
Computing and Informatics, Vol. 39, 2020, 724–756, doi: 10.31577/cai 2020 4 724

PROCESS DATA INFRASTRUCTURE
AND DATA SERVICES

Reginald Cushing, Onno Valkering

Institute of Informatics, University of Amsterdam
Amsterdam, Netherlands
e-mail: {r.s.cushing, o.a.b.valkering}@uva.nl

Adam Belloum

Institute of Informatics, University of Amsterdam
Amsterdam, Netherlands
&
Netherlands eScience Center
Science Park 140, 1098 XG Amsterdam, The Netherlands
e-mail: a.s.z.belloum@uva.nl

Souley Madougou

Netherlands eScience Center
Science Park 140, 1098 XG Amsterdam, The Netherlands
e-mail: s.madougou@esciencecenter.nl

Martin Bobak, Ondrej Habala, Viet Tran

Institute of Informatics, Slovak Academy of Sciences
Dúbravská cesta 9, 845 07 Bratislava, Slovakia
e-mail: {martin.bobak, ondrej.habala, viet.tran}@savba.sk

Jan Meizner, Piotr Nowakowski

UCC Cyfronet AGH
AGH University of Science and Technology Krakow, Poland
e-mail: {j.meizner, p.nowakowski}@cyfronet.pl

Process Data Infrastructure and Data Services 725

Mara Graziani, Henning Müller

University of Applied Sciences of Western Switzerland
HES-SO Valais, 3960 Sierre, Switzerland
&
Department of Computer Science, University of Geneva
1227 Carouge, Switzerland
e-mail: {mara.graziani, henning.mueller}@hevs.ch

Abstract. Due to energy limitation and high operational costs, it is likely that
exascale computing will not be achieved by one or two datacentres but will require
many more. A simple calculation, which aggregates the computation power of the
2017 Top500 supercomputers, can only reach 418 petaflops. Companies like Rescale,
which claims 1.4 exaflops of peak computing power, describes its infrastructure as
composed of 8 million servers spread across 30 datacentres. Any proposed solu-
tion to address exascale computing challenges has to take into consideration these
facts and by design should aim to support the use of geographically distributed
and likely independent datacentres. It should also consider, whenever possible,
the co-allocation of the storage with the computation as it would take 3 years to
transfer 1 exabyte on a dedicated 100 Gb Ethernet connection. This means we
have to be smart about managing data more and more geographically dispersed
and spread across different administrative domains. As the natural settings of the
PROCESS project is to operate within the European Research Infrastructure and
serve the European research communities facing exascale challenges, it is important
that PROCESS architecture and solutions are well positioned within the European
computing and data management landscape namely PRACE, EGI, and EUDAT. In
this paper we propose a scalable and programmable data infrastructure that is easy
to deploy and can be tuned to support various data-intensive scientific applications.

Keywords: Exascale data management, distributed file systems, microservice ar-
chitecture

1 INTRODUCTION

We see application of HPC in both the scientific domain and industry: ranging from
modeling global climate phenomenon to designing more efficient drugs. The state
of the art in HPC is at the petascale (in the order of 1015 FLOPS), first achieved in
2008 [33]. However, we now see an enormous increase in the size of commercial and
scientific datasets. Consequently, it is likely that the current petascale technologies

726 R. Cushing, O. Valkering, A. Belloum, S. Madougou, M. Bobak, O. Habala et al.

will not be able to handle this and that we will require new solutions to prepare our-
selves for the next milestone: exascale computing (1018 FLOPS). Exascale systems
are expected to be realized by 2023 and will likely comprise of 100 000 interconnected
servers; simply scaling up petascale solutions will likely not suffice [35]. Evidently,
this raises many challenges in how the required hardware but also how to design
applications that can make use of that many computing nodes. However, what is
relevant for this paper is how the large volumes of data involved will be stored. Ex-
ascale systems will need novel Distributed File Systems (DFS), sufficiently scalable
to accommodate for established DFS solutions.

The capacity of storage devices has been ever growing since the inception of the
first hard disk drives (HDDs) more than 60 years ago. State-of-the-art technology
currently limits HDD storage capacity for a single device at around 10 TB, with
technology to support 100 TB HDDs expected by 2025 [36, 37]. However, many
modern applications deal with data sets sized beyond what fits on a single ma-
chine or server. Moreover, these applications potentially require varying degrees of
performance, availability and fault-tolerance. Applications are becoming more dis-
tributed in nature by pulling data from several different locations as in sensory data
or by distributing computation to different locations as in edge computing applica-
tions. To facilitate this, we have to use a distributed data management system. The
distributed data management system (DDMS) integrates into different file systems
administered by different domains with the aim of creating a unified view of the
user’s data across administrative, geographic and technology borders.

In the PROCESS project, we proposed and developed a scalable and pro-
grammable data architecture that can be configured to best fit the data commu-
nication patterns of a given application and can be easily deployed. To achieve this
goal, the PROCESS approach is to create a thin programmable layer on top of other
established file systems with the aim to facilitate movement and pre-processing of
data while minimizing state management so as to scale better. In order for the
DDMS to actually manage data stored on multiple servers, these servers will have
to communicate with each other over a network. Here, protocols used between any
two servers could be customized and optimized for performance or any other at-
tribute. From a design perspective, there are three properties that are desirable for
a DDMS, namely: transparency, fault tolerance and scalability [39]. Transparency
means that ideally the complexity of the distributed system should be abstracted
away through the use of APIs. Fault tolerance means that in the event of a transient
server failure (e.g. a failing HDD) or partial network failure (i.e. network partition)
the system should continue to function, ideally without any compromising of data
integrity. Lastly, scalability means that the system is able to withstand high load
and allow for new resources (such as servers) to be integrated into the system with
relative ease.

In this paper, we describe in detail the PROCESS Data Infrastructure and Data
Services which aim to be a milestone in the path in the era of exascale computing.
To put this work in context, in Section 2 we provide an overview of several estab-
lished state-of-the-art solutions while also highlighting novel research projects and

Process Data Infrastructure and Data Services 727

regarding them in an exascale computing context. In Section 3, we describe the
architecture design processing starting from the requirement analysis, architectural
decision and technology choices. In Section 4, we describe the implementation of
the main important data services: LOBCDER, DataNet, and DISPEL, as well as
all the mechanisms and APIs needed for their interactions. Finally, in Section 5 we
describe the applicability to the different PROCESS use cases and derive a couple
of scenarios.

2 RELATED WORK

There is an active research community with respect to improving DFS design, both
in academia and in open-source communities. In this Section, we compare popular
DFS (like the Hadoop file system (HDFS) GlusterFS, Ceph) in the light of three
challenges we consider to be relevant for the development of the design of scalable
DFS namely metadata management, and decentralization.

2.1 Scalability of Metadata Management

To ensure a future use of current DFS designs means that they not only have to
be scalable in terms of actual storage capacity, but also in metadata management.
The metadata scalability is of an extreme importance as half of the data processing
operations are metadata operations [40], however, we have observed a lack of meta-
data scalability in most of the well-known DFS. Design of GFS and HDFS feature
a single metadata server, Lustre allows for multiple metadata servers, but relies on
explicitly storing the locations of files. GlusterFS somewhat improves in this aspect
by not explicitly storing metadata regarding file locations but opting for algorith-
mic placement instead. It must be noted however that even with this in place, all
the other metadata operations still happen on the data storage servers. The de-
sign of Ceph is probably the most scalable with respect to metadata management,
since it allows for a cluster of metadata servers and also features algorithmic file
placement and dynamic metadata workload distribution. A notable recent develop-
ment in relational databases is NewSQL, a class of databases seeking to combine the
scalability characteristics of NoSQL databases with the transactional characteristics
of traditional relational databases. In a 2017 paper Niazi et al. present HopFS,
a DFS built on top of HDFS, replacing the single metadata server with a cluster of
NewSQL databases storing the metadata [41]. They attempt to address the issue
of metadata management scalability by storing all HDFS metadata in a Network
Database (NDB), a NewSQL engine for MySQL Cluster. They tested their solution
on a Spotify workload (a Hadoop cluster of 1600+ servers storing 60 petabytes of
data) for which they observed a throughput increase of 16–37× compared to regular
HDFS. What makes this solution noteworthy is that it is a drop-in replacement for
HDFS, allowing to be used in existing Hadoop environments, allowing them to scale
beyond the limits imposed by the single metadata server approach. Using a similar

728 R. Cushing, O. Valkering, A. Belloum, S. Madougou, M. Bobak, O. Habala et al.

approach, Takatsu et al. present PPFS (Post-Petascale File System), a DFS opti-
mized for high file creation workloads. In their paper they argue that modern DFSs
are not optimized for high file creation workloads, and that for exascale computing
this can turn out to be a serious performance bottleneck [42]. They have evaluated
their system against IndexFS (2014), a middleware for file systems such as HDFS
and Lustre aiming to improve metadata performance [43]. With respect to file cre-
ation performance, they observed a 2.6× increase in performance. They achieved
this by employing a distributed metadata cluster design using key-value metadata
storage and non-blocking distributed transactions to simultaneously update multi-
ple entries. Although only tested on relatively small clusters comprising of tens of
servers, it is good to see that an effort is being made to improve upon aspects such
as file creation performance, which might be a bottleneck in an exascale context.

