PWM 0–255).

t [s]
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

y
 [

]
rp

m

160

165

170

175

180

185

190

Step response (2nd working point): P=0.83; I=5; D=0.005

Figure 13. Step response (closed loop) – 2nd working point

Experiments showed that designing an effective PID controller for higher speeds
(2nd working point: ω = 176 rpm) is not complicated. A satisfactory control perfor-
mance can be achieved by tuning individual PID controller parameters.

GR = P +
I

s
+ Ds. (3)

580 E. Kučera, O. Haffner, P. Drahoš, J. Cigánek, J. Štefanovič, Š. Kozák

However, it was not so easy to design an effective controller in the 1st working
point (ω = 140 rpm); mostly, the closed-loop system was not stable. Hence, lower
P and I values had to be used. It was expected that this controller will be effective
also in the 2nd working point however with a worse performance (too long settling
time). To switch between different control algorithms in individual working points,
the proposed software for control of hybrid systems using Petri Nets can be used.

For the 2nd working point, a PID controller with parameter values P = 0.83;
I = 5; D = 0.005 was designed. The closed loop step response is shown in Fig-
ure 13 whereby a PWM step from 176 to 186 was realized in t = 5 s. The settling
time is 1.1 s (considering a tolerance ±2 rpm). This controller was tested also in
the 1st working point (for a step from 140 rpm to 146 rpm). It is obvious from
the corresponding step response in Figure 14 that this controller does not provide
a satisfactory performance.

t [s]
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

y
 [

]
rp

m

115

120

125

130

135

140

145

150

155

160

165

170
Step response (1st working point): P=0.83; I=5; D=0.005

Figure 14. Step response (closed loop) – 1st working point – with inappropriate controller

Hence, for the 1st working point a different PID controller was designed with
P = 0.0001; I = 1; D = 0.01. The closed loop step response in Figure 15 shows
that the controller works properly (the settling time is 1.3 s). When applied in the
2nd working point, this controller again did not work properly, as expected (larger
settling time achieved with a PID controller with smaller P and I). The achieved
performance evaluated from the step response in Figure 16 is worse compared with
the 1st controller (P = 0.83; I = 5; D = 0.005), the settling time 2.75 s is much
larger than in case of the first controller (1.1 s).

The analysis of the achieved results revealed the necessity to use different con-
trollers in individual working points, or to design the controller using some ad-

New Software Tool for Modelling and Control 581

t [s]
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

y
 [

]
rp

m

110

115

120

125

130

135

140

145

150

155

160

165

170

Step response (1st working point): P=0.0001; I=1; D=0.01

Figure 15. Step response (closed loop) – 1st working point – under PID controller

vanced control design approach (robust, gain scheduled, switched). In case of
switching between multiple controllers according to the working point it is pos-
sible to use the developed software module PN2ARDUINO. Switching between
controllers and setpoints is based on SYSEX messages. Arduino and other mi-
crocontrollers that support Firmata protocol can be used. Development and ver-
ification of this software module are the most interesting results of the presented
research.

A demonstration example of the proposed control method is in Figure 17. Con-
sider the above-mentioned DC motor which has to operate in two modes (working
points). For effective setpoint tracking by the DC motor speed, controllers with dif-
ferent parameters have to be used (a different controller for each mode). Switching
between individual working points is carried out using a potentiometer connected to
the analog input of the Arduino Uno microcontroller. Switching between controllers
is provided by transitions switch1 and switch2 of Petri net according to the input
value from the potentiometer. Input from the analog pin in Arduino is represented
by a value ranging between 0 and 1023. The mean value (512) was used as a thresh-
old. In the moment when the token in Petri net is moved to the places setpoint1 or
setpoint2, a SYSEX message is sent. This message ensures the execution of a user-
defined program code on the Arduino side, in this case the control algorithm. The
(PID) algorithm for continuous-time control is independent of Firmata messaging,
so it provides real-time control. The provided hybrid systems control case study is
a basic example. Researchers in hybrid control design can use it for different and
even more complicated scenarios.

