
Computing and Informatics, Vol. 39, 2020, 587–616, doi: 10.31577/cai 2020 3 587

PSVDAG: COMPACT VOXELIZED REPRESENTATION
OF 3D SCENES USING POINTERLESS SPARSE VOXEL
DIRECTED ACYCLIC GRAPHS

Liberios Vokorokos, Branislav Madoš, Zuzana Bilanová

Department of Computers and Informatics
Faculty of Electrical Engineering and Informatics
Technical University of Košice
Letná 9, 042 00 Košice, Slovak Republic
e-mail: {liberios.vokorokos, branislav.mados, zuzana.bilanova}@tuke.sk

Abstract. This paper deals with the issue of geometry representation of voxelized
three-dimensional scenes using hierarchical data structures. These include pointer-
less Sparse Voxel Octrees that have no pointers on child nodes and allow a compact
binary representation. However, if necessary, there is a possibility to reconstruct
these pointers for rapid traversing. Sparse Voxel Directed Acyclic Graphs added
32-bit pointers to child nodes and merging of common subtrees, which can be con-
sidered lossless compression. By merging common subtrees, no decompression over-
head occurs at the time of traversing. The hierarchical data structure proposed
herein – the Pointerless Sparse Voxel Directed Acyclic Graph – incorporates the
benefits of both – pointerless Sparse Voxel Octrees (by avoiding storing pointers on
child nodes) and Sparse Voxel Directed Acyclic Graphs (by allowing the merging
of common subtrees due the introduction of labels and callers). The proposed data
structure supports the quick and easy reconstruction of pointers by introducing the
Active Child Node Count. It also potentially allows Child Node Mask compression
of its nodes. This paper presents the proposed data structure and its binary-level
encoding in detail. It compares the effectiveness of the representation of voxelized
three-dimensional scenes (originally represented in OBJ format) in the proposed
data structure with the data structures mentioned above. It also summarizes sta-
tistical data providing a more detailed description of the various parameters of the
data structure for different scenes stored in multiple resolutions.

Keywords: Lossless data compression, sparse voxel octrees, SVO, sparse voxel
directed acyclic graph, SVDAG, pointerless sparse voxel directed acyclic graph,
PSVDAG, symmetry-aware sparse voxel directed acyclic graph, SSVDAG

Mathematics Subject Classification 2010: 68-P30

588 L. Vokorokos, B. Madoš, Z. Bilanová

1 INTRODUCTION

The initial motivation for volumetric data representation was the need to process
and visualize three-dimensional scientific, medical, and industrial data. Volume
datasets are mostly spatially uniform, regular grids of scalar or vector values. They
may be obtained through the acquisition using specialized appliances that fit for this
purpose or represent the results of simulations or calculations. Computed Tomog-
raphy (CT), MicroCT, or Magnetic Resonance Imaging (MRI) are devices suitable
for data acquisition in medical applications. As far as the industries are concerned,
Industrial Computed Tomography can be a source of data for assembly inspection
and measurements, flaw detection, failure analysis, or reverse engineering. Vox-
elized polygonal three-dimensional models may act as another, often used, source of
volume data.

As the development of volumetric data visualization continued (including the
development of hardware to support it), its employment has also shifted to com-
puter graphics, visual arts, and computer-based entertainment, including computer
games, augmented or virtual reality. Volume rendering is also widely used in the
movie industry. Notable examples of volumetric graphic visualization include the
motion pictures XXX, Lord of the Rings, The Day After Tomorrow, Pirates of the
Caribbean, or The Mummy [1]. The advantages of voxelized graphics include the
possibility of implementing effects such as smoke, fog, snow, fire, and more.

Complex voxelized three-dimensional scenes, even taking only the geometry of
the scene into account, can represent a significant amount of data. An example may
be the geometry of a scene having a resolution of 64K3 (65 536 × 65 536 × 65 536)
voxels. Using a regular three-dimensional grid of 1 b per voxel for its representation,
up to 32 TB of space is required to store it in an uncompressed form. Processing
this type of data in its uncompressed form may be inefficient. If the goal is the
real-time or interactive processing, requiring the storage of the entire amount of
data in the computer’s memory or the graphics card, this task may not be fea-
sible. Especially when reasonable hardware resources and off-the-shelf hardware
solutions are required. That is why significant effort is devoted to developing more
compact representations of voxelized three-dimensional data (with lossless compres-
sion).

In this context, various data structures have emerged over the decades of devel-
opment. Hierarchical data structures based on octant trees have gained considerable
popularity. Among other advantages, they allow the efficient work with empty sub-
spaces or an implicit Level of Detail (LOD) mechanism. A more comprehensive
overview of GPU-friendly volume data representation and rendering is available
in [2].

Sparse Voxel Octrees (SVO) are used as a hierarchical data structure to represent
the geometry of voxelized three-dimensional scenes. SVO allows carving out empty
suboctants, i.e., those containing no active voxels.

In 2013, with the emergence of Sparse Voxel Directed Acyclic Graphs (SVDAG),
GPU friendly directed acyclic graphs with Common Subtree Merging (CSM) were

PSVDAG: Compact Voxelized Representation of 3D Scenes Using PSVDAGs 589

introduced. In this concept, a fully developed instance of the particular subtree,
referenced (multiple times) by child node pointers, replaces two or more identical
subtrees. CSM can be considered a lossless compression of the hierarchical data
structure. In 2016, a GPU friendly Symmetry-aware Sparse Voxel Directed Acyclic
Graphs (SSVDAG) emerged. SSVDAG added the CSM option, provided that trans-
formations of these subtrees – namely reflective symmetry transformation – are used.
SSVDAG allows further modification of the data structure – clustering leaf nodes,
to form 43 grids of voxels – for further increase of the compression ratio.

On the other hand, in this context, it is necessary to observe how this data com-
paction manifests itself in the use of the data structure. The decompression overhead
must be as small as possible. The reason is the need for on-the-fly decompression
during traversing. This issue may also be considered a trade-off between the size of
the binary representation of the data and the time it takes to perform operations.
Data optimization performs data compaction while preserves the previous service
functionality [3].

Modifying the presence, structure, and length of the binary representation of
pointers to the child nodes is another factor that can reduce the size of the data
structures mentioned above. An example is the SSVDAG data structure having
0, 16, and 32-bit pointers, which is a refinement over the previous SVDAG data
structure, only having 0 and 32-bit pointers. On the other hand, pointerless SVOs
have no pointers at all.

In this work, the authors attempted to create a hierarchical data structure with-
out any pointers on child nodes. Therefore it will be significantly more compact than
SVDAG and, considering the way of encoding information about the decomposition
of individual suboctants, approaching pointerless SVO. On the other hand, like
SVDAG, it will enable compaction of the data structure via the CSM, even without
the presence of child node pointers, using labels and callers with a compact variable
length of their binary representation, introduced in this paper. Frequency-based
compaction will promote further compacting of labels and callers. Additional in-
formation facilitates the reconstruction of child node pointers into a form allowing
quick and efficient traversal.

In more modern hierarchical data structures, the number of mask bits of poten-
tial child nodes increases from 1 b to 2 b, increasing the length of the Child Node
Mask from 8 b to 16 b. Therefore a further goal was to investigate the possibility of
compacting the Child Node Mask (CHNM) of the respective nodes. Pointers opti-
mization offers the potential to rationalize the binary representation of this part of
the hierarchical data structure node.

The contribution hereof lies in the following:

• the design of a Pointerless Sparse Voxel Directed Acyclic Graph (PSVDAG)
hierarchical data structure allowing a compact pointerless representation of the
geometry of three-dimensional scenes;

• the implementation of common subtrees merge with the absence of child node
pointers at the same time. Introduction of the concept of labels and callers that

590 L. Vokorokos, B. Madoš, Z. Bilanová

are replacing particular pointers of the hierarchical data structure, is enabling
the CSM;

• the length optimization of the binary representation of labels and callers, using
variable-length and frequency-based compaction;

• the introduction of Active Child Node Count information to facilitate and ac-
celerate pointers reconstruction;

• the introduction of a variable-length representation of Child Node Mask, with
potential lossless compression.

The structure of the paper is as follows:

Section 2 of the paper deals with the linearization of multi-dimensional data us-
ing space-filling curves and hierarchical data structures designed for compact
representation using lossless compression. Due to the vast number of papers
published in this field, this section contains only a selection of works related to
the work presented herein.

Section 3 hereof contains an overview of the features, advantages, disadvantages,
and explanation of binary-level representations of pointerless SVO and SVDAG.
Their favorable properties also represent the benefits of the work described
herein.