2.2 Decentralization

In the solutions discussed so far we have seen various approaches to positively in-
fluence the scalability characteristics of DFS. A recurring concept is that of decen-
tralization, distributing responsibility of certain aspects of the system to multiple
non-authoritative servers instead of relying on a single or multiple dedicated cen-
tralized servers. Removing a single point of failure by distributing the workload
should help to increase fault tolerance and scalability. We see such an approach in
GlusterFS and Ceph, they both feature a decentralized approach towards the file
placement. Here we will briefly discuss a recent project that seeks to go even further,
a completely decentralized peer-to-peer DFS. Currently an open-source project with
active development from a community of developers, the InterPlanetary File System
(IPFS) is a DFS protocol designed to allow all connected peers to access the same
set of files [44]. The author describes it as being similar to the Web in a single
BitTorrent swarm exchanging objects within a Git repository. Removing all single
points of failure by taking a completely distributed peer-to-peer approach is very
interesting, since it in theory provides infinite scalability. However, having to rely on
servers beyond your control likely rules it out for latency sensitive or mission critical
applications. That being said, leveraging a globally distributed network of intercon-
nected machines, such as DFS, is very relevant to at least capacity requirements.
One can envision that given a large peer count, storing exabytes of data becomes
almost trivial. Generally, we expect that the concept of decentralization will play
a significant role in the development of future DFSs to cope with ever increasing
scalability.

What are advantages to the design of GlusterFS? First of all, it offers POSIX file
semantics, which means that it is mountable like any other traditional file system
and adheres to strict consistency requirements. Secondly, its replication via erasure
codes is a more space efficient way of replicating data than naively storing multiple
copies. But the main advantage is the fact that the design does not feature a server
explicitly storing file location metadata. With respect to scalability, not requiring
a metadata server that can potentially be a performance bottleneck is a significant

Process Data Infrastructure and Data Services 729

benefit. For certain workloads, a disadvantage of the design of GlusterFS is that it
works on file granularity (as opposed to aggregated data blocks or chunks). Such
a design can introduce more internal administrative overhead when for example
replicating huge numbers of small files. However, we deem it likely that its approach
of having a decentralized Namespace will manifest itself in exascale DFS solutions
of the future. The design of Ceph, allowing for clusters of not only data, but also
metadata and monitor servers provides it with excellent scalability characteristics.
Currently, it is already being used by Yahoo to store petabytes of data and is chosen
as the technology to prepare their infrastructure for storing exabytes of data [45].
This in combination with the level of customizability makes Ceph a good candidate
for an exascale computing DFS.

There are several clear advantages to Lustre’s design. The first of which is that it
allows for clusters of data and metadata, like Ceph. Secondly, the handling of client
requests and actual storage of data and metadata occurs on different machines. In
terms of scalability this is a clear advantage since it allows for explicit control over
how many servers to dedicate to the handling of client requests and actual storage.
Similarly, availability can be customized by introducing redundant backup servers
to a cluster. The number of files that are stored in a single object is customizable
as well, which means that Lustre is not necessarily tied to a single type of workload
with respect to file size. However, the lack of replication at the software level makes
it a poor fit for failure sensitive commodity hardware, especially when the cluster size
grows. That being said, its metadata and data cluster architecture, given hardware
providing built-in redundancy and fault tolerance, make it a good candidate for
an exascale computing DFS.

3 DESIGN OF THE PROCESS DATA INFRASTRUCTURE

3.1 Requirements

The development of the PROCESS data infrastructure and services is motivated by
its use case applications from different scientific domains namely medical imaging,
astronomy, Industrial (Airline domain), and Agricultural Observation and Predic-
tion. All these applications are facing the data challenges either at this moment
or will face data and compute challenges soon due to the expected increase of the
data sets. A one size fit all design will not be able to fulfill all data requirements
of the applications. Even if all use case applications required that the PROCESS
infrastructure should be scalable, they have different requirements when it comes to
the type of data to be managed by the infrastructure and the storage technology.
In Table 1, we summarize the characteristics of the data sets used in 5 different
use cases in the light of the NIST Big Data Interoperability Framework: Volume 1,
Definitions [48], which reference to the Volume, Variety, Velocity and Variability as
the main characteristics of Big Data. The data requirements for the five PROCESS
applications are not exceptional; more extreme data management requirements are
also reported for other exascale applications in the U.S. DOE reports published in

730 R. Cushing, O. Valkering, A. Belloum, S. Madougou, M. Bobak, O. Habala et al.

2016 like the one for High-Energy Physics (HEP), and Biology and Environmental
Research. Both reports mention data access and movement as a key element in
dealing with growth of datasets. For the HEP community, the Large Hadron Col-
lider (LHC) at CERN will continue to be the largest producer, it is expected that in
the future (roughly 2025–35) each HL-LHC experiment will transition from O(100)
petabytes to O(1) exabyte of data. The Report states the infrastructure require-
ments for exascale of the HEP community for 2020 and 2025. The HEP community
has developed data storage and movement services, ROCIO, to meet its needs in
the 2020 timescale. In the Reports on the Biology and Environmental Research it
is clearly stated that similar algorithmic barriers (lack of scalable solver algorithms
and I/O) that challenged petascale performance will be faced again at exascale level,
with the additional constraints introduced by accelerators and hierarchical memory.

UC#1:
Exascale
learning
on medical
image data

UC#2:
Square
kilometre
array/
LOFAR

UC#3:
Supporting
innovation
based on
global dis-
aster risk
data

UC#4:
Ancillary
pricing
for airline
revenue
manage-
ment

UC#5:
Agri-
cultural
analysis
based on
Copernicus
data

Volume 3.5 PB ∼ 28 PB 1.5 TB
(minimum)

∼ 3 TB 10 PB

Variety files [34] files [49] files stream files

Velocity 1 low low low medium low

Variability 2 low low low low low

Growth 2 TB/year
[57]

5–
7 PB/year

1 TB/year 1 TB/year 1 TB/year

Table 1. Main data characteristics of the use cases

The gathered common requirements are summarized in Table 2. The Data
Services of the PROCESS projects implements them. Together with modularity
and scalability, it makes its modules robust enough to support not only exascale
communities coming from the PROCESS project but also supports a broad range
of new exascale communities in the future due to the project’s focus on reusability
and sustainability.

Because the aim of PROCESS is to design a data infrastructure with exascale
ultimate goal, we did study the exascale data storage landscape, one can see that
a significant research effort is put into designing new hardware infrastructures at the

1 Velocity is the rate of flow at which the data is created, stored, analysed, and visu-
alized. Section 3.3.2, page 15, https://bigdatawg.nist.gov/_uploadfiles/NIST.SP.
1500-1.pdf.

2 Variability refers to any change in data over time, including the flow rate, the
format, or the composition. Section 3.3.2, page 15, https://bigdatawg.nist.gov/

_uploadfiles/NIST.SP.1500-1.pdf.

https://bigdatawg.nist.gov/_uploadfiles/NIST.SP.1500-1.pdf
https://bigdatawg.nist.gov/_uploadfiles/NIST.SP.1500-1.pdf
https://bigdatawg.nist.gov/_uploadfiles/NIST.SP.1500-1.pdf
https://bigdatawg.nist.gov/_uploadfiles/NIST.SP.1500-1.pdf

Process Data Infrastructure and Data Services 731

Requirement Use Case Service/Module

Integrated to access all the data
storage centres

All LOBCDER

Efficient and user-friendly data up-
load, transfer and download

All LOBCDER (and its integra-
tion with IEE)

Provide access to storage resources
on computing sites

All LOBCDER

Provide support for HDFS 4 LOBCDER

Fast data transfer 2 LOBCDER (and its inte-
gration with Data Transfer
Nodes)

Support pre-processing pipelines 1 DISPEL

Support various transfer protocols
(e.g. GridFTP, SCP, etc.)

All LOBCDER

Support meta-data management All DataNet

User-friendly interface for data ac-
cess through the workflow manage-
ment

All LOBCDER (and its integra-
tion with IEE)

Table 2. Overview of the core requirements coming from the PROCESS use cases

datacenter level to optimize the HPC I/O stack [2, 3, 4, 5, 6, 7]. The DOE U.S. re-
port [8] on the system requirements expected archival storage describes an emerging
trend to embed more data management features directly into HPSS and thus acting
as the storage level itself. Simulation tools are being developed to support the design
of exascale systems and better understand the features and design constraints [9].
However, it is clear from many analytical studies [10, 11], which try to estimate
current and future expenses in terms of energy consumption, predict that one single
exascale datacenter is not realistic and thus the current effort of optimizing the HPC
I/O stack has to be complemented with an effort to create a data management layer
which can scale across data centers.

3.2 Design

3.2.1 Process Data System

To be able to claim that a data infrastructure is exascale enabled, it should be able to
easily scale across geographically and institutionally distributed datacentres. This
implies that the targeted data infrastructure is able to operate as a multi-system,
on multiple data centers, multiple providers, multiple domains/types. Current ap-
proaches try to propose a data federation layer, which directly interacts with the
backend storage, and for each backend they develop a specific driver in a plugin-like
architectural style. They have been designed to operate in a specific setting that
could be divided in 4 categories:

732 R. Cushing, O. Valkering, A. Belloum, S. Madougou, M. Bobak, O. Habala et al.

1. One system, one data centre, one provider, one domain/type like LHC;

2. One system, multiple data centres, multiple providers, one domain/type like
WLGC, Astron, Globus;

3. One system, multiple data centres, multiple providers, one domain/type like
cloud storage providers;

4. One system, multiple data centres, multiple providers, multiple domain/type
like EUDAT.

On the contrary, the cloud approach has proven that scalability can only be achieved
if we introduce a virtualization layer, which abstracts completely the details of the
“hardware” infrastructure. New approaches based on Named Data Networking try
to reduce the overhead in data transmission and will likely improve the communi-
cation within and across data centers [17, 18, 19, 20] and finding scattered across
data centers could be completely agnostic of its location.

