
Computing and Informatics, Vol. 39, 2020, 1022–1060, doi: 10.31577/cai 2020 5 1022

FORMAL VERIFICATION OF UML MARTE
SPECIFICATIONS BASED ON A TRUE
CONCURRENCY REAL TIME MODEL

Nadia Chabbat

LAAS Laboratory, Department of Computer Science
University of Badji Mokhtar, Annaba, Algeria
e-mail: lydia.chab@hotmail.fr

Djamel Eddine Saidouni, Radja Boukharrou

MISC Laboratory, Department of Computer Science
University of Abdelhamid Mehri, Constantine 2, Algeria
e-mail: {djamel.saidouni, radja.boukharrou}@univ-constantine2.dz

Salim Ghanemi

LAAS Laboratory, Department of Computer Science
University of Badji Mokhtar
Annaba, Algeria
e-mail: ghanemisalim@univ-annaba.dz

Abstract. For critical embedded systems the formal validation and verification is
required. However, the real-time model checking suffers from problems of state-
space explosion and clock explosion. The aim of this paper is to ensure an improve-
ment of the Modeling and Analysis of Real-Time Embedded systems (MARTE),
which is de facto standard, with formal semantics for verification finality. There-
fore, we propose an operational method for translating UML sequence diagrams
with MARTE annotations to Time Petri nets with Action Duration specifications
(DTPN). Based on true concurrency semantics, the semantics of these specifications
are defined in terms of Duration Action Timed Automata (daTA).

Formal Verification of UML MARTE Based on a Real Time Model 1023

Keywords: Real-time embedded system, UML MARTE, DTPN, duration action
timed automata, parallel computing, sequence diagram, formal verification

1 INTRODUCTION

Real-time embedded systems solve behaviors constrained by time. These systems
provide a specific function in a much larger system within time consideration [1, 2].
The design of such systems is associated with time constraints specification. Real-
time embedded systems are often critical and require the modeling of real-time
response at the functional level. The assessment of such systems may be achieved
through verification and validation processes based on robust formal approaches to
meet the required timed constrained functional system properties.

Several studies have proposed a model-based engineering approaches that of-
fer advanced modeling mechanisms such as UML (Unified Modeling Language) [3].
MARTE is an OMG UML profile dedicated for modeling and analysis of real-time
embedded systems [4, 5]. MARTE specifies concepts for characterizing UML ele-
ments in order to model software and hardware platforms, resources, and quantita-
tive characteristics such as execution time. However, once the software is modeled,
the difficulty lies in the expression of appropriate properties and formal checks. In
order to meet these requirements, formal analytical approaches have been developed
so to integrate or extend formal models in the designing process of real-time embed-
ded systems developed with MARTE. Both works presented in [6, 7] use the Time
Petri Net analyzer [8] (TINA) model-checking tool to verify temporal properties on
structural and behavioral diagrams specified in MARTE.

Some work, as [9, 10], extended a formal language in order to take into consider-
ation time aspects. In [9], the discrete-time of Promela language has been extended
by a variable, named “timer”, that corresponds to the discrete-time “countdown”.
However, the extended model is difficult to use for representing the coincidence
clock tickings. Another work, presented in [10], proposes an extension of Promela
language with discrete-time to allow the verification by SPIN model checker [11].

In [12], an interesting approach has been proposed. It interprets parallel ac-
tivities, modeled in MARTE sequence diagrams, by parallel transitions in a Petri
net like specification. More precisely, the specification is written in timed colored
Petri nets with inhibitor arcs model (TCPNIA) [13]. In the later work, the duration
of an activity is integrated as a constraint interval associated with the correspond-
ing transition of the Petri net. To verify some properties, TCPNIA specification
is translated to a Timed Automata [14, 15] in order to use some existing model
checker tools as SMV [16]. However, this approach only expresses activity duration
without considering latency, delay and congestion time specification. Since Timed
Automata is based on interleaving semantics, there is no way to express the parallel
execution of two activities. To overcome such limitation, it is possible to interpret
each activity having a non-null duration by two sequential transitions modeling the

1024 N. Chabbat, D. E. Saidouni, R. Boukharrou, S. Ghanemi

activity’s start and end events. Though this solution is correct, it presents some
serious inconvenience. In fact, larger number of transitions in the Petri net specifi-
cation leads to a significant clock number increase in the associated timed automata.
Indeed, the number of zones, respectively regions, in the zone graph, respectively
region graph, is exponential to the number of clocks [15]. Thus, this leads to the
state space combinatorial explosion problem [17, 18, 19].

In our proposed approach, Time Petri Nets with action Duration (DTPN) spec-
ification model is used as a semantics model of MARTE SD specification [20]. In
fact, DTPN has a true concurrency semantics and considers both timing constraints
and duration of actions. The true concurrency semantics allows the consideration
of activities duration without using the split technique. The underlying semantics
model is a Durational Action Timed Automaton (daTA) [21].

This paper defines an operational method for translating MARTE SD specifi-
cations to DTPNs ones. As a consequence, on one hand, the transformation leads
to a small DTPN specification and on the other hand, the verification of a DTPN
specification is based on its daTA corresponding model, which allows the reuse of
clocks. So, this lead to reduce, in some case avoid the problem of the combinatorial
explosion of the number of graph states, which is one of the main limitations of
applying model-checking methods on industrial-sized models and, to reduce of the
verification time, that is often exponential for large-size systems.

The rest of this paper is structured as follows: In Section 2, we present prelimi-
nary definitions of MARTE sequence diagrams, Time Petri Nets with action dura-
tion and durational action timed automata. Section 3 defines the formal semantics
of MARTE sequence diagrams and formal translation rules of basic elements and
some combined fragments. In Section 4, we present a case study to better illustrate
the interest of the proposed approach, as well as its implementation in practice.
Section 5 discusses the advantages of the proposed approach with related works.
Finally, Section 6 gives some conclusions and perspectives of this work.

2 PRELIMINARY DEFINITIONS

2.1 MARTE Sequence Diagrams

The UML sequence diagram is a form of interaction diagram. It allows the de-
scription of a specific interaction in terms of participating objects and sequence
of messages exchanged along progress to perform desired activity. Graphically, an
interaction is composed by two lifelines and a message. A lifeline represents an
instance corresponding to a particular object that participates in the interaction.
The events along a lifeline are, in general, partially ordered, the order in which
these events will occur. A message represents a communication that transmits in-
formation between objects or an object and its environment. A message specifies
the kind of a communication between objects as synchronous or asynchronous and
notes the occurrences of the sending event at the sender and the receiving event at
the receiver level. In this work, we will focus on the order and type of messages,

Formal Verification of UML MARTE Based on a Real Time Model 1025

synchronous, asynchronous and reply. Additionally, we will take into consideration
the timing constraints imposed on transmitted messages between objects involved
in the interaction.

A sequence diagram describes only a fragment of the system behavior. The
complete behavior of the system can be expressed by a set of sequence diagrams to
specify all possible interactions. An interaction is a behavior unit that focuses on
the observable transmissions of information between connected objects over time.
Each interaction may be caused by actions executed by communicated objects. As
defined in [22]: an action takes a set of inputs and converts them into a set of
outputs, though either or both sets may be empty. For examples, an action can be
a call operation, send signal, receive signal, write variable or read variable. The
execution of actions can result by an event as a call or a signal event.

To get more complex interactions, combined fragments technique may be used.
A combined fragment consists of an operator and a number of operands. Depending
on the used operator, the number of operands is defined. For example, break, opt,
loop, assert, ref and neg operators have one operand. Most other operators like alt,
seq and par, have more than one operand. Fragments and their operators can be
inductively combined for describing complex interactions.

In order to enrich UML models with annotations related to time (values and
timing constraints), the UML MARTE profile provides basic and advanced time
modeling concepts, such as stereotypes, which allow the consideration of temporal
behaviors. This profile is intended to replace the existing UML SPT Profile (Schedu-
lability, Performance and Time) [23], that is incompatible with UML 2 and MDA
standards [24].

Figure 1 shows the different concepts in a sequence diagram used for specifying
time and timing constraints in UML MARTE profile. These elements are defined
in the SimpleTime package of CommonBehaviors. TimeObservation is a reference
to an instant of time, while DurationObservation is a reference to a duration of an
execution. TimeConstraints can be in the form of duration, as well as some instants
of time; sequence diagram supports both. DurationConstraint defines a Constraint
that refers to a duration interval, which defines the range between two duration.
A duration defines a value specification that specifies the temporal distance between
two time instants. Timing constraints are expressed between a pair of braces. The
annotations in color are not part of the model, they are used to specify model
elements. More details about this system example can be found in [25].

2.2 Time Petri Nets with Action Duration

Time Petri Nets with Action Duration can be considered as a generalization of
Merlin’s TPNs [27], T-TdPNs [28] and P-TdPN [29]. The basic idea of DTPN
is to associate two date’s min and max with each transition that define its firing
interval (temporal interval). Although the firing of a transition is instantaneous,
the execution duration of the action associated to this transition may have non-
null duration. For example, let t be a transition associated to the action which

1026 N. Chabbat, D. E. Saidouni, R. Boukharrou, S. Ghanemi

Time
Observation

Duration
Observation

Duration
Constraint

Time
Constraint

Tag in the
stereotype

Exgigue

Possibility of referring
occurrences

sd DataAcquistion

:Sensor:Controller

@t0

@t3

act()

acquire() {d1≤(1,ms)}

{[d1..3*d1]}

@t2

constr1={ (t0[i+1] ­ t0[i]) > (100,ms) }
constr2={ t3 < t2 + (30,ms) }

start() {jitter(t0)<(5,ms)}

{ [t1..t1+(8,ms)] }

&d1

sendData(data) { [(0,ms)..(10,ms)] }

Figure 1. Time and timing constraints illustration [26]

has a duration d. If θ is the enabling date of t then the firing of t will be in the
time interval [θ + min, θ + max]. The firing of t marks the start of execution of the
associated action. Figure 2 a) shows an example of a time Petri nets with action
duration.

