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Abstract. While political commitments for building exascale systems have been
made, turning these systems into platforms for a wide range of exascale applica-
tions faces several technical, organisational and skills-related challenges. The key
technical challenges are related to the availability of data. While the first exas-
cale machines are likely to be built within a single site, the input data is in many
cases impossible to store within a single site. Alongside handling of extreme-large
amount of data, the exascale system has to process data from different sources,
support accelerated computing, handle high volume of requests per day, minimize
the size of data flows, and be extensible in terms of continuously increasing data as
well as an increase in parallel requests being sent. These technical challenges are
addressed by the general reference exascale architecture. It is divided into three
main blocks: virtualization layer, distributed virtual file system, and manager of
computing resources. Its main property is modularity which is achieved by con-
tainerization at two levels: 1) application containers — containerization of scientific
workflows, 2) micro-infrastructure — containerization of extreme-large data service-
oriented infrastructure. The paper also presents an instantiation of the reference
architecture — the architecture of the PROCESS project (PROviding Computing so-
lutions for ExaScale ChallengeS) and discusses its relation to the reference exascale
architecture. The PROCESS architecture has been used as an exascale platform
within various exascale pilot applications. This paper also presents performance
modelling of exascale platform with its Validatiorﬂ

Keywords: Exascale, architecture, validation

1 INTRODUCTION

New scientific instruments (e.g. distributed radio telescopes such as LOw-Frequency
ARray — LOFAR, Square Kilometre Array — SKA, space telescopes such as Coperni-
cus sentinels, etc.) are producing data at an accelerating pace. LOFAR observations
are stored in the long term archive (LTA) which is distributed over Amsterdam,
Jiillich and Poznan. It currently contains around 30 PB of data and grows with 5
to 7PB/year. SKA represents an even bigger challenge. It is expected that a raw

1 This is the extended version of our paper about the reference exascale architecture [3].
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data will grow by zettabytes/year which will produce 130 to 300 PB/year of corre-
lated data. Copernicus sentinels also present an exascale challenge. They produce
approximately 7.5 PB of raw data each month.

Another significant amount of data is generated by branches that are digitized.
A typical example is medical science. The final report of the High Level Expert
Group on Scientific Data [15] describes it as follows: “In 2010, about 2.5 petabytes —
more than a million, billion data units — are stored away each year for mammograms
in the US alone. World-wide, some estimate, medical images of all kinds will soon
amount to 30 % of all data storage.”

With the rapid growth of data [9, |] it is often required to migrate data to
a remote computation location [I]. Often the data structures are very complex
and are stored in a (geographically) distributed infrastructure. Those features are
so significant, that new approaches and methods need to be investigated. This
paper presents an architectural blueprint that allows the whole data and com-
pute infrastructure to draw maximal benefits from the emerging exascale capaci-
ties.

The main aim of this paper is to describe the reference architecture for exas-
cale systems which starts from the gathering of requirements to its application in
real world use cases. In the context of our work and of this paper, an exascale
system is one that uses exabytes of data or exaflops of computational power. The
design of the reference architecture is driven by the requirements analysis of the
various use cases which come from diverse scientific communities as well as from
industry. Through the generalisation of them, the reference architecture is pro-
posed.

This paper has the following structure:

e Section [ represents the requirements analysis of the various exascale-related use
cases.

e Section [3 presents the reference exascale architecture.

e Section [] describes the updated technology-based architecture of the PROCESS
Project.

Extended version: New exascale aspects were investigated more deeply. The
improvements focused on data transfer which was identified as the main bottleneck
of the PROCESS platform prototype. The problem is addressed by a dedicated
set of nodes — data transfer nodes. The second significant update is dedicated
to the optimization of computing resources management. The second prototype
of the PROCESS platform supports both cloud and HPC resources through dedi-
cated managers Cloudify for cloud resources and Rimrock for HPC resources. Last
but not least, Cloudify is successfully integrated with the European Open Science
Cloud.

Meanwhile, the performance modelling and PROCESS platform validation were
finished. The performance model assumes that typical exascale applications can be
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modelled as pipelines consisting of the input data stage-in, processing and (result)
data stage-out steps. However, for workflows comprising several dynamically con-
figured and deployed components, the set of performance components need to be
able to analyse the execution in a more fine-grained manner.

The extended version has the following new sections:

e Section [f] presents the performance model.

e Section [g] describes experiments on the PROCESS platform prototype.

2 MOTIVATION

There are many research communities reaching the exascale threshold. This section
investigates requirements coming from the following communitiesﬂ:

1. medical science,
2. astronomy, and

3. ancillary pricing [6].
The requirements coming from the communities can be divided into two groups:

1. computational requirements, and

2. accessing and storing of data sets (exceeding petabytes).

The two requirements categories are not completely isolated. Contrariwise, both
of them are interlaced which also creates new additional requirements. One of
them is distributed and/or parallel processing of data which is the consequence
of data amount generated by various simulations, and observations conducted by
the above mentioned exascale research communities coming from distributed data
sources and/or laboratories.

2.1 Exascale Learning on Medical Image Data

The medical use case focuses on automated cancer diagnostics and treatment plan-
ning. The aim is to study cancer detection, localisation and stage classification.
Cancer diagnostics is based on the automatic analysis of a biopsy or surgical tissue
specimens, which are captured by a high resolution scanner and stored in a multi-
resolution pyramid structure. The size of the data set is huge (up to PBs), since
it also includes tissue that is not relevant for cancer diagnosis (e.g. background,
stroma, healthy tissue, etc.).

The key components of this use case are focused on pattern recognition, sta-
tistical modelling and deep learning. Thus the core requirement is to support per-
forming dense linear algebra on distributed-memory HPC systems. Multiple GPU

2 They are part of the PROCESS project, http://process-project.eu/
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computation libraries should be used to merge multiple CUDA kernels. Further-
more, top-level development of the deep models should be performed using the most
common machine learning and deep learning frameworks.