Following the cloud virtualization approach, we propose a data micro-infrastruc-
ture which is based on two basic widely accepted concepts IaaS and the fact that
most secondary storages are accessed for read and write through a simple mount
action regardless of the operating system or the storage type. As the variety of ap-
plications and collaborations between researchers increases, so do their dependences
and requirements. Every group may have unique requirements and dependences for
their applications. These different environments might require different data man-
agement, distribution and processing. Clearly, a one size fits all distributed system
that tries to encompass all these different requirements beforehand will not per-
form well. Such an approach entails that the system needs to continuously resolve
new dependences and requirements while also maintaining scalability. Furthermore,
any smart data management is oftentimes very application or domain specific due
to storage means (DB, files, etc.), different data access patterns, algorithm com-
plexity, provenance, value, etc. This implies that the common data storage de-
nominator between applications is, most often, raw block storage and a monolith
system would need to handle all the different applications. A different approach
that can handle the multitude of different data models, applications, distribution
and management is through virtualization, by encompassing all these requirements
in a data micro-infrastructure with specific nodes for handling the different aspects,
e.g. a nextCloud node for sharing data within the group, and HDFS file system for
computing, GridFTP for accessing remote files, etc. The whole infrastructure then
becomes an ensemble of use-case micro-infrastructures each with its own full stack
encapsulated in a virtual infrastructure.

Figure 1 illustrates the notion of a micro-infrastructure. Site providers provide
raw resources through virtualization middleware such as OpenStack. They also pro-
vide raw storage that is accessible through the virtual machines. Through templat-
ing, micro-infrastructures can be booted up that will satisfy the groups’ requirements
for data processing. Cross provider data, process distribution and management are
handled from within the micro-infrastructure. Cross group collaboration is also

Process Data Infrastructure and Data Services 733

easily manageable, e.g., a group could give access to another group through their
ownCloud node inside the micro-infrastructure. Scalability is improved since state
management is divided between micro-infrastructures. One data management sys-
tem will have difficulty managing exascale data, but many micro-infrastructures can
better manage their own pool of data which is, most often, a few orders of magnitude
less than an exabyte.

Figure 1. PROCESS micro-infrastructure

To better facilitate access to remotely stored large data sets, we have also in-
cluded a component able to pre-process data remotely, at or near the place where
they are stored, and to stream for further processing only a pre-processed, more
compact data set. This component is based on the work of a previous FP7 research
project ADMIRE [22]. It includes a decentralized network of services called Gate-
ways, which are controlled by data manipulation programs described in a custom-
designed high level language [23], and an expandable set of data manipulation prim-
itives. A data process is instantiated as a network of streams of data through such
manipulation primitives, which can load, filter, change, recalculate, clean, and store
data (represented as a stream of uniform units of information, be it simple numbers,
characters, or more complex structures).

734 R. Cushing, O. Valkering, A. Belloum, S. Madougou, M. Bobak, O. Habala et al.

4 IMPLEMENTATION

The PROCESS data infrastructure is composed of three main parts which are con-
nected to data sources and managed by a service orchestration environment (see
Figure 2). A core component of the environment is a distributed virtual system
driven by LOBCDER. The tool has been rebuilt according to requirements coming
from use cases several times ([50, 51, 52]). Its current version is based on a micro-
infrastructure approach which allows creating a containerized micro-infrastructure
of data services required by a use case.

It also has access to data sources via dedicated data adapters. The (pre)proces-
sing environment is driven by DISPEL which offers several processing elements (e.g.
data access, data filtering, and data integration). DISPEL is accessible via DISPEL
Gateway which is able to communicate with a WebDAV server via REST API.
It accesses the data sources via dedicated data adapters. The whole data service
environment is administered by LOBCDER which is connected with the service
orchestration environment by REST API and WebDAV.

The PROCESS data infrastructure is meant to be programmable and customiz-
able for every application. This implies that every application has its own set of
data services that are deployed at runtime on the available storage resources. In
this architecture LOBCDER takes the role of the manager which is responsible for
instantiating the Data infrastructure for each application workflow. The other data
services are instantiated as containers on-demand (depending on the application)
to form Kubernetes pods. Service data containers instantiated by LOBCDER have
different capabilities from access to remote storage such as HPC file systems to
an interface which federates access to distributed storage (Figure 2).

4.1 LOBCDER/Micro-Infrastructure

LOBCDER implements the micro-infrastructure approach to develop the PROCESS
data platform. The notion of a micro-infrastructure is to decompose large, monolith
infrastructures into more scalable and manageable infrastructures. This decompo-
sition allows for better scalability since state management such as indices, is split
between many infrastructures. Furthermore, the increasing complexity of data re-
quirements for applications necessitates a programmable approach that can be op-
timized for each application without interfering with other applications. For this
reason, we leveraged the power of containers and created a platform using Kuber-
netes where users create an infrastructure with their own dedicated data services.
Typical data services include data store adapters to connect to remote data such as
HPC file systems, native cloud storage using Ceph block storage, runtime services
that have access to the storage such as WebDAV points, Jupyter notebooks and
data staging services.

The LOBCDER architecture is a hyper-converged infrastructure that provides
a virtualized distributed programmable data layer. The infrastructure is a Kuber-
netes cluster using VMS and physical nodes distributed amongst PROCESS part-

Process Data Infrastructure and Data Services 735

Meta-data environment
(driven by DataNet)

Swarm cluster

Data (pre)processing environment
(driven by DISPEL)

Repository of processing elements

Service orchestration environment
(driven by Cloudify and TOSCA templates)

Distributed virtual file system
(driven by LOBCDER)

User/VO distributed data micro-infrastructure

Service orchestration Container
deployment & management

Container monitoring Containerized service
configuration

Data Sources

FTP/FTP TCP/IP NFS

Hadoop Distributed
 File System

Java APIJava API

TCP/IP GridFTP SRM REST API HTTP

HBase Distributed Storage Distributed
File System

HDF5
Archive

DICOM
Archive

LOFAR LTA
Tape Archive

dCache
Storage

Copernicus
Open Access Hub CouchDB

FTP/FTPS

Data integration

Data filteringData access

WebDAV
server

DISPEL Gateway

REST API

Meta-data
repository

Meta-data
repository

Meta-data
repository

Swarm cluster

Meta-data
repository

Meta-data
repository

Meta-data
repository

Swarm cluster

Meta-data
repository

Meta-data
repository

Meta-data
repository

Meta-data manager
REST API

JSON

Blueprint
management

Virtual data infrastructure
management

Data access
management

Data container
managementVault management

Virtual data infrastructure
access

K8s management

REST API
WebDAV

REST API

REST API

Figure 2. Process data service environment

ners. The VMs for Kubernetes cluster can be managed by the Cloudify orchestra-
tion service [21] that will dynamically instantiate the VMs in EOSC-Hub Federated
Cloud infrastructure, configure and add them to the cluster. That will ensure the
scalability of the micro-infrastructure and also may optimize data access, where the
data service is located as close as the data storage the Kubernetes cluster servers
a programmable layer to abstract data services and storage. Data sources can be
of two types. The first type is the local-node storage, as is the case with dedicated
data nodes. In this scenario a container has a persistent storage in the cluster which
can be used as storage or cache for an application. The second type of storage is

736 R. Cushing, O. Valkering, A. Belloum, S. Madougou, M. Bobak, O. Habala et al.

HPC storage, in such case the data service containers mount remote storage in HPC
clusters. The sequence to access and make use of the data services is described in
Figure 3, the first two steps of the sequence shown in Figure 3 are dedicated to the
creation of the micro-infrastructure:

Request a token: All the LOBCDER API calls are token protected. A token
needs to be generated for users by the admin.

Create infrastructure: After getting a token a user needs to create his own data
infrastructure through API calls with the header x-access-token set with the
requested token.

Once the information about the created data infrastructure is ready, the execution
environment can create and start the execution of the Application data processing
pipeline.

Figure 3. Sequence of interacting components from user perspective. The green block
is a dynamically created virtual infrastructure per use-case. The infrastructure encapsu-
lates use-cases’ data management, credentials, distributed resources and pre-processing
routines.

Process Data Infrastructure and Data Services 737

A REST API allows users to create their infrastructure as a set of pods and
expose multiple WebDAV endpoints to access their data [53]. An important point
to mention here is the integration with the Execution Environment (EE) which has
to use the data services at several points during the application processing pipeline:

• The users’ micro-infrastructure is dynamic thus services and their ports can
change. For this reason, a first step of integration with EE is to discover
the user’s endpoints. This is done through the management API, specifically
through the /api/v1/infrastructure call which returns a description of the
endpoints.

• Every micro-infrastructure exposes an EE WebDAV specific endpoint which ac-
cepts tokens generated by the EE. Through this endpoint the EE environment
can access all user’s local and remote data through WebDAV.

