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Abstract. The article presents performance evaluation of parallel haemodynamic
flow computations on heterogeneous resources of the OpenStack cloud infrastruc-
ture. The main focus is on the parallel performance analysis, energy consumption
and virtualization overhead of the developed software service based on ANSYS Flu-
ent platform which runs on Docker containers of the private university cloud. The
haemodynamic aortic valve flow described by incompressible Navier-Stokes equa-
tions is considered as a target application of the hosted cloud infrastructure. The
parallel performance of the developed software service is assessed measuring the par-
allel speedup of computations carried out on virtualized heterogeneous resources.
The performance measured on Docker containers is compared with that obtained
by using the native hardware. The alternative solution algorithms are explored in
terms of the parallel performance and power consumption. The investigation of
a trade-off between the computing speed and the consumed energy is performed by
using Pareto front analysis and a linear scalarization method.
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1 INTRODUCTION

In spite of noticeable recent achievements in medicine and technology, cardiovascu-
lar diseases are one of the leading causes of death in the world [1]. The heart is
a complex system governed by haemodynamics [2], structural dynamics and elec-
tromagnetics [3, 4]. The efforts to create fully coupled holistic models of the heart
valves have not been applied to a clinical patient-specific base yet. Present-day
in-vivo measurement techniques can only resolve large-scale features of the haemo-
dynamic cardiovascular flows [2]. Despite the progress in the numerical methods
and constantly increasing power of modern computers, the considered problem is still
highly challenging, owing to complex moving geometries, intrinsic flow unsteadiness,
very intense velocity gradients, simulation divergence and mesh dependent numeri-
cal solutions. Most of the performed haemodynamic analyses have been restricted
to non-physiological flow regimes, simplified solution domains, laminar flow simula-
tions and relatively coarse space discretization due to computational challenges [3].
Computational fluid dynamics (CFD) simulations [2, 5] of blood flow in geome-
tries extracted from medical images seem to be well suited for the patient-specific
analysis and are compatible with clinical routine [6]. The required level of detail
makes the patient-specific haemodynamic simulations of heart chambers computa-
tionally very expensive [3]. Naturally, to establish quantitative links between the
aortic valve flow patterns and cardiac disease, parallel computations have become
an obvious option for significantly increasing computational capabilities. Software
for complex biomechanical and haemodynamic computations is usually deployed as
an HPC solution [7].

Cloud computing is a distributed computing paradigm that has recently gained
great popularity as a platform for on-demand, high-availability and high-scalability
access to resources. Generally, clouds provide three levels of services [8]: Software-
as-a-Service (SaaS), Platform-as-a-Service (PaaS) and Infrastructure-as-a-Service
(IaaS). Deployment of the software services (SaaS) for data preparation, high per-
formance computation and visualization on the cloud infrastructure increases the
mobility of users and achieves better exploitation because clouds feature flexible
management of resources. Thus, flexible cloud infrastructures and software services
are perceived as a promising avenue for future advances in the multidisciplinary area
of haemodynamic computations, such as numerical analysis of the patient-specific
aortic valve flows. However, cloud computing still lacks case studies and quantitative
comparison of performance in the case of specific applications. Most of evaluations of
virtualization overhead and performance of cloud services have been based on stan-
dard benchmarks [8], therefore, the impact of the numerical issues and algorithmic
aspects of haemodynamic applications on the performance of parallel computations
remains unclear. The growing demand for cloud services and modern computational
needs results in the development of large-scale IT infrastructures, which cause a con-
siderable increase in power consumption [9]. Power efficiency is a crucial factor in
the cloud computing environment. Green cloud computing is cloud computing with
the efficient use of power, which helps to reduce power consumption and carbon
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emissions. Energy consumption varies significantly depending on the application,
workload, scheduling strategy and virtualization overhead. Power efficiency can be
reduced, when virtualization is used, contrary to physical resource deployment, to
grant all application requests [10]. In cloud computing, the problem of energy-
efficiency is still a challenge mainly because of the variety of applications that need
to be processed on cloud infrastructures and the demand for high performance.

The present article describes the efficiency analysis of parallel numerical al-
gorithms for performance- and energy-aware computations of the haemodynamic
aortic valve flows carried out on Docker containers of the heterogeneous cloud in-
frastructure. The aim of the presented research is to demonstrate that efficient
computations on heterogeneous clouds require the elaborate selection of numerical
solution algorithm and domain decomposition method that are highly dependent
on the considered application. Information provided by the synthetic benchmarks
usually performed on clouds does not include all important factors and it is not suf-
ficient for finding the best hardware setup. Therefore, the application specific tests
need to be performed before the production runs to optimize the parallel and energy
efficiency of computationally demanding applications. Other parts of the article are
arranged as follows: in Section 2, the related works are overviewed and discussed,
Section 3 describes the patient-specific aortic valve problem and Section 4 presents
the hosted cloud infrastructure and the developed software services. The parallel
performance analysis, energy consumption and solution of a bi-objective optimiza-
tion problem are discussed in Section 5, while the concluding remarks are presented
in Section 6.

2 THE RELATED WORKS

Cloud computing is becoming a natural solution to the problem of expanding compu-
tational needs due to its on-demand nature, low-cost and offloaded management [8].
For haemodynamic analysis, cloud computing and Linux containers can offer a con-
venient, scalable alternative to traditional methods of managing computational re-
sources.