Section 4 introduces the proposed Pointerless Sparse Voxel Directed Acyclic Graph
(PSVDAG) hierarchical data structure, along with a detailed description of its
properties, including the concepts of Labels/Callers, variable child node mask
length and active child node count, introduced in this work. There is also
a detailed description of its binary-level representation.

Section 5 of the paper summarizes the results of tests performed on voxelized 3D
scenes with the geometry stored as pointerless SVO, SVDAG, and PSVDAG.
Section intends to test the storage efficiency of the data structure proposed in
this paper. The examination of the influence of the use of z-order and Hilbert
space-filling curves takes part in this section of the paper. It also summarizes
sources of compression gains of PSVDAG, compared to SVO and SVDAG.

Section 6 summarizes the conclusions drawn from the evaluation of the test results,
which details the previous section of this paper.

2 RELATED WORKS

Due to the vast number of papers published in the field of space-filling curves and
hierarchical data structures designed to represent multi-dimensional data, this sec-
tion contains only a selection of publications closely related to the solution proposed
and presented herein.

Linearization of multi-dimensional grids of data. Peano and Hilbert pre-
sented Space-Filling Curves (SFC) at the end of the 19th century, later followed

PSVDAG: Compact Voxelized Representation of 3D Scenes Using PSVDAGs 591

by Moore, Lebesgue, Sierpinski, and others [4, 5]. A very popular is the Hilbert
Space-Filling Curve (HSFC), introduced by David Hilbert in 1891 [6]. Computer
science often uses the Hilbert curve because of its better locality-preserving be-
havior. The Morton order introduced in 1966 [7], referenced as the Morton
sequence, the Morton code, or z-order curve, is often used for the linearized
representation of n-dimensional grids of data in computer graphics. As an ex-
ample of the usage of the z-order curve and Hilbert curve for the filling of
two-dimensional space to the different levels, see Figure 1.

a) To the first level b) To the second level c) To the first level d) To the second level

Figure 1. Linearization of two-dimensional space using space-filling z-order curve and
alternatively using Hilbert curve

Hierarchical representation of two dimensional data. The utilization of
quadtrees to represent images as trees is described in [8, 9, 10, 11]. A dis-
cussion on the possibility of using quadtrees for an efficient representation of
two-dimensional data using the technique of Common Subtree Merging (CSM)
is in [12]. In addition to the empty subsquares uniformly filled with passive
pixels, the referenced work also describes the use of subsquares homogeneously
filled with active pixels. An appropriate data structure, the Common Subtree
Merge Quadtree (CSM-Quadtree), has been created.

The two-dimensional template-based encoding (2DTE) technique, mentioned
in [13], was meant for the construction of quadtrees for the use in the car-
tography field. It represents the lossless compression based on the merging
of common subtrees with the use of template mapping and the Morton se-
quence. This approach extended to three-dimensional voxel data is mentioned
in [14].

Hierarchical representation of three-dimensional data. Octrees – a hierar-
chical data structure – serve to represent three-dimensional data for decades.
Works from the 1980s include Srihari [15], Rubin and Whitted [16], Jackins and
Tanimoto [17], Meagher [18, 19, 20]. In [21], the author focused on the use of
hierarchical data structures such as the octree to speed up the determination
of objects intersected by rays emanating from the viewpoint. An algorithm for
raytracing octrees consisting of volumetric data is in [22, 23].

592 L. Vokorokos, B. Madoš, Z. Bilanová

Sparse Voxel Octrees (SVO) is a hierarchical data structure designed to represent
three-dimensional scenes using octrees. SVO allows for a frugal representation
of empty subspaces – the subtrees associated with these empty subspaces are
not represented in the data structure.

The octree space decomposition is part of the compression method presented
in [24]. It is specialized for point-sampled models explicitly aimed at densely
sampled surface geometry.

In 2010, the Efficient Sparse Voxel Octrees (referenced in sources as ESVO),
a hierarchical data structure, was introduced in [25]. As an octree hierarchi-
cal data structure, it allows carving out empty spaces. It also removes entire
subtrees in case there is a possibility to use contour information. It is a rep-
resentation with a length of 32 b per node, consisting of a 24 b contour pointer
and an 8 b contour mask. This modification allows an increase of the geometric
resolution, allowing a more compact representation of smooth surfaces, while
accelerating ray casting.

In 2013, the Sparse Voxel Directed Acyclic Graph (SVDAG), a hierarchical data
structure, was introduced in [26]. SVDAG transforms sparse voxel octrees into
oriented acyclic graphs (DAG). This approach uses 8 b masks of child nodes to
represent the decomposition of octants to suboctants. The node representation
includes a variable number of 32 b pointers pointing to the locations of the
active child nodes. This data structure replaces multiple identical subtrees by
a single representation of such a subtree. It allows the application of common
subtree merging when several child pointers point to the root node of such
a subtree. The structure aligns the child node mask to 32 b with unused 24 b
(see Figure 2).

Figure 2. Original scene represented as the 2D grid of pixels (Scene) and as the Sparse
Voxel Octree (SVO), Sparse Voxel Directed Acyclic Graph (SVDAG) and Symmetry-aware
Sparse Voxel Directed Acyclic Graph (SSVDAG). Tx represents similarity transformation
along the axis x, Ty represents similarity transformation along the axis y.

In 2016, an evolution of the SVDAG hierarchical data structure, the Symmetry-
aware Sparse Voxel Directed Acyclic Graph (SSVDAG), appeared in [27]. This
data structure uses a 16 b child node mask. Each child node describes a 2 b
Header Tag (HT) and allows further data compression with a minimal impact

PSVDAG: Compact Voxelized Representation of 3D Scenes Using PSVDAGs 593

on the decompression overhead. SSVDAG allows merging of common subtrees
that are identical when a similarity transformation – a reflection transforma-
tion in one or more main axes of a scene – is applied. Another benefit is the
use of frequency-based pointer compaction. It orders nodes in each layer of the
tree according to their referencing frequency – from the most to the least fre-
quently referenced nodes. The most commonly referenced nodes reside in an
area addressed by short, 16 b pointers with a 01 header tag. The less often
referenced nodes are in an area addressed by long, 32 b ones with a 10 header
tag. Extra-long 33 b pointers have an 11 header tag. A 3 b information – as
the part of the vector – is indicating the relevant similarity transformation, as
depicted in Figure 3. The last two levels of nodes are forming voxel grids of 43

voxels.

Figure 3. Symmetry-aware Sparse Voxel Directed Acyclic Graph (SSVDAG) binary rep-
resentation of inner nodes with short, long and extra-long pointers to the child nodes

In 2019, a small modification of the SSVDAG hierarchical data structure, the
SSVDAG*, was introduced in [28]. As part of this modification, pointers with
the header tag 11, which allowed 33-bit addresses and an indication of reflec-
tive transformations – were replaced with 16-bit ones with an identical header
tag without transformation indication. Compared to short 16-bit ones of the
SSVDAG, these allow an 8-fold increase in address space, provided there is no
need for reflective transformations. Thus, some long, 32-bit pointers become
16-bit, with the advantage that these point to more frequently referenced nodes.
Compared to SSVDAG, this allows further compression. On the other hand,
a reduction of the total addressable space occurs.

Out-of-core construction algorithms. Out-of-core construction of Sparse Voxel
Octrees from triangle meshes was introduced in [29] in 2013. The algorithm con-
sists of two basic steps. The first is a voxelization process. It transforms the
triangles representing the scene to the intermediate product – a high-resolution
three-dimensional voxel grid. In the second step, the transformation of this inter-
mediate product into Sparse Voxel Octree (SVO) occurs. The algorithm allows
the size of the binary representation of the input mesh of triangles, the output
SVO, and the intermediate product – a three-dimensional voxel grid generated
at a high resolution and represented by a Morton order – to exceed the avail-
able computer operating memory by far. Compared to the in-core algorithm,
it uses only a fraction of the memory while maintaining the use of comparable
time.

594 L. Vokorokos, B. Madoš, Z. Bilanová

3 HIERARCHICAL DATA STRUCTURES

This section presents a brief overview of pointerless Sparse Voxel Octrees (SVO)
and Sparse Voxel Directed Acyclic Graphs (SVDAG). It provides information about
their basic properties, advantages, disadvantages, and binary-level encoding.