• Query and data staging service: Every micro-infrastructure will implement
a data query and staging service which will list the physical location of files and
stage data onto HPC sites. This can be used by the EE to check the location of
files on different HPC sites and also describe a staging pipeline with webhooks
which will asynchronously stage in data (Figure 4) onto the HPC file system
and use a webhook as a call-back to notify about staging progress.

• Pre-processing workflows: Often scientific applications have a pre-processing
and staging workflow defined on the data services which will be exposed as end-
points whereby the EE can call and register a callback webhook to be notified
when pre-processing and staging has finished so that computation can com-
mence.

Figure 4. Simplified EE to LOBCDER interaction. EE queries LOBCDER to retrieve
user’s dynamic infrastructure. EE can then access user’s data services, e.g. data staging.

738 R. Cushing, O. Valkering, A. Belloum, S. Madougou, M. Bobak, O. Habala et al.

The LOBCDER micro-infrastructure approach revolves around containers. For
this purpose, several template containers are developed for use in the PRO-
CESS. Containers encapsulate different capabilities, from adapters to allow access
to remote storage such as HPC file systems to user interfaces to access the storage.
We categorize the containers into different groups depending on their capabilities.
All the data containers identified from the requirement analysis fit two categories:
the logic containers and the Storage adapters containers (see Table 3).

Storage adapter
containers

Provide access to remote storage such as
HPC file systems. Examples: sshfs,
GridFTP, Cloud-native-storage, etc.

Logic containers Provide a functionality on top of the stor-
age adapters. Examples: token-based Web-
DAV, Jupyter service, and DISPEL service.

Table 3. The categories of containers to create any micro-infrastructure

4.2 Storage Adapter Containers

For this category we are considering three types of access to remote storage which
are implemented as three storage adapter containers (see Table 4).

sshfs adapter
container [24]

The container is able to mount a remote
folder through ssh credentials. When creat-
ing an infrastructure through the API a user
supplies his credentials to the remote server.
The credentials are used to copy keys to the
remote storage and are discarded after keys
have been copied. This will allow password-
less authentication. A user can revoke ac-
cess from LOBCDER at any time by remov-
ing the key entry in his home directory in
.ssh/authorized keys.

gridFTP con-
tainer adapter

For high performance data transfers between
sites we will employ gridFTP delegation ser-
vice.

A cloud-native
adapter

Whereby storage is provisioned directly in
the Kubernetes cluster using Rook/Ceph
storage manager. The storage is mounted
into a container and exposed alongside the
other adapters using WebDAV.

Table 4. Three storage adapter containers

Process Data Infrastructure and Data Services 739

4.3 Logic Containers

Logic containers help to develop/offer new services on top of three basic storage
adapters (see Table 5). The logic container services are accessed by the user after
the micro-infrastructure.

• User first needs a token to interact with the management API.

• User submits a JSON description of the infrastructure to the
/api/v1/infrastructure url.

• LOBCDER will contact the k8s API to initialize a micro-infrastructure.

• The user queries the API to get the endpoint descriptions which include url and
ports for the dynamically running services.

• The user can access the running services.

Figure 5. Simplified user to LOBCDER interaction. User requests credentials to access
LOBCDER API. User can then submit requests to create virtual infrastructure and access
services.

5 APPLICATION USE CASES

5.1 Process Data Service in Medical Use Case

The application setup of the medical imaging use case [28] has two computationally
intensive workflows. The first, also referred to as Layer 1, consists of data staging
and pre-processing. The second one loads the intermediate output generated by
Layer 1 and focuses on the training of deep learning architectures, which needs

740 R. Cushing, O. Valkering, A. Belloum, S. Madougou, M. Bobak, O. Habala et al.

A WebDAV
container [25]

Through the API infrastructure description, users supply a username
and password for protecting the WebDAV point since this will be
exposed publicly.

A token based
WebDAV [25]

Meant for access by computing services. In this category we mod-
ified a standard WebDAV server to authenticate using web tokens.
This mechanism of authentication is needed by the execution en-
vironment. When supplying the infrastructure description, a user
also supplies the list of users with their public keys to be allowed
through the WebDAV endpoint. This WebDAV implementation is
expecting the WebDAV calls to have a header ‘authorization’ set
with a token provided by an external entity (in/out case the execu-
tion environment). Upon access the WebDAV server will decode the
header token check the user email is in the list of users and check the
signature by decrypting using the public key provided when setting
up the infrastructure.

Jupyter service
container

Jupyter service container allows the user to access data through
a processing environment whereby they can perform lightweight pro-
cessing inside the data infrastructure. The adapter data is mounted
in data folder on the container. In the following releases, this will be
extended into a general user interface container for PROCESS with
PROCESS-specific Python modules, and this general UI will be then
extended into use case-specific UIs with more Python modules de-
signed specifically to handle the use case data and pipelines.

Query/Staging
service [26]

This service lists the files and their location on the adapter contain-
ers. The purpose of this service is to incorporate also staging capa-
bilities for integration with IEE where IEE can request data staging
between adapters so that applications would have just-in-time data
on the HPC file systems (REF).
These containers are meant to optimize application workflows exe-
cution, e.g. by scheduling data transfers between sites, caching con-
tainers with local-node data storage so frequently accessed data can
remain easily accessible (to be developed as the project processes).

...

GPU compute nodes. This workflow requires fast access to the pre-processed data
which means having the pre-processed data ready on the local file system before
the compute can start. For this reason, we set up the pre-processing and staging
workflow as part of the data services that will be able to pre-process and push the
datasets directly onto the HPC file systems in preparation for the computation part
of the workflow.

The pre-processing extracts patches from the high-dimensional medical images.
A series of hyper-parameters are required as input to the runtime, such as the staging
location of the data, the resolution level at which the patch should be extracted,
the patch size and stride, and the patch sampling strategy (i.e. random sampling,
importance sampling, dense coverage). The file system is scanned to retrieve patient-

Process Data Infrastructure and Data Services 741

...

DISPEL DISPEL container gives access to remotely stored data and an en-
tire data (pre)processing environment. The DISPEL data processing
environment is currently available as a Debian-based virtual ma-
chine with a complete deployment of all tools, manuals and a tu-
torial with example data processes. The VM contains a graphi-
cal development environment based on Eclipse. Dispel is accessed
via standard WebDAV interface (HTTP protocol) since it is part
of the LOBCDER distributed data infrastructure. The parameters
for data processing are encoded in the provided HTTP URL, as de-
scribed previously in D5.1. The HTTP URL encodes the following
parameters: (1) One selection of DISPEL data process description
file template (in the DISPEL language). (2) Zero or more parame-
ters to be filled in the template. Example of URL-encoded param-
eters: http://lobcder.process-project.eu/dispel/tiffstore/

312/20181129/12/0-1200-0-400. Components of the URL are:

• http://lobcder.process-project.eu/: URL of the
LOBCDER WebDAV server

• dispel: a prefix to recognize the sub-repository to contact (the
DISPEL service)

• tiffstore: selection of the DISPEL data process template to
execute

• 312: subject designation (application-specific metadata)

• 20181129: data creation time (application-specific metadata)

• 12: layer in a multi-layer TIFF file (application-specific meta-
data)

• 0-1200-0-400: grid selection (application-specific metadata)

DataNet-
adapter

DataNet-adapter container allows pushing of metadata to the
Datanet service. DataNet allows performing operations on the
metadata sets such as creating/updating/querying/deleting entities.
DataNet is designed to offer straightforward user access via the
REST API as well as GUI HAL browser.
DataNet is available in the form of the Java source code under the
OSI approved license as well as a Docker Container for the convenient
deployment DataNet Rest API is described in Annex C

NextCloud [27] Service for ease of use by users. Next Cloud container allows the
user to view their data in dropbox fashion.

Table 5. Logic containers to support WebDav, Jupyter notebooks, and staging in/out
data to HPC systems

http://lobcder.process-project.eu/dispel/tiffstore/312/20181129/12/0-1200-0-400
http://lobcder.process-project.eu/dispel/tiffstore/312/20181129/12/0-1200-0-400
http://lobcder.process-project.eu/

742 R. Cushing, O. Valkering, A. Belloum, S. Madougou, M. Bobak, O. Habala et al.

related metadata and manual annotations. The physician annotations are used to
build binary masks of normal and tumor tissue from the lowest image magnification
level. From each of the two tissue types a set of image patches are extracted,
by sampling locations in the high-dimensional image, according to the sampling
strategy. Patches with non-relevant information (e.g. white content, black pixels,
background, etc.) are filtered out and discarded. The pixel values of the image
patches and metadata about the patient, the lymph node, the hospital that handled
the acquisitions, the resolution level of the patch, the doctor annotations and the
patch location in the image are stored in a HDF5 database.

Figure 6. Micro-infrastructure for learning on medical image use case

In Figure 6, we illustrate the set of containers proposed for the data micro-
infrastructure setup for UC#1.

WebDAV service: two WebDAV containers are used as a standard way to ex-
pose the data as a file system. A standard user/pass WebDAV can be used by
standard WebDAV clients while the token-based WebDAV client is used by the
Execution Environment.

Copy service: The role of this container is to expose a REST API that will handle
copying files between sites or pull public files from the internet and directly onto
the HPC file systems.