There are different implementations of cloud software that organizations can
utilize for deploying their own private cloud. OpenStack is an open source cloud
management platform delivering an integrated foundation to create, deploy and scale
a secure and reliable public or private cloud [11]. Another popular cloud computing
framework, Eucalyptus [12], implements infrastructure services enabling users to run
and control virtual machine (VM) instances across a variety of physical resources.
Cloud computing makes the extensive use of virtual machines (VM) because they
allow workloads to be isolated and the resource usage to be controlled. Xen is primar-
ily a bare-metal, type-1 hypervisor which can be directly installed in the computer
hardware without the need for a host operating system [13]. Kernel Virtual Machine
(KVM) [13] is a feature of Linux that allows Linux to act as a type 1 hypervisor,
running an unmodified guest operating system inside a Linux process. Containers
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present an emerging technology for improving the productivity and code portability
in the cloud infrastructures. Container-based virtualization was initially viewed as
a lightweight alternative to virtual machines. Rather than running a full operat-
ing system on virtual hardware, container-based virtualization modifies an existing
operating system to provide extra isolation. Container runtimes, such as LXC [14]
and Docker [15], largely abstract away the differences between the many operating
systems that users run. In many cases, Docker container images require less disk
space and I/O than the equivalent VM disk images due to the layered file system.
Thus, Docker has emerged as a standard runtime, image format, and build system
for Linux containers. HPC vendors have also begun integrating native support for
Docker. For example, IBM has added Docker container integration to Platform LSF
to run the containers on an HPC cluster [16]. Container computing has revolu-
tionized the way groups are developing, sharing, and running software and services.
Recently, container computing has gained traction in the HPC community through
enabling technologies like Docker, Charliecloud [17] and Singularity [18]. Container
runtimes, such as Singularity and Charliecloud, allow end-users to run containers in
environments, where standard Docker tools would not be feasible. Charliecloud [17]
employs the Linux user and mount namespaces to run industry-standard Docker
containers with no privileged operations or daemons on center resources. Singu-
larity [18] is a novel containerization technology that proposes quickly deployable
and transferable containers without encapsulating an entire OS inside the containers
images. Sauvanaud et al. [19] have investigated performance of big data applica-
tions based on Hadoop, performing scenarios on Singularity and Docker instances.
UberCloud application software containers have provided ANSYS Fluids and Struc-
tures software [20]. However, it is hardly possible to provide precise guidelines
regarding the optimal cloud platform and virtualization technology for each type
of research and application [8]. Moreover, the performance is a critical factor in
deciding whether or not containers are viable for scientific software.

The performance of virtual machines and lightweight containers has already re-
ceived some attention in the academic literature because they are crucial components
of the overall cloud performance. Seo et al. [21] have compared the performance of
containers and virtual machines for non-scientific software stacks deployed in the
cloud. In the research performed by Kačeniauskas et al. [22], the performance of the
private cloud infrastructure and virtual machines of KVM has been assessed test-
ing CPU, memory, hard disk drive, network and the software services for medical
engineering. The measured performance of the virtual resources has been close to
the performance of the native hardware measuring only the memory bandwidth and
disk I/O. Di Tommaso et al. [23] have compared the performance of some commonly
used genetics analysis software running natively and inside a container. Production
load for scientific experiments carried out on Docker containers has been investi-
gated by Mazzoni et al. [24]. Estrada et al. [25] have executed genomic workloads
on the KVM hypervisor, the Xen para-virtualised hypervisor and LXC containers.
Xen and Linux containers exhibited near-zero overhead. In the previous work of the
authors [26], the performance of the developed software services for haemodynamic
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computations was measured on Xen hardware virtual machines, KVM virtual ma-
chines, Docker containers and compared with the performance achieved by using the
native hardware. Most of the discussed performance studies [23, 24, 25, 26] have
found negligible performance differences between a container and a native hardware.

Han et al. [27] have performed MPI-based NAS benchmarks on Xen and showed
that the measured overhead became higher when more cores were added. Strong
and weak scalability of the alternative parallel solvers for the aortic valve flows has
been examined in Rocks cluster [28], but virtualisation overhead and alternative
domain decomposition methods have not been considered. A study [29] on the use
of container-based virtualisation in HPC has revealed that Xen VM was slower than
LXC container by roughly of the factor of 2, while a native server and LXC container
had near-identical performance. Hale et al. [30] have shown that the performance
of Docker containers, when using the system MPI library for parallel solution of the
Poisson’s equation carried out by FEniCS software, was comparable to the native
performance. Mohammadi and Bazhirov [31] have performed the High Performance
Linpack benchmark on cloud computing infrastructures managed by Amazon Web
Services, Microsoft Azure, Rackspace, IBM SoftLayer and demonstrated that the
performance per single computing core on public cloud could be comparable to
modern traditional supercomputing systems. The authors of the present article
have performed the initial MPI-based benchmarks [32] on virtualized resources of
homogeneous OpenStack cloud infrastructure.