3.1 Pointerless Sparse Voxel Octrees Overview

Sparse Voxel Octrees (SVO) are hierarchical data structures enabling the represen-
tation of a voxelized three-dimensional scene with a frugal way of encoding empty
subspaces. The SVO root node represents the entire three-dimensional scene. SVO
divides this space into eight octants and contains one bit for each of them. This
bit is set to 0 if the octant does not comprise any active voxels (i.e., the octant is
empty); thus, it will not decompose. This bit is set to 1 if the particular octant
contains at least one active voxel. If this active octant consists of more than a single
voxel, decomposition to suboctants follows recursively. The pointerless version of
SVO does not contain any pointers to child nodes.

a) A two-dimensional
pixel grid

b) An SVO in tree form

c) A binary representation of SVO
using parentheses to illustrate the
recursive decomposition of active
sub-quadrants

d) The final binary SVO rep-
resentation

Figure 4. An illustration of the SVO hierarchical data structure to simplify the example,
used to encode a two-dimensional pixel grid using a z-order curve for linearization

Figure 4 a) depicts a two-dimensional grid having 4 × 4 pixels, with the active
pixels indicated in red, and the inactive pixels in white. SVO hierarchical data struc-
ture, in the form of the tree, is shown in Figure 4 b). There are active quadrants 0
and 3, subsequently decomposed. The binary representation of the pointerless SVO
structure – with parentheses added to illustrate the decomposition points – is in
Figure 4 c). The final binary encoding of the pointerless SVO data structure for

PSVDAG: Compact Voxelized Representation of 3D Scenes Using PSVDAGs 595

this pixel grid, is stated in Figure 4 d). In the hierarchical data structure, each
decomposition of the tree nodes generated four bits of information concerning the
potential child nodes. With three-dimensional voxel grids, there are 8 bits of eight
possible child nodes for each octant decomposition of the respective octant. Those
8 bits are forming the Child Node Mask (CHNM).

The advantage of the hierarchical data structure constructed as stated above is
its compact binary representation, since each node decomposition generated only
eight bits. Pointerless data structure has its advantage in the absence of pointers
to child nodes that represent vast amounts of data. In the most unfavorable case, if
there are all eight pointers to child nodes, using 32 bits per pointer, an additional
256 b would have to be allocated. The pointerless data structure constructed, as
stated above, is suitable for streaming or archiving purposes. The downside is in
its cumbersome and time-consuming traversing at the time of scene visualization.
Another disadvantage of such a data structure is that it does not allow the compact
representation using CSM.

3.2 Sparse Voxel Directed Acyclic Graph Overview

The Sparse Voxel Directed Acyclic Graph (SVDAG) is a hierarchical data structure
in the form of a directed acyclic graph. It consists of nodes containing child nodes
masks of these nodes and the corresponding pointers to child nodes. The node mask
is composed of 8 bits, assigned to the respective suboctants. A bit set to 0 represents
an empty suboctant, containing no active voxel. In this case, in the data structure,
the corresponding child node – including the child node pointer – is not present.
A bit set to 1 represents an active suboctant, containing at least one active voxel.
For such a suboctant, a child node is created in the data structure, referenced by the
corresponding node pointer. The concatenation of 24 unused bits aligns the mask
to 32 bits.

A block of pointers to the existing child nodes follows the node mask. Their
count is from the range 〈1; 8〉. Each one has 32 bits and points to a memory location
where a binary representation of the corresponding child node is stored. All node
parts and thus, each node and the whole data structure are aligned to 32 bits, as
shown in Figure 5 c). Multiple pointers of different but also the same node may
point to the same memory location. Therefore multiple identical subDAGs may be
represented by fully encoding only a single copy of subDAG, with several references
to it by child node pointers. SVDAG thus enables CSM.

The length of the SVDAG node binary-level representation l having n pointers
to child nodes can be calculated as

l = (n + 1)× 32 [b]. (1)

Compared to pointerless SVOs, the advantage of the SVDAG data structure lies
in the introduction of pointers to child nodes, which allows fast graph traversal when
processing and visualizing the scene. Another advantage is the possibility of merging

596 L. Vokorokos, B. Madoš, Z. Bilanová

common subtrees, through multiple references to a particular node by several child
node pointers. It allows significant compaction of the tree’s binary representation. It
is a compression method that does not reduce the speed of graph traversal, compared
to the version without common subtrees merging implementation.

a) A grid of voxels b) An SVDAG as a graph c) The final binary representation
of SVDAG

Figure 5. An example of the binary representation of three-dimensional space using
a Sparse Voxel Directed Acyclic Graph (SVDAG) and an z-order curve linearization

The disadvantage of the SVDAG data structure, in comparison to SVO, is that
it consumes large amounts of secondary storage or memory. Due to the unused
24 bits used for aligning the child node mask (CHNM) to 32 bits, compared to
the 8 bits of SVO. Another disadvantage may be the introduction of 32 b child
node pointers whose binary representation may be unnecessarily long – these are
not present in pointerless SVOs. However, this disadvantage compensates multiple
referencing to common subtrees. It can offset these disadvantages to the extent that
for a particular three-dimensional grid, the binary representation of an SVDAG may
be more compact than that of an SVO.

Figure 5 a) shows an example of a three-dimensional voxel grid, while Figure 5 b)
shows a Sparse Voxel Directed Acyclic Graph. The binary representation of SVDAG
shown in Figure 5 c), where the first node is decomposed and mask for its child nodes
is “00001001”, with two non-empty octants, represented by bits 1. For each non-
empty node, there is a 32-bit address (CHNA0 and CHNA3) pointing to the memory
location where the child node binary representation is stored. Since those nodes are
identical, both pointers are referencing the same address in memory. Another node,
referenced two times, has the mask “00001101”, i.e., it has three active octants.
That is why three addresses (CHNA0, CHNA2, and CHNA3) are present for the
child nodes (without actual addresses in this example).

4 POINTERLESS SPARSE VOXEL DIRECTED ACYCLIC GRAPH

The hierarchical data structure, the Pointerless Sparse Voxel Directed Acyclic Graph
(PSVDAG), proposed in this paper, is a directed acyclic graph. It represents a three-
dimensional grid of voxels R, organized as N×N×N voxels. R = N3, where N = 2n,

PSVDAG: Compact Voxelized Representation of 3D Scenes Using PSVDAGs 597

n ∈ N. Each voxel is represented by 1 b, when active voxel is encoded by the value
‘1’ and passive voxel by the value ‘0’. For storing the grid R in uncompressed form,
there is a need for the space, which size S is:

S = 23n [b]. (2)

When represented by PSVDAG hierarchical data structure, the grid R men-
tioned above is encoded into nodes stored in n levels. Each level has a level mark
l with the value from the range of 〈0;n − 1〉. The root node is in the level, where
l = 0. Nodes stored in levels which level mark l ≤ n − 2 have the same structure,
described in the Section 4.1 – these are the Inner nodes. Leaf nodes, i.e., nodes
stored in the level l = n− 1, have a different structure, described in Section 4.2.

Formal description of the PSVDAG using Backus-Naur Form (BNF) is as follows:

PSVDAG ::= 〈NODE〉
NODE ::= 〈INODE〉 | 〈LNODE〉
INODE ::= 〈ACHNC〉〈CHNM〉
ACHNC ::= (3)〈BIT〉
CHNM ::= (1) ∗ (8)〈HT〉
HT ::= ”00” | ”01”〈LAB〉〈NODE〉 | ”10”〈CAL〉 | ”11”〈NODE〉
LAB ::= 〈SIZ〉〈VAL〉
CAL ::= 〈SIZ〉〈VAL〉
SIZ ::= (5)〈BIT〉
VAL ::= (1) ∗ (32)〈BIT〉
LNODE ::= (8)〈BIT〉
BIT ::= ”0” | ”1”

where following is applied:

• 〈SYM〉 – mandatory symbol SYM,

• ”sym” – terminal symbol sym,

• (n)〈SYM〉 – symbol SYM concatenated n times,

• (n) ∗ (m)〈SYM〉 – symbol SYM concatenated from n to m times,

• | – alternative,

• juxtaposition – the concatenation.

An example in Figure 6 is, for the sake of simplicity, based on the two-dimensio-
nal grid of 4 × 4 pixels. Related quadtree is constructed along with the PSVDAG,
using two different space-filling curves (z-order and Hilbert) for linearization.