Query service: This REST service container will query all file systems to find
where the physical file is being hosted. The query service is a precursor for the
integration with DataNet.

Pre-processing service: This REST service container will allow users to define
input raw data, input hyper-parameters to generate new pre-processed datasets
and HPC output locations so that the pre-processed datasets are pushed directly

Process Data Infrastructure and Data Services 743

onto the HPC file systems. It also keeps track of these generated datasets using
a local database.

Pre-processing runtime: This container encapsulates the logic of pre-processing.

Cloud persistent storage: This container exposes a storage block hosted directly
inside the Kubernetes cluster. This storage will be used to host raw data that is
needed by the pre-processing pipeline and also act as a cache for the generated
datasets.

HPC SSHFS: These are standard rudimental containers acting as adapters to the
HPC file systems. Through these adapters, the copying service can push/pull
data from the HPC clusters.

Key/Value DB: A container that maintains state such as indexes for the generated
datasets and location of the files.

5.2 Data Services for LOFAR Use Case

Scaling is an important feature for the LOFAR Use Case [54] PROCESS data ser-
vices have to be combined with this goal in mind. The pipelines should be executed
by containers and when, say, two LOFAR archival observations are processed simul-
taneously, this can be enabled by doubling the number of containers – assuming these
observations are of the same size. Simultaneous or quasi-simultaneous processing of
multiple observations has the benefit of reducing latency induced by data transfers –
i.e. staging of observational data, from tape to dCache and from dCache to a com-
pute cluster – and by compute bottlenecks. Data transfers may take significant time
due to the data sizes and distances involved. Even at 10 GBit/s, a 16 TB dataset
will require about 4 hours to transfer. Fortunately, copying data from a tempo-
rary disk to the processing location may be done per observational subband. Thus,
staging and copying can overlap. Compute bottlenecks can occur in between the
two subsequent calibration steps. The first step is direction independent and is em-
barrassingly parallel, by distributing the different subbands of a single observation
(typically 244) over the different nodes, with one subband per node. Processing can
start as soon as a subband has been copied to a node disk. This takes typically four
hours, but the next step is direction dependent calibration and its algorithm needs
a unified memory space to compute the calibration solutions. This typically takes
four days on a single fat node with hundreds of GB of RAM, which would render
the remaining nodes idle when processing a single observation. Processing of mul-
tiple LOFAR archival observations simultaneously by many containers will reduce
latency on the compute nodes after the first calibration step of the first observation
has been completed. Also, it is important that reservation of the compute nodes is
done in an intelligent manner, i.e., that the nodes will not be waiting for data to
arrive at the cluster.

PROCESS can offer access to the three sites where the LOFAR Long Term
Archive is stored – Amsterdam, Jülich and Poznan, making simultaneous combined
staging and processing of observations possible. Presently, processing of data from

744 R. Cushing, O. Valkering, A. Belloum, S. Madougou, M. Bobak, O. Habala et al.

different sites requires separate user interfaces. The services required for the LOFAR
Use Case pipeline are shown in Figure 7.

Figure 7. UC#2: Data infrastructure including data adapters as well as long-term-archive
staging service

5.3 Experiments

Benchmarks have been performed to assess the performance, mainly in terms of
compute and/or transfer duration, of the PROCESS infrastructure and use-case
specific services.

5.3.1 Process Data Service in Medical Use Case

The data staging and pre-processing workflow of the medical use case described in
Section 5.1 becomes crucial for the performance of the application when the data
processing is distributed across geographically distributed data centers. PROCESS
data infrastructure has been used to enable the pre-processing workflow at the AGH
datacenter in Krakow while the neural network training workflow is at the UvA in
Amsterdam.

Table 6 shows the cross site staging part of the Camelyon16 dataset using sev-
eral protocols and strategies. Our initial approach is to use the widely available
SCP protocol and use cluster head nodes to stage the data. From the table, this
approach is shown to be one of the worst strategies, e.g. LISA to AGH. Further-
more, head nodes are very unstable for staging such data with frequent stalls and
broken connections. A second strategy is to use Data Transfer Nodes (DTN). What
we can show from the tests is that using such DTN nodes can speedup transfers,

Process Data Infrastructure and Data Services 745

for example, transferring data from LRZ site to LISA is faster by using a DTN
relay than by a direct copy. E.g. LRZ-VDTN to AMS-DTN takes 5.85 minutes plus
AMS-DTN to LISA is 3.03 minutes, cumulatively it is 8.9 minutes which is ∼ 30 %
faster than a direct copy which is 12.96 minutes. The results also show the added
speedup by using campus networks. The AMS-DTN and LISA are on campus thus
their bandwidth is approximately 4 times better than the rest. Using DTNs as cache
staging nodes could potentially accelerate data transfers between sites. With these
tests we feel that we have a basis for the upcoming steps for UC1. Moreover, the
additional requirement of SCP protocol for data transfer as stated in D4.3 page 9
has been met. This ensures that data transfer can be applied to different types of
users, and especially hospital institutions which may not have open FTP access for
security reasons.

Protocol
– SCP

30 GB Came-
lyon16.partAA
[MB/s]

30 GB Came-
lyon16.partAB
[MB/s]

30 GB Came-
lyon16.partAC
[MB/s]

Mean
BW
[MB/s]

Duration
[min-
utes]

LRZ-V-
DTN to
AMS-
DTN

86.8 90.8 84.9 87.5 5.85

LRZ-V-
DTN to
AGH

33.1 31.2 32.2 32.17 15.92

LRZ-V-
DTN to
LISA

25.5 64 29 39.5 12.96

AMS-
DTN to
LISA

167.9 172.6 166 168.83 3.03

AMS-
DTN to
AGH

53 53.9 38.9 48.6 10.53

LISA to
AGH

40 21.3 29.5 30.27 16.91

Table 6. Data transfer tests between different storage locations

5.3.2 Data Services in the LOFAR Use Case

As mentioned in section 5.2, the LOFAR use-case relies on archival observations.
To access this data, it has to be staged first. During this process a tape robot will
retrieve the appropriate tape(s) and read the desired data to a cache. Thereafter, the
data can be accessed directly from the cache. To gain insight into the overhead this
introduces to the pipeline, we performed the following three benchmarks: estimating
queuing and preparation time; total staging time as a function of total size; transfer

746 R. Cushing, O. Valkering, A. Belloum, S. Madougou, M. Bobak, O. Habala et al.

speeds from the three LTA locations to each of the three PROCESS HPC clusters;
and execution time as a function of total size.

Estimating Queuing and Preparation Time. The tape drives and robots at
each of the LTA locations are not only shared by other LTA users, but also by other
projects housed in the same data center [29]. Therefore, it may be that a staging
request will spend some time in a queue. In addition, the tape robot may need
some preparation time before the data can be copied. To estimate this overhead,
we staged a small file (< 100 MB) so the reading time would be negligible compared
to the remaining queuing and preparation time. We repeated this experiment ten
times, at each LTA location, spread over different days, before averaging the recorded
durations (Figure 8).

Jülich (DE) Amsterdam (NL) Pozna (PL)
0

2

4

6

8

10

12

Ti
m

e
(in

 m
in

ut
es

)

08:11

05:11

07:32

Estimated queuing/preparation time

Figure 8. Estimated queuing/preparation time

The durations are quite variable, but in general can be placed in the five to ten-
minute range. It might occur that queuing and preparation take longer, especially if
multiple staging requests are filled simultaneously. However, we did not experience
this during our benchmarking period. The differences between the three locations
can be attributed to (possibly) different configurations and/or load at the respective
data centers.

Total Staging Time as a Function of Total Size. For an indication about
the total duration of a staging request, we staged increasingly large numbers of
gigabytes (from 20 GB up to 320 GB). We repeated this three times, at each LTA
location, spread over different days before averaging the durations (Figure 9). We
observe, again, that the durations are variable, but are reasonable. These durations
are uncontrollable, as explained before, because of the shared nature of the LTA
systems.

Process Data Infrastructure and Data Services 747

20 40 80 160 320
Total size (in gigabytes)

5

10

15

20

25

30

35

Ti
m

e
(in

 m
in

ut
es

)

Time as a function of size
Jülich (DE)
Amsterdam (NL)
Pozna (PL)

Figure 9. Staging time as a function of size

Transfer Speeds from LTA to HPC Clusters. After the data have been
staged, they can be transferred to a HPC cluster for further processing. We are
benchmarking this transfer to see to which extent this transfer of large data files
across system boundaries induces a bottleneck in the overall use-case’s pipeline. We
measured the transfer speed (Figure 10) four times before averaging it, between each
LTA location and the HPC clusters: LRZ in Garching (DE), LISA in Amsterdam
(NL) and CYF in Krakow (PL). Transfer consisted of up to 10 files with a total size
of 100 GB.