[1,3], 2

𝑎 [1,2], 3

𝑏

{𝐺 = 1 ≤ 𝑥 ≤ 2}

{𝐷 = 𝑥 ≤ 2}

{𝐺 = 4 ≤ 𝑥 ≤ 6}
𝑏, 𝑥

𝑠0 {𝑥  0}

𝑎, 𝑥

{𝑥  3}𝑠1

𝑠2 {𝑥  2}

{𝐷 = 𝑥 ≤ 6}

(a) DTPN (b) daTAa) DTPN

[1,3], 2

𝑎 [1,2], 3

𝑏

{𝐺 = 1 ≤ 𝑥 ≤ 2}

{𝐷 = 𝑥 ≤ 2}

{𝐺 = 4 ≤ 𝑥 ≤ 6}
𝑏, 𝑥

𝑠0 {𝑥  0}

𝑎, 𝑥

{𝑥  3}𝑠1

𝑠2 {𝑥  2}

{𝐷 = 𝑥 ≤ 6}

(a) DTPN (b) daTAb) daTA

Figure 2. DTPN and its corresponding daTA automata

A place of a DTPN corresponds to two sets: a set of available tokens or free
tokens and a set of unavailable tokens or bound tokens. Unavailable tokens, put on
the right side of a place, are bound to the firing of transitions associated to actions
that are currently running. In a DTPN, an unavailable token becomes available if
the end of execution of the action associated to the transition that produced this
token is reached. A token in place p at the time ϑ becomes available (in the left
side of p) at the time ϑ+ d. Thus, the token is bound to the firing of the transition
during the interval [ϑ, ϑ+ d[and it becomes free at the time ϑ+ d.

Formal Verification of UML MARTE Based on a Real Time Model 1027

𝑡1,𝑎 [0,0], 3

𝑝1

𝑝2

𝑡1,𝑎 [0,0], 3

𝑝1

𝑝2

3
𝑡1,𝑎 [0,0], 3

𝑝1

𝑝2

(a) (b) (c)
a)

𝑡1,𝑎 [0,0], 3

𝑝1

𝑝2

𝑡1,𝑎 [0,0], 3

𝑝1

𝑝2

3
𝑡1,𝑎 [0,0], 3

𝑝1

𝑝2

(a) (b) (c)
b)

𝑡1,𝑎 [0,0], 3

𝑝1

𝑝2

𝑡1,𝑎 [0,0], 3

𝑝1

𝑝2

3
𝑡1,𝑎 [0,0], 3

𝑝1

𝑝2

(a) (b) (c)
c)

Figure 3. Marked DTPN

In Figure 3 a), the token in place P1 is not bound to any transition. This token
is called free. In the case when the transition would be fired, it could be argued that
the action associated to the firing of t1 has started its execution. This is marked by
the presence of the token in place P2 (Figure 3 b)). Thus, the token in place P2 is
bound to the firing of t1, but after completion of the action a, i.e. after 3 units of
time, this token will become free (Figure 3 c)). In a place, the set of free tokens will
be denoted by FT , while bound tokens set will be denoted by BT .

Definition 1. Let T be a non-negative temporal domain, like Q+ or R+.

Definition 2. Let Act be a finite set of actions, i.e. an alphabet. A Time Perti
Net with action Duration (DTPN) on T and of support Act is a tuple 〈P, T,B, F, λ,
SI,Γ〉, such that:

• Q = 〈P, T,B, F 〉 is Perti net, where P is a set of places, T is set of transitions
such that P ∩ T = ∅;

• B : P × T → N is a backward incidence function such that B(pi, tj) represents
arc weight from tj to pi;

• F : P ×T → N is a forward incidence function such that F (pi, tj) represents arc
weight from pi to tj;

• λ : T → Act ∪ {τ} is a labelling function of a DTPN . If λ(t) ∈ Act then t is
called observable or external;

• SI : T → T × T ∪ {∞} is a function that associates to each transition a static
firing interval;

• Γ : Act→ D is a function that associates to each action its static duration.

I is the set of all intervals of a DTPN such that I(t) = [min,max] is the interval
associated to the transition t. We denote by ↓I(t) = min and ↑I(t) = max , two
functions which give respectively the lower and upper bound of an interval.

As commonly in use in the literature, we write ◦t (resp. t◦) to denote the set
of places such that ◦t = (p ∈ P/B(p, t) > 0 (resp. t◦ = {p ∈ P/F (p, t) > 0}), and
◦p (resp. p◦) to represent the set of transitions such that ◦p = {t ∈ T/F (p, t) > 0}

1028 N. Chabbat, D. E. Saidouni, R. Boukharrou, S. Ghanemi

(resp. p◦ = {t ∈ T/B(p, t) > 0}). Noting that marked DTPN is a tuple 〈PN,M0〉,
such that PN = 〈P, T,B, F, λ, SI,Γ〉 is a DTPN, and M0 is its initial marking,
where ∀p ∈ P : M(p) ∈ N.

2.3 Durational Action Timed Automata

Durational action Timed Automata (daTA) is structurally a subclass of timed au-
tomata [14, 15, 30]. However, the difference to be underlined is the one concerning
the semantics associated with the model. The daTA model [21, 31] is a timed model
defined by a timed transition system based on a true-concurrency semantics, express-
ing parallel behaviors and supporting at the same time timing constraints, explicit
actions duration, structural and temporal non-atomicity of actions i.e., actions may
be divisible and of non-null duration.

The daTA model supports the notions of urgency and deadlines as timing con-
straints of the system. An action duration is expressed by a duration condition
associated to states of the model. On the other hand, timing constraints, due to
restrictions on the enabling domain of an action, are expressed by the enabling con-
straint G (for Guard) and by urgency constraint D (for Deadline) at the level of
daTA transitions. In addition, a transition represents only the start of an action,
end of execution is captured by the corresponding duration expressed at the level
of target state. On the target state, a timed expression manifests that the action is
potentially in execution.

From operational point of view, with each action a clock is associated which
is reset at the start of the action. This clock will be used in the construction of
the timing constraints as guards of the transitions. Figure 2 b) shows the structure
of the corresponding daTA to DTPN of Figure 2 a). This daTA is composed of
three states and two transitions labelled with two actions a and b of durations 3 and
2 units of time, respectively. From the initial state S0 of the illustrative daTA, the
execution of action a leads to a reset of clock x associated with it. The expression
x ≥ 3 in state S2 represents a duration condition on action a and means that a is
potentially in execution until the clock x reaches the value 3. The action a does
not wait for the end of any other action, so the clock designated by x is used in the
enabling domain of this action.This enabling domain will be expressed by the guard
and the deadline on the clock x as (1 ≤ x ≤ 2) and (x ≤ 2). Below, we define the
timed domain modeling clocks of daTA.

Definition 3. Let H be a set of clocks with non-negative values (within a time
domain H, like Q+ or R+). The set Φt(H) of temporal constraints γ over H is
γx ∼ t, where x is a clock in H, ∼∈ {=, <,>,≤,≥} and t ∈ T. Fx is used to
indicate a constraint of the form x ∼ t. A valuation v for H is a function which
associates to each x ∈ H a value in T. The valuation v for H satisfies a temporal
constraint γ over H iff γ is true by using clock values given by v. For I ⊆ H, [I → 0]
indicates the valuation for H which assigns 0 value to each x ∈ I, and agrees with
v over the other clocks of H. The set of all valuations for H is noted Ξ(H). The

Formal Verification of UML MARTE Based on a Real Time Model 1029

satisfaction relation |= for temporal constraints is defined over the set of valuations
for H by (v |= x ∼ t) ⇔ (v(x) ∼ t) such that v ∈ Ξ(H). 2T

fn is used to denote the
set of finite subsets of a set T.

Definition 4. A daTA is a tuple 〈S, Ls, s0,H, TD〉 of the support Act, where:

• S is a finite set of states;

• Ls : S → 2
Φ

t(H)

fn is a function which assigns to each state s the set F of ending
condition (duration conditions) of actions possibly in execution in s;

• s0 ∈ S is the initial state, such that Ls(s0) = ∅;
• H is a finite set of clocks;

• TD ⊆ S × 2
Φ

t(H)

fn × 2
Φ

t(H)

fn × Act ×H× S is the set of transitions.

A transition (s,G,D, a, x, s′) represents a switch from state s to state s′ by
starting execution of action a and resetting clock x. G is the corresponding guard,
which must be satisfied to fire the transition. D is the corresponding deadline which
requires, at the moment of its satisfaction, that action a must occur.

(s,G,D, a, x, s′) can be written s
G,D,a,x−−−−→ s′. Figure 2 b) shows the structure of

the corresponding daTA to DTPN of Figure 2 a).