To process a huge amount of data (PBs and more), training needs to be dis-
tributed across different computing centres what requires automated detection of
the optimal model parameters, and efficient scheduling and monitoring of processes
to the available resources. The requirements analysis pointed out the need for con-
tainerization of the whole approach.

The typical requirement coming from this kind of data processing tasks is huge
amount of computing power [7, [TT]. Extremely large datasets might be difficult to
download [14], and hospitals might require a high level of confidentiality. A gener-
alised solution, the “Evaluation as a Service” (EaaS) could be viewed as a “clean
slate” approach to deal with very large datasets, especially ones that require so-
phisticated access control e.g. due to privacy issues. In EaaS the data remains in
a central infrastructure and does not need to be moved.

Data acquired in conjunction with hospitals needs to be pseudonymised, thus
retaining a level of detail in the replaced data that should allow tracking back of the
data to its original state. In this way the ethical constraints related to the usage of
patient data will also be addressed.

2.2 LOFAR Use Case

Low Frequency Array (LOFAR) is a state-of-the-art radio telescope capable of
wide field imaging at low frequencies. It has been ingesting data into a long-term
archive (the LOFAR LTA) since 2012 and its volume is now expanding at a rate
of approximately 5-7PB/year. Its current volume is about 28 PB. This consists
mostly of “Measurement Sets”, i.e. visibilities — correlated signals from LOFAR
stations.

The core requirement is the provision of a mechanism to run containerized work-
flows, thereby improving the portability and easy of use. Analysing the massive vol-
umes of data stored in the archive is an acute problem. The environment for selecting
the data and workflows has to be user-friendly, and it has to support launching the
workflows, monitoring the results and downloading outputs. The whole workflow
needs to be containerized by Docker or Singularity containers as workflow steps to
allow each step to use different analysis tools and dependences.

The platform must have a mechanism to run the workflows on suitable process-
ing hardware. While some parts of the workflow may run in parallel on relatively
simple compute nodes (24 cores, 8 GB memory, 100 GB scratch storage), other parts
currently run sequentially on a fat node with significant memory (256 GB or more,
3'TB scratch storage). The data management system has to be capable of efficiently
transporting the Measurement Sets from the archive locations in Amsterdam, Jiilich
and Poznan to the processing locations.

The capability to horizontally scale to a significant number of compute resources
to run a large number of (independent) workflows at the same time is important.



Reference Ezascale Architecture 649

Since processing the entire archive for a single science case already requires a signifi-
cant amount of core hours O(47 M), handling multiple science cases simultaneously
will require up to exascale resources.

2.3 Ancillary Pricing for Airline Revenue Management

The ancillary pricing use case concentrates on an analysis of current ancillary sales
and hidden sales pattern. This aim is tackled by machine learning approaches (e.g.
random forest and neural networks) for pricing of offered ancillaries.

The core requirement is a platform that is capable of storing the incoming an-
cillary data in a way that allows easy exploitation for airlines. On the one hand,
the platform should provide libraries for machine learning and quick processing for
the model learning, while on the other hand, storing the models in an efficient way
such that several hundred million ancillary pricing requests a day can be answered.
The platform needs to be capable to deal with the large passenger data sets that
airlines generate. It has to be based on a scalable architecture which has to fos-
ter the following features: handle large amount of data, handle data from different
sources, handle a high volume of requests per day, provide quick response times,
and be extensible in terms of continuously increasing data as well as an increase in
parallel requests being sent.

An average airline may handle approximately 100 million passengers per year
(the largest airlines carry up to twice as many passengers), each of whom will buy
on average b ancillaries. Each ancillary record can be several kilobytes in size, and
several years of data need to be processed. During processing, the size of the data
is further increased due to the specifics of the used algorithms.

The data do not only need to be stored, but have to provide efficient algo-
rithmic usage which means, on the one hand, the update of the model parameters
within a reasonable timeframe (e.g. within a nightly time slot). On the other hand,
this implies real-time responses with revenue-optimal prices upon customer request.
Tool-stack of the platform has to support Lambda Architecture principles especially
for historical data and further statistical analyses (e.g. applying mathematical and
statistical algorithms on consolidated data structure to identify an optimal reference
model, or applying variables of incoming requests on the optimal reference model to
compute probability, estimates and forecast). The platform has to also support pro-
cessing of ongoing data streams to keep the consolidated data structure up-to-date
(i.e. learning new data behaviour into reference data). Also distributed comput-
ing fundamentals has to be one of the core features (e.g. support of the Hadoop
ecosystem).

Ancillary data are personal data. However, they do not carry the strictest
privacy requirements, since the data do not contain names, addresses or credit
card information. However they may contain data that directly connect to a per-
son such as frequent traveller information. If using real data this has to be con-
sidered as confidential information provided by the involved airlines. Therefore
it has to comply with the “EU General Data Protection Regulation”, if appli-
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cable. The software needs to be deployable on-site at the customer’s cloud ser-
vice.

3 REFERENCE EXASCALE ARCHITECTURE

After reviewing of all requirements coming from different user communities (such as
medicine, radio astronomy, airline revenue management, etc.), the main challenge
was to propose an architecture that is suitable for all of them. Their requirements
can be divided into three main groups:

1. virtualization requirements,
2. data requirements, and

3. computing requirements.

Virtualization requirements are very straightforwardly derived from application
platforms of our user communities — support of containers which offers a lightweight
virtualization approach which is similar to application packages. Its advantages in-
clude easy deployment and maintenance, flexibility, reliability, scalability, etc. Since
the users’ applications need to be deployed on various computing infrastructures,
portability and interoperability are very important features of every exascale-capable
platform.