200

220

240

260

Tr
an

sf
er

 sp
ee

d
(in

 M
B/

s) 241.5
Jülich (DE
Amsterdam (NL)
Pozna (PL)

LRZ (DE) LISA (NL) CYF (PL)
Target location)

0

50

100

150

96.3
78.3 90.596.5 91.74

21.1 34.2

120.04

Transfer speeds from LTA to HPCs

Figure 10. Transfer speeds from LTA to HPCs

748 R. Cushing, O. Valkering, A. Belloum, S. Madougou, M. Bobak, O. Habala et al.

The results show that the transfers between LTA locations and HPC clusters
are roughly in the 80 to 120 MB/s range. An exception are the transfers between
LISA and the Amsterdam LTA location, where the range is significantly higher.
This is excepted, since both locations operate on the same optimized grid infras-
tructure [30]. Another exception is the transfer from the Poznan LTA location to
the LRZ and LISA HCP clusters. Although by no means slow, the relative lower
speeds may be due to the geographical distance and/or the specific public network
composition in place. The achieved speeds between the other locations are, although
close to saturating the used public network, still considered suboptimal for exascale
purposes. Optimized networks, e.g. with tuned data transfer nodes (DTNs), are
needed. Provided with such, the PROCESS infrastructure is able to utilize the im-
proved capabilities and scale along with the transfer speeds, as demonstrated with
the transfers between the Amsterdam LTA location and the LISA HCP cluster.

Execution Time as a Function of Total Size (from D3.3). For the LOFAR
use-case, we measured the execution time as the most intensive components capable
of generating high FLOPS values are currently sequential or multi-threaded. The
wall clock times of the main steps of the data reduction pipeline are given in Table 7.
The main conclusion to draw from the high magnitude of these values is that the
overhead due to scheduling and staging is negligible.

Step Data Size Execution Time

1. Calibrator DI 25 GB ∼ 2.5 hour

2. Target DI 433 GB ∼ 3.5 hour

3. Init-subtract 76 GB ∼ 10 hour

4. DD2 (FACTOR) 76 GB ∼ 5 days

Table 7. Wall clock times of the main steps of the data reduction pipeline

6 CONCLUSIONS AND FUTURE WORK

In this paper, we present the PROCESS data infrastructure which follows a micro-
infrastructure approach. The micro-infrastructure is created at runtime and com-
posed of a set of data service containers instantiated by the core of the infrastruc-
ture, LOBCDER. All the interactions among the software components composing
the micro-infrastructure have been clearly defined and used to create the implemen-
tations of PROCESS application scenarios’ data handling pipelines. Throughout
the five application use cases, a single backbone data infrastructure has been used
and combined at runtime with multiple data services required by the five applica-
tions. In this paper we focus on two out of the five applications, more details about
the other applications can be found in [53]. While the two applications described in
this paper are coming from two different scientific domains, namely astronomy and
medical imaging, they share a number of storage and logical adapters, but also have

Process Data Infrastructure and Data Services 749

their specific ones. Because of the container centric approach followed in the cur-
rent implementation of the micro-infrastructure, it was straightforward to mix and
match various data adapters to fulfill the applications data handling requirements.
All software components developed and reported in this paper are available in the
PROCESS software repository [56].

The micro-architecture is currently extended with two software layers to support
both application developers and end-users. The developer layer offers the application
developer an easy way to implement data processing functions that can be combined
to enable a specific data processing pipeline. The user layer offers basic programming
constructs, i.e. variables, conditionals, and loops. The user layer is designed for
scientists with limited programming experiences, the programming statements have
sentence-like structure [31].

The performance results reported in this paper measure only the overhead in-
duced by the software services proposed in the PROCESS project. In the absence
of an exascale computer, exascale can be achieved by combining the power of ge-
ographically distributed data centers. However, using the standard data transfer
techniques the stage-in of the 7 PB of data currently in LOFAR LTA would take
about 7 years and transferring a full exabyte would take several centuries. On-going
research to address this problem proposes to use efficient DTN networks between
compute centers involved in large data transfers across these centers. Experiments
by Geant in 2018 [32] have shown that 100 GbE DTN networks are feasible on the
European and even global scale. At such transfer rates it would take less than
a minute to transfer a single 16 TB LOFAR observation.

Acknowledgment

This work is supported by the “PROviding Computing solutions for ExaScale Chal-
lengeS” (PROCESS) project that has received funding from the European Union’s
Horizon 2020 research and innovation programme under grant agreement
No. 777533, by the project APVV-17-0619 (U-COMP) “Urgent Computing for Exas-
cale Data” and by the VEGA project “New Methods and Approaches for Distributed
Scalable Computing” No. 2/0125/20.

REFERENCES

[1] Koehler, M.—Knight, R.—Benkner, S.—Kaniovskyi, Y.—Wood, S.: The
VPH-Share Data Management Platform: Enabling Collaborative Data Management
for the Virtual Physiological Human Community. 2012 Eighth International Con-
ference on Semantics, Knowledge and Grids, Beijing, China, 2012, pp. 80–87, doi:
10.1109/SKG.2012.51.

[2] Bent, J.—Faibish, S.—Ahrens, J.—Grider, G.—Patchett, J.—
Tzelnic, P.—Woodring, J.: Jitter-Free Co-Processing on a Prototype Exascale

https://doi.org/10.1109/SKG.2012.51

750 R. Cushing, O. Valkering, A. Belloum, S. Madougou, M. Bobak, O. Habala et al.

Storage Stack. 2012 IEEE 28th Symposium on Mass Storage Systems and Technolo-
gies (MSST), San Diego, CA, USA, 2012, pp. 1–5, doi: 10.1109/MSST.2012.6232382.

[3] Filippidis, C.: Parallel Storage Systems for Large Scale Machines.
http://sc16.supercomputing.org/sc-archive/doctoral_showcase/doc_files/

drs104s2-file2.pdf.

[4] Lofstead, J.—Jimenez, I.—Maltzahn, C.—Koziol, Q.—Bent, J.—
Barton, E.: DAOS and Friends: A Proposal for an Exascale Storage System.
Proceedings of the International Conference for High Performance Computing, Net-
working, Storage and Analysis (SC ’16), Salt Lake City, UT, USA, IEEE, 2016,
pp. 585–596, doi: 10.1109/SC.2016.49.

[5] Hemsoth, N.: Exascale Storage Gets a GPU Boost DFAF. 2018, https://www.

nextplatform.com/2018/02/12/exascale-storage-gets-gpu-boost/.

[6] Hemsoth, N.: An Exascale Timeline for Storage and I/O System. 2017, https://
www.nextplatform.com/2017/08/16/exascale-timeline-storage-io-systems/.

[7] Infinite Memory Engine: The Exascale-Era Storage Ar-
chitecture. 2017, https://www.hpcwire.com/2017/08/21/

infinite-memory-engine-exascale-era-storage-architecture/.

[8] Hick, J.—Watson, D.—Cook, D.—Minton, J.—Newman, H.—
Preston, T.—Rich, G.—Scott, C.—Shoopman, J.—Noe, J.—
O’Connell, J.—Shipman, G.—White, V.: HPSS in the Extreme Scale
Era: Report to DOE Office of Science on HPSS in 2018–2022. Technical Report
No. LBNL-3877E, Lawrence Berkeley National Lab. (LBNL), Berkeley, CA, USA,
2009.

[9] Cope, J.—Liu, N.—Lang, S.—Carns, P.—Carothers, C.—Ross, R.:
CODES: Enabling Co-Design of Multi-Layer Exascale Storage Architectures. https:
//pdfs.semanticscholar.org/159d/bd0a8c18e2df895b131e33499e2d529210e0.

pdf.

[10] Mair, J.—Huang, Z.—Eyers, D.—Chen, Y.: Quantifying the Energy Effi-
ciency Challenges of Achieving Exascale Computing. 2015 15th IEEE/ACM Interna-
tional Symposium on Cluster, Cloud and Grid Computing, Shenzhen, China, 2015,
pp. 943–950, doi: 10.1109/CCGrid.2015.130.

[11] Cameron, K. W.: Energy Efficiency in the Wild: Why Datacenters Fear Power
Management. Computer, Vol. 47, 2014, No. 11, pp. 89–92, doi: 10.1109/MC.2014.315.

[12] https://www.eudat.eu/services/b2stage.

[13] https://www.dcache.org.

[14] https://www.gluster.org.

[15] https://iRODS.org.

[16] https://www.dcache.org/manuals/2016/presentations/20161006-PM-dCache.

pdf.

[17] Shannigrahi, S.—Fan, C.—Papadopoulos, C.: Named Data Networking Strate-
gies for Improving Large Scientific Data Transfers. Proceedings of the IEEE Inter-
national Conference on Communications Workshops (ICC Workshops), Kansas City,
MO, USA, 2018, doi: 10.1109/ICCW.2018.8403576.

https://doi.org/10.1109/MSST.2012.6232382
http://sc16.supercomputing.org/sc-archive/doctoral_showcase/doc_files/drs104s2-file2.pdf
http://sc16.supercomputing.org/sc-archive/doctoral_showcase/doc_files/drs104s2-file2.pdf
https://doi.org/10.1109/SC.2016.49
https://www.nextplatform.com/2018/02/12/exascale-storage-gets-gpu-boost/
https://www.nextplatform.com/2018/02/12/exascale-storage-gets-gpu-boost/
https://www.nextplatform.com/2017/08/16/exascale-timeline-storage-io-systems/
https://www.nextplatform.com/2017/08/16/exascale-timeline-storage-io-systems/
https://www.hpcwire.com/2017/08/21/infinite-memory-engine-exascale-era-storage-architecture/
https://www.hpcwire.com/2017/08/21/infinite-memory-engine-exascale-era-storage-architecture/
https://pdfs.semanticscholar.org/159d/bd0a8c18e2df895b131e33499e2d529210e0.pdf
https://pdfs.semanticscholar.org/159d/bd0a8c18e2df895b131e33499e2d529210e0.pdf
https://pdfs.semanticscholar.org/159d/bd0a8c18e2df895b131e33499e2d529210e0.pdf
https://doi.org/10.1109/CCGrid.2015.130
https://doi.org/10.1109/MC.2014.315
https://www.eudat.eu/services/b2stage
https://www.dcache.org
https://www.gluster.org
https://iRODS.org
https://www.dcache.org/manuals/2016/presentations/20161006-PM-dCache.pdf
https://www.dcache.org/manuals/2016/presentations/20161006-PM-dCache.pdf
https://doi.org/10.1109/ICCW.2018.8403576

Process Data Infrastructure and Data Services 751

[18] Chen, S.—Cao, J.—Zhu, L.: NDSS: A Named Data Storage System. 2015 Inter-
national Conference on Cloud and Autonomic Computing, Boston, MA, USA, 2015,
pp. 196–199, doi: 10.1109/ICCAC.2015.12.