The pervasive use of cloud computing and the resulting rise in the number of
hosting centres have brought forth many concerns including the cost of power, as
well as peak power dissipation and cooling. One of the great challenges of cloud in-
frastructures is to manage system resources in an energy-efficient way. In computer
infrastructures, energy-efficiency can be enhanced at three different levels [33], such
as energy-efficient applications, energy-efficient hardware and power-aware resource
management. Energy-efficient applications are developed using the energy-efficient
algorithms [34], special lower level programming techniques, including dynamic volt-
age and frequency scaling [35], data reuse methodology [36], etc. However, manual
tuning of application for higher energy-efficiency remains a time consuming and chal-
lenging task. Low-power CPU, memory and other components of energy-efficient
hardware [37] can effectively support the static power management. The dynamic
power management employs load balancing techniques [38] and power-scalable hard-
ware components [35] to optimize energy consumption. Load balancing methodolo-
gies can be characterized as solving a trade-off between power supply and system
performance. Tseng and Figueira [39] have investigated power consumption of mul-
tithreaded processes on multicore machines and found that energy-optimal config-
uration was usually the most efficient solution in the case of CPU-bounded tasks.
Computations on several multicore nodes, communicating by MPI means, have not
been investigated. Pan et al. [40] have investigated power consumption and execu-
tion time of applications from NAS parallel benchmark suite on a power-scalable
cluster. However, the influence of virtualization layer has not been considered. In
virtualized cloud infrastructures, server consolidation and load balancing are some
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of those techniques that have gained premier importance for power-aware resource
management [41]. Guo et al. [42] proposed heuristic algorithm for dynamic consoli-
dation of heterogeneous VMs based on the analysis of the historical data.

Power models and power management algorithms are necessary for system de-
signers to ensure that an application execution does not exceed the power constraints
of a system. Moreover, performance and energy models are required for application
developers to optimize time and energy consumption. The performance and en-
ergy profiles of real-life scientific applications on modern parallel architectures are
not smooth or monotonous and may deviate significantly from the shapes that al-
lowed traditional and state-of-the-art load balancing algorithms to minimize their
computation time. Lastovetsky and Manumachu [43] have proposed new model-
based methods and algorithms for minimization of time and energy of computations
for general shapes of performance and energy profiles of data parallel applications
observed on the homogeneous multicore clusters. Zhang et al. [44] introduced an
analytical hierarchy process based model to perform the decision-making for virtual
machine migration towards green cloud computing. The bi-objective optimization
problem for performance and energy for data-parallel applications on homogeneous
clusters has been formulated in [45]. Finally, the survey [46] concludes that there
exists no predictive model today truly and comprehensively capturing performance
and energy consumption of the highly heterogeneous and hierarchical architecture of
the modern HPC node. Moreover, computational performance and energy efficiency
of any non-trivial application is highly dependable on its specific features and the
selection of the best suitable numerical methods [47, 48, 49].

To the best of our knowledge, there are no reports in the literature on attempts
to optimize the parallel performance of real-life application on heterogeneous cloud
in terms of both consumed time and energy. The novelty of the presented research
is the extensive efficiency analysis, which evaluates the parallel speedup on hetero-
geneous cloud resources, virtualization overhead, a trade-off between the computing
speed and the consumed energy, performance of the applied domain decomposition
methods and application specific issues of the haemodynamic flows. The presented
study supports and advances the idea that time and energy performance models
need to be built as discrete functions of problem size, approximating the measured
data from application tests on the particular computing architecture. Such discrete
functions can be used as input for the performance and energy optimization of the
considered application on the particular architecture.

3 A TARGET APPLICATION

The aortic valve has a complex 3D geometry, which is composed of three leaflets and
Valsalva sinuses connected together through the commissures. The patient-specific
aortic valve geometry was represented by the developed 3D geometric model [50]
constructed from the parametric curves according to the obtained patient-specific
geometric parameters. The 3D images of the aortic valve of a human subject were
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obtained by using the computer tomography equipment GE LightSpeed VCT in the
Cardiology and Angiology Centre of Vilnius University Hospital “Santaros Klinikos”.
The Medical Imaging Interaction Toolkit (MITK) [51] was employed to extract
the geometric parameters of the aortic valve from the obtained DICOM images
(Figure 1). Finally, the geometric model constructed according to the obtained
patient-specific geometric parameters was imported into the ANSYS Workbench for
mesh generation.

Figure 1. Extraction of the geometric parameters from DICOM images

The pulsatile flow of viscous incompressible fluid is described by the Navier-
Stokes equations [52] solved by the finite volume method. The systolic phase of the
cardiac cycle was simulated by applying at the inlet a time-dependent velocity of
the plug flow based on the clinical Doppler measurements. The measured velocity
reached the maximal value of 1.44 m/s during the phase of the peak systole t = 0.14 s,
while the simulation time interval of 0.36 s was considered. All simulations started
from a zero initial condition and the prescribed inflow was accelerated according
to the measured waveform. The no-slip boundary conditions were prescribed for
velocity on the aorta walls and leaflet surfaces. On the outlet, the prescribed pressure
and zero velocity gradient normal to the boundary were applied. The turbulence
intensity of 5 % and the hydraulic diameter equal to 0.018 m were specified on the
inlet. The density of the blood was set to ρ = 1 060 kg/m3. The dynamic viscosity
coefficient was µ = 0.004028 kg/ms. Other details of the applied numerical model
and references can be found in [53, 54].

Figure 2 shows flow vortices, illustrating the complexity of the 3D flow pattern
at t = 0.1636 s in the aortic sinuses. Figure 2 a) presents the results obtained by
using the k− ε turbulence model [53], while Figure 2 b) shows the data obtained by
using the k − ω turbulence model [53]. The velocity field was visualized by using
the streamlines coloured according to the pressure field. The developed vortices are
detached and move downstream in the ascending aorta as the flow starts to decel-
erate after passing the phase of the peak systole. It is worth noting that different
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a) k − ε turbulence model b) k − ω turbulence model

Figure 2. Flow vortices at t = 0.1636 s in the aortic sinuses

vertex patterns can be obtained by using different turbulence models. The previous
research [54] had shown that the high Reynolds number k− ε turbulence model sig-
nificantly smoothed the vortex field. Thus, the shear-stress transport (SST) k − ω
model [53] is considered for the developed software service because it is more suit-
able for the simulation of relatively low Reynolds number turbulent flows past aortic
valve. Moreover, it can be concluded that the considered benchmark is rather com-
plex from the numerical point of view.