The core data requirement is handling of exascale data sets or extreme data flows
which is not possible to manipulate and manage by a single data center nowadays. It
brings a very demanding and ambitious request — a data federation across multiple
data centers. It is also interlaced with metadata management (processing of such
data is impossible without their description — the metadata). The main challenge is
communication or data transmission in terms of data services. The exascale platform
has to support huge data transfers across the whole infrastructure.

The main computing requirement is supporting high-performance computing as
well as cloud computing which is able to offer accelerated computing also — a comput-
ing environment for the application containers. The other significant requirement is
performance optimization. The current trends in the scientific applications are the
following: high distribution across different research computing centers or nodes,
and a degree of parallelism and concurrency also increased. Those challenges need
to be taken into account during designing of computing management.

The proposed architecture is driven by modularity and scalability. These two
approaches are the most suitable for an environment in which the core features
are high distribution and massive parallelism. The modularity also enables to ex-
tend and adjust the platform, according to the needs of new user communities. It
gives flexibility in using its sub-modules in a way which exploits the heterogeneous
resources of exascale systems the most efficiently.

The aim of the proposed reference architecture is to characterize key attributes
and properties that have to be handled by every scientific application using exascale
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data and computations. From altogether viewpoint, the reference exascale architec-
ture (see Figure (1)) is divided into the following parts (from top to bottom):

Users
Exascale communities

Secure Access Authentication and Authorization
Interactive, Script API, CLI, GUI Service

Virtualization Layer

Ci inerized Applicati
Repository

Containerized Micro-Infrastructure

Data Management - Virtual File System

Heterogeneous Pool of Data Storages and Archives

)

Figure 1. Reference exascale architecture

Users of the scientific exascale applications (in yellow) — the exascale sys-
tem has to support functionalities required by its user communities. That also
means to support legacy applications in some cases (see the Copernicus use
case). According to the initial and updated requirements analysis, the best way
is to build it on containerization. All of the applications are stored in a con-
tainerized repository which is available to user communities. The users are
accessing the exascale platform through virtualized scientific portals which are
also containers providing a user friendly graphical interface. The proposed GUI
is easily templated and so modified according to the needs of its user community.
The containerization approach is flexible, scalable, reusable and ready to use.
Moreover, it does not require any special technical skills (especially, related to
integration — exascale data processing is often contingent on complex software
tools involving expert knowledge about its management) to make it run on the
resource infrastructure (see the LOFAR use case).

Virtualization layer (in blue) — is situated between the containerized application
repository and platform infrastructure managers. Interoperability of data and
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computing infrastructure is the key and critical requirement of the exascale sys-
tems. To use both infrastructures in the most efficient way, we propose the
exascale reference architecture based on containerisation instead of virtual ma-
chines. The performance of the infrastructure as the whole is utilized in a better
way. It is caused by minimization of overheads (e.g. software duplications). Thus
virtualization layer based on containerization approach exploits the infrastruc-
ture resources in optimal way and also it supports the requirements from our
user communities. The main requirement coming from the users is supporting
of various application containers. According to a type of computing resources,
they can be divided into two groups:

1. HPC containers, and
2. cloud containers.

Thus the virtualization layer has to be capable to handle them in cooperation
with lower layers (data management and computing management).

Data management (in green) — requirements coming from the exascale scientific

applications could be divided into two main groups: distributed data federa-
tion, and metadata. It is very common that the exascale scientific applications
have highly complicated datasets that need to be handled and processed by rel-
evant systems. For that purpose, its file systems must have a module capable
to work with metadata. The metadata module has to be federated and dis-
tributed as well as the management system for the data infrastructure itself. At
this level of the infrastructure, the system architect has to be careful whether
the component will be containerized, or not. On the one hand, the exascale
system has to avoid overhead and latency (according to our experiments, it is
caused by needless duplication of software) thus we prefer containers to virtual
machines. However, on the other hand, all infrastructural services do not need
to be virtualized. For example, virtualization of HBase (through containers, or
virtual machines) is not necessary because it leads to dataset duplication in the
worst case or a performance overhead in the best case. Thus a better approach
is to support infrastructural services ecosystem through micro-services. Micro-
services serve as adapters and connectors to infrastructural services. They are
integrated into a containerized micro-infrastructure, which is customized accord-
ing to requirements coming from a use case and connecting them to a distributed
virtual file system. The micro-infrastructure allows for application-defined in-
frastructures with the main advantages being threefold: First, services can be
customized for the application; e.g., data staging service. Second, minimizing
global state management (a major scaling issue); e.g., instead of having one
global index for all files for all applications, have micro-infrastructures man-
age their own local indices and states. Third, micro-infrastructures are isolated
from each other, which increases security between users of different applica-
tions. The PROCESS distributed file system layer needs to be virtualized be-
cause it has to run on top of multiple file systems. Also, it is crucial that
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access to a data storage federation is unified. Thus the virtual file system is
distributed.

Computing Management (in red) — this part of the infrastructure is related to
scheduling and monitoring computing resources. The infrastructure has to be
loaded as balanced as possible. Two kinds of resources was recognized as suit-
able for exascale scientific applications by our user communities, namely: high
performance computing (HPC) resources, and cloud resources. HPC manager
is based on a queuing approach. Manager of cloud resources is based on REST
API. Both types of resources are often enriched by support from high-throughput
resources or accelerated resources. For example, GPU utilization within machine
learning and deep learning application is very commonly required by those user
communities, however, the requirement is still quite hard to satisfy. Since clus-
ters build on CPUs can be used by every community, big clusters with strong
GPUs are not very common nowadays.

4 PROCESS ARCHITECTURE — AN EXAMPLE
OF A TECHNICAL EXASCALE ARCHITECTURE

The PROCESS project is one of exascale research projects funded by the European
Union’s Horizon 2020 research and innovation programme. One of its main out-
puts will be a modular software platform which will be capable to handle exascale
challenges coming from both scientific communities as well as industry.