[19] Zhu, S.—Yuan, M.—Lei, K.: Ndynamo: An ndnDHT-Based Distributed Stor-
age System over Named Data Networking. 2016 5th International Conference on
Computer Science and Network Technology (ICCSNT), Changchun, China, 2016,
pp. 148–152, doi: 10.1109/ICCSNT.2016.8070137.

[20] Rao, Y.—Gao, D.—Zhang, H.—Foh, C. H.: Mobility Support for the User in
NDN-Based Cloud Storage Service. 2015 IEEE Globecom Workshops (GC Wkshps),
San Diego, CA, USA, 2015, pp. 1–6, doi: 10.1109/GLOCOMW.2015.7414159.

[21] Cloudify Orchestration Service. https://docs.cloudify.co/latest/developer/

apis/.

[22] Atkinson, M. P.—Galea, M.—Liew, C. S.—Martin, P.: ADMIRE – Final
Report on the ADMIRE Architecture, with an Assessment and Proposals for Its
Development. Technical Report, The ADMIRE Project, May 2011.

[23] Brezany, P.—Aranda, C. B.—Corcho, O.—Janciak, I.—Woehrer, A.—
Atkinson M.: ADMIRE – Report Defining the Final Iteration of the Model and
Language. Deliverable Report D1.9, The ADMIRE Project, May 2011.

[24] Available at GitHub: https://github.com/micro-infrastructure/

adaptor-sshfs.

[25] Available at GitHub: https://github.com/micro-infrastructure/

service-webdavserver.

[26] Available at GitHub: https://github.com/micro-infrastructure/

service-scp2scp.

[27] Available at GitHub: https://github.com/micro-infrastructure/

service-nextcloud.

[28] Graziani, M.—Eggel, I.—Deligand, F.—Bobák, M.—Andrearczyk, V.—
Müller, H.: Breast Histopathology with High-Performance Computing and Deep
Learning. Computing and Informatics, Vol. 39, 2020, No. 4, pp. 780–807, doi:
10.31577/cai 2020 4 780.

[29] https://www.astron.nl/lofarwiki/doku.php?id=start.

[30] https://www.surf.nl/en/use-case-space-research-with-grid-

infrastructure.

[31] https://onnovalkering.github.io/brane/.

[32] https://github.com/recap/MicroInfrastructure.

[33] TOP500.org. The TOP500 List (June 2008). 2008, https://www.top500.org/

lists/2008/06/. Accessed: 04-01-2018.

[34] Bándi, P.—Geesing, O.—Manson, Q.—Van Dijk, M.—Balkenhol, M.:
From Detection of Individual Metastases to Classification of Lymph Node Status
at the Patient Level: The CAMELYON17 Challenge. IEEE Transactions on Medical
Imaging, Vol. 38, 2019, No. 2, pp. 550–560, doi: 10.1109/TMI.2018.2867350.

[35] Vijayaraghavan, T.—Eckert, Y.—Loh, G. H.—Schulte, M. J.—
Ignatowski, M.—Beckmann, B. M.—Brantley, W. C.—Great-
house, J. L.—Huang, W.—Karunanithi, A. et al.: Design and Analysis

https://doi.org/10.1109/ICCAC.2015.12
https://doi.org/10.1109/ICCSNT.2016.8070137
https://doi.org/10.1109/GLOCOMW.2015.7414159
https://docs.cloudify.co/latest/developer/apis/
https://docs.cloudify.co/latest/developer/apis/
https://github.com/micro-infrastructure/adaptor-sshfs
https://github.com/micro-infrastructure/adaptor-sshfs
https://github.com/micro-infrastructure/service-webdavserver
https://github.com/micro-infrastructure/service-webdavserver
https://github.com/micro-infrastructure/service-scp2scp
https://github.com/micro-infrastructure/service-scp2scp
https://github.com/micro-infrastructure/service-nextcloud
https://github.com/micro-infrastructure/service-nextcloud
https://doi.org/10.31577/cai_2020_4_780
https://www.astron.nl/lofarwiki/doku.php?id=start
https://www.surf.nl/en/use-case-space-research-with-grid-infrastructure
https://www.surf.nl/en/use-case-space-research-with-grid-infrastructure
https://onnovalkering.github.io/brane/
https://github.com/recap/MicroInfrastructure
https://www.top500.org/lists/2008/06/
https://www.top500.org/lists/2008/06/
https://doi.org/10.1109/TMI.2018.2867350

752 R. Cushing, O. Valkering, A. Belloum, S. Madougou, M. Bobak, O. Habala et al.

of an APU for Exascale Computing. 2017 IEEE International Symposium on
High Performance Computer Architecture (HPCA), IEEE, 2017, pp. 85–96, doi:
10.1109/HPCA.2017.42.

[36] HGST Ultrastar Hs14. http://www.hgst.com/products/harddrives/

ultrastar-hs14. Accessed: 03-12-2017.

[37] ASTC Technology Roadmap. http://idema.org/?pageid=5868. Accessed: 03-12-
2017.

[38] Sandberg, R.—Goldberg, D.—Kleiman, S.—Walsh, D.—Lyon, B.: Design
and Implementation or the Sun Network File System. Proceedings of the Summer
1985 USENIX Conference, Portland, OR, USA, 1985, pp. 119–130.

[39] Levy, E.—Silberschatz, A.: Distributed File Systems: Concepts and Exam-
ples. ACM Computing Surveys (CSUR), Vol. 22, 1990, No. 4, pp. 321–374, doi:
10.1145/98163.98169.

[40] Roselli, D. S.—Lorch, J. R.—Anderson, T. E.: A Comparison of File System
Workloads. Proceedings of the USENIX Annual Technical Conference, General Track,
2000, pp. 41–54.

[41] Niazi, S.—Ismail, M.—Haridi, S.—Dowling, J.—Grohsschmiedt, S.—
Ronström, M.: HopsFS: Scaling Hierarchical File System Metadata Using NewSQL
Databases. Proceedings of the 15th Usenix Conference on File and Storage Technolo-
gies (FAST 2017), Santa Clara, CA, USA, pp. 89–103.

[42] Takatsu, F.—Hiraga, K.—Tatebe, O.: PPFS: A Scale-Out Distributed File
System for Post-Petascale Systems. Journal of Information Processing, Vol. 25, 2017,
pp. 438–447, doi: 10.2197/ipsjjip.25.438.

[43] Ren, K.—Zheng, Q.—Patil, S.—Gibson, G.: IndexFS: Scaling File System
Metadata Performance with Stateless Caching and Bulk Insertion. Proceedings of
the International Conference for High Performance Computing, Networking, Storage
and Analysis (SC ’14), IEEE, 2014, pp. 237–248, doi: 10.1109/SC.2014.25.

[44] Benet, J.: IPFS – Content Addressed, Versioned, P2P File System. arXiv preprint
arXiv:1407.3561, 2014.

[45] Yahoo Cloud Object Store – Object Storage at Ex-
abyte Scale. https://yahooeng.tumblr.com/post/116391291701/

yahoocloud-object-store-object-storage-at. Accessed: 06-01-2018.

[46] Koulouzis, S.—Belloum, A. S. Z.—Bubak, M. T.—Zhao, Z.—Živko-
vić, M.—de Laat, C. T. A. M.: SDN-Aware Federation of Distributed
Data. Future Generation Computer Systems, Vol. 56, 2016, pp. 64–76, doi:
10.1016/j.future.2015.09.032.

[47] Koulouzis, S.—Belloum, A.—Bubak, M.—Lamata, P.—Nolte, D.—
Vasyunin, D.—de Laat, C.: Distributed Data Management Service for VPH
Applications. IEEE Internet Computing, Vol. 20, 2016, No. 2, pp. 34–41, doi:
10.1109/MIC.2015.71.

[48] https://www.nist.gov/publications/nist-big-data-interoperability-

framework-volume-1-definitions.