The way of coupling between the velocity and pressure is an essential part of
any numerical scheme for the solution of Navier–Stokes equations [52]. There are
two main strategies to perform the velocity-pressure coupling, either a segregated
or a coupled approach. In the segregated approach, equations for all variables in
the system are decoupled by using the fixed known values from the last iteration of
the other independent variables. The linear systems obtained after the discretiza-
tion can be solved separately for all variables. This approach has the advantage
of yielding small storage requirements and systems amenable to solution by clas-
sical iterative methods because of the standard structure and properties of system
matrices. Unfortunately, suppressed interlinkage between the partial differential
equations results in serious drawbacks, such as convergence deterioration and the
need for under-relaxation. The drawbacks of segregated schemes and tremendous
increase in the available computer memory have stimulated the search for coupled
solution algorithms [55]. The idea is to solve discretized momentum and pressure-
based continuity equations together in one system of linear equations. Retaining
the coupling between the momentum and pressure equations promotes the stability
and accelerates the convergence rates. Application of the coupled scheme is advised
when the quality of the mesh is poor, non-linear iterations are very expensive due
to the time-consuming physical models for constitutive relations, or if larger time
steps are required. However, for significantly reduced number of outer iterations of
coupled scheme, we pay a price with a solution of four times larger systems of linear
equations with non-standard matrices. There is a danger that the advantage of the
higher convergence rate will be countered by the increase in computational time in-
curred in the solution of the enlarged system of equations. Thus, the coupled [55, 5]
and PISO [56] schemes were considered as the alternative algorithms to investigate
the performance of the developed software service.
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Simulations of the turbulent aortic valve flows are time consuming, therefore,
parallel computations have become an obvious option for significantly reducing com-
puting time. Domain decomposition approach and message passing technology were
used for parallel computations performed by ANSYS Fluent. The default option of
MPI library employed by ANSYS Fluent was IBM Platform MPI 9.1.4.2. Communi-
cation pattern was highly influenced by the applied domain decomposition method
because each process, working on its subdomain, mostly communicates with pro-
cesses, working on neighbouring subdomains. The most often the domain decom-
positions were performed by ParMETIS library. However, the alternative Cartesian
axes and cylindrical z-coordinate methods were also considered. Solving the largest
benchmark problem of 3.2 million cells on 5 nodes (20 cores) and performing the
domain decomposition by ParMETIS, 227 MB and 405 MB were transferred during
one iteration in the case of the coupled and PISO solution algorithms, respectively.
55 388 MB and 58 320 MB were transferred during the whole test run in the case of
the coupled and PISO schemes, respectively. The peak memory consumption of the
largest benchmark problem solved on one node reached 11.5 and 9.0 GB, in the case
of the coupled and PISO schemes, respectively. In the case of the largest benchmark
problem of 3.2 million finite volumes solved on 5 nodes (20 cores), the averaged CPU
utilization was equal to 99.84 % and 99.25 % for the coupled and PISO solution al-
gorithms, respectively. Thus, the initial investigation showed that performance of
haemodynamic computations might depend on the numerical solution algorithm,
the number of used nodes (cores) and the applied domain decomposition method.

4 CLOUD INFRASTRUCTURE AND THE DEVELOPED
SOFTWARE SERVICES

The university private cloud infrastructure based on OpenStack Stein version [11]
is hosted in Vilnius Gediminas Technical University. The deployed capabilities of
the OpenStack cloud infrastructure include Compute Service Nova, Networking
Service Neutron, Image Service Glance, Identity Service Keystone, Object Stor-
age Service Swift and Block Storage Service Cinder. The Ubuntu 18.04.3 LTS re-
lease was installed in the host nodes. Linux containers were managed with Docker
19.03.2, which created an abstraction layer between computing resources and the
services using them. The containers had the following characteristics: 4 cores,
31.2 GB RAM, 80 GB HDD and Ubuntu 18.04.3 LTS release. The cloud infras-
tructure is composed of several different types of nodes connected to 1 Gbps Eth-
ernet LAN. Hardware characteristics of faster nodes hosting the containers are
listed below: Intel®Core i7-6700 3.40 GHz CPU (4 cores), 32 GB DDR4 2 133 MHz
RAM and 1 TB HDD. Hardware characteristics of slower nodes are listed below:
Intel Core i7-4790 3.60 GHz CPU (4 cores), 32 GB DDR3 1 866 MHz RAM and
1 TB HDD.