Definition 5. The semantics of a daTA A = 〈S, Ls, s0, H, TD〉 is defined by asso-
ciating with it an infinite transition system SA over Act ∪ T. A state of SA, viewed
as a configuration, is a pair 〈s, v〉 such that s is a state of A and v is a valuation
for H. A configuration 〈s0, v0〉 is initial if s0 is the initial state of A and ∀x ∈ H,
v0(x) = 0. Two types of transitions between SA configurations are possible, and
which correspond respectively to time passing (Rules (1) and (2)) and the launching
of a transition from A (Rule (3)):

d ∈ T ∀d′ ≤ d, v + d′ 2 D

〈s, v〉 d−→ 〈s, v + d〉
, (1)

ε ∈ T v + ε � D ∧ ε ∈ η
〈s, v〉 ε−→ 〈s, v + ε〉

, (2)

(s,G,D, a, x, s′) ∈ TD v � G

〈s, v〉 a−→ 〈s′, [{x} 7→ 0]v〉
. (3)

In Rule (2), η corresponds to the smallest real quantity of time in which no
action occurs [31]. In Rule (3), D = ∨i∈IDi, where {(s,Gi, Di, ai, x, si)}i∈I is the set
of all transitions stemming from state s. Indeed, whenever a Di holds, time cannot
progress regardless of the other Di.

In order to guarantee that at least a transition could be drawn starting from
a state if time cannot progress any more within this state, the formula Di ⇒ Gi

must be satisfied.

1030 N. Chabbat, D. E. Saidouni, R. Boukharrou, S. Ghanemi

Remark 1. For urgency domains, we require that deadline can be only of the form
x ≤ t or x < t.

3 TRANSLATION OF MARTE SEQUENCE DIAGRAMS TO DTPN

This paper proposes a translation of a high-level model written in MARTE SD to-
wards a specific formal time model that is DTPN. Figure 4 gives a general overview
of the approach. The approach will follow two main steps. In the first step, MARTE
sequence diagrams are formalized. The translation method is developed in the sec-
ond step. It is defined inductively starting from the basic elements.

Formel Specification
UML MARTE (DTPN)

Intermediate Formel
Model (daTA)

NO
(Counter-Example)

YES

Region Graph

Proprerty
specification in
temporal logics

Model Checker

Kripke Structure

Zone Graph

Model-based Verification

Interpreter

Figure 4. Verification process

3.1 Formalisation

Sequence diagrams are semi-formal notation, in other words the syntax and se-
mantics notations are open to different interpretations. In the literature, there
are several research papers that address the formal formalization of sequence dia-
grams [32, 33, 34, 35, 36, 37, 38, 39, 40, 41]. Among these works, the approach of [41]
is an interesting one as a formal translation. In this work, the authors have defined
formal rules for the translation of an UML sequence diagram to a corresponding
coloured Petri nets. Nevertheless, the transmission processing between two com-
municating objects in the sequence diagram is specified as a single transition with
an abstraction to the different primitives of communication, i.e. sending process,
transmitting and receiving process. In addition, this approach models the transmis-
sion without further consideration of any details in relation with its execution like
latency and time of execution.

Formal Verification of UML MARTE Based on a Real Time Model 1031

To overcome these limitations and in order to consider timing constraints and
duration of execution, we propose a formal translation of MARTE sequence diagrams
to Time Petri nets with action duration model. Besides the formal translation and
the timing consideration, we investigate the parallel execution specification. For
this purpose, the true-concurrency semantics based DTPN model is used to obtain
durational action Timed Automata (daTA) (semantics representation) [42, 43]. In
daTA, both true concurrency and action duration are considered. This structure
allows the verification of properties related to parallel evolution of actions within
timing constraints. We note that some properties related to reachability may be
checked by means of KRONOS and UPPAAL like tools [43, 44]. However, for
properties dealing with true concurrency behaviors, FOCOVE model checker may
be used [45].

So, in the proposed approach, we follow the same formalization principle pro-
posed in [41] with some differences. In fact, on one hand the transmission primitives
specification between communicating parties is defined and in another hand the for-
malization is made inductive by associating a DTPN specification to each event and
defining the translation of composite interaction in terms of its DTPN corresponding
sub-elements. Also, we specify timing constraints, like latency, and execution dura-
tion of each action separately in order to model transmission process under timing
constraints.

3.2 Formal Definitions

In formal terms, we define the MARTE sequence diagrams as follows:

Definition 6. MARTE SD = (N,O,E,<g,M,Act,D, Tc, λ, S, T,Pre,Post , Cf)
where:

• N is a set of diagram names;

• O is a finite set of objects;

• E =
⋃

i∈O Ei is a set of events such that Ei

⋂
Ej = ∅ for any i 6= j ∈ O;

• <g=< ∪{
⋃

i,j∈O,i6=j <i,j}

– <=
⋃

i∈O is a set of partial orders on events of Ei such that ∀i ∈ O,<i⊆
Ei × Ei;

– <i,j defines an order between events e, e′ such that ∀(e, e′) ∈<i,j, e ∈ Oi, and
e′ ∈ Oj or e ∈ Oj and e′ ∈ Oi and e precedes e′.

• M is a finite set of message labels;

• Act is a set of actions. Each action a ∈ Act can be launched by event. Accord-
ing to the specification context, we can distinguish different kinds of actions.
Examples for actions are synchronous sending (Sysen) or asynchronous sending
a message (Asysen), synchronous receiving (Syrec) or asynchronous receiving

1032 N. Chabbat, D. E. Saidouni, R. Boukharrou, S. Ghanemi

a message (Asyrec), sending reply (Sreply), Receiving reply (Rreply), transmis-
sions of message, activities or any behavior to be executed in the system.

Act = {Sysen,Asysen, Syrec,Asyrec, Sreply ,Rreply ,Activity1, . . . ,Activityn,

Trans1, . . . ,Transn};

• Dc : Act → T is a function that associates to each action a duration which may
be null;

• Tc : E → T× T is a function that associates a time interval to each event such
that ∀e ∈ Ei, T c(e) = [d, d+ t] which means that event e should be executed in
the time interval [d, d+ t];

• λ : E → Act is a labelling function which associates an action name to each
event. For each event e ∈ Ei, e may be defined by 3-uple 〈e,D(λ(e)), T c(e)〉.

• S is the set of all the possible states with S =
⋃

Oi∈O Si where Si is the set of
states of an object Oi. Si =

⋃
e∈Ei

Se, such that:

– ∀e ∈ E, Se = {s0
e, s

1
e};

– If e ∈ E is associated to the sending action then Se = {s0
e, s

1
e, s

out
e };

– If e ∈ E is associated to the receiving action then Se = {s0
e, s

1
e, s

in
e }.

Similarly to events, different objects cannot share the states, Si ∩ Sj = ∅ for
Oi 6= Oj ∈ O;

• T is a set of transitions, such that for each transition t ∈ T is associated to
an event e ∈ E and is of the form 〈e,D(λ(e)), T c(e)〉. The arcs linking states to
transitions are labeled by the Pre function, whereas the arcs linking transitions
to states are labeled by the Post function;

• Pre : N → 2S×T is an input function associating for each diagram sd, a set of
arcs, where (s, t) ∈ Pre(sd) defines the arc from s to t;

• Post : N → 2S×T is an output function associating for each diagram sd, a set of
arcs, where (s, t) ∈ Post(sd) defines the arc from t to s.

For a given diagram sd:

– The set of input arcs of transition t ∈ T is denoted ◦t = {(s, t) ∈ Pre(sd) |
s ∈ S};

– The set of output arcs of transition t ∈ T is denoted t◦ = {(s, t) ∈ Post(sd) |
s ∈ S};

– The set of input arcs of state s ∈ S is denoted ◦s = {(s, t) ∈ Pre(sd) | t ∈ T};
– The set of output arcs of state s ∈ S is denoted s◦ = {(s, t) ∈ Post(sd) |
t ∈ T};

• CF is a combined fragment defined by a type of operator and one or more
operands.

Formal Verification of UML MARTE Based on a Real Time Model 1033

– Type = {seq , alt , par , opt , break , loop, ref , strict , critical , neg , assert , ignore,
consider};

– Op is a finite set of operands;

– Guard is a boolean or temporal expression which associates a guard to
an operator or to a combined fragment;

– Frag is a set of nested combined fragments inside the nth operands of the
mth interaction fragments.

3.3 MARTE SD to DTPN Transformation

In the next lines, we present the translation rules and we explain through examples
the translation between the input elements of the MARTE sequence diagram to the
output elements of DTPN. Considering the different types of transmission between
communicating objects, duration of the desired activities to be executed and the
timing constraints imposed on the sending and receiving transmitted messages. By
using DTPN, the action durations are fixed once and for all at the enabling moment
of the system. The case where actions have durations chosen from an interval [m,M]
is not considered. Also, we note that the TimeConstraint stereotype presented in
Section 2 is expressed by time interval [min,max].

3.3.1 Basic Elements

Definition 7. For a given diagram sd, let 〈e1, d1, tc1〉 and 〈e2, d2, tc2〉 be two differ-
ent transitions corresponding to a given transmission, such that:

• If Oi, Oj ∈ O and i 6= j such that e1 ∈ Ei and e2 ∈ Ej, then the transitions
represent an external evolution between both objects Oi and Oj. It is said an
inter-objects transmission;

• If ∃Oi ∈ O such that e1, e2 ∈ Ei and e1 < e2, and @e3 ∈ Ei such that e1 < e3 <
e2, then the transitions represent a local evolution in the object Oi. It is said
an intra-objects transmission. In such case, d1 = d2 = 0 and tc1 = tc2 = [0, 0].

Inter-objects transmission.