582 E. Kučera, O. Haffner, P. Drahoš, J. Cigánek, J. Štefanovič, Š. Kozák

t [s]
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

y
 [

]
rp

m

140

145

150

155

160

165

170

175

180

185

190
Step response (2nd working point): P=0.0001; I=1; D=0.01

Figure 16. Step response (closed loop) – 2nd working point – under inappropriate con-
troller

setpoint1 setpoint2

send SYSEX message 0x00:

setpoint = speed_1;

set_pid_mode = pid_1;

send SYSEX message 0x01:

setpoint = speed_2;

set_pid_mode = pid_2;

switch2

switch1

if analog_input<513

if analog_input>512

Figure 17. Control scheme for hybrid system using PN2ARDUINO

5 CONCLUSIONS

The paper presents a new software tool PN2ARDUINO extending the PNEditor to
communicate with microcontrollers that support the Firmata protocol. This allows
controlling discrete-event and hybrid systems using timed interpreted Petri nets with
the developed software tool. The developed SW tool supports the control paradigm
when in the microcontroller only the communication protocol is implemented. Petri
nets control logic is stored in the computer which communicates with the micro-
controller and sends control comands. The main advantage of the developed SW
tool is a possibility to control complex discrete-event and hybrid systems using the

New Software Tool for Modelling and Control 583

benefits of Petri nets formalism which can support many challenging scenarios. The
next research will focus on the concept of Petri nets based control with the control
logic directly implemented in the microcontroller.

Acknowledgment

This work has been supported by the Cultural and Educational Grant Agency of
the Ministry of Education, Science, Research and Sport of the Slovak Republic,
KEGA 038STU-4/2018 and KEGA 016STU-4/2020, and by the Slovak Research
and Development Agency APVV-17-0190.

REFERENCES

[1] Kharitonov, D.—Tarasov, G.—Golenkov, E.: Modeling of Object-Oriented
Programs with Petri Net Structured Objects. Computing and Informatics, Vol. 36,
2017, No. 5, pp. 1063–1087, doi: 10.4149/cai 2017 5 1063.

[2] Babič, M.—Hluchý, L.—Krammer, P.—Matovič, B.—Kumar, R.—
Kovač, P.: New Method for Constructing a Visibility Graph-Network in 3D Space
and a New Hybrid System of Modeling. Computing and Informatics, Vol. 36, 2017,
No. 5, pp. 1107–1126, doi: 10.4149/cai 2017 5 1107.

[3] Julia, S.—do Nascimento Vale, L.—Soares Passos, L. M.: Functional Testing
Using Object WorkFlow Nets. Computing and Informatics, Vol. 35, 2016, No. 3,
pp. 719–743.

[4] Szymczak, A.—Paszyński, M.—Pardo, D.—Paszyńska, A.: Petri Nets Mod-
eling of Dead-End Refinement Problems in a 3D Anisotropic hp-Adaptive Finite
Element Method. Computing and Informatics, Vol. 34, 2015, No. 2, pp. 425–457.

[5] Dotoli, M.—Fanti, M. P.—Iacobellis, G.: A Freeway Traffic Control Model by
First Order Hybrid Petri Nets. 2011 IEEE Conference on Automation Science and
Engineering (CASE), 2011, pp. 425–431, doi: 10.1109/CASE.2011.6042526.

[6] Fanti, M. P.—Iacobellis, G.—Mangini, A. M.—Ukovich, W.: Freeway Traffic
Modeling and Control in a First-Order Hybrid Petri Net Framework. IEEE Transac-
tions on Automation Science and Engineering, Vol. 11, 2014, No. 1, pp. 90–102, doi:
10.1109/TASE.2013.2253606.

[7] Dotoli, M.—Fanti, M. P.—Mangini, A. M.: Fault Monitoring of Automated
Manufacturing Systems by First Order Hybrid Petri Nets. IEEE International Con-
ference on Automation Science and Engineering (CASE 2008), 2008, pp. 181–186,
doi: 10.1109/COASE.2008.4626493.

[8] Costantino, N.—Dotoli, M.—Falagario, M.—Fanti, M. P.—Man-
gini, A. M.: A Model for Supply Management of Agile Manufacturing Supply Chains.
International Journal of Production Economics, Vol. 135, 2012, No. 1, pp. 451–457,
doi: 10.1016/j.ijpe.2011.08.021.