Formal description of the PSVDAG for two-dimensional grid includes the fol-
lowing changes:

ACHNC ::= (2)〈BIT〉
CHNM ::= (1) ∗ (4)〈HT〉
LNODE ::= (4)〈BIT〉

598 L. Vokorokos, B. Madoš, Z. Bilanová

a) b)

c) d)

e) f)

g) h)

Figure 6. An example of a) 2D grid of pixels and z-order space-filling curve, b) related
SVDAG, c) PSVDAG, and, d) final binary representation of PSVDAG. An example of
e) 2D grid of pixels and Hilbert space-filling curve, f) related SVDAG, g) PSVDAG, and,
h) final binary representation of PSVDAG. ACHNC – Active Child Node Count, HTi –
Header Tag, LAB1 – Label, CAL1 – Caller, INODE – Inner Node, LNODE – Leaf Node.
SVDAG includes denotations LAB1 and CAL1 to describe the relationship to PSVDAG
construction better.

PSVDAG: Compact Voxelized Representation of 3D Scenes Using PSVDAGs 599

4.1 Nodes

Node of the data structure represents grid R′ : R′ ⊆ R of voxels, where R′ = N ′3,
N ′ = 2m, m ∈ N ∧ m ≤ n. There is possibility to find t = N ′/2 and R′ can be
divided into 8 octants, forming the set OCT:

OCT = {oct0, oct1, oct2, . . . , oct5, oct6, oct7} (3)

where

oct0 = 〈0; t− 1〉 × 〈0; t− 1〉 × 〈0; t− 1〉,

oct1 = 〈t;N ′ − 1〉 × 〈0; t− 1〉 × 〈0; t− 1〉,

oct2 = 〈0; t− 1〉 × 〈t;N ′ − 1〉 × 〈0; t− 1〉,

oct3 = 〈t;N ′ − 1〉 × 〈t;N ′ − 1〉 × 〈0; t− 1〉,

oct4 = 〈0; t− 1〉 × 〈0; t− 1〉 × 〈t;N ′ − 1〉,

oct5 = 〈t;N ′ − 1〉 × 〈0; t− 1〉 × 〈t;N ′ − 1〉,

oct6 = 〈0; t− 1〉 × 〈t;N ′ − 1〉 × 〈t;N ′ − 1〉,

oct7 = 〈t;N ′ − 1〉 × 〈t;N ′ − 1〉 × 〈t;N ′ − 1〉.

Octants oct i ∈ OCT : i ∈ 〈0; 7〉 are ordered in the OCT set according to selected
space-filling curve.

When R′ = R; m = n, the root node of the PSVDAG is constructed.
When m > 1, the node is constructed as the Inner node INODE.
When m = 1, the node is constructed as the Leaf node LNODE.

4.2 Inner Nodes

Inner node consists of Active Child Node Count (ACHNC) followed by the Child
Node Mask (CHNM):

INODE ::= 〈ACHNC〉〈CHNM〉

4.2.1 Active Child Node Count

Inner node includes Active Child Node Count (ACHNC) information:

ACHNC ::= (3)〈BIT 〉

It is a 3-bit vector forming unsigned integer number that is referring to the
number of active child nodes of a given node. Active child nodes are those having
identification ‘01’, ‘10’ or ‘11’ in their HTs, that are part of Inner nodes Child Node
Mask (CHNM). An Inner Node cannot have 0 active child nodes, therefore count

600 L. Vokorokos, B. Madoš, Z. Bilanová

range is 〈1; 8〉. Decrementing the number of active child nodes by the value 1 allows
us to achieve the ACHNC range of 〈0; 7〉 to represent it on 3 bits. Thus, if the count
of active child nodes is c, the binary representation of ACHNC is set to an unsigned
integer of the value c− 1.

When sequentially browsing the HTs of the particular nodes CHNM from the
HT at position 0 (HT0) to the HT at position 7 (HT7), ACHNC allows us to identify
last active child node HTx in their sequence. All subsequent HT identifications, i.e.,
HTz : z > x must be set to ‘00’. It is possible to derive this information from
the ACHNC and the sequence of previous HTs. That is why there is no need to
represent HTz : z > x in the CHNM, and it is possible to omit them. It allows to
compress the CHNM (See Figure 7).

a) 7 HTs omitted

b) 4 HTs omitted

c) 0 HTs omitted

Figure 7. Examples of ACHNC and concatenated CHNM containing HTs (for simplicity
represented only by their identifications) indicate

There is an unfavorable side effect in the time of reconstructing the pointers or
converting PSVDAG to SVDAG. The individual HTs identifications in the CHNM
of the PSVDAG node, in general, do not form a continuous vector of bits in the
linearized binary representation. Therefore, the ACHNC has been added to the data
structure to facilitate and accelerate pointers reconstruction. When the processing
of a particular PSVDAG node begins, the ACHNC can be used to determine the
number of active child nodes of the SVDAG node. Subsequently, also to determine
the space needed to store related pointers. Another advantage is that there is
a possibility to determine when the last active child node HT has been processed
and immediately finish the node processing.

4.2.2 Child Node Mask

Child node mask consists of Header Tags (HT), HTi : i ∈ 〈0; 7〉, which are assigned
to octants octi ∈ OCT : i ∈ 〈0; 7〉 in ascending order. Encoding of the CHNM and
HT is as follows:

PSVDAG: Compact Voxelized Representation of 3D Scenes Using PSVDAGs 601

CHNM ::= (1) ∗ (8)〈HT〉
HT ::= ”00” | ”01”〈LAB〉〈NODE〉 | ”10”〈CAL〉〉 | ”11”〈NODE〉

Passive child node HT. Octant oct i ∈ OCT : i ∈ 〈0; 7〉 is passive when it does
not contain any active voxels. The HT is, in that case, represented only by
identification symbol “00”. No further information follows (Passive child node
header tags can be omitted, as mentioned above in the Section 4.2.1).

Active child node HT. Octant oct i ∈ OCT : i ∈ 〈0; 7〉 is active when its grid
contains at least one active voxel.

If octant oct i ∈ OCT : i ∈ 〈0; 7〉 is not unique (in related SVDAG its node is
referenced by more than one pointer), and it will serve as the template, the HT
is represented by symbol “01”. Label LAB concatenates along with the NODE,
constructed for the grid of this octant.

If octant oct i ∈ OCT : i ∈ 〈0; 7〉 is not unique (in related SVDAG, there is
more than one pointer to this node), and it will not serve as the template, the HT
is represented by symbol “10”. Caller CAL concatenates.

If octant oct i ∈ OCT : i ∈ 〈0; 7〉 is unique (in related SVDAG, there is only one
pointer to this node), the HT is represented by symbol “11”. Binary representation
of the NODE constructed for the grid of this octant concatenates.

When octant oct i ∈ OCT : i ∈ 〈0; 7〉 is not unique (it is referenced in related
SVDAG x times), its binary representation in PSVDAG is fully developed only
once, when it is referenced by the assigned label LABd to which the octants NODE
is concatenated. The octant is further referenced x − 1 times using caller CALd.
Binary representation of LABd = CALd.

That is how the set P of x pointers to the particular common subDAG of SVDAG
is replaced by one label LABd followed by the binary representation of this subDAG
and x − 1 times by the caller CALd. The first used pointer from the set P , when
traversing SVDAG in Depth-First order, is replaced by a label followed by the binary
representation of subDAG. Caller will replace the other pointers from the set P . It
ensures that when traversing PSVDAG in the Depth-First order, the label LABd

will be used before any of occurrences of the caller CALd – see Figure 8.

4.2.3 Labels and Callers

Labels in the PSVDAG data structure identify the corresponding octants. Binary
encoding of the label is respecting the rules:

LAB ::= 〈SIZ〉〈VAL〉
SIZ ::= (5)〈BIT〉
VAL ::= (1) ∗ (32)〈BIT〉
BIT ::= ”0” | ”1”

SIZ is a 5-bit vector representing an unsigned integer from the range of 〈0 : 31〉.
Incremented by value 1, it is representing the number of bits of the concatenated

602 L. Vokorokos, B. Madoš, Z. Bilanová

VAL. Provided the SIZ is 0, the length of the binary representation of the VAL is
1 b.

VAL is the (SIZ + 1) – bit vector, that is representing unsigned integer value
from the range of 〈0; 2SIZ+1 − 1〉.