The PROCESS architecture shows how the exascale platforms look in the real
world. It was introduced in [6] and extended by a micro-services approach which
is described in the following text. Micro—infrastructurdﬂ is a very specialized and
autonomous set of services and adaptors which interact across the extreme large
data service-oriented infrastructure. Alongside the efficiency mentioned above, the
approach supports scalability, high adaptability, modularity, and straightforward
integration with the virtual layer. Since each use case has its own requirements and
dependences, modularity together with high adaptability are very important and
useful properties of every exascale environment.

The architecture is capable to support portals of external communities via REST
API. The LOFAR community is driving the development one of the PROCESS use
cases. The Netherlands eScience center extended the actual LOFAR, portal towards
a usage in the EOSC context. Therefore, besides the selection of an observation also
a submission system was integrated.

This submission system connects via an API also to the PROCESS IEE, the
central part of all deployments to Cloud and HPC resources done by PROCESS.
To enable this communication, the PROCESS architecture had to be extended by
an IEE adapter to external sources (see Figure . Thereby, the IEE is able to list
all available pipelines defined for the LOFAR computations and deploy the entire
workflow.

3 The set of integrated micro-services.
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As it can be seen, an astronomer uses the LOFAR portal as the entry point,
where an observation and configuration parameters are defined. Inside the por-
tal, the computation is started and will trigger a submission of the workflow via
IEE, which calls LOBCDER to stage in the data, deploy the container and makes
the output available. The addition of the API interface in the architecture was
necessary, since the LOFAR community is used to the existing portal. Therefore,
to not switch the user interface, the actual deployment is abstracted from the as-
tronomers.

The data services expose interaction points through a REST management API
where users can manage their private micro-infrastructure and a set of external
infrastructure endpoints such as WebDAV. The authorization to the web services is
ensured through tokens. Generation of the access tokens is achieved through a global
access and authorization service.

The PROCESS platform has dedicated set of nodes for data transfers — data
transfer nodes (DTNs). DTNs are special hardware nodes that are dedicated to the
transfer of data. Such nodes have high network bandwidth and sizable storage that
can be used as caches to transfer data at high speed between DTNs. Tuning of these
nodes and their connections often requires network experts. In our architecture, we
assume DTNs are available, pre-optimized and have some means to be programmed
e.g. having the ability to deploy containers onto the DTN. LOBCDER’s role is to
integrate DTNs through this programmability and be able to copy data to/from
DTNs.

Another typical characteristic of the exascale environment is handling of different
elements for processing, distribution, and management, which requires specific hard-
ware, or nodes. These requests are possible to satisfy by the micro-infrastructure
composed of dedicated nodes, or services addressing a particular request. Since
the requirements are handled by virtualization typically (abstracting details of the
hardware infrastructure, or the software stack), and so the micro-infrastructure of-
fers a natural solution.

Figure [2] depicts the changes of the initial PROCESS architecture [0, 2] needed
to involve the micro-infrastructure approach into the initial architecture. All the
changes are highlighted in magenta. The main change is a new way of accessing
data sources (through data adapters). The described approach also simplifies it. The
new version has one “branch” instead of two “branches” (one dedicated to pre/post
processing tools; e.g., DISPEL, and the other dedicated to pure data access through
the distributed virtual file system; e.g., LOBCDER). It also influences IEE (Jupyter
is a part of micro-infrastructure, thus the IEE needs only a plugin for it), and
LOBCDER (the data infrastructure management layer responsible for integration
of lower adjacent tools was added).

The PROCESS architecture is also a result of applying the reference exascale ar-
chitecture which represents the common features of the PROCESS platform (as well
as every exascale-related platform, or application). On its top users are interacting
with the platform through a secure access. IEE represents the environment for users,
however, security is out of the project scope. Therefore, this aspect is not inves-
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Figure 2. PROCESS architecture. (The yellow “M” token represents connection with
a monitoring system. The PROCESS platform uses Zabbix as a monitoring agent.)
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tigated anymore. The whole resource infrastructure is orchestrated by the virtual
layer. Below that layer a virtual file system alongside HPC and Cloud managers is
situated. The virtual file system is containerized through micro-infrastructure. The
main reason behind this decision is that the use cases have different requirements
(e.g. need to access various data sources). Micro-infrastructure containers are man-
aged by Kubernetes. Last but not least, HPC and Cloud managers. Both of them
have to be scheduled and users have to have information coming from monitoring
tools about their task as well as raw hardware infrastructure. Rimrock is used as
a unified environment for managing HPC resources, and Cloudifyﬁ for managing of
cloud resources.

Cloudify can deploy VMs on any sites with OpcnStackﬂ middleware, including
sites in EOSC-Hub Federated Cloud infrastructurd® It opens the door for users to
access computation resources and integration with the EOSC. For the full execution
of use cases on EOSC Federated Cloud, other components should be integrated with
EOSC-Hub, too, mainly user portal and data infrastructure.

5 PERFORMANCE MODELLING

Proposed performance model is measurement-based approach with extrapolation
through analytical modelling. First, the measurands are identified and measure-
ments are performed. In the next step a microbenchmark to evaluate these mea-
surands is developed. Finally, to predict the performance, we use these results to
create an analytical model that will allow us to extrapolate the performance based
on given measurements.

The performance model is based on generic performance modelling techniques
and a classification [5]|Z| developed within CRESTA projcctﬂ. Table [1| defines four
main categories varying from raw measurements, over benchmarking and simulations
to complex analytical modelling with a large number of parameters.

Measurement: Both simple measurements as well as complex model measure-
ment values are the basis of success. In Section ] we will define at which
points of the execution sequence meaningful measurements can be taken. Mea-
surement values are to deliver input data for further modelling and prediction
steps.