• Synchronous transmission: Synchronous transmissions are used when the
sender waits for a response from the receiver to continue its operations. A syn-
chronous transmission blocks the progression of the operations of its sender until
the receiver gets its message (weak synchronization) or until the sender receives
the response (strict synchronization).

Let us consider the example of Figure 5 which shows a synchronous transmission
and its reply. In the following paragraph, we detail how various elements of
this sequence diagram (source model) are translated to the elements of DTPN
(destination model).

1034 N. Chabbat, D. E. Saidouni, R. Boukharrou, S. Ghanemi

In Figure 5, the Synchronous transmission represents an interaction between
two objects O1 and O2 associated to both events e1 and e2 necessarily different.
The translation of this transmission to an equivalent DTPN is based on the
interpretation of each event and its associated action in the diagram with taking
into account the two states (before and after) of this event. To construct the
DTPN, we split the synchronous transmission in two principal steps:

1. sending the synchronous transmission and

2. receiving the synchronous transmission reply.

𝑶𝟏 𝑶𝟐

Synch

𝑠𝑒1
0

𝑠𝑒4
1

𝑒1, 2, [1,4]

𝑒4, 3, [3,4]

𝑒1𝑒2, 3, [1,3]

𝑒3𝑒4, 2, [1,3]

𝑒2, 2, [1,4]

𝑒3, 3, [3,4]

𝑠𝑒2
0

𝑠𝑒3
1

Reply

𝑠𝑒1
𝑜𝑢𝑡 𝑠𝑒2

𝑖𝑛

𝑠𝑒3
𝑜𝑢𝑡𝑠𝑒4

𝑖𝑛

𝑠𝑒1
1 = 𝑠𝑒4

0 𝑠𝑒2
1 = 𝑠𝑒3

0

Figure 5. Synchronous transmission

Step 1:

1. Object O1 launches a transmission sending operation at event e1 to object
O2, which is constrained by the time interval [1, 4] and duration equal to
two units of time. The event e1 is translated to a Petri net transition te1
constrained by the time interval [1, 4] and an action of duration 2 units of
time. The two states (before and after) of event e1 are translated to the
two places s0

e1
, s1

e1
. Also, we add the arcs that relate place to transition

or transition to place. This translation is illustrated by Figure 6 a).
2. Object O2 receives the transmission action at event e2, with duration

equal to 2 which may be delayed by 4 units of time. Since, the constraint
interval [1, 4] is considered. The corresponding DTPN is represented by
Figure 6 b).

3. For representing the intermediate transmission action between object O1

and object O2, we create an event named e1e2 and two states soute1 , sine2 .
The event e1e2 models the action, which takes in our case a duration
between 4 and 6 units of time. For considering this characteristic, we
consider the constraint interval [1, 3] and a duration of the transmission
action equal to 3 units of time. Figure 6 c) shows the corresponding
DTPN.

Formal Verification of UML MARTE Based on a Real Time Model 1035

𝑶𝟏

𝑠𝑒1
0

𝑡𝑒1,𝑎 [1,4], 2

𝑠𝑒1
1

𝑶𝟐

𝑠𝑒2
0

𝑡𝑒2 , 𝑏 [1,4], 2

𝑠𝑒2
1

𝑠𝑒1
𝑜𝑢𝑡

𝑡𝑒1𝑒2 , 𝑐

𝑠𝑒2
𝑖𝑛

[1,3], 3

(b)(a) (c)
a)

𝑶𝟏

𝑠𝑒1
0

𝑡𝑒1,𝑎 [1,4], 2

𝑠𝑒1
1

𝑶𝟐

𝑠𝑒2
0

𝑡𝑒2 , 𝑏 [1,4], 2

𝑠𝑒2
1

𝑠𝑒1
𝑜𝑢𝑡

𝑡𝑒1𝑒2 , 𝑐

𝑠𝑒2
𝑖𝑛

[1,3], 3

(b)(a) (c)
b)

𝑶𝟏

𝑠𝑒1
0

𝑡𝑒1,𝑎 [1,4], 2

𝑠𝑒1
1

𝑶𝟐

𝑠𝑒2
0

𝑡𝑒2 , 𝑏 [1,4], 2

𝑠𝑒2
1

𝑠𝑒1
𝑜𝑢𝑡

𝑡𝑒1𝑒2 , 𝑐

𝑠𝑒2
𝑖𝑛

[1,3], 3

(b)(a) (c)
c)

Figure 6. Elementary synchronous transmission corresponding DTPNs

4. After adding the arcs relating the three subnets DTPN models two sub-
nets are related to two subnets, the complete resulting construction of
this step is given by Figure 7.

𝑶𝟏 𝑶𝟐

𝑡𝑒1,𝑎

𝑠𝑒2
0

𝑠𝑒1
𝑜𝑢𝑡

𝑡𝑒1𝑒2, 𝑐

𝑠𝑒2
𝑖𝑛

[1,4],2

[1,3], 3

𝑡𝑒2, 𝑏
[1,4],2

𝑠𝑒2
1

𝑠𝑒1
0

𝑠𝑒1
1

Figure 7. Sending transmission corresponding DTPN

Formally, S and T are the least sets verifying the following construction
conditions:

– Let {te1 , te1e2 , te2} = {〈e1, 2, [1, 4]〉, 〈e1e2, 3, [1, 3]〉, 〈e2, 2, [1, 4]〉} be a set
of transitions modeling a synchronous transmission between objects O1

and O2.
– Let e1 ∈ E1 and e2 ∈ E2 be two events, such that λ(e1) = Sysen and
λ(e2) = Syrec, with (e1, e2) ∈<i,j, {s0

e1
, s1

e1
, soute1

, s0
e2
, s1

e2
, sine2} ⊆ S and

{te1 , te2 , te1e2} ⊆ T , then:

◦te1 = {s0
e1
};

t◦e1 = {s1
e1
, soute1
};

◦te2 = {sine2 , s
0
e2
};

t◦e2 = {s1
e2
};

1036 N. Chabbat, D. E. Saidouni, R. Boukharrou, S. Ghanemi

◦te1e2 = {soute1
};

t◦e1e2 = {sine2}.

Step 2: Due to its similarity with the sending transmission in step1, it is pos-
sible to apply the same translation scheme in this step. As a consequence
of the transmission reception by object O2, this later responses by executing
the behavior that is matched to that transmission action.

1. After the transmission processing, object O2 sends the transmission reply
at event e3 back to object O1. The event e3 is characterized by a duration
equal to 3 units of time and time interval [3, 4]. This is represented by
the following DTPN (Figure 8 a)).

𝑶𝟏

(b)(a) (c)

𝑡𝑒3,𝑑 [3,4],3

𝑠𝑒3
0

𝑠𝑒3
1

𝑠𝑒3
𝑜𝑢𝑡

𝑡𝑒3𝑒4 , 𝑓

𝑠𝑒4
𝑖𝑛

[1,3], 2

𝑶𝟐

𝑡𝑒4 , 𝑒 [3,4],3

𝑠𝑒4
0

𝑠𝑒4
1

a)

𝑶𝟏

(b)(a) (c)

𝑡𝑒3,𝑑 [3,4],3

𝑠𝑒3
0

𝑠𝑒3
1

𝑠𝑒3
𝑜𝑢𝑡

𝑡𝑒3𝑒4 , 𝑓

𝑠𝑒4
𝑖𝑛

[1,3], 2

𝑶𝟐

𝑡𝑒4 , 𝑒 [3,4],3

𝑠𝑒4
0

𝑠𝑒4
1

b)

𝑶𝟏

(b)(a) (c)

𝑡𝑒3,𝑑 [3,4],3

𝑠𝑒3
0

𝑠𝑒3
1

𝑠𝑒3
𝑜𝑢𝑡

𝑡𝑒3𝑒4 , 𝑓

𝑠𝑒4
𝑖𝑛

[1,3], 2

𝑶𝟐

𝑡𝑒4 , 𝑒 [3,4],3

𝑠𝑒4
0

𝑠𝑒4
1

c)

Figure 8. Elementary transmission reply corresponding DTPNs

2. Objects respond to messages that are generated by objects executing
communication actions. The object O1 receives transmission reply at
event e4, which has 3 units of time as duration and [3, 4] as timing con-
straint. The corresponding DTPN is illustrated by Figure 8 b).

3. For modeling the reply transmission action between sending action at
event e3 and receiving action at event e4, we create an event named e3e4

and two states soute3
, sine4 . This event takes in this case a duration between 3

and 5 units of time. Since then we consider the constraint interval [1, 3]
and a duration of the action equal to 2 units of time. The corresponding
DTPN model is shown in Figure 8 c).

4. At this stage, the arcs to compose the three subnet DTPNs models are
added. The complete resulting model is shown by Figure 9.

At last, the result of translation of the example in Figure 5 is depicted by
Figure 10.