When set of labels is generated for the PSVDAG data structure, (for each level l
separately), the SIZ = 0 and VAL = 0, for the label LABi : i = 0. For each next
label the VAL is incremented by 1, until the value of the VAL = 2SIZ+1 − 1. For
next label VAL = 0 and SIZ is incremented by 1.

a) b)

c)

Figure 8. Example of a) two-dimensional grid of 8×8 pixels, b) SVDAG with denotations
of LABs and CALs for better description of c) PSVDAG

It is possible to have two different labels with the same SIZ and VAL values,
i.e., LABa and LABb, where SIZa = SIZb ∧ VALa = VALb, if those labels are
located in different levels l of the data structure. Provided there is l, SIZ, and
VAL concatenated, each label is unique in the data structure. There is no need to
represent level l value in the PSVDAG because it is possible to derive it from the
data structure in the traversing time.

Callers are constructed in the same way as the labels, using the rules:

CAL ::= 〈SIZ〉〈VAL〉
SIZ ::= (5)〈BIT〉

PSVDAG: Compact Voxelized Representation of 3D Scenes Using PSVDAGs 603

VAL ::= (1) ∗ (32)〈BIT〉
BIT ::= ”0” | ”1”

Caller CALC with the level value lC , SIZ = sizC , VAL = valC is referencing
the same node as the LABL with the level value lL, SIZ = sizL, VAL = valL when
lC = lL ∧ sizC = sizL ∧ valC = valL.

4.2.4 Frequency-Based Compaction

Particular nodes in PSVDAG data structure at level l are referenced from the
level l − 1 different times, using labels and callers (references). Each label/caller
can have variable length of the binary representation. Different permutations of
labels/callers assignment to particular nodes generate different overall sum of la-
bels/callers lengths. Therefore frequency-based compaction is applied to find out
permutation that has the smallest overall sum of reference lengths.

It is possible to form the NOD set consisting of p nodes from level l of PSVDAG
that are each referenced more than once. Members of the set are in descending order
according to the frequency of their references.

NOD = {nod0, nod1, nod2, . . . , nodp−3, nodp−2, nodp−1}. (4)

Generated labels – unique one for each nodi ∈ NOD : i ∈ 〈0; p−1〉 – form the set
LAB that consists of p labels, that have different lengths of their encoding. The LAB
set ordering is ascending order according to the length of the binary representation
of particular labels.

LAB = {lab0, lab1, lab2, . . . , labp−3, labp−2, labp−1}. (5)

Using frequency-based compaction, the node nodi ∈ NOD : i ∈ 〈0; p − 1〉 is
assigned by the label labj ∈ LAB : j ∈ 〈0; p− 1〉, i = j.

Each node assigned by the label labi ∈ LAB : i ∈ 〈0; p − 1〉 with the length of
binary representation len is referenced by the caller (used one or more times) that
has the same length of the binary representation len.

An example of different permutations of label assignments, including one based
on frequency-based compaction, can be seen in Figure 9.

4.3 Leaf Nodes

By the Leaf node, the octant, which grid R′ = 23 (containing 8 voxels), is encoded.
Leaf node consists of 8 bit vector where only information about voxels is stored.
Passive voxels are represented using bit 0, active voxels are represented using bit 1.
Linearization of the grid R′ is performed according to chosed space-filling curve, as
it is depicted on Figure 10.

604 L. Vokorokos, B. Madoš, Z. Bilanová

Figure 9. An example of two different permutations of label assignments to the respective
nodes of a particular PSVDAG level (for clarity, Node id is added in this example). The
top part of the figure represents arbitrary node order, and the overall sum of labels/callers
length is 102 b, the bottom part represents node order achieved using frequency-based
compaction, and in this case, the overall sum of labels/callers length is 94 b.

5 RESULTS AND DISCUSSION

Various 3D scenes, originally stored in Wavefront OBJ geometry definition file for-
mat (examples of those scenes with their visualizations are in Figure 11), were used
for test purposes. Voxelization was performed to the different resolutions ranging
from 1283 to the 4 0963 (4K3). Voxelized scenes were encoded to SVO, SVDAG,
and PSVDAG hierarchical data structures. Evaluation of results obtained by tests

a) b) c)

d) e)

Figure 10. a) Leaf node consisting of 4 active voxels (red), b) z-order curve, c) voxels in
binary representation of the node arranged according to z-order curve, d) Hilbert curve,
e) voxels in binary representation of the node arranged according to Hilbert curve

PSVDAG: Compact Voxelized Representation of 3D Scenes Using PSVDAGs 605

followed. Tests were performed on the computer using four core CPU Intel® Core
i5-8265U at 1.6 GHz, 8 GB operating memory, NVIDIA GeForce GTX 1050 3 GB
graphics card, and 256 GB SSD as the secondary storage.

a) Angel Lucy 5123 b) Skull 5123 c) Porsche 5123

d) Detail of the Angel Lucy 2563 e) Detail of the Angel Lucy 5123 f) Detail of the Angel Lucy 1K3

Figure 11. Visualization of examples of voxelized scenes used for testing purposes

The test results show that the representation of the scene geometry using the
PSVDAG data structure is significantly smaller than in SVDAG. It applies to all
tested three-dimensional voxelized data sets and the z-order and Hilbert curve lin-
earizations. In the most optimistic case, at a 1283 resolution, a compression ratio of
3.77 was reached. The binary representation of this scene in PSVDAG thus repre-
sents only 26.5 % of the size of its binary encoding in SVDAG. Generally speaking,
an increase in the resolution leads to a gradual decrease in the compression ratio.
It reached the value 2.80 at a resolution of 4 0963, when the binary representation
in PSVDAG occupies only 35.7 % of the corresponding encoding size in SVDAG.

The size of the binary representation in PSVDAG is, with increasing resolution,
relatively decreasing, compared to SVO. In most cases, PSVDAG outperformed
SVO for both, z-order curve as well as Hilbert curve linearizations. In these tests,
PSVDAG to the corresponding SVO size ratio, is ranging from 131.1 % to 54.5 %.
The compression ratio is also shown separately in Figures 12 and 13 for z-order
curve linearization.

A comparison in terms of absolute sizes of binary representations is available in
Table 1 for z-order curve linearization and in Table 2 for the Hilbert curve. The
PSVDAG-SVDAG and PSVDAG-SVO compression ratios are available in Tables 3
and 5. This also shows the relative space requirements of the PSVDAG-encoded
scene, compared to the SVDAG and SVO versions. The PSVDAG-SVDAG com-
pression ratio, when the z-order curve is applied, is comparable to the version using
the Hilbert curve, for all models and resolutions. There are only small fluctuations in
the range of 〈−0.687 %; 1.657 %〉. Size comparison showed a slightly higher success

606 L. Vokorokos, B. Madoš, Z. Bilanová

Size [KB]
Resolution

1283 2563 5123 1K3 2K3 4K3

Angel Lucy

SVO 6.67 28.62 117.99 475.98 1 895.02 7 447.62

SVDAG 31.88 127.01 462.85 1 523.74 4 682.54 14 928.34

PSVDAG 8.62 35.10 132.37 462.04 1 530.86 5 208.41

Skull

SVO 23.24 95.61 387.45 1 551.55 6 129.76 23 667.56

SVDAG 100.39 356.75 1 182.45 3 728.80 12 275.23 43 086.88

PSVDAG 28.11 104.31 366.48 1 239.06 4 320.48 15 279.20

Porsche

SVO 14.59 67.52 295.10 1 241.50 5 087.54 20 262.88

SVDAG 56.78 222.41 788.76 2 629.21 8 918.93 32 127.96

PSVDAG 15.08 61.28 227.13 800.89 2 894.32 11 048.85

Table 1. Comparison of SVO, SVDAG and PSVDAG hierarchical data structures using
different scenes and resolutions in terms of data structure size (their binary representation
in KB) – linearized using z-order curve

in common subtree merges when z-order linearization is applied. Subsequently, the
memory consumption and the time for the compression of SVDAG data structure
were also smaller, as shown in Tables 7 and 8.