The OpenStack cloud IaaS provides the platforms to develop and deploy soft-
ware services called SaaS (Figure 3). In the developed cloud infrastructure, only
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Figure 3. The layers of cloud services

one virtualization layer is used to limit virtualization overhead. In the considered
implementation, OpenStack executes and manages Docker containers on bare metal
nodes. The cloud infrastructure is managed by using jclouds API [57] providing
unified access to EC2 services. The jclouds API binds HTTP/REST services to
synchronous and asynchronous Java APIs. Moreover, jclouds API supports 30 cloud
providers and cloud software stacks offering high portability. A user-friendly Cloud
Manager [26] has been developed by using jclouds. Monitoring of the running in-
stances, volumes and images is available for the user. SaaS jobs can be run by
the developed launchers and monitored by the Cloud Manager. The platform as
a service was provided on the basis of the popular numerical modelling software
ANSYS Fluent [53], which was widely used by researchers and engineers to solve
various CFD applications. ITK [58] was deployed on cloud infrastructure as PaaS
for developing medical image processing applications. ITK is a cross-platform,
open-source application development framework widely used for the development
of image segmentation and image registration software. ITK employs leading-edge
algorithms for registering and segmenting multidimensional data. A lot of soft-
ware tools and environments have been developed by using ITK to segment struc-
tures in 3D medical images. A Visualization Toolkit (VTK) [59] is deployed as the
platform for developing visualization software. The academic numerical software
developed by the university researchers usually lacks the required visualization ca-
pabilities, therefore, a wide variety of visualization algorithms provided by VTK can
fill this gap in the cloud infrastructure. The applications of the discussed toolkits
are platform independent, which is very attractive for heterogeneous cloud architec-
tures.

The SaaS layer contains software services developed on top of the provided plat-
forms (Figure 3). Software services were provided for performing medical image
segmentation to obtain the patient-specific geometry and to prepare the patient-
specific model of the aortic valve. The medical image segmentation was performed
and geometric parameters were obtained by using the MITK [51], which was based
on the ITK platform, but also used VTK. The software service ValveFlows was
developed by using ANSYS Fluent for computations of the patient-specific aortic



Performance Evaluation of Haemodynamic Computations on Heterogeneous Clouds 705

valves [26]. Computational results were visualized using the open-source ParaView
software [60] and the cloud visualization service VisLT [61] deployed on top of the
VTK platform. VisLT was supplemented with the developed middleware compo-
nent, which could reduce the communication between different parts of the cloud
infrastructure.

5 THE ANALYSIS OF PARALLEL PERFORMANCE
AND ENERGY CONSUMPTION

The presented analysis aims at investigating the parallel performance and energy
consumption of the developed software services for haemodynamic flow computa-
tions on Docker containers managed by the OpenStack cloud infrastructure. Ini-
tially, the considered benchmarks were solved on 5 nodes with 4 cores each, which
resulted in homogeneous virtual architecture of 5 Docker containers using 20 cores.
3 slower nodes with 4 cores each were added to perform computational experiments
on heterogeneous virtual resources, which resulted in 8 containers using 32 cores.
The following subsections present the results of the performed research on virtual-
ization overhead, parallel performance, the influence of the applied domain decom-
position methods, power consumption, energy-efficiency and a trade-off between the
computing time and the consumed energy.

5.1 Execution Time and Virtualization Overhead

First, the computational performance of the considered numerical algorithms and
overhead induced by the virtualization were investigated. The benchmark problem
was solved on 8 heterogeneous containers (8 nodes, 32 cores) using discrete meshes
of the increasing size of 0.8, 1.6 and 3.2 million cells. In Figure 4 a), execution
times obtained solving the benchmark on the OpenStack cloud are presented. In
accordance with our previous findings [28], the solution times obtained by using
the PISO numerical algorithm (P08, P16, P32) were shorter than those attained by
using the coupled numerical algorithm (C08, C16, C32).

In the present research, the size of virtualization overhead was also investigated.
In Figure 4 b), the percentage difference in performance between the native hard-
ware and the Docker containers is presented. It can be observed that the relative
time difference is smaller than 1 % for tests on one and two nodes, i.e. using 1, 4
and 8 processes. These findings are consistent with the results reported in the liter-
ature [23, 24, 26] and confirm the low overhead of the employed Docker containers.
However, the growth of the virtualization overhead can be observed, when the num-
ber of nodes for the solution of the fixed size problem is increased. It is worth noting
that the overhead obtained by using the coupled numerical algorithm is consistently
bigger. These effects were caused by the increasing part of the communication time
in the overall solution time. For the increasing number of parallel processes, the la-
tency of the network communication becomes more and more important, especially,
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a) execution time

b) virtualization overhead

Figure 4. The performance of the developed cloud software service

for smaller size problems. On average, the measured latency of the native network
was 17.5µs, while that of the virtual network was 23.0µs, which revealed 24 % la-
tency increase. The increased latency of a virtual network has also been reported
in the literature [22].

5.2 Parallel Performance

At the next stage, the parallel scalability and efficiency of the considered algo-
rithms were studied by performing computations on heterogeneous cloud infrastruc-
ture.

In Figure 5, the parallel scalability results obtained on 5 faster homogeneous
nodes (20 cores totally) are presented. The parallel scalability is evaluated by using
parallel speedup values Sp = T1/Tp, where T1 and Tp are execution times measured
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Figure 5. Speedup of parallel computation on homogeneous resources

by solving the benchmark problem with 1 and p processes, respectively. It can be
observed that the parallel PISO algorithm demonstrated significantly higher parallel
scalability and efficiency than the parallel coupled algorithm. As could be expected,
the parallel performance metrics (speedup and efficiency) were greater for a bigger
problem. This is in accordance with the theory of parallel algorithms. Noticeably,
the difference is more significant for the PISO algorithm, as the performance of the
coupled algorithm is bounded by the capacity of the network even for the problems
of a larger size. The parallel PISO algorithm shows even super-linear speedup due to
the cache effects associated with smaller working data sets for a fixed size problem
and the increasing number of the employed cores. It is interesting to note that, in
this study, the measured parallel performance metrics are much better than those
obtained in the previous research on OpenFOAM-based parallel solvers [47, 62].