Microbenchmarking is used to identify performance bottlenecks in the architec-
ture and assists in debugging and verifying its correctness. The microbenchmark

4 Network Orchestration & Edge Networking — Cloudify: https://cloudify.co/k

5 Open Source Cloud Computing Infrastructure — OpenStack: https://www.
openstack.org/|

® EGI Cloud compute: https://eosc-hub.eu/services/EGICloudCompute.

" David Henty: Performance Modelling [online: https://materials.prace-ri.eu/
499/9/Performance_modelling.pdf]

® CRESTA project (Collaborative Research Into Exascale Systemware, Tools and Ap-
plications) homepage: https://www.cresta-project.eu
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Technique Description Purpose
Measurement running full applications | determine how well appli-

under various configura-

tions

cation performs

Microbenchmarking

measuring performance of
primitive components of

provide insight into appli-
cation performance

application

Simulation running application or | examine “what if” sce-
benchmark on software | narios, e.g. configuration
simulation changes

Analytical Modelling | devising  parameterized, | rapidly predict the ex-

mathematical model that
represents the performance
of an application in terms

pected performance of an
application on existing or
hypothetical machines

of the performance of
processors, nodes, and
networks

Table 1. Performance Modelling Approaches taken from David Henty: Performance
Modelling [online: https://materials.prace-ri.eu/499/9/Performance_modelling.
pdf] [5]

is a very simple application (validation or test pipeline) running through the
complete architecture and gathering first results.

Simulation and Analytical Modelling: Executing and measuring a given appli-
cation running on the proposed platform in different configurations and settings
forms the input dataset for this step. The goal of this step is to extrapolate
the behaviour and runtime of the application from the given observations. The
resulting model will allow for predictions of runtime behaviour beyond the con-
figuration scales measured, which gives us the chance to forecast the performance
on an exascale level.

5.1 Identification of Measurands

We stress that the hardware infrastructure such as computing, storage, and network
have a big impact on the performance of services. However, we have no real influence
on this part of the infrastructure. Therefore, our performance measurands focus on
the overhead introduced by the software services, but also measure all other relevant
numbers to identify relations between them.

In the absence of true exascale systems, our objective is to achieve exascale
by combining the power of geographically distributed data centres. Unfortunately,
the traditional configuration of compute centres is more optimized for inner data
transfer rather than for outside transfers. While technical solutions to optimize data-


https://materials.prace-ri.eu/499/9/Performance_modelling.pdf
https://materials.prace-ri.eu/499/9/Performance_modelling.pdf
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transfers exist such as the Data Transfer Nodes[J[¥] implementing those solutions
is beyond the scope of the paper. The data transfers are hidden by overlapping
data transfer with computing or use pre-fetching and caching to minimize the data
transfers.

Based on the use case requirements analysis, we can think of a typical appli-
cation as a pipeline of data processes which typically requires a data stage-in step
followed with an execution step, and finally a data stage-out step. The time re-
quired for stage-in and out is expected to be significant, because of the necessary
data movement between data centres.

T1: Configuration — The Interactive Execution Environment provides an end-
user web portal, where each run of any application needs to be configured.

T2: Deployment Strategy — Part of T2 is the time needed to decide on which
computing and storage sites the containers and their data will be deployed. It
also needs to initiate the required micro-architecture.

T3: Stage-In — Impact by the access to data services in data centre. However, if
the platform can make use of caching, proactive pre-fetching or pre-processing
we can reduce the impact of T3 on the overall execution performance.

T4: Container Selection — The workflow that has been defined in T1 specifies
a container that will be executed as well as its version. This version needs to be
fetched from the container repository and later deployed as a job in T5.

T5: Scheduling — The time a job spends in the queue of the compute resource.
This time can vary and will be hard to predict since it is affected by each compute
site’s scheduling system that is not in the scope of the paper. We may however
be able to estimate an upper bound on the queue waiting time that could be
added to the actual runtime prediction.

T6: Execution Time — T6 is the time a job takes from leaving the queue to
finishing its calculations on the compute resource. This time is determined
by the performance and scalability of the application on the selected compute
resource. To predict this time, an application specific performance model is
required.

T7: Stage-Out Strategy — After the job is done, it may have generated large
amounts of output data that needs to be transferred from the compute resource’s
scratch space back to the storage infrastructure. Based on the amount of data
and the specified workflow the data service needs to choose a suitable stage-out
strategy.

9 Building User-friendly Data Transfer Nodes https://www.delaat.net/posters/
pdf/2018-11-12-DTN-SURFnet . pdf
YV Pacific  Research  Platform  https://bozeman-fiona-workshop.ucsd.edu/
materials/20180303-dart-dtn-strategic-asset-vl.pptx/view
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T8: Stage-Out — With the appropriate stage-out strategy the output data now
needs to be transferred to the chosen storage resource.

Figure [3] shows a sequence diagram describing all the steps involved in the ex-
ecution of an application scenario. For each step we define the time corresponding
to its completion as follows:

|
[ [
} I 0
\ Start Job [l
| 1
© Execute Job

| et

|
Mmoo wbcomplere ;

| PROCESS | Data Service | Storage Compute Service | Container Repository | Compute Ressource Scheduler
T T T T T T
+ 1 | | | I | |
al! Configure Workflow | | | I | |
i —] | I I I [ I
] | | | | | |
: Choose Compute : : } } } :
and Storage Site | [ | | | |
| | | I | |
I , | | | | | |
| getinput via 1D | | | | | |
—P
I 1 | | I | |
: ! Data Stage-in ! + 1 1 1 I
] | fid I I I |
I oo - \ | \ I
1 I | I | |
1 | | | | | |
g ---- Dane ____ 4 | | I | |
| | | | |
Execute Worflow | ol [ | |
T l I | |
: ! Select Container ! } l
| | I |
| | Container | |
] Moo I |
| ' | |
| Submit Jol » |
| I |
| schedule Job | *
|
|
|
|
|
|
|
|
|
|

Job Done, Data URI

Figure 3. Sequence diagram describing the steps involved in execution of a typical appli-
cation scenario

Table [2] summarises the various identified times, we will use as performance
measurands.