Adding Active Child Node Count information allows potential compression of
the Child Node Mask. Hence, the authors monitored whether the 16 b of identifi-
cations of Child Node Mask was compressed or inflated in the tested scenes. The

Size [KB]
Resolution

1283 2563 5123 1K3 2K3 4K3

Angel Lucy

SVO 6.67 28.62 117.99 475.98 1 895.02 7 447.62

SVDAG 32.14 128.25 477.07 1 596.11 4 922.56 15 519.44

PSVDAG 8.74 36.00 137.74 486.17 1 613.09 5 434.41

Skull

SVO 23.24 95.61 387.45 1 551.55 6 129.76 23 667.56

SVDAG 101.55 362.38 1 197.48 3 780.68 12 447.23 43 745.21

PSVDAG 28.44 105.87 371.02 1 254.54 4 370.65 15 621.87

Porsche

SVO 14.59 67.52 295.10 1 241.50 5 087.54 20 262.88

SVDAG 59.99 234.71 836.33 2 802.36 9 480.74 34 082.36

PSVDAG 15.92 64.75 240.71 852.27 3 064.59 11 637.51

Table 2. Comparison of SVO, SVDAG and PSVDAG hierarchical data structures using
different scenes and resolutions in terms of data structure size (their binary representation
in KB) – linearized using Hilbert curve

PSVDAG: Compact Voxelized Representation of 3D Scenes Using PSVDAGs 607

Parameter
Resolution

1283 2563 5123 1K3 2K3 4K3

Angel Lucy

PSVDAG in comparison to SVO

Compression 0.77 0.82 0.89 1.03 1.24 1.43

Percents 129.3 % 122.6 % 112.2 % 97.1 % 80.8 % 69.9 %

PSVDAG in comparison to SVDAG

Compression 3.70 3.62 3.50 3.30 3.06 2.87

Percents 27.0 % 27.6 % 28.6 % 30.3 % 32.7 % 34.9 %

Skull

PSVDAG in comparison to SVO

Compression 0.83 0.92 1.06 1.25 1.42 1.55

Percents 120.9 % 109.1 % 94.6 % 79.9 % 70.5 % 64.6 %

PSVDAG in comparison to SVDAG

Compression 3.57 3.42 3.23 3.01 2.84 2.82

Percents 28.0 % 29.2 % 31.0 % 33.2 % 35.2 % 35.5 %

Porsche

PSVDAG in comparison to SVO

Compression 0.97 1.10 1.30 1.55 1.76 1.83

Percents 103.4 % 90.7 % 77.0 % 64.5 % 56.9 % 54.5 %

PSVDAG in comparison to SVDAG

Compression 3.76 3.63 3.47 3.28 3.08 2.91

Percents 26.6 % 27.6 % 28.8 % 30.5 % 32.5 % 34.4 %

Table 3. Comparison of compression ratios and size percentages of binary representations
of PSVDAG to SVO and PSVDAG to SVDAG hierarchical data structures, using different
scenes and resolutions – linearized using z-order curve

tests showed that the size of the child node masks binary representation increased
in most cases – its average length is from the range of 〈15.82; 17.34〉 b. Thus, in
some models, the average size of the child node mask was reduced up to 98.88 %
in comparison to 16 b size. In some models, inflation was evident (in this case, the
most pessimistic case showed a 108.38 % compared to the 16 b size.) However, even
in the most pessimistic case, the combined size of ACHNC and CHNM was smaller
than the CHNM of the SVDAG data structure, accompanied by the reserved 24 b.
In this case, the worst compression ratio reached for this part of the node was 1.85
(54.19 % of the original size). The relevant data is available in Tables 4, 6, and
Figure 14.

The average length of the binary representation of labels/callers gradually in-
creases with an increased resolution of the voxelized 3D scene because of the rising
number of labels. For example, at the lowest resolution of 1283, the Angel Lucy
model for z-order averaged 8.75 b per label/caller, and 8.90 b in case of Hilbert
curve. It is a 3.66 (27.34 %), resp. 3.60 (27.81 %) compression ratio, compared to
the 32 b SVDAG pointers. The maximum length of the label/caller binary repre-

608 L. Vokorokos, B. Madoš, Z. Bilanová

Size [b]
Resolution

1283 2563 5123 1K3 2K3 4K3

Angel Lucy

Child Node Mask 15.89 16.73 17.11 17.28 17.33 17.30

Labels and Callers 8.75 8.90 9.21 9.86 10.87 11.93

Skull

Child Node Mask 16.82 17.12 17.29 17.35 17.33 17.34

Labels and Callers 9.01 9.43 10.11 11.06 12.03 12.49

Porsche

Child Node Mask 16.89 17.23 17.43 17.44 17.39 17.32

Labels and Callers 8.24 8.66 9.17 9.91 10.83 11.79

Table 4. Selected parameters of PSVDAG hierarchical data structure according to the
different scenes and their resolutions – linearized using z-order curve

Figure 12. The PSVDAG-SVO compression ratio for each scene and the resolutions used
to voxelize the respective scenes, when z-order applied

sentation for this model reached a maximum at the resolution of 4 0963 when the
average label/caller size was 11.93 b resp. 11.96 b. It represents a 2.68-fold compres-
sion compared to the 32 b SVDAG pointers and reduction to 37.28 % resp. 37.38 %
in terms of size. The numerical values of this parameter for the respective models
and resolutions are in Tables 4, 6, and Figure 15.

5.1 Sources of Compression Gains in PSVDAG

The PSVDAG data structure provides several data compression sources, when com-
pared to the SVDAG:

PSVDAG: Compact Voxelized Representation of 3D Scenes Using PSVDAGs 609

Parameter
Resolution

1283 2563 5123 1K3 2K3 4K3

Angel Lucy

PSVDAG in comparison to SVO

Compression 0.76 0.80 0.86 0.98 1.17 1.37

Percents 131.1 % 125.8 % 116.7 % 102.1 % 85.1 % 73.0 %

PSVDAG in comparison to SVDAG

Compression 3.68 3.56 3.46 3.28 3.05 2.86

Percents 27.2 % 28.1 % 28.9 % 30.5 % 32.8 % 35.0 %

Skull

PSVDAG in comparison to SVO

Compression 0.82 0.90 1.04 1.24 1.40 1.52

Percents 122.4 % 110.7 % 95.8 % 80.9 % 71.3 % 66.0 %

PSVDAG in comparison to SVDAG

Compression 3.57 3.42 3.23 3.01 2.85 2.80

Percents 28.0 % 29.2 % 31.0 % 33.2 % 35.1 % 35.7 %

Porsche

PSVDAG in comparison to SVO

Compression 0.92 1.04 1.23 1.46 1.66 1.74

Percents 109.1 % 95.9 % 81.6 % 68.6 % 60.2 % 57.4 %

PSVDAG in comparison to SVDAG

Compression 3.77 3.62 3.47 3.29 3.09 2.93

Percents 26.5 % 27.6 % 28.8 % 30.4 % 32.3 % 34.1 %

Table 5. Comparison of compression ratios and size percentages of binary representations
of PSVDAG to SVO and PSVDAG to SVO hierarchical data structures, using different
scenes and resolutions – linearized using Hilbert curve

• The child nodes mask of the SVDAG data structure has a constant size of 8 b
(i.e., 1 b per octant), with another 24 b unused for the sake of aligning to 32 b.
That results in a total of 32 b, i.e., 4 b per octant. PSVDAG uses a 3-bit Active
Child Node Count. The Child Node Mask identifications itself have a binary
representation with a total length ranging from 2 b to 16 b, with 2 b per potential
child node. The sum of ACHNC and CHNM ranges from 5 b to 19 b, which is
significantly less than that of SVDAG. 8 octants use space ranging from 0.625 b
per child node to 2.375 b per child node. The compression ratio (in comparison
to SVDAG) is from the range of 1.68 to 6.4. The reduction of this part of the
data structure is to a level of 15.63 % to 59.38 %.

• The absence of child node pointers in PSVDAG is a significant source of its
reduction, considering the binary representation (compared to the SVDAG data
structure). If the subgraph is unique, there is no pointer at its root node in the
data structure. Thus the 32 b pointer of SVDAG becomes 0 b in PSVDAG.

• If the particular subgraph is not unique in the data structure, the 32 b pointer
of the SVDAG, pointing at the root node of the subgraph, is replaced by a la-

610 L. Vokorokos, B. Madoš, Z. Bilanová

Size [b]
Resolution

1283 2563 5123 1K3 2K3 4K3

Angel Lucy

Child Node Mask 15.82 16.69 17.08 17.28 17.34 17.32

Labels and Callers 8.90 9.12 9.37 9.95 10.90 11.96

Skull

Child Node Mask 16.75 17.07 17.26 17.30 17.27 17.27

Labels and Callers 9.04 9.44 10.11 11.05 12.00 12.41

Porsche

Child Node Mask 16.80 17.14 17.31 17.35 17.30 17.25

Labels and Callers 8.30 8.71 9.21 9.92 10.80 11.70

Table 6. Selected parameters of PSVDAG hierarchical data structure according to the
different scenes and their resolutions – linearized using Hilbert curve

Size [KB]
Resolution

1283 2563 5123 1K3 2K3 4K3

Angel Lucy

z-order curve 39.48 156.13 544.49 1 635.08 4 225.91 10 801.93

Hilbert curve 39.74 157.82 566.83 1 752.33 4 617.10 11 745.66

Skull

z-order curve 120.63 406.15 1 224.49 3 244.12 8 718.88 33 376.02

Hilbert curve 122.30 414.52 1 245.42 3 320.14 8 967.54 34 912.34

Porsche

z-order curve 72.73 263.09 857.53 2 492.10 7 142.92 22 457.98

Hilbert curve 77.91 281.10 919.52 2 714.14 7 892.19 25 043.80

Table 7. Memory consumption for PSVDAG building and encoding

bel/caller with at least 6 b binary representation. As the number of labels/callers
in the data structure increases, this binary representation length gradually in-
creases. Thus, the shortest ones represent a 5.33-fold compression rate, or, in
other words: occupy only 18.75 % of the space.