[9] Matsuno, H.—Doi, A.—Drath, R.—Miyano, S.: Genomic Object Net: Object
Oriented Representation of Biological Systems. Genome Informatics, Vol. 11, 2000,
pp. 229–230.

https://doi.org/10.4149/cai_2017_5_1063
https://doi.org/10.4149/cai_2017_5_1107
https://doi.org/10.1109/CASE.2011.6042526
https://doi.org/10.1109/TASE.2013.2253606
https://doi.org/10.1109/COASE.2008.4626493
https://doi.org/10.1016/j.ijpe.2011.08.021

584 E. Kučera, O. Haffner, P. Drahoš, J. Cigánek, J. Štefanovič, Š. Kozák

[10] Drighiciu, M. A.—Manolea, G.: Application des Reseaux de Petri Hybrides
a l’Etude des Systemes de Production a Haute Cadence. 2010 (in French).

[11] Drighiciu, M.—Cismaru, D.: Modeling a Water Bottling Line Using Petri Nets.
Annals of the University of Craiova, Electrical Engineering Series, 2013, No. 37,
pp. 110–115.

[12] Rohr, C.—Marwan, W.—Heiner, M.: Snoopy – A Unifying Petri Net Frame-
work to Investigate Biomolecular Networks. Bioinformatics, Vol. 26, 2010, No. 7,
pp. 974–975, doi: 10.1093/bioinformatics/btq050.

[13] Kučera, E.—Nižnanská, M.—Kozák, Š.: Advanced Techniques for Modelling
of AS/RS Systems in Automotive Industry Using High-Level Petri Nets. 2015 16th

International Carpathian Control Conference (ICCC), IEEE, 2015, pp. 261–266, doi:
10.1109/CarpathianCC.2015.7145085.

[14] Kučera, E.—Haffner, O.—Kozák, Š.: Modelling and Control of AS/RS Using
Coloured Petri Nets. 2016 Cybernetics & Informatics (K & I), IEEE, 2016, pp. 1–6,
doi: 10.1109/CYBERI.2016.7438532.

[15] Mosterman, P. J.—Otter, M.—Elmqvist, H.: Modeling Petri Nets as Local
Constraint Equations for Hybrid Systems Using Modelica. Available at: https://

www.modelica.org/publications/papers/scsc98fp.pdf, 1998.

[16] Fabricius, S. M. O.—Badreddin, E.: Modelica Library for Hybrid Simulation of
Mass Flow in Process Plants. Proceedings of the 2nd International Modelica Confer-
ence, Oberpfaffenhofen, Germany, Citeseer, 2002, pp. 225–234.

[17] Pross, S.—Bachmann, B.: A Petri Net Library for Modeling Hybrid Systems in
OpenModelica. Proceedings 7th Modelica Conference, Como, Italy, 2009, pp. 454–462,
doi: 10.3384/ecp09430014.

[18] Pross, S.—Bachmann, B.: PNlib – An Advanced Petri Net Library for Hybrid
Process Modeling. Proceedings of the 9th International Modelica Conference, Munich,
Germany, 2012, pp. 47–56, doi: 10.3384/ecp1207647.

[19] Riesz, M.—Sečkár, M.—Juhás, G.: PetriFlow: A Petri Net Based Frame-
work for Modelling and Control of Workflow Processes. In: Donatelli, S., Kleijn, J.,
Machado, R. J., Fernandes, J. M. (Eds.): Recent Advances in Petri Nets and Concur-
rency. CEUR Workshop Proceedings, Vol. 827, 2012, pp. 191–205.

[20] Češeková, A.: Control of Laboratory Discrete Event Systems. Master’s thesis, Slo-
vak University of Technology in Bratislava, 2016 (in Slovak).

[21] Kučera, E.: Modelling and Control of Hybrid Systems Using High-Level Petri Nets.
Ph.D. Dissertation, Slovak University of Technology in Bratislava, 2016 (in Slovak).

[22] Steiner, H.: Firmata: Towards Making Microcontrollers Act Like Extensions of the
Computer. Proceedings of the International Conference on New Interfaces for Musical
Expression (NIME), 2009, pp. 125–130, doi: 10.5281/zenodo.1177689.

[23] MIDI Association: Summary of Midi Messages. Available at: https://www.midi.

org/specifications/item/table-1-summary-of-midi-message, 2016.