Using the identified performance measurands listed in Table ] we propose
a three-step approach to the modelling and performance prediction of the PROCESS
infrastructure. First, we will show that the overhead of the PROCESS platform for
a deployment on one site (initializing the micro-infrastructure and scheduling) is
negligible. Second, since the deployment strategy of process is to deploy every
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TX | Name Description

T1 | Configuration Time to configure the workflow for the application

T2 | Deployment Strategy | Time to select appropriate storage and computing
site

T3 | Stage-In Time to transfer data from source to selected stor-
age site

T4 | Container Selection Time to select specified container for the workflow
from repository

T5 | Schedule Time the submitted job spends in queue

T6 | Execution Time Time spent executing the job on the compute re-
source

T7 | Stage-Out Strategy Time to select appropriate storage site for output

T8 | Stage-Out Time to transfer result to storage site

Table 2. Description of our measurands

application containerized, we show the weak scaling capabilities of PROCESS by
deploying multiple containers with a split of the input data on one site. And third,
since the goal is to achieve an exascale system solution, we enable applications to
scale by splitting the data and deploying containers across multiple sites of PRO-
CESS.

We therefore describe three measurement scenarios:

Scenario 1: Single container — single site (Figure [fla)). In this scenario we
measure the execution time of processing the input sequentially within one con-
tainer running. This container uses the maximal possible and available number
of compute resources PROCESS can use at one single site (e.g. use case 2 running
only at one cluster).

Scenario 2: Multiple containers — single site (Figure [b)). In the second
scenario we submit several containers on one cluster. Here, we either expect
a speedup, since the container in Scenario 1 eventually did not fully utilize
compute resources or the same runtime as before, since the overhead to deploy
more than one container in parallel should be minimal.

Scenario 3: Multiple containers — multiples sites (Figure [c)). This last
scenario will deploy several containers in parallel on two different sites with
an also split input data set. We expect a significant speedup since multiple
containers will be deployed on multiple sites.

After evaluating these scenarios and measurements, we will present a generic
performance model that allows to predict the scalability of the PROCESS infras-
tructure for a given application.



Reference Ezascale Architecture 661

(a) Scenario 1 (b) Scenario 2
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Figure 4. Three measurement scenarios: a) Single container — single site, b) Multiple
container — single site, ¢) Multiple container — multiple site. In all three scenarios Stage-In
and Stage-Out will downscale the system overall performances, unless we address the data
transfer over a wide area network.

5.2 Runtime Composition
Based on Figure [f] the total runtime of an application can be defined as follows:

Runtime = Qverhead + DataTransfer + Scheduling + EzecutionTime,
Overhead = T1+T2+T4+T7,
DataTransfer = T3 4+ T8,
Scheduling = T5,

FEzxecutionTime = T6.

The Overhead component contains all overhead directly related to the PRO-
CESS services. This includes selecting the appropriate resources for data access
and compute in the Execution Environment, configuring the micro-architecture of
LOBCDER for data access, fetching the application containers, and submitting the
application to the selected resource using Rimrock.
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To support exascale it is important that this overhead is low per submitted
workflow and does not depend on the scale of the compute resources which are
targeted by PROCESS services. We expect that this overhead component is or-
ders of magnitude smaller than the other components and will therefore be negligi-
ble.

The DataTransfer, Scheduling and FEzxecutionTime components are mostly de-
termined by factors outside of the control of PROCESS services, such as network ca-
pacity, queue waiting times, and how well a workflow performs and scales on a given
resource. Nevertheless, to have an estimate of the data transfer and scheduling de-
lay is useful for selecting a resource to which a workflow should be submitted. If
execution time estimates are available, this selection may be improved further, and
a total runtime estimate may be provided to the user.

The DataTransfer component is mainly determined by two parts: the time
required by Dispel to perform pre-processing of the data (if any), and the time
required to transfer the resulting data volume given the end-to-end transfer capacity
between the storage and compute site. These two components may largely overlap
if the data pre-processing is simple and can be performed on the fly, but for complex
operations this may not be the case.

For the latter part, predicting large long-distance data transfers, a significant
amount of research has been performed in the last two decades. For example, [I0)] de-
scribes a model that predicts end-to-end data transfer times with high accuracy
based on logs of the Globus transfer service. Similarly, much research has been
done on estimating queue waiting times of HPC applications which dominates the
scheduling component. For example, [12] describes a model that provides estimates
with a high degree of accuracy and correctness for a large number of supercomputing
sites.

For PROCESS we will re-use this existing work to provide estimates for both
the data transfer and scheduling components of the model.

Predicting the execution time is highly application specific and must be done
separately for each of the use cases. It may be dependent on input datasets, ap-
plication parameters, number of resources used (number and type of cores, amount
and speed of memory, availability and type of GPUs, etc.).

Strong scalability of the use case applications is expected to be limited well below
exascale, as currently only few applications are able to exploit a petascale level. To
determine the limits of the strong scalability of the use case workflows, traditional
performance benchmarking of the applications can be used for representative input
data sets and parameters. To circumvent limits in strong scalability, we can exploit
weak scalability, where multiple workflows are running at the same time to process
different datasets. However, doing so may shift the bottleneck from the application
to other sources, such as the data service, or local storage on the resources. Such
limits can be discovered by performing weak scalability testing, both on a single site
and multiple sites.