• Minimization of the label/caller binary representation length is supported by
separating labels assignments at every level of the graph, instead of assigning
labels globally within the entire data structure. Thus, the label assignment
starts at every level of the data structure with a length of the 6 b.

• Frequency-based compaction sorts the subgraph root nodes separately at each
level l of the graph, according to their frequency of referencing from the level
l−1. The process sorts labels/callers from the most frequently referenced nodes
to the least frequently referenced ones. Individual root nodes of the template
subgraphs are then assigned by labels, in the order from those having the shortest
binary representation (6 b – attached to the most frequently referenced nodes)
to those having the most extended binary representation (assigned to the least
often referenced subgraph root nodes). It ensures the lowest possible number of

PSVDAG: Compact Voxelized Representation of 3D Scenes Using PSVDAGs 611

Time [s]
Resolution

1283 2563 5123 1K3 2K3 4K3

Angel Lucy

z-order curve 0.021 0.032 0.079 0.196 0.402 1.279

Hilbert curve 0.021 0.033 0.081 0.205 0.423 1.331

Skull

z-order curve 0.068 0.091 0.202 0.480 1.051 4.065

Hilbert curve 0.068 0.092 0.205 0.486 1.065 4.154

Porsche

z-order curve 0.039 0.057 0.136 0.339 0.765 2.744

Hilbert curve 0.041 0.061 0.144 0.362 0.813 2.912

Table 8. Time consumption for PSVDAG building and encoding

Figure 13. The PSVDAG-SVDAG compression ratio for each scene and the resolutions
used to voxelize the respective scenes, when z-order applied

bits for the encoding of labels/callers per level of the graph.

6 CONCLUSIONS

This paper deals with hierarchical data structures designed to represent the geom-
etry of voxelized three-dimensional scenes. It includes an overview of the related
works published in the field of linearization of multi-dimensional data and the rep-
resentation of two and three-dimensional data using dedicated data structures. The
brief presentation of pointerless Sparse Voxel Octrees (SVO) and Sparse Voxel Di-
rected Acyclic Graphs (SVDAG) summarized their advantages, disadvantages, and
binary-level encoding. While pointerless SVO is a compact, pointerless data struc-
ture that is suitable for archival or streaming purposes, it is necessary to create

612 L. Vokorokos, B. Madoš, Z. Bilanová

Figure 14. Average Child Node Mask size in bits for the scenes and the resolutions used
to voxelize the respective scenes, when z-order applied

child node pointers for traversal. SVDAG is a more advanced data structure that
incorporates 32 b child node pointers to allow fast traversal while reducing common
subtrees.

In the subsequent section, the authors presented the proposed Pointerless Sparse
Voxel Directed Acyclic Graph (PSVDAG) data structure, which combines the ad-
vantages of both data structures mentioned above. It allows a compact encoding

Figure 15. Average label/caller size in bits for the scenes and the resolutions used to
voxelize the respective scenes, when z-order applied

PSVDAG: Compact Voxelized Representation of 3D Scenes Using PSVDAGs 613

of the data, and merging of common subtrees using the proposed concept of labels
and callers having a variable-length binary representation. Compared to SVDAG,
the disadvantage is that for fast traversal, this data structure requires the recon-
struction of pointers to child nodes. The Active Child Node Count proposed in this
paper facilitates and speeds up this process. In a favorable but less frequent case,
it enables child node mask compression.

Performed tests were using scenes initially represented in the OBJ file format,
and subsequently voxelized at various resolutions. The obtained results showed
that – compared to the SVDAG data structure – PSVDAG achieved a compression
ratio of 3.77 to 2.80 times higher. In most cases, PSVDAG outperformed the SVO,
when the size of PSVDAG ranged from 131.1 % of the size of SVO (in the most
unfavorable case) to 54.5 % of the size of SVO (in the most favorable case). Thus, in
favorable circumstances, the binary representation of PSVDAG was more compact
than that of SVO.

Acknowledgements

This research was supported by the Slovak Research and Development Agency,
project number APVV-18-0214 and the KEGA Agency of the Ministry of Education,
Science, Research and Sport of the Slovak Republic under Grant No. 003TUKE-
4/2017 Implementation of Modern Methods and Education Forms in the Area of
Security of Information and Communication Technologies towards Requirements of
Labor Market.

REFERENCES

[1] Crassin, C.—Neyret, F.—Lefebvre, S.—Eismann, E.: GigaVoxels: Ray-
Guided Streaming for Efficient and Detailed Voxel Rendering. Proceedings of the 2009
Symposium on Interactive 3D Graphics and Games (I3D ’09), ACM, 2009, pp. 15–22,
doi: 10.1145/1507149.1507152.

[2] Balsa Rodŕıguez, M.—Gobetti, E.—Iglesias Guitián, J. A.—
Makhinya, M.—Marton, F.—Pajarola, R.—Suter, S. K.: State-of-the-Art
in Compressed GPU-Based Direct Volume Rendering. Computer Graphics Forum,
Vol. 33, 2014, No. 6, pp. 77–100, doi: 10.1111/cgf.12280.

[3] Katajainen, J.—Mäkinen, E.: Tree Compression and Optimization with Applica-
tions. International Journal of Foundations of Computer Science, Vol. 1, 1990, No. 4,
pp. 425–447, doi: 10.1142/S0129054190000291.

[4] Laszloffy, A.—Long, J.—Patra, A. K.: Simple Data Management, Schedul-
ing and Solution Strategies for Managing the Irregularities in Parallel Adaptive hp
Finite Element Simulations. Parallel Computing, Vol. 26, 2000, pp. 1765–1788, doi:
10.1016/S0167-8191(00)00054-5.

[5] Sagan, H.: Space-Filling Curves. Springer-Verlag, New York, 1994, doi:
10.1007/978-1-4612-0871-6.

https://doi.org/10.1145/1507149.1507152
https://doi.org/10.1111/cgf.12280
https://doi.org/10.1142/S0129054190000291
https://doi.org/10.1016/S0167-8191(00)00054-5
https://doi.org/10.1007/978-1-4612-0871-6

614 L. Vokorokos, B. Madoš, Z. Bilanová

[6] Hilbert, D.: Über die Stetige Abbildung Einer Linie auf ein Flächenstück. Mathe-
matische Annalen, Vol. 38, 1891, pp. 459–460, doi: 10.1007/BF01199431.

[7] Morton, G. M.: A Computer Oriented Geodetic Data Base and a New Technique
in File Sequencing. Research Report. International Business Machines Corporation
(IBM), Ottawa, Canada, 1966.

[8] Gargantini, I.: An Effective Way to Represent Quadtrees. Communications of the
ACM, Vol. 25, 1982, No. 12, pp. 905–910, doi: 10.1145/358728.358741.

[9] Hunter, G. M.—Steiglitz, K.: Operations on Images Using Quad Trees. IEEE
Transactions on Pattern Analysis and Machine Intelligence, Vol. PAMI-1, 1979, No. 2,
pp. 145–153, doi: 10.1109/TPAMI.1979.4766900.

[10] Klinger, A.—Dyer, C. R.: Experiments in Picture Representation Using Regu-
lar Decomposition. Computer Graphics and Image Processing, Vol. 5, 1976, No. 1,
pp. 68–105, doi: 10.1016/S0146-664X(76)80006-8.

[11] Kawaguchi, E.—Endo, T.: On a Method of Binary-Picture Representa-
tion and Its Application to Data Compression. IEEE Transactions on Pattern
Analysis and Machine Intelligence, Vol. PAMI-2, 1980, No. 1, pp. 27–35, doi:
10.1109/TPAMI.1980.4766967.