[49] https://lta.lofar.eu.

https://doi.org/10.1109/HPCA.2017.42
http://www.hgst.com/products/harddrives/ultrastar-hs14
http://www.hgst.com/products/harddrives/ultrastar-hs14
http://idema.org/?pageid=5868
https://doi.org/10.1145/98163.98169
https://doi.org/10.2197/ipsjjip.25.438
https://doi.org/10.1109/SC.2014.25
https://yahooeng.tumblr.com/post/116391291701/yahoocloud-object-store-object-storage-at
https://yahooeng.tumblr.com/post/116391291701/yahoocloud-object-store-object-storage-at
https://doi.org/10.1016/j.future.2015.09.032
https://doi.org/10.1109/MIC.2015.71
https://www.nist.gov/publications/nist-big-data-interoperability-framework-volume-1-definitions
https://www.nist.gov/publications/nist-big-data-interoperability-framework-volume-1-definitions
https://lta.lofar.eu

Process Data Infrastructure and Data Services 753

[50] https://www.process-project.eu/wp-content/uploads/2020/02/PUBLIC_

PROCESS_D4.1_Initial_-state_of_the_art_and_requirement_analysis_

initial_PROCESS_architecture_v1-1.pdf.

[51] https://www.process-project.eu/wp-content/uploads/2020/02/PUBLIC_

PROCESS_D4.2_Report_on_architecture_v1.0.pdf.

[52] https://www.process-project.eu/wp-content/uploads/2020/02/PUBLIC_

PROCESS_D5.1_Design_of_data_infrastructure_v1.0.pdf.

[53] https://www.process-project.eu/wp-content/uploads/2020/02/PROCESS_D5.

2_Alpha_release_of_the_Data_service_v1.0.pdf.

[54] Spreeuw, H.—Madougou, S.—Van Haren, R.—Weel, B.—Belloum, A.—
Maassen, J.: Unlocking the LOFAR LTA. 2019 15th International Confer-
ence on eScience (eScience), San Diego, CA, USA, 2019, pp. 467–470, doi:
10.1109/eScience.2019.00061.

[55] https://www.process-project.eu/wp-content/uploads/2020/02/PUBLIC_

PROCESS_D2.1_Progress_Report_v1.0.pdf.

[56] https://www.research-software.nl/.

[57] Wittenburg, P.—Van de Sompel, H.—Vigen, J.—Bachem, A.—
Romary, L.—Marinucci, M.—Andersson, T.—Genova, F.—Best, C.—
Los, W. et al.: Riding the Wave: How Europe Can Gain from the Rising Tide
of Scientific Data. Final Report of the High Level Expert Group on Scientific Data –
A Submission to the European Commission, October 2010. http://ec.europa.eu/
newsroom/dae/document.cfm?doc_id=707.

Reginald Cushing is PostDoc at the University of Amsterdam
in the Multiscale Networked Systems (MNS) group. His research
fields are in distributed systems with a focus on data processing,
federation, and scientific workflows.

Onno Valkering is Scientific Programmer in the Multiscale
Networked Systems (MNS) research group at the University of
Amsterdam, Holland. His interests are distributed data pro-
cessing, domain-specific languages, and privacy-preserving tech-
niques.

https://www.process-project.eu/wp-content/uploads/2020/02/PUBLIC_PROCESS_D4.1_Initial_-state_of_the_art_and_requirement_analysis_initial_PROCESS_architecture_v1-1.pdf
https://www.process-project.eu/wp-content/uploads/2020/02/PUBLIC_PROCESS_D4.1_Initial_-state_of_the_art_and_requirement_analysis_initial_PROCESS_architecture_v1-1.pdf
https://www.process-project.eu/wp-content/uploads/2020/02/PUBLIC_PROCESS_D4.1_Initial_-state_of_the_art_and_requirement_analysis_initial_PROCESS_architecture_v1-1.pdf
https://www.process-project.eu/wp-content/uploads/2020/02/PUBLIC_PROCESS_D4.2_Report_on_architecture_v1.0.pdf
https://www.process-project.eu/wp-content/uploads/2020/02/PUBLIC_PROCESS_D4.2_Report_on_architecture_v1.0.pdf
https://www.process-project.eu/wp-content/uploads/2020/02/PUBLIC_PROCESS_D5.1_Design_of_data_infrastructure_v1.0.pdf
https://www.process-project.eu/wp-content/uploads/2020/02/PUBLIC_PROCESS_D5.1_Design_of_data_infrastructure_v1.0.pdf
https://www.process-project.eu/wp-content/uploads/2020/02/PROCESS_D5.2_Alpha_release_of_the_Data_service_v1.0.pdf
https://www.process-project.eu/wp-content/uploads/2020/02/PROCESS_D5.2_Alpha_release_of_the_Data_service_v1.0.pdf
https://doi.org/10.1109/eScience.2019.00061
https://www.process-project.eu/wp-content/uploads/2020/02/PUBLIC_PROCESS_D2.1_Progress_Report_v1.0.pdf
https://www.process-project.eu/wp-content/uploads/2020/02/PUBLIC_PROCESS_D2.1_Progress_Report_v1.0.pdf
https://www.research-software.nl/
http://ec.europa.eu/newsroom/dae/document.cfm?doc_id=707
http://ec.europa.eu/newsroom/dae/document.cfm?doc_id=707

754 R. Cushing, O. Valkering, A. Belloum, S. Madougou, M. Bobak, O. Habala et al.

Adam Belloum is Senior Researcher at the Computer Science
Department of the University of Amsterdam and the technology
lead working on optimized data handling at the Dutch National
eScience Center. He received his M.Sc. and Ph.D. degrees from
the Compiegne University of Technology, France.

Souley Madougou is an eScience engineer at the Netherlands
eScience Centre since December 2018. He is mainly involved in
the PROCESS project in which he contributes to the implemen-
tation of the LOFAR use case and the development and analysis
of PROCESS performance models. He previously worked in sev-
eral eScience projects in the Netherlands. His research interests
include performance modelling on many-core architectures, par-
allel programming and provenance.

Martin Bobak is Scientist at the Institute of Informatics, Slo-
vak Academy of Sciences, Bratislava, Slovakia, in the Depart-
ment of Parallel and Distributed Information Processing. He
started working at the institute in 2013, defended his disser-
tation thesis at the institute in 2017, became Member of the
Scientific Board of the institute, and Guest Handling Editor in
the CC Journal Computing and Informatics. His field of re-
search is cloud computing and the architectures of distributed
cloud-based applications. He is the author of numerous scien-
tific publications and has participated in several European and
Slovak R & D projects.

Ondrej Habala is Researcher at the Institute of Informatics,
Slovak Academy of Sciences, Bratislava, Slovakia. He works in
the Department of Parallel and Distributed Information Process-
ing since 2001. His interests are mainly in data and metadata
management in distributed computing, as well as in distributed
information systems in general and focused on applications in
environmental sciences and hydro-meteorology. He has over the
years participated in numerous FP5, FP6, FP7, H2020 and na-
tional research projects and produced over 80 scientific publica-
tions.

Process Data Infrastructure and Data Services 755

Viet Tran is Senior Researcher at the Institute of Informat-
ics, Slovak Academy of Sciences (IISAS). His primary research
fields are complex distributed information processing, grid and
cloud computing, system deployment and security. He received
M.Sc. degree in informatics and information technology, Ph.D.
degree in applied informatics from the Slovak University of Tech-
nology (STU) in Bratislava, Slovakia. He actively participates
on preparations and solving a number of EU IST RTD 4th, 5th,
6th, 7th FP and EU H2020 projects such as PROCESS, DEEP-
HybridDataCloud, EOSC-Hub and EOSC-Synergy. He is the

author or co-author of over 100 scientific publications.

Jan Meizner has graduated majoring in federated IT security
systems. Since then he has been working at ACC Cyfronet AGH
on many EU and national projects involving a wide range of
subjects, including computational medicine. His work focuses on
IT security, operations of cloud and HPC infrastructures, as well
as building software for such infrastructures. Currently involved
also in Sano Centre for Computational Medicine, focusing on the
operations of IT systems, as well as a range of IT security tasks,
including identity management and data security.

Piotr Nowakowski is Research Programmer at the Academic
Computing Centre CYFRONET AGH and Senior Data Scien-
tist at the Sano Centre for Computational Medicine. He spe-
cializes in design and development of distributed environments
for computational science, and he has participated in a range
of national and international research initiatives, including EU-
funded projects – most recently VPH-Share, EurValve and PRO-
CESS. He is the author or co-author of over 100 scientific pub-
lications.

Mara Graziani is a third-year Ph.D. student with double affil-
iation at the University of Geneva and at the University of Ap-
plied Sciences of Western Switzerland. With her research, she
aims at improving the interpretability of machine learning sys-
tems for healthcare by a human-centric approach. She was a vis-
iting student at the Martinos Center, part of Harvard Medical
School in Boston, MA, USA to analyze the interaction between
clinicians and deep learning systems. From her background of
IT Engineering, she was awarded the Engineering Department
Award for completing the M.Phil. in machine learning, speech

and language at the University of Cambridge, UK in 2017.

756 R. Cushing, O. Valkering, A. Belloum, S. Madougou, M. Bobak, O. Habala et al.

Henning M�uller is Full Professor at the HES-SO Valais and
responsible for the eHealth unit of the school. He is also Pro-
fessor at the Medical Faculty of the University of Geneva and
has been on sabbatical at the Martinos Center, part of Harvard
Medical School in Boston, MA, USA to focus on research activi-
ties. He is the coordinator of the ExaMode EU project, was the
coordinator of the Khresmoi EU project, the scientific coordi-
nator of the VISCERAL EU project, and is the initiator of the
ImageCLEF benchmark that has run medical tasks since 2004.
He has authored over 500 scientific papers with more than 13 000

citations and is in the editorial board of several journals.