In the present research, parallel computation tests were performed using virtu-
alized heterogeneous resources by adding up to 3 slower nodes. The performance
of the slower nodes was 12 % and 20 % lower according to Linpack and ValveFlows
benchmarks, respectively. Figure 6 presents the parallel speedup values measured
using heterogeneous cloud resources (8 nodes, 32 cores). The sequential time mea-
sured on one faster core is considered for calculation of speedup values. The largest
problem with 3.2 million cells was solved by using the coupled (Figure 6 a)) and
PISO (Figure 6 b)) algorithms. It is well-known that the parallel performance of
this type of numerical algorithms largely depends on the quality of the domain de-
composition. The domain decomposition method should not only ensure the load
balance between the parallel processes, but also minimize the amount of communi-
cations between the neighbouring regions. In this work, the performance of three
domain decomposition methods was investigated. The applied method from the
well-known ParMETIS library (the curve “Metis” in Figure 6) is based on the
parallel multilevel multiconstraint k-way graph partitioning [63]. The Cartesian
axes method (the curve “Cart” in Figure 6) uses the bisection of the domain per-
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a) The coupled algorithm

b) The PISO algorithm

Figure 6. Speedup of parallel computation on heterogeneous resources

pendicular to all coordinate axes [53]. The cylindrical z-coordinate method (the
curve “Cyl-z” in Figure 6) bisects the domain only along the z cylindrical coordi-
nate [53].

It is worth noting that the performance results of all three domain decomposi-
tion methods were quite similar up to 20 cores (5 homogeneous nodes). However,
the addition of the first slower node was not beneficial. On the contrary, it caused
the decrease in the speedup, i.e. the increase in the solution time, which was sig-
nificant in most of the cases. This observation once more illustrated the critical
dependence of considered parallel application on the network performance. It also
should be noted that slower nodes are not only computationally slower, but have
42.5 % higher virtual network latency (40.0µs instead of 23.0µs) as well. However,
overall performance increase can be achieved by adding 2 or 3 slower nodes. In
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this case, the heterogeneous nodes made 37.5 % of all resources, and a considerable
increase in speedup values was achieved.

The heterogeneous load was evaluated, assigning the relative weights to the
slower cores in the cases of using the Cartesian axes and the cylindrical z-coordinate
methods. The parallel performance was improved, but the observed increase in the
speedup was not significant (the curves “Cart-W” and “Cyl-z-W” in Figure 6). Par-
allel computations, using the domain decomposition performed by Metis, revealed
higher speedup values. Thus, the most important factor was the ability of the mul-
tilevel graph partitioning method to reduce the amount of communication between
the neighbouring regions in the case of a larger number of processes, the increased
data transfer and higher network latency.

5.3 Power Consumption

Figure 7 presents the averaged values of the consumed power in watts measured
by performing a synthetic CPU benchmark (the curve “CPU”), a synthetic mem-
ory benchmark (the curve “MEM”), the computations based on the coupled al-
gorithm (the curve “C32”) and the computations based on the PISO algorithm
(the curve “P32”). The power was measured by using the EnerGenie energy meter
EGM-PWM-LAN. The representative computational experiments were performed
10 times, and the standard deviations were computed. The results obtained by solv-
ing the benchmark problem with 3.2 million cells on 8 heterogeneous nodes (32 cores
totally) are shown in Figure 7. In agreement with our previous findings, power mea-
surements demonstrated that the PISO algorithm was better in utilizing the CPU
cores, i.e., it was more CPU-intensive than the coupled algorithm. Consequently,
the software service ValveFlows based on the PISO algorithm consumed more power
per fixed time interval, but solved the considered benchmark faster (Figure 4 a)).
The power difference became noticeable, when 8 processes (2 nodes) were employed.
However, it stabilized at around 20 W on average and did not grow further, in-
creasing the number of the employed nodes, as could be expected from the growing
differences in computational performance (Figures 5 and 6).

In Figure 7 b), the effects of heterogeneity are highlighted by showing the extrap-
olated power consumption levels for homogeneous hardware (the curves “CPU-H”,
“MEM-H”, “C32-H” and “P32-H”). These results show that slower nodes are also
less energy-efficient, which is in agreement with the values of thermal design power
provided by the CPU manufacturer. All these findings raise the question, whether
the observed increase in power consumption for the PISO algorithm and heteroge-
neous setup is compensated by the obtained computational performance gains, i.e.
the reduction in the execution time. Such questions will be addressed in terms of
energy-efficiency in the next section.