Formally, S and T are the least sets verifying the following construction condi-
tions:

Formal Verification of UML MARTE Based on a Real Time Model 1037

𝑶𝟏 𝑶𝟐

𝑡𝑒4, 𝑒

𝑠𝑒3
0 =𝑠𝑒2

1

𝑠𝑒4
𝑖𝑛

𝑡𝑒3𝑒4, 𝑓

𝑠𝑒3
𝑜𝑢𝑡

[3,4],3

[1,3], 2

[3,4],3

𝑠𝑒3
1

𝑠𝑒4
0 =𝑠𝑒1

1

𝑠𝑒4
1

𝑡𝑒3,𝑑

Figure 9. Transmission reply corresponding DTPN

𝑶𝟐𝑶𝟏

𝑠𝑒1
0

𝑡𝑒1,𝑎 [1,4], 2

𝑠𝑒2
0

𝑡𝑒2 , 𝑏[1,4], 2
𝑡𝑒1 𝑒2 , 𝑐

[1,3], 3
𝑠𝑒2
𝑖𝑛

𝑠𝑒1
𝑜𝑢𝑡𝑠𝑒4

0 =𝑠𝑒1
1

𝑡𝑒4 , 𝑒 [3,4], 3

𝑠𝑒4
1 𝑠𝑒4

𝑖𝑛
𝑠𝑒3
𝑜𝑢𝑡

𝑠𝑒3
0 =𝑠𝑒2

1

[3,4], 3

𝑠𝑒3
1

𝑡𝑒3𝑒4 , 𝑓 𝑡𝑒3 ,𝑑

[1,3], 2

Figure 10. Synchronous transmission corresponding DTPN

– Let {te3 , te3e4 , te4} = {〈e3, 3, [3, 4]〉, 〈e3e4, 2, [1, 3]〉, 〈e4, 3, [3, 4]〉} be a set of
transitions which models a transmission reply between the two objects O1

and O2.

– Let e3 ∈ E2 and e4 ∈ E1 be two events, such that λ(e3) = Sreply and λ(e4) =
Rreply with (e3, e4) ∈<i,j, {s0

e3
, s1

e3
, soute3

, s0
e4
, s1

e4
, sine4} ⊆ S and {te3 , te4 , te3e4}

⊆ T , then:

◦te3 = {s1
e2
};

t◦e3 = {s1
e3
, soute3
};

◦te4 = {sine4 , s
1
e1
};

t◦e4 = {s1
e4
};

◦te3e4 = {soute3
};

t◦e3e4 = {sine4}.

1038 N. Chabbat, D. E. Saidouni, R. Boukharrou, S. Ghanemi

• Asynchronous transmission: Asynchronous transmission is used when the
sender does not need to wait for response from receiver, it continues its execution
after sending the message. The basic functionality is the same as the synchronous
transmission. We consider the sequence diagram in Figure 11, which shows the
transmission of an asynchronous message between objects O1 and O2 at events e
and e′.

𝑶𝟏 𝑶𝟐

Asynch

𝑠𝑒′
1

𝑠𝑒
0

𝑠𝑒
1

𝑠𝑒′
0

𝑒, [1,3] 𝑒′, [2,3]
𝑒𝑒′, 2, [1,4]𝑠𝑒

𝑜𝑢𝑡 𝑠𝑒′
𝑖𝑛

Figure 11. Asynchronous transmission

1. The event e in object O1, represents the sending action, which is instanta-
neous and with timing constraint [1, 3]. The event e is interpreted as a Petri
net transition te constrained by the time interval [1, 3], its two states are
translated to places s0

e and s1
e. Moreover, we add the arcs linking places to

transitions. This translation is represented by Figure 12 a).

𝑶𝟏

𝑠𝑒
0

𝑠𝑒
1

[1,3]𝑡𝑒 ,𝑎

𝑶𝟐

𝑠𝑒′
0

𝑡𝑒′ ,𝑏 [2,3]

𝑠𝑒′
1

𝑠𝑒
𝑜𝑢𝑡

𝑡𝑒𝑒′ , 𝑐

𝑠𝑒′
𝑖𝑛

[1,4], 2

(b)(a) (c)
a)

𝑶𝟏

𝑠𝑒
0

𝑠𝑒
1

[1,3]𝑡𝑒 ,𝑎

𝑶𝟐

𝑠𝑒′
0

𝑡𝑒′ ,𝑏 [2,3]

𝑠𝑒′
1

𝑠𝑒
𝑜𝑢𝑡

𝑡𝑒𝑒′ , 𝑐

𝑠𝑒′
𝑖𝑛

[1,4], 2

(b)(a) (c)
b)

𝑶𝟏

𝑠𝑒
0

𝑠𝑒
1

[1,3]𝑡𝑒 ,𝑎

𝑶𝟐

𝑠𝑒′
0

𝑡𝑒′ ,𝑏 [2,3]

𝑠𝑒′
1

𝑠𝑒
𝑜𝑢𝑡

𝑡𝑒𝑒′ , 𝑐

𝑠𝑒′
𝑖𝑛

[1,4], 2

(b)(a) (c)
c)

Figure 12. Elementary asynchronous transmission corresponding DTPNs

2. The receiving action in object O2 is represented by the event e′ and the
reception message should be in time interval between 2 and 3 units of time.
The interpretation of this part can be represented by the DTPN given in
Figure 12 b).

3. For representing the asynchronous transmission operation between sending
action and receiving action, we add an event named ee′ between both events
e and e′ that takes in our case a duration between 3 and 6 units of time.
Hence, we consider the constraint interval [1, 4] and a duration of the action
equal to 2 units of time. Figure 12 c) illustrates the corresponding resulting
DTPN.

Formal Verification of UML MARTE Based on a Real Time Model 1039

4. To ensure asynchronous transmission between objects O1 and O2 we add two
arcs, the first arc from transition te to input state of transition tee′ and the
second arc connects the output state of this last transition to transition te′ .

As shown in Figure 13, we obtain the complete DTPN associated to the sequence
diagram of Figure 11.

𝑶𝟏 𝑶𝟐

𝑠𝑒
0

𝑠𝑒
1

𝑠𝑒′
0

𝑠𝑒
𝑜𝑢𝑡

𝑡𝑒𝑒′ , 𝑐

𝑠𝑒′
𝑖𝑛

[1,3]

[1,4], 2

𝑡𝑒′ ,𝑏
[2,3]

𝑠𝑒′
1

𝑡𝑒 ,𝑎

Figure 13. Asynchronous transmission corresponding DTPN

Formally, S and T are the least sets verifying the following construction condi-
tions:

– Let {te, tee′ , te′} = {〈e, 0, [1, 3]〉, 〈ee′, 2, [1, 4]〉, 〈e′, 0, [2, 3]〉} be a set of transi-
tions which models an asynchronous transmission between two objects O1

and O2.

– Let e ∈ E1 and e′ ∈ E2 be two events, such that λ(e) = Asysen, λ(e′) =
Asyrec with (e, e′) ∈<i,j, {s0

e, s
1
e, s

out
e , s0

e′ , s
1
e′ , s

in
e′ } ⊆ S and (te, te′ , tee′) ⊆ T ,

then:

◦te = {s0
e};

t◦e = {s1
e, s

out
e };

◦te′ = {sine′ , s0
e′};

t◦e′ = {s1
e′};

◦tee′ = {soute };

t◦ee′ = {sine′ }.

Intra-objects transmission.
An intra-objects transmission is a self-transmission in sequence diagram where the
sender and receiver objects of a message are the same. In this transmission, if two
events e and e′ belong to the same object Oi, then the event e′ immediately follows
the event e with no other event in between, Figure 14 a) shows such an example.

1040 N. Chabbat, D. E. Saidouni, R. Boukharrou, S. Ghanemi

𝑶𝟏 𝑶𝟐

𝑠𝑒
0

𝑠𝑒′
0 =𝑠𝑒

1

𝑠𝑒′
1

𝑒

𝑒′

𝑒𝑒′, [0,2], 3

𝑶𝟏

𝑠𝑒
0

[0,2], 3𝑡𝑒𝑒′ , 𝑐

[0,0],0

[0,0],0

𝑡𝑒 ,𝑎

𝑡𝑒′ ,𝑏

𝑠𝑒
1

𝑠𝑒′
0

𝑠𝑒′
1

(a) (b)a)

𝑶𝟏 𝑶𝟐

𝑠𝑒
0

𝑠𝑒′
0 =𝑠𝑒

1

𝑠𝑒′
1

𝑒

𝑒′

𝑒𝑒′, [0,2], 3

𝑶𝟏

𝑠𝑒
0

[0,2], 3𝑡𝑒𝑒′ , 𝑐

[0,0],0

[0,0],0

𝑡𝑒 ,𝑎

𝑡𝑒′ ,𝑏

𝑠𝑒
1

𝑠𝑒′
0

𝑠𝑒′
1

(a) (b)b)

Figure 14. Intra-objects transmission and its corresponding DTPN

In the sequence diagram, sending and receiving actions at events e and e′ are
instantaneous and without timing constraints, d1 = d2 = 0, ct1 = ct2 = [0, 0]. The
transmission action at event ee′ has 3 units of time during the interval [0, 2]. In the
following, we show how this is mapped to an equivalent DTPN.

1. In object O1, the sending action at event e is translated to Petri net transition
te without duration and timing constraint. Both states of this event e are trans-
lated to two Petri net places s0

e and s1
e with two arcs, each one relates a place to

the transition te. Figure 15 a) shows this construction.