[24] Comnes, B.—La Rosa, A.: Arduino PID Example Lab. Portland State University,
2013.

https://doi.org/10.1093/bioinformatics/btq050
https://doi.org/10.1109/CarpathianCC.2015.7145085
https://doi.org/10.1109/CYBERI.2016.7438532
https://www.modelica.org/publications/papers/scsc98fp.pdf
https://www.modelica.org/publications/papers/scsc98fp.pdf
https://doi.org/10.3384/ecp09430014
https://doi.org/10.3384/ecp1207647
https://doi.org/10.5281/zenodo.1177689
https://www.midi.org/specifications/item/table-1-summary-of-midi-message
https://www.midi.org/specifications/item/table-1-summary-of-midi-message

New Software Tool for Modelling and Control 585

Erik Ku�cera graduated from the Slovak University of Techno-
logy, Faculty of Electrical Engineering (FEI STU) in Bratislava
in 2013 and obtained his Ph.D. in mechatronic systems in 2016.
He works at the Institute of Automotive Mechatronics, Faculty
of Electrical Engineering and Information Technology, Slovak
University of Technology in Bratislava, Slovakia. His focus is
mainly on modern information and communication technologies
and their use in the context of fourth industrial revolution Indus-
try 4.0. This includes e.g. internet of things, virtual and mixed
reality, cloud computing, new microcontrollers, etc.

Oto Haffner graduated from the Slovak University of Techno-
logy, Faculty of Electrical Engineering (FEI STU) in Bratislava
in 2013 and obtained his Ph.D. in mechatronic systems in 2016.
He works at the Institute of Automotive Mechatronics, Faculty
of Electrical Engineering and Information Technology, Slovak
University of Technology in Bratislava, Slovakia. His focus is
mainly on modern machine vision methods and their use in the
context of fourth industrial revolution Industry 4.0. This in-
cludes e.g. artificial intelligence, deep learning, etc.

Peter Draho�s graduated from the Slovak University of Tech-
nology, Faculty of Electrical Engineering (FEI STU) in Brati-
slava in 1985 and obtained his Ph.D. in automation and control
in 2003. His main research interests include smart material ac-
tuators, sensors and automatic control. He is also interested in
industrial communication systems. Since 2012, he is with the
Faculty of Electrical Engineering and Information Technology,
Slovak University of Technology in Bratislava, holding now the
position of Associate Professor.

Ján Cig�anek received his diploma and Ph.D. degree in au-
tomatic control from the Faculty of Electrical Engineering and
Information Technology, Slovak University of Technology (FEI
STU) in Bratislava, in 2005 and 2010, respectively. He is now
Assistant Professors at the Institute of Automotive Mechatron-
ics FEI STU in Bratislava. His research interests include opti-
mization, robust control design, computational tools, and hybrid
systems.

586 E. Kučera, O. Haffner, P. Drahoš, J. Cigánek, J. Štefanovič, Š. Kozák

Juraj �Stefanovi�c graduated from the Faculty of Electrical En-
gineering of the Slovak University of Technology in Bratislava,
Slovakia in 1987 in microelectronic engineering, and received his
Ph.D. in applied informatics from the Slovak University of Tech-
nology in 2000. He was a researcher at the Slovak Academy of
Sciences until 1992. Since 1992 he was with the Slovak Univer-
sity of Technology in Bratislava, the Faculty of Electrical Engi-
neering/Faculty of Informatics and Information Technologies at
the Department of Informatics until 2014. Currently he is with
the Institute of Applied Informatics at the Faculty of Informat-

ics, Pan-European University in Bratislava as Vice-Dean for Research and International
Relations. He is also the Executive Editor of International Journal of Information Tech-
nology Applications (ITA) and he is a manager of regional competition of First Lego
League (robotic competition for youth teams) in Bratislava-Petržalka. His research inter-
ests include modelling and simulation – discrete dynamic models and complex models, his
teaching activity covers also the field of operating systems and design for usability.

Štefan Koz�ak obtained his M.Sc. from the Slovak University
of Technology in Bratislava in 1970 and his Ph.D. in techni-
cal cybernetics from the Slovak Academy of Sciences in 1978.
He worked at the Institute of Technical Cybernetics, Slovak
Academy of Sciences, in the field of control algorithms design
and was Leader of a Research Team at the Institute of Applied
Cybernetics in Bratislava. Since 1984 he was with the Depart-
ment of Automatic Control Systems at the Faculty of Electrical
Engineering and Information Technology, Slovak University of
Technology in Bratislava. Currently he is with the Institute of

Automotive Mechatronics, Slovak University of Technology in Bratislava. His research
interests include system theory, linear and nonlinear control methods, numerical methods
and software for modeling, control, signal processing and embedded intelligent systems.
He published more than 220 research papers in conference proceedings and international
journals, and he organized several IFAC events held in Slovakia.