Another important problem associated with the influence of virtualization on the
changes in power consumption was also addressed in the present research. Figure 8
shows the relative difference in power consumption between the native hardware
and the OpenStack cloud, running the considered software based on the coupled
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a) The global view

b) The zoomed view with highlighted effects of heterogeneity

Figure 7. Power consumption

algorithm. Up to 0.6 % difference could be observed in the results of the performed
benchmark. It is worth noting that the differences declined, when the number of
employed cores was increased. As can be seen from Figure 7 a), utilization of cores
decreased in comparison with the CPU benchmark and, consequently, the influence
of the virtualization on power consumption also declined. The standard deviation
was equal to 0.11 % and 0.08 % of the presented averaged values in the case of
1 node (4 cores) and 8 nodes (32 cores), respectively. Thus, the standard deviation
was smaller than the observed difference in power consumption between the native
hardware and OpenStack cloud in all considered cases.
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Figure 8. The percentage difference in power consumption between the native hardware
and the OpenStack cloud

5.4 Energy-Efficiency

Using the results given in the previous sections, the best solution algorithm and
hardware setup in terms of the overall energy consumption can be found. The
consumed energy E, required to solve the considered problem, was computed as

E = P · Texec (1)

where P is the average power and Texec is the solution time. The consecutive energy
change ∆E, increasing the number of the employed cores (pi = 1, 4, · · · , 32), was
calculated by the formula

∆E = Epi−1
− Epi (2)

where Epi−1
is the energy required for the solution of the considered problem on

pi cores. The values of the consumed energy (1) are shown in Figure 9 a). It can be
observed that the parallel PISO algorithm consumed significantly less energy than
the parallel coupled algorithm. Thus, the PISO algorithm is superior in terms of
computational performance and energy-efficiency because less energy is required in
spite of a slightly higher instant power consumption.

As concerns the best hardware setup, the situation is more complicated. Fig-
ure 9 b) presents the values of the consecutive energy change calculated by the
formula (2). In terms of energy-efficiency, the most significant consecutive change
in the consumed energy occurs, when all 4 cores of a single node are used. The
observed energy reduction is equal to 45.1 % and 62.3 %, in the case of the largest
problem with 3.2 million cells, solved by using the coupled algorithm and the PISO
algorithm, respectively. This finding is in agreement with the current trends in the
design of modern processors, which is motivated by higher energy-efficiency. Further
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a) energy

b) consecutive energy change

Figure 9. Energy consumption

analysis of the presented results reveals a significant jump in energy consumption
for the heterogeneous setup with one slower node, which is caused by the above-
discussed performance degradation (Figure 6). However, in most of the cases, the
increase in energy consumption for 8, 12, 16, and even 20 processes, is not signif-
icant. The question arises, whether it is rational to choose the optimal hardware
setup as a case of minimal energy consumption, when it is known that the additional
nodes cause a significant reduction in the solution time. To answer this question,
a bi-objective optimization problem needs to be considered.

5.5 The Solution of a Bi-Objective Optimization Problem

The choice of the optimal hardware setup needs to be taken in the presence of two
conflicting objectives or criteria: the solution time T and the consumed energy E.
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This bi-objective optimization problem can be formulated as follows:

min
pi∈X

(T (pi), E(pi)) (3)

where X = {1, 4, 8, 16, 20, 24, 28, 32} is the set of feasible solutions. There are many
different approaches to deal with multi-objective optimization problems. For non-
trivial problems, no single solution exists, which simultaneously minimizes each
objective. A common approach is to find the Pareto optimal solutions, i.e., the so-
lutions that cannot be improved in any of the objectives without degrading at least
one of the objectives. The set of the Pareto optimal solutions is often called the
Pareto front. For the formulated bi-objective optimization problem (3), the Pareto
optimal solutions can be found from the scalar plot shown in Figure 10.

a) the problem with 1.6 million cells

b) the problem with 3.2 million cells

Figure 10. Pareto fronts, considering energy and computing time as objectives
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Figure 10 demonstrates a clear domination of the parallel PISO algorithm over
the parallel coupled algorithm. The hardware setup with just one slower node
(pi = 24) is not the Pareto optimal in all presented cases. This result can be
expected from the previous analysis. It is worth noting that the homogeneous setup
with three fast nodes (pi = 12) is not the Pareto optimal in all four cases either.
This finding can be explained by a relatively less successful domain decomposition
produced by Metis for this number of processes. In terms of Pareto optimality,
all other hardware configurations cannot be excluded in all the considered cases ei-
ther. Other approaches, including subjective preferences of a decision maker, should
be considered to find a single solution to the formulated problem. Scalarization
can be considered as a popular approach to solve a multi-objective optimization
problem. The idea is to convert the original problem with multiple objectives to
a single-objective optimization problem, which is referred to as a scalarized prob-
lem. A proper scalarization method ensures the Pareto optimality of the obtained
solutions. In the case of the considered bi-objective optimization problem, linear
scalarization can be defined as follows:

min
pi∈X

(ωT T̂ (pi) + ωEÊ(pi)) (4)

where ωT and ωE are the weights of the normalized solution time objective T̂ (pi) and

the normalized consumed energy objective Ê(pi), respectively. The parameters of
the scalarization, ωT and ωE, are set by a decision maker, but should satisfy simple
conditions: ωT + ωE = 1, 1 ≥ ωT ≥ 0 and 1 ≥ ωE ≥ 0.

Figure 11. The application of linear scalarization method with various weights

The results of linear scalarization of the considered bi-objective optimization
problem (4) are shown in Figure 11. In the case of the largest problem with 3.2 mil-
lion cells solved by using the coupled algorithm, the curves TE-C32, T-C32 and
E-C32 represent the objective functions, with equal, solution time- and energy-
oriented weights, respectively. Other curves, TE-P32, T-P32 and E-P32, represent
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the objective functions of the same problem solved by the PISO algorithm. Thus,
three representative sets of weights were considered in the work. The equal weights
(ωT = ωE = 0.5) resulted in optimal configurations based on 16 and 20 cores for
the coupled algorithm and the PISO algorithm, respectively. The energy-oriented
weights (ωT = 0.2, ωE = 0.8) gave the optimal hardware configuration based on
8 cores for both numerical algorithms. On the contrary, the solution time-oriented
weights (ωT = 0.8, ωE = 0.2) revealed the optimal configurations based on 20 homo-
geneous and 32 heterogeneous cores for the PISO algorithm and the coupled algo-
rithm, respectively. Various optimal hardware configurations obtained for different
numerical algorithms proved that the considered bi-objective optimization problem
was not trivial even for a simple set of hardware configurations and revealed some
challenges for decision-makers.