𝑶𝟏

𝑠𝑒
0

𝑡𝑒 ,𝑎

𝑠𝑒
1

[0,0]

𝑶𝟏

𝑠𝑒′
0

𝑠𝑒′
1

[0,0]𝑡𝑒′ ,𝑏

𝑶𝟏

𝑠𝑒
1

𝑠𝑒′
0

[0,2], 3𝑡𝑒𝑒′ , 𝑐

(b)(a) (c)a)

𝑶𝟏

𝑠𝑒
0

𝑡𝑒 ,𝑎

𝑠𝑒
1

[0,0]

𝑶𝟏

𝑠𝑒′
0

𝑠𝑒′
1

[0,0]𝑡𝑒′ ,𝑏

𝑶𝟏

𝑠𝑒
1

𝑠𝑒′
0

[0,2], 3𝑡𝑒𝑒′ , 𝑐

(b)(a) (c)b)

𝑶𝟏

𝑠𝑒
0

𝑡𝑒 ,𝑎

𝑠𝑒
1

[0,0]

𝑶𝟏

𝑠𝑒′
0

𝑠𝑒′
1

[0,0]𝑡𝑒′ ,𝑏

𝑶𝟏

𝑠𝑒
1

𝑠𝑒′
0

[0,2], 3𝑡𝑒𝑒′ , 𝑐

(b)(a) (c)c)

Figure 15. Elementary intra-objects transmission corresponding DTPNs

Formal Verification of UML MARTE Based on a Real Time Model 1041

2. The receiving action at event e′ in object O1 has the same characteristics of the
sending action at event e. A similar construction can be made by using two
places s0

e′ and s1
e′ , and a transition te′ with two arcs, each one relates a place to

the transition te′ (see Figure 15 b)).

3. For modeling the transmission action operation between sending action and
receiving action in a same object O1, we add an event named ee′ relating both
events e and e′ that takes in our case a duration between 3 and 5 units of time.
For taking into account this characteristic we consider the constraint interval
[0, 2] and a duration of the action associated to the transition tee′ equal to 3.
The corresponding DTPN in Figure 15 c). The transmission action at event ee′

is translated a Petri net transition tee′ with a duration and a timing constraint.
The two places of this transition are the output place s1

e of transition te and
the input place s0

e′ of transition te′ . In addition, two arcs are created, each one
relates a place to the transition tee′ .

4. For connecting transmission action operation with the two previous parts of
intra-objects transmission, we will add two arcs, the first arc from the output
place s1

e of transition te to the transition tee′ and the second arc from the tran-
sition tee′ to the input place s0

e′ of transition te′ . The final corresponding DTPN
is shown in Figure 14 b).

Formally, S and T are the least sets verifying the following construction condi-
tions:

• Let {te, tee′ , te′} = {〈e, 0, [0, 0]〉, 〈ee′, 3, [0, 2]〉, 〈e′, 0, [0, 0]〉} be a set of transitions
modeling intra-objects transmission in O1.

• Let e, e′ ∈ E1, be two events, such that λ(e) = Activity and λ(e′) = Activity
with ∀(e, e′) ∈<, {s0

e, s
1
e, s

0
e′ , s

1
e′} ⊆ S and {te, te′ , tee′} ⊆ T , then:

◦te = {s0
e};

t◦e = {s1
e};

◦te′ = {s1
e′};

t◦ee′ = {s1
e′};

◦tee′ = {s1
e};

t◦ee′ = {s0
e′}.

In the different cases of transmission, inter-objects and intra-objects each object
in the sequence diagram has a single initial state and a single final state as defined
as follows:

• A state s is said an initial iff ◦s = ∅.
• A state s is said a final iff s◦ = ∅.

1042 N. Chabbat, D. E. Saidouni, R. Boukharrou, S. Ghanemi

3.3.2 Combined Fragments

Combined fragments are one important kind of Interactions, which are used to
create interactions that are more complex. A combined fragment is defined by an
interaction operator with its operands. The operands of a combined fragment can
have guards on them as in alternative behavior (alt) and iterative behavior (loop).
The guards of the operands are given by boolean expressions (boolean condition or
temporal condition).

In UML MARTE profile, we can specify the time constraints on a combined
fragment or on an operand using the tag “execTime” in the stereotype <<Re-
sourceUsage>>. According to the MARTE SD specification context, the time con-
straint interval [a, b] associated to this stereotype can take the following values:
∀a, b ∈ R∗

• if the execution of an operand or a combined fragment is urgent then the time
interval [a, b] = [0, 0] or [a, b] = [t, t′] with t = t′;

• if the execution of an operand or a combined fragment is not urgent then the
time interval [a, b] = [0,∞[;

• if execution of an operand or a combined fragment is specified with latency then
the time interval [a, b] = [v, v + t] with a ≥ 0 and a ≤ b.

In this subsection, we give the translation rules of the most used combined frag-
ments such as weak sequencing behavior (seq), strict sequencing behavior (strict),
parallel behavior (par), alternative behavior (alt), optional behavior (opt) and iter-
ative behavior (loop). The combined fragment operands are transformed to DTPN
subnets using previous translation rules and then integrated to the resulting DTPN.

Weak sequencing combined fragments.
Weak sequencing combined fragments defined by “seq” operator, contain two or more
operands. It represent a weak sequencing between the behaviors of its operands. If
no other operator is present on a diagram, then weak sequencing should be applied
to the Interaction fragments. Figure 16 shows such an example.

1. The initial place s0
fi

with the initial marking is created M(s0
fi

) = 1;

2. To synchronize all the operands that will be get involved in the execution of
the weak interaction, the transition t0fi is created. An arc connecting the initial
place s0

fi
to the transition t0fi is added;

3. Using the previous translation rules, the two DTPN subnets corresponding to
the two operands in weak combined fragments are generated;

4. Since, the purpose of this operator is to allow the execution of only one operand,
in other words, the operands are executed in mutual exclusion. In Petri net
terms, the transitions related to the operands should be in conflict. So, the
place named LP is created and connected to the two initial transitions of the
two DTPN subnets;

Formal Verification of UML MARTE Based on a Real Time Model 1043

𝑶𝟏 𝑶𝟐

𝑠𝑒4
0

𝑠𝑒1
0

𝑠𝑒3
0

𝑠𝑒2
0

𝑒1, [0,2] 𝑒2, [1,3]

𝑒1𝑒2, 1,2 ,2𝑠𝑒1
𝑜𝑢𝑡 𝑠𝑒2

𝑖𝑛

𝑠𝑒4
1

𝑠𝑒3
1

𝑒3, [0,2] 𝑒4, [1,3]

𝑒3𝑒4, 1,2 ,2𝑠𝑒3
𝑜𝑢𝑡 𝑠𝑒4

𝑖𝑛

𝑶𝟑

𝑠𝑒2
1𝑠𝑒1

1

Seq

Figure 16. Weak sequencing combined fragments

5. The final transition t1fi is created and connected to the last place of every DTPN
subnet;

6. The place s1
fi

corresponding to the final place of the DTPN is created and con-
nected, as an output place, to the final transition t1fi . The equivalent DTPN of
weak sequencing combined fragments is given by Figure 17.

𝑠𝑒3
0𝑠𝑒1

0

1,2 , 2

𝑡𝑒4, 𝑒, [1,3]

𝑠𝑒2
0

𝑡𝑒2 ,𝑏, 1,3 𝑡𝑒1,𝑎, [0,2]

𝑠𝑒2
1

𝑠𝑒2
𝑖𝑛

𝑠𝑒1
𝑜𝑢𝑡 𝑠𝑒1

1 𝑠𝑒3
1

𝑠𝑒3
𝑜𝑢𝑡 𝑠𝑒4

𝑖𝑛

𝑠𝑒4
0

𝑠4
1

𝑡𝑒3𝑒4, 𝑓𝑡𝑒1𝑒2 , 𝑐

1,2 , 2

𝑡𝑒3,𝑑, 0,2

𝑡 𝑓𝑖
0

𝑠 𝑓𝑖
0

𝑡 𝑓𝑖
1

𝑠 𝑓𝑖
1

𝐿𝑃

Figure 17. Weak sequencing combined fragments corresponding DTPN

1044 N. Chabbat, D. E. Saidouni, R. Boukharrou, S. Ghanemi

Strict sequencing combined fragments.
Strict sequencing combined fragments are defined by “strict” operator, encloses two
or more operands. The operands behaviors must occur in a given order. The
order within each operand is preserved. This combined fragments is illustrated by
Figure 18.

Strict

𝑶𝟏 𝑶𝟐

𝑠𝑒4
0

𝑠𝑒1
0

𝑠𝑒3
0

𝑠𝑒2
0

𝑒1, [0,2] 𝑒2, [1,3]
𝑒1𝑒2, 1,2 ,2𝑠𝑒1

𝑜𝑢𝑡 𝑠𝑒2
𝑖𝑛

𝑠𝑒4
1

𝑠𝑒3
1

𝑒3, [0,2] 𝑒4, [1,3]
𝑒3𝑒4, 1,2 ,2𝑠𝑒3

𝑜𝑢𝑡 𝑠𝑒4
𝑖𝑛

𝑶𝟑

𝑠𝑒2
1𝑠𝑒1

1

Figure 18. Strict sequencing combined fragments

1. The initial place s0
fi

with the initial marking is created M(s0
fi

) = 1;

2. The initial transition t0fi is created and connected, as output transition to the
initial place s0

fi
;

3. Using the translation rules explained in the previous section, the two operands
in strict combined fragments are translate to the two DTPN subnets. An arc
connecting the last transition of the first DTPN subnet to the initial place of
the second DTPN subnet is created;

4. The final transition t1fi of the strict combined fragments is generated and an arc
connecting the final place of second subnet to the final transition t1fi of the strict
fragment is added;

5. The final place s1
fi

of strict fragment is created and an arc connecting the transi-
tion t1fi to the place s1

fi
is added. Figure 19 illustrates the complete construction

of the DTPN corresponding to the strict combined fragments.