[12] Webber, R. E—Dillencourt, M. B.: Compressing Quadtrees via Common Sub-
tree Merging. Pattern Recognition Letters, Vol. 9, 1989, No. 3, pp. 193–200, doi:
10.1016/0167-8655(89)90054-8.

[13] Chang, H. K.-C.—Liu, S.-H.—Tso, C.-K.: Two-Dimensional Template-Based
Encoding for Linear Quadtree Representation. Photogrammetric Engineering and
Remote Sensing, Vol. 63, 1997, No. 11, pp. 1275–1282.

[14] Parker, E.—Udeshi, T.: Exploiting Self-Similarity in Geometry for Voxel Based
Solid Modeling. Proceedings of the Eighth ACM Symposium on Solid Modeling and
Applications (SM ’03), 2003, pp. 157–166, doi: 10.1145/781606.781631.

[15] Srihari, S. N.: Representation of Three Dimensional Digital Images. Technical Re-
port No. 162. Department of Computer Science, State University of New York at
Bufallo, Amherst, New York, pp. 26, 1980.

[16] Rubin, S. M.—Whitted, T.: A 3-Dimensional Representation for Fast Render-
ing of Complex Scenes. Proceedings of the 7th Annual Conference on Computer
Graphics and Interactive Techniques (SIGGRAPH ’80), ACM, 1980, pp. 110–116,
doi: 10.1145/800250.807479.

[17] Jackins, C. L.—Tanimoto, S. L.: Oct-Trees and Their Use in Representing Three-
Dimensional Objects. Computer Graphics and Image Processing, Vol. 14, 1980, No. 3,
pp. 249–270, doi: 10.1016/0146-664X(80)90055-6.

[18] Meagher, D. J. R.: Octree Encoding: A New Technique for the Representation,
Manipulation, and Display of Arbitrary 3-D Objects by Computer. Technical Report
No. IPL-TR-80-111. Rensselaer Polytechnic Institute, Troy, NY, 1980.

[19] Meagher, D.: Geometric Modeling Using Octree Encoding. Computer Graph-
ics and Image Processing, Vol. 19, 1982, No. 2, pp. 129–147, doi: 10.1016/0146-
664X(82)90104-6.

https://doi.org/10.1007/BF01199431
https://doi.org/10.1145/358728.358741
https://doi.org/10.1109/TPAMI.1979.4766900
https://doi.org/10.1016/S0146-664X(76)80006-8
https://doi.org/10.1109/TPAMI.1980.4766967
https://doi.org/10.1016/0167-8655(89)90054-8
https://doi.org/10.1145/781606.781631
https://doi.org/10.1145/800250.807479
https://doi.org/10.1016/0146-664X(80)90055-6
https://doi.org/10.1016/0146-664X(82)90104-6
https://doi.org/10.1016/0146-664X(82)90104-6

PSVDAG: Compact Voxelized Representation of 3D Scenes Using PSVDAGs 615

[20] Meagher, D. J. R.: The Octree Encoding Method for Efficient Solid Modeling.
Technical Report IPL-TR-032, Image Processing Laboratory, Rensselaer Polytechnic
Institute, Troy, New York, 1982.

[21] Samet, H.: Implementing Raytracing with Octrees and Neighbor Finding. Com-
puters and Graphics, Vol. 13, 1989, No. 4, pp. 445–460, doi: 10.1016/0097-
8493(89)90006-X.

[22] Knoll, A.—Wald, I.—Parker, S. G.—Hansen, C. D.: Interactive Isosurface
Ray Tracing of Large Octree Volumes. 2006 IEEE Symposium on Interactive Ray
Tracing, Salt Lake City, UT, USA, 2006, pp. 115–124, doi: 10.1109/RT.2006.280222.

[23] Knoll, A. M.—Wald, I.—Hansen, C. D.: Coherent Multiresolution Isosur-
face Ray Tracing. The Visual Computer, Vol. 25, 2009, No. 3, pp. 209–225, doi:
10.1007/s00371-008-0215-2.

[24] Schnabel, R.—Klein R.: Octree-Based Point Cloud Compression. Pro-
ceedings of the 3rd Eurographics Symposium on Point-Based Graphics/IEEE
VGTC Conference on Point-Based Graphics (SPBG ’06), 2006, pp. 111–121, doi:
10.2312/SPBG/SPBG06/111-120.

[25] Laine, S.—Karras, T.: Efficient Sparse Voxel Octrees. Proceedings of the 2010
ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games (I3D ’10),
ACM, 2010, pp. 55–63, doi: 10.1145/1730804.1730814.

[26] Kämpe, V.—Sintorn, E.—Assarsson, U.: High Resolution Sparse Voxel DAGs.
ACM Transactions on Graphics, Vol. 32, 2013, No. 4, Art. No. 101, 8 pp., doi:
10.1145/2461912.2462024.

[27] Villanueva, A. J.—Marton, F.—Gobbetti, E.: SSVDAGs: Symmetry-
Aware Sparse Voxel DAGs. Proceedings of the 20th ACM SIGGRAPH Sympo-
sium on Interactive 3D Graphics and Games (I3D ’16), ACM, 2016, pp. 7–14, doi:
10.1145/2856400.2856420.

[28] Čerešńık, P.—Madoš, B.—Baláž, A.—Bilanová, Z.: SSVDAG*: Efficient
Volume Data Representation Using Enhanced Symmetry-Aware Sparse Voxel Di-
rected Acyclic Graph. Proceedings of the 2019 IEEE 15th International Scien-
tific Conference on Informatics, IEEE, 2019, pp. 70–75, doi: 10.1109/Informat-
ics47936.2019.9119298.

[29] Baert, J.—Lagae, A.—Dutré, P.: Out-of-Core Construction of Sparse Voxel
Octrees. Proceedings of the 5th High-Performance Graphics Conference (HPG ’13),
ACM, 2013, pp. 27–32, doi: 10.1145/2492045.2492048.

https://doi.org/10.1016/0097-8493(89)90006-X
https://doi.org/10.1016/0097-8493(89)90006-X
https://doi.org/10.1109/RT.2006.280222
https://doi.org/10.1007/s00371-008-0215-2
https://doi.org/10.2312/SPBG/SPBG06/111-120
https://doi.org/10.1145/1730804.1730814
https://doi.org/10.1145/2461912.2462024
https://doi.org/10.1145/2856400.2856420
https://doi.org/10.1109/Informatics47936.2019.9119298
https://doi.org/10.1109/Informatics47936.2019.9119298
https://doi.org/10.1145/2492045.2492048

616 L. Vokorokos, B. Madoš, Z. Bilanová

Liberios Vokorokos graduated (M.Sc.) with honors at the
Department of Computers and Informatics of the Faculty of
Electrical Engineering and Informatics at Technical University
in Košice in 1991. He defended his Ph.D. in the field of program-
ming devices and systems in 2000 with the thesis title “Diagnosis
of Compound Systems Using the Data Flow Applications”. He
serves as Professor for computer science and informatics since
2005. Since 1995 he is working as Educationist at the Depart-
ment of Computers and Informatics. His scientific research fo-
cuses on parallel computers of the data flow type. He also inves-

tigates the questions related to the diagnostics of complex systems. Currently, he is the
Dean of the Faculty of Electrical Engineering and Informatics at the Technical University
of Košice. He is a member of the Advisory Committee for Informatization at the Faculty
and Advisory Board for the Development and Informatization at the Technical University
of Košice.

Branislav Mado�s graduated (Ing.) at the Department of Com-
puters and Informatics at the Faculty of Electrical Engineering
and Informatics of the Technical University of Košice in 2006.
He defended his Ph.D. in the field of computers and computer
systems in 2009. His thesis title was “Specialized Architecture
of Data Flow Computer”. Since 2010 he is Assistant Professor
at the Department of Computers and Informatics. His scientific
research focuses on parallel computer architectures and architec-
tures of computers with a data-driven computational model, and
on computer security using cryptographic and steganographic
methods.

Zuzana Bilanov�a graduated (Ing.) at the Department of
Computers and Informatics at the Faculty of Electrical Engi-
neering and Informatics of the Technical University of Košice
in 2015. Since 2015 she is Ph.D. student at the Department of
Computers and Informatics at the Faculty of Electrical Engi-
neering and Informatics of the Technical University of Košice.
Her main scientific focus is creating new approaches in logi-
cal analysis of natural language, non-classical logical systems
in computer science, and resource-oriented logic programming.
Her secondary research areas are educational technologies for the

effective implementation of engineering education, focusing on project and team-based
teaching.