6 CONCLUSIONS

In this article, parallel performance and energy consumption analysis of the haemo-
dynamic computations performed using Docker containers of the heterogeneous
OpenStack cloud infrastructure is presented. Based on the performed investigation,
some observations and concluding remarks may be drawn as follows:

• Virtualization layer reduced computational performance of the developed soft-
ware services by less than 1 % in the case of one or two nodes used. Increasing the
number of the employed nodes caused an increase in the virtualization overhead
to 4.6 % of the benchmark time on the native hardware due to higher latency of
the virtual network.

• The employed virtualization has not significant influence to power consumption
of the performed computations. The largest measured difference was less than
0.6 % of the power consumed by running the benchmark on the native hard-
ware.

• The parallel PISO algorithm demonstrated significantly higher computational
performance and better parallel scalability than the parallel coupled algorithm
for the computations of the considered haemodynamic flows.

• Power measurements demonstrated that the PISO algorithm was more CPU
intensive and consumed more power per fixed time interval than the coupled
algorithm. However, the consumed energy analysis revealed that the PISO al-
gorithm required less energy to solve the considered problems due to higher
computational performance.

• The minimal amount of energy is required to solve the considered problems
using a single node with all cores employed. Energy consumption slightly in-
creased with the increasing number of the employed nodes until the degradation
of parallel performance became significant. The largest increase in the consumed
energy could be observed, when the first slower node was employed.
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• Bi-objective optimization based on Pareto front analysis or using the linear
scalarization method could help to solve a trade-off between the computing time
and the consumed energy.

• The Pareto front analysis helped to detect inefficient hardware configurations.
The heterogeneous setup with a single slower node and the homogeneous setup
with less successful domain decomposition to 12 parts were not the Pareto op-
timal in all the considered cases.

• In the case of the considered application, linear scalarization with weights sug-
gested completely different hardware configurations for various subjective pref-
erences of a decision-maker.

• The conducted study demonstrated great challenges to the efficient use of the
heterogeneous cloud resources by the developed software service in the case of
the considered application. Optimal hardware configurations for single parallel
jobs were highly dependent on the network properties, the numerical algorithm
and the results of the applied domain decomposition method.

• The performed research has revealed that standard benchmarks can hardly pro-
vide comprehensive information required for time- and energy-efficient schedul-
ing of parallel haemodynamic computations. The preliminary specific bench-
marks are required to evaluate the parallel performance of the developed soft-
ware services and algorithmic aspects of the considered application.

REFERENCES

[1] Mendis, S.—Puska, P.—Norrving, B. (Eds.): Global Atlas on Cardiovascular
Disease Prevention and Control: Policies, Strategies and Interventions. World Health
Organization, World Heart Federation, World Stroke Organization, Geneva, 2011.

[2] Moosavi, M.-H.—Fatouraee, N.—Katoozian, H.—Pashaei, A.—Cama-
ra, O.—Frangi, A. F.: Numerical Simulation of Blood Flow in the Left Ventricle
and Aortic Sinus Using Magnetic Resonance Imaging and Computational Fluid Dy-
namics. Computer Methods in Biomechanics and Biomedical Engineering, Vol. 17,
2014, No. 7, pp. 740–749, doi: 10.1080/10255842.2012.715638.

[3] Marom, G.: Numerical Methods for Fluid-Structure Interaction Models of Aortic
Valves. Archives of Computational Methods in Engineering, Vol. 22, 2015, No. 4,
pp. 595–620, doi: 10.1007/s11831-014-9133-9.
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720 O. Bystrov, A. Kačeniauskas, R. Pacevič, V. Starikovičius, A. Maknickas et al.

[44] Zhang, L.—Ma, J.—Liu, T.—Wang, Y.—Lu, D.: AHP Aided Decision-Making
in Virtual Machine Migration for Green Cloud. Computing and Informatics, Vol. 37,
2018, No. 2, pp. 291–310, doi: 10.4149/cai 2018 2 291.

[45] Manumachu, R. R.—Lastovetsky, A.: Bi-Objective Optimization of Data-
Parallel Applications on Homogeneous Multicore Clusters for Performance and En-
ergy. IEEE Transactions on Computers, Vol. 67, 2018, No. 2, pp. 160–177, doi:
10.1109/TC.2017.2742513.

[46] O’Brien, K.—Pietri, I.—Reddy, R.—Lastovetsky, A.—Sakellariou, R.:
A Survey of Power and Energy Predictive Models in HPC Systems and Applica-
tions. ACM Computing Surveys, Vol. 50, 2017, No. 3, Art. No. 37, pp. 1–38, doi:
10.1145/3078811.

[47] Duran, A.—Celebi, M. S.—Piskin, S.—Tuncel, M.: Scalability of OpenFOAM
for Bio-Medical Flow Simulations. The Journal of Supercomputing, Vol. 71, 2015,
No. 3, pp. 938–951, doi: 10.1007/s11227-014-1344-1.
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