Parallel combined fragments.
A combined fragment of “par” type is used to specify the concurrent behavior of
real-time systems. It describes a parallel execution of the behaviors related to dif-
ferent operands. The behaviors of these operands can be interleaved in any way.
However, each operand behavior preserves its predefined order. Figure 20 shows an
example of parallel execution of elements Operand-1 and Operand-2 with a global
time constraint associated to the execution parallel combined fragments. Object O1

Formal Verification of UML MARTE Based on a Real Time Model 1045

𝑠𝑒3
0𝑠𝑒1

0

1,2 , 2

𝑡𝑒4, 𝑒, [1,3]

𝑠𝑒2
0

𝑡𝑒2 ,b, 1,3
𝑡𝑒1,𝑎, [0,2]

𝑠𝑒2
1

𝑠𝑒2
𝑖𝑛

𝑠𝑒1
𝑜𝑢𝑡 𝑠𝑒1

1 𝑠𝑒3
1

𝑠𝑒3
𝑜𝑢𝑡 𝑠𝑒4

𝑖𝑛

𝑠𝑒4
0

𝑠4
1

𝑡𝑒3𝑒4, 𝑓𝑡𝑒1𝑒2 , 𝑐

1,2 , 2

𝑡𝑒3,𝑑,

0,2

𝑡 𝑓𝑖
0

𝑠 𝑓𝑖
0

𝑡 𝑓𝑖
1

𝑠 𝑓𝑖
1

2

Figure 19. Strict sequencing combined fragments corresponding DTPN

launches concurrently two asynchronous transmission operations. Consequently, the
corresponding receiving operations in object O2 may happen concurrently too. The
objects O1 and O2 can continue their execution according to the timing constraint
of the parallel combined fragment.

Operand-1

«ResourceUsage»
{execTime=[(2,ms,min),
(5,ms,max)]}

𝑶𝟏 𝑶𝟐

𝑠𝑒4
0

𝑠𝑒1
0

𝑠𝑒3
0

𝑠𝑒2
0

𝑒1, [0,2] 𝑒2, [1,3]

𝑒1𝑒2, 1,2 ,2𝑠𝑒1
𝑜𝑢𝑡 𝑠𝑒2

𝑖𝑛

𝑒3, [0,2] 𝑒4, [1,3]

𝑒3𝑒4, 1,2 ,2𝑠𝑒3
𝑜𝑢𝑡 𝑠𝑒4

𝑖𝑛

𝑠𝑒4
1𝑠𝑒3

1

𝑠𝑒2
1𝑠𝑒1

1

Operand-2

Par

Figure 20. Parallel combined fragments

To detail the translation rules of this fragment type, let us consider the sequence
diagram of Figure 20.

1. The initial place s0
fi

with the initial marking is created M(s0
fi

) = 1. This marking
place is used in the evaluation of the firing condition of the connected transitions;

1046 N. Chabbat, D. E. Saidouni, R. Boukharrou, S. Ghanemi

2. For synchronizing all the operands involved in the parallel combined fragments
execution, the transition t0fi is created. It is instantaneous and with zeroed
time constraint (d = 0, tc = 0). An arc connecting the initial place s0

fi
to the

transition t0fi is then added;

3. Using the translation rules explained in previous section two DTPN subnets
DTPN − 1 and DTPN − 2 are generated, which correspond respectively to
Operand-1 and Operand-2. Note that places s0

e1
and s0

e3
have no marking since

they become a non initial places (M(s0
e1

) = 0, M(s0
e3

) = 0). The starting
transition t0fi is then connected to these places;

4. For synchronizing all operands involved in output of the parallel combined frag-
ments, the final transition t1fi is created. It has the time interval [2, 5] as a timing
constraint. This transition is connected then, as output transition to each last
place of every DTNP subnet (s1

e2
, s1

e4
). So, the final transition t1fi can only be

fired when each operand in the combined fragments reaches its final state (one
token in its final place);

5. The place s1
fi

corresponding to the final state of the parallel combined fragments
is created. The final transition t1fi is then connected to this place. The resulting
DTPN of this parallel combined fragments is given by Figure 21.

𝑠𝑒3
0𝑠𝑒1

0

1,2 , 2

𝑡𝑒4, 𝑒,

[1,3]

𝑠𝑒2
0

𝑡𝑒2 , 𝑏,

1,3
𝑡𝑒1,𝑎, [0,2]

𝑠𝑒2
1

𝑠𝑒2
𝑖𝑛

𝑠𝑒1
𝑜𝑢𝑡 𝑠𝑒1

1 𝑠𝑒3
1

𝑠𝑒3
𝑜𝑢𝑡 𝑠𝑒4

𝑖𝑛

𝑠𝑒4
0

𝑠4
1

𝑡𝑒3𝑒4, 𝑓𝑡𝑒1𝑒2 , 𝑐

1,2 , 2

𝑡𝑒3,d, 0,2

𝑡 𝑓𝑖
0

𝑠 𝑓𝑖
0

𝑡 𝑓𝑖
1

𝑠 𝑓𝑖
1

2,5

0,0

Figure 21. Parallel combined fragments corresponding DTPN

Alternative combined fragments.

Alternative combined fragments defined by “alt” operator, represents a choice of be-
havior in a fragment. This operator implements a non deterministic choice between

Formal Verification of UML MARTE Based on a Real Time Model 1047

Operand-1

𝑶𝟏 𝑶𝟐

𝑠𝑒4
0

𝑠𝑒1
0

𝑠𝑒3
0

𝑠𝑒2
0

𝑒1, [0,2] 𝑒2, [1,3]

𝑒1𝑒2, 1,2 ,2𝑠𝑒1
𝑜𝑢𝑡 𝑠𝑒2

𝑖𝑛

𝑒3, [0,2] 𝑒4, [1,3]

𝑒3𝑒4, 1,2 ,2𝑠𝑒3
𝑜𝑢𝑡 𝑠𝑒4

𝑖𝑛

𝑠𝑒4
1𝑠𝑒3

1

𝑠𝑒2
1𝑠𝑒1

1

Operand-2

Alt

[cond1]

[cond2]

Figure 22. Alternative combined fragments

operands that have their constraints evaluated to true. Figure 22 shows an example
of an alternative fragment with two operands.

1. The initial place s0
fi

with the initial marking is created M(s0
fi

) = 1;

2. Two conflicting transitions t1fi and t2fi are generated. In this manner, that only
one of the operands is selected, even the transitions guards are both evaluated
as true. Two arcs connecting both transitions t1fi and t2fi to the initial place s0

fi

are added;

3. Using the translation rules explained in the previous section, two DTPN subnets
DTPN − 1 and DTPN − 2 are generated, which correspond respectively to
Operand-1 and Operand-2. The previous transitions t1fi and t2fi are connected
by two arcs to the initials places s0

e1
and s0

e3
, respectively, which launch the

executions of internal operands (Operand-1 and Operand-2);

4. For representing the output for each DTPN subnet, two final transitions t3fi and
t4fi are generated. These transitions are then related, as an output transitions
to the final places s1

e2
and s1

e4
, which are associated to sub DTPN-1 and sub

DTPN-2, respectively;

5. The final place s1
fi

of DTPN is created and connected to it as the output place
to the two final transitions t3fi and t4fi . Figure 23 shows the complete structure
of the equivalent DTPN to the alternative combined fragments.

Optional combined fragments.
Optional combined fragments, defined by the operator “opt”, contain only one
operand which is executed according to a guard condition or a state value. Fig-
ure 24 a) gives an example illustrating this operator.

Optional combined fragments is semantically equivalent to the alternative com-
bined fragments. So, it is translated as a simplification of alternative combined
fragments with only one operand, considered where the condition evaluation is true.
Figure 24 b) shows the corresponding DTPN specification.

1048 N. Chabbat, D. E. Saidouni, R. Boukharrou, S. Ghanemi

𝑠𝑒3
0𝑠𝑒1

0

1,2 , 2

𝑡𝑒4, 𝑒,

[1,3]

𝑠𝑒2
0

𝑡𝑒2 , 𝑏,

1,3
𝑡𝑒1,𝑎, [0,2]

𝑠𝑒2
1

𝑠𝑒2
𝑖𝑛

𝑠𝑒1
𝑜𝑢𝑡 𝑠𝑒1

1 𝑠𝑒3
1

𝑠𝑒3
𝑜𝑢𝑡 𝑠𝑒4

𝑖𝑛

𝑠𝑒4
0

𝑠𝑒4
1

𝑡𝑒3𝑒4, 𝑓𝑡𝑒1𝑒2 , 𝑐

1,2 , 2

𝑡𝑒3,d, 0,2

𝑡 𝑓𝑖
1

𝑠 𝑓𝑖
0

𝑡 𝑓𝑖
3

𝑠 𝑓𝑖
1

𝑡 𝑓𝑖
2

𝑡 𝑓𝑖
4

Figure 23. Alternative combined fragments corresponding DTPN

[cond]

𝑶𝟏 𝑶𝟐

𝑠𝑒
0 𝑠𝑒′

0

𝑒, [0,2] e′, [1,3]

𝑒𝑒′, 1,2 , 2𝑠𝑒
𝑜𝑢𝑡 𝑠𝑒′

𝑖𝑛

𝑠𝑒′
1𝑠𝑒

1

Opt

(b)(a)

𝑶𝟐 𝑶𝟏

𝑡𝑒′ ,𝑏

𝑠𝑒
0

𝑠𝑒′
𝑖𝑛

𝑡𝑒𝑒′ , 𝑐

𝑠𝑒
𝑜𝑢𝑡

[0,2]

[1,2], 2

[1,3]