Unfortunately, it requires a large effort to create a complete and accurate model
of the application behaviour for each of the use cases. Although users may be
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willing to perform some testing in advance to tune their application, they are mostly
interested in obtaining application results. Therefore, highly accurate modelling of
the application workflows is not required, instead a rough estimate of the processing
time is generally enough.

We will initially assume the user will provide an estimate for the execution
time, as is customary on HPC systems. At a later stage, this estimate may be re-
fined based on easy to determine parameters, such as input data size and number
of resources used, which may be extracted from the logs of previous runs of the
workflow. A significant amount of research has been done on estimating application
execution time based on limited information. For example, [I3] presents a technique
that predicts application runtimes based on historical information of “similar” appli-
cations. Search techniques are used to automatically determine the best definition of
similarity. In [4], a similar technique is used to fine tune the execution time estimate
provided by the user.

5.3 Benchmark Application

An artificial benchmark workflow will be created which allows configuration of the
different aspects of a workflow, such as the sizes and locations of in- and output data,
pre- or post-processing requirements, the number and type of compute resources
required, the execution time of the application, etc. This benchmark workflow can
be used to test the functionality or the PROCESS services, determine the initial
values of the model, and validate model predictions.

By choosing minimal values for data transfer and execution time (for example
0 bytes and 0 seconds) the lower bound for the runtime can be determined and
the overhead of the PROCESS services can be measured. By submitting large
numbers of such workflows, the scalability of the services themselves can be tested.
By choosing large values for data transfer an initial estimate of the data transfer
capacity between locations can be made.

Similarly, different pre-processing patterns can be tested, ranging from straight-
forward filtering or conversion to more complex operations such as mixing or trans-
positions, to create an initial estimate of the Dispel overhead. By varying the target
resources of the workflow, an initial estimate of the scheduling delays in different
locations can be made.

Once an initial model is available, this benchmark application can be used to
validate it by comparing the error rates of the predictions against actual measure-
ments. This will allow us to iteratively refine the model during the course of the
project.

5.4 Use Case Workflows
As explained above, strong and weak scalability tests may be performed on the use

case workflows to determine the limits to their scalability and the initial parame-
ters of the execution time models. Once these parameters are available, an initial
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execution time model can be created, and its predictions can be verified using the
logs of subsequent workflow runs. Consistently measuring the workflow performance
and selected key parameters (such as input data size and type and number of re-
sources used) allows the model to be refined further. By default, a simple place-
holder model will be used by the PROCESS services. If necessary, a more detailed
use case specific model may be created for a use case and provided upon workflow
submission.

6 EXPERIMENTAL RESULTS
6.1 Overhead Measurements

Due to some integration issues preventing us from using certain resources, the over-
head measurements are performed for scenarios 1 and 2 and are presented together.
The measurements are taken on Prometheus and each value is the average of four
consecutive runs whenever possible. Indeed, not all runs lead to data usable for the
analysis. The benchmarking uses an event-based approach, where the state transi-
tions allow to extract event durations. Because of the polling required to extract the
events, most of the transitions are missed in normal operations, which is good from
a production point of view. Unfortunately, this leads to quite a small set of data
points for most of our performance analyses. Other overhead factors are measured
in addition to T2. The operational conditions of the tests impose frequent polling,
whose consequence is a dither of 4+/—5 seconds in the data, which are plotted in Fig-
ure[5] for T2 or submission delay. The main observation is that, except for an outlier
at container count 96, the overhead is small, almost constant and independent of the
number of containers. Indeed, both the submission and the scheduling delays (see
below) are not under the control of IEE; consequently, some jobs get stuck either
waiting for or in the queue of the job scheduler on the used HPC systems which
leads to occurrences of outliers.

In Figure [fla) (left), the measured values of T2 are grouped by input data
size of 10MB, 100MB, 1GB and 10 GB which are the test input data sizes. We
observe that up to 1 GB, the average value of T2 is quite small with little deviation
from that value. However, for the 10 GB batch, the average value has significantly
increased with a large standard deviation. This is due to the outlier at container
count 96 shown above. A plot without the outlier is shown in Figure [6]b) (right).
We can indeed observe that the average submission delays are close within the
2—-3seconds range. The only reason the 10 G batch is larger is because of an outlier
at container count 96 for this input data size.

We also measure other overhead factors including the initial directory building,
which creates a directory structure to hold the input data and the intermediary
results, and the implicit staging which involves transferring the output of one step
into the input directory of the subsequent step and a clean-up step removing the
above directory structure. While the first and last steps may happen on any data
processing infrastructure, the implicit staging is specific to IEE; consequently, this is
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Figure 5. Submission delay (T2) behaviour in the PROCESS production prototype

type=a type=b

8

submission (T2)(s)
B3

submission (T2)(s)

m - . - - . -
0
10M 10M

100M 1G 106 100M 1G 106
input data size input data size

Figure 6. Submission delay in IEE batched by the input data size

the only one we will consider here. The behaviour of the metric is shown in Figure [7]
below. We observe that the implicit staging is of the same order of magnitude as
T2 but at a generally lower scale.

The cumulative behaviour of T2 and implicit staging is illustrated in the Fig-
ure [§ below. The principal observation is that the global overhead is moderate. It
culminates at 25 s at container count 384.
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Figure 7. Implicit staging overhead behaviour in the PROCESS production prototype
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Figure 8. Overall overhead (T2+implicit staging) behaviour in the PROCESS production
prototype

6.2 Scheduling Measurements

Overhead due to scheduling in IEE is measured as queueing times which are plotted
in Figure [9 in relation with the number of containers. The measurements are taken
in the same conditions as for the overhead and, each measurement is an average of
up to four measurements. We observe that scheduling does not harm PROCESS
performance as its overhead is the order of tens of seconds for most container counts.
A few of the jobs got stuck in the queue, spending there much longer time than
average. The job with container count 192 is one of these.

A complementary explanation of the scheduling behaviours is given in Figure
Just as Figure [J] shows that T5 does not depend on the container count, Figure [I0]
shows it does not depend on the input data size neither. The delay batches for 1 GB
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Figure 9. PROCESS scheduling overhead measurements from IEE

and 10 GB are both lower than that of 100 M, which is where the abovementioned
outlier happens to be.
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Figure 10. Scheduling delay measurements in the PROCESS production prototype
batched by input size

6.3 Staging Measurements

We also evaluate the staging performance, although this is better done with the data
services inside the use cases. However, this gives us a glimpse of their performance
in the IEE context. In the latter, the most interesting is the stage-in duration
(T3) which involves real data transfer using the PROCESS data services, which
we report in Figure [[1l The stage-out depends on the use case and for the test
or validation pipeline it does not involve data services and does not correspond to
any useful output. The obvious note is that T3 does not depend on the container
count, but rather on the input data size. Indeed, although the transfer durations
are almost indistinguishable for up to 1 GB, the transfer duration for 10 GB clearly
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increases. This is expected as transfer time only depends on the input size and

network performance and conditions. The latter is probably responsible for the
important spread at container count 192.
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Figure 11. Staging-in measurements in the IEE production prototype

6.4 Overhead Model and Projection

Using the collected measurement data, we model the behaviour of the platform
overhead using regression analysis to get insight into the data. However, because
of the occurrence of outliers here and there, we do use robust regression to down
weight extreme values. Modelling results for overhead are shown in Figure [[2] The
linear model (equation: overhead (0) = 0.011 * (number of containers (c)) + 20) of
the data shows a very slow variation of the overhead in function of the number of
containers, which is very important for PROCESS scalability. Although the very
small value of the slope implies that the increase is very slow, so we can consider
this overhead as practically constant and independent of the number of containers.
To put this in context, we can confidently assert that the overhead of processing
the entire LOFAR LTA archive (around 1800 observations of 16 TB) would only be
about 40 seconds.

Figure [[2a) (left) plots the residual values for each observation and allows to
check whether the regression model is appropriate for the dataset. If it is, then the
values should be randomly scattered around the value y = 0. As this is what we
observe in Figure b) (right), we are confident that our approach is appropriate.
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Figure 12. PROCESS T2 overhead models

6.5 Scheduling Model and Projection

Similar to the general overhead, we use the measurements in Section 4 to model the
behaviour of the platform scheduling overhead. As illustrated in Figure [I3] the IEE
model shows a moderate variation of the scheduling overhead proportionally to the
number of containers (o = 1.67 % ¢ + 160). The principal observation is that the
scheduling due to PROCESS creates some burden, the latter is moderate and is not
under the control of PROCESS services. Indeed, depending on the resources and
load on the used HPC clusters, some jobs get stuck in the workload management
system queues for unpredictable durations. And the more jobs, the more probable
some will get stuck.

6.6 Data Transfer Model and Projection

In Section [6.3, we showed that the staging performance is independent of the con-
tainer count. This is illustrated by the linear model of the staging delays in function
of the number of containers as a practically horizontal line in Figure [[4]

We know that the staging (in and out) performance depends instead on the
input data size whose linear model is shown below in Figure [[5] The equation of
the shown linear model is T3 = 0.032 * M 4 39 where M is the size of the input data
in MB.

According to the linear model, it would take on average about 359s to trans-
fer 10 GB of data which makes for an average speed of about 27.85 MB/s; at this
speed, it would take 574 506 283 seconds (or 18 years 79 days 9 hours 4 minutes and
43 seconds!) to stage in a full LOFAR observation of 16 TB.
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Figure 13. PROCESS scheduling overhead models in the IEE production prototype

7 CONCLUSION

This paper presents the motivation for the exascale architecture coming from PRO-
CESS use cases. The medical use case represents a computationally intensive ap-
plication requiring accelerated computing. The LOFAR use case requires highly
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Figure 14. PROCESS staging-in delay model in IEE
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Figure 15. PROCESS staging-in delay model in IEE

effective exascale workflows for exascale datasets. The ancillary pricing use case
embodies exascale throughput requirements.

The reference architecture combines several design approaches (e.g. modularity,
service-oriented architectures) with computational paradigms (e.g. high-performance
computing, cloud computing, accelerated computing). Consequently, the reference
architecture is used within the PROCESS project as a blueprint for the PROCESS
architecture.

The paper laid down the foundations for the definition and use of a predictive
model based on clearly defined performance indicators and scenarios. We briefly
reviewed relevant approaches to performance modelling and devised an approach
for PROCESS based on a combination of measurements, micro benchmarking and
analytical modelling.

An analysis of the architectural components clearly identified the performance
indicators or measurands and the scenarios in which they are measured. Then,
the measurands were categorized into overhead, attributable to PROCESS, and
otherwise, including scheduling and staging. The main goal of the predictive model
was to verify that the overhead incurred by the PROCESS services is negligible
compared to the other cost factors and that these services are capable of scaling to
the exascale range.

The performance indicators were measured across different PROCESS service
prototypes and use cases. Each time, the three main categories (overhead, schedul-
ing and staging) of measurands are modelled and projections to the exascale realised.
Our results show that the overhead of the PROCESS platform is generally found
to be low, validating the architectural choices made for the project. The scheduling
overhead is generally shown to be moderate, but out of the control of the PROCESS
project. Finally, the last metric consistently shows that data staging is a bottleneck,
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especially for use cases involving transfer of large datasets such as UC2. This data
transfer performance is highly dependent upon external components such as inter-
connection networks which are out of scope of PROCESS. Solutions for optimising
network performance such as data transfer nodes and FTS are being investigated
and implemented.
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