𝑠𝑒
1

𝑠𝑒′
0

𝑠𝑒′
1

𝑡𝑒 ,𝑎

𝑡𝑓𝑖
0

𝑠𝑓𝑖
0

𝑡𝑓𝑖
1

𝑠𝑓𝑖
1

𝑡𝑓𝑖
0′

a)

[cond]

𝑶𝟏 𝑶𝟐

𝑠𝑒
0 𝑠𝑒′

0

𝑒, [0,2] e′, [1,3]

𝑒𝑒′, 1,2 , 2𝑠𝑒
𝑜𝑢𝑡 𝑠𝑒′

𝑖𝑛

𝑠𝑒′
1𝑠𝑒

1

Opt

(b)(a)

𝑶𝟐 𝑶𝟏

𝑡𝑒′ ,𝑏

𝑠𝑒
0

𝑠𝑒′
𝑖𝑛

𝑡𝑒𝑒′ , 𝑐

𝑠𝑒
𝑜𝑢𝑡

[0,2]

[1,2], 2

[1,3]

𝑠𝑒
1

𝑠𝑒′
0

𝑠𝑒′
1

𝑡𝑒 ,𝑎

𝑡𝑓𝑖
0

𝑠𝑓𝑖
0

𝑡𝑓𝑖
1

𝑠𝑓𝑖
1

𝑡𝑓𝑖
0′

b)

Figure 24. Optional combined fragments and its corresponding DTPN

We can see that in the resulting DTPN, the transition t0fi is possible only if
a guard condition is true. Otherwise, the transition t1fi ends the behavior.

Loop combined fragments.

Iterative combined fragments, denoted by “loop” operator, have only one operand.
It defines a recursive behaviour with a guard condition. The guard may either indi-
cate a number of repetitions ([min,max]) that should be executed or a boolean
expression. Figure 25 a) shows an example representing a loop combined frag-
ments.

Formal Verification of UML MARTE Based on a Real Time Model 1049

[cond]

𝑶𝟏 𝑶𝟐

𝑠𝑒
0 𝑠𝑒′

0

𝑒, [0,2] e′, [1,3]

𝑒𝑒′, 1,2 , 2𝑠𝑒
𝑜𝑢𝑡 𝑠𝑒′

𝑖𝑛

𝑠𝑒′
1𝑠𝑒

1

Loop

(b)(a)

𝑶𝟏 𝑶𝟐

𝑡𝑒 ,𝑎

𝑠𝑒′
0

𝑠𝑒
𝑜𝑢𝑡

𝑡𝑒𝑒′ , 𝑐

𝑠𝑒′
𝑖𝑛

[0,2]

[1,2], 2

[1,3]

𝑠𝑒′
1

𝑠𝑒
0

𝑠𝑒
1

𝑡𝑒′ ,𝑏

𝑡𝑓𝑖
0

𝑠𝑓𝑖
0

𝑡𝑓𝑖
1

𝑠𝑓𝑖
1

𝑡𝑓𝑖
0′

a)

[cond]

𝑶𝟏 𝑶𝟐

𝑠𝑒
0 𝑠𝑒′

0

𝑒, [0,2] e′, [1,3]

𝑒𝑒′, 1,2 , 2𝑠𝑒
𝑜𝑢𝑡 𝑠𝑒′

𝑖𝑛

𝑠𝑒′
1𝑠𝑒

1

Loop

(b)(a)

𝑶𝟏 𝑶𝟐

𝑡𝑒 ,𝑎

𝑠𝑒′
0

𝑠𝑒
𝑜𝑢𝑡

𝑡𝑒𝑒′ , 𝑐

𝑠𝑒′
𝑖𝑛

[0,2]

[1,2], 2

[1,3]

𝑠𝑒′
1

𝑠𝑒
0

𝑠𝑒
1

𝑡𝑒′ ,𝑏

𝑡𝑓𝑖
0

𝑠𝑓𝑖
0

𝑡𝑓𝑖
1

𝑠𝑓𝑖
1

𝑡𝑓𝑖
0′

b)

Figure 25. Loop combined fragments and its corresponding DTPN

The translation process follows the following steps:

1. The initial place s0
fi

with the initial marking is created M(s0
fi

) = 1;

2. Two initial transitions t0fi and t1fi are generated. These transitions allow the
guard evaluation that serves as a constraint for the combined fragments;

3. Two arcs connecting the initial place s0
fi

to both transitions t0fi and t1fi are
added;

4. Using the translation rules detailed in the previous section, the DTPN subnet
corresponding to the loop operand is created;

5. Since, the purpose of this operator is to repeat the execution of the loop operand
until the loop guard is evaluated to false, the transition t0

′

fi
is created and con-

nected to the initial place s0
fi

of the loop fragment. The final place s1
e′ of DTPN

subnet is then connected to the transition t0
′

fi
;

6. For considering the case when the boolean expression associated to the tran-
sition t1fi is evaluated to false, the final place s1

fi
is created and connected to

the transition t1fi as an output place. Figure 25 represents the resulting DTPN
structure of the loop combined fragments in Figure 25 b).

4 CASE STUDY

In order to illustrate our approach, for modeling and analysis of real-time embedded
systems, we propose to use an interaction fragment of a real case study which is
an elevator controller system. We consider two elevators used in a building composed
of many floors. The interest of this application is to consider the case of two parallel
activities with a non-null duration. These activities correspond to the elevators
moves between two different floors at the same time. The elevators are controlled
by only one elevator controller system.

1050 N. Chabbat, D. E. Saidouni, R. Boukharrou, S. Ghanemi

Specification.
Assume that two users are at two different floors. At a given instant, each one
requests an elevator. For instance, User-1 is at the first floor while User-2 is at the
seventh floor. It is also assumed that User-1 wants to go to the seventh floor, and
User-2 wants to go to the first floor.

Since our study focused on parallel activities modeling, we assume that the
elevators are parked at floor one and seven, respectively, where their doors are open
and the users are inside them. Both users pushed simultaneously the floor button to
be visited in the button panel. The elevator controller must move the two elevators
in parallel to the requested floors.

To simplify the study, we abstract from elevator system components partici-
pating in the interaction which does not affect the study purpose, like cabin, floor
sensor and door.

Once the elevator controller has received two requests at the same time, it creates
and activates two processes in parallel Elevator1 and Elevator2 (two instances).
Elevator1 and Elevator2 are responsible for the move of the first elevator and the
second elevator, respectively.

Two time aspects are taken into consideration, the first one concerns the execu-
tion duration of actions and the second one concerns the timing constraints. In the
example, the elevator movement action takes 3 units of time (d = 3 000 ms) and the
action execution may be delayed and executed in the time interval [0, 10].

Figure 26 shows the sequence diagram representing the time aspects and the
interactions between the principal objects involved in the elevator request function-
ality, with a global time constraint (tc = [10, 30]) associated.

Button2 Elevator Controller

𝑒3, [0,10]

Elevator1 Elevator2Button1

𝑒5, [0,10]

𝑒6, [0,10]

𝑒11, [0,10]

𝑒12, [0,10]

𝑒9, [0,10]

𝑒4, [0,10]

𝑒10, [0,10]

𝑒7, 0,10 𝑒8, [0,10]

𝑒1𝑒2, 0,10

𝑒5𝑒6, 0,10

𝑒7𝑒8, 0,1

𝑒9𝑒10, [0,10]

𝑒11𝑒12, 0,10

Move1()
{d3=(3000,ms)}

Move2()
{d6=(3000,ms)}

𝑒1, 0,10 𝑒2, 0,10

Request2() {d5=(10,ms)}

Request1() {d2=(10,ms)}

PressB1 {d1=(20,ms)}

PressB2() {d4=(20,ms)}

𝑒3𝑒4, 0,10

𝑠𝑒1
1

𝑠𝑒3
1

𝑠𝑒7
0

𝑠𝑒12
1

𝑠𝑒1
0 𝑠𝑒2

0

𝑠𝑒7
0

𝑠𝑒6
1

𝑠𝑒4
0

𝑠𝑒5𝑒6
0 = 𝑠𝑒5

1

𝑠𝑒5
0 = 𝑠𝑒4

1

𝑠𝑒3
0 = 𝑠𝑒2

1

𝑠𝑒8
0

𝑠𝑒9
1

𝑠𝑒10
0

𝑠𝑒11
0 = 𝑠𝑒10

1

𝑠𝑒9
0 = 𝑠𝑒8

1

𝑠𝑒5𝑒6
1 = 𝑠𝑒6

0

𝑠𝑒11𝑒12
0 = 𝑠11

1

𝑠𝑒11𝑒12
1 = 𝑠12

0

«ResourceUsage»
{execTime=[(10,ms,
min),(30,ms,max)]}

Par

Figure 26. Interactions between objects for the request an elevator

Formal Verification of UML MARTE Based on a Real Time Model 1051

To apply the translation method over the previous sequence diagram, first, we
annotate the sending and receiving time events of the transmitted messages be-
tween objects. The set of Time events is Et = {e1, e2, . . . , e10, e12}. Events repre-
senting the intermediate transmissions (colored by red) with their associated du-
ration and timing constraints are also added. Hence, Et = {e1, e2, . . . , e11, e12} ∪
{e1e2, e3e4, e5e6, . . . , e11e12}. For each object involved in the interaction, two state
(colored by blue) to each event on its lifeline is associated, then S = {s0

e1
, s1

e1
, s0

e2
, . . . ,

s1
e12
}. Similarly, states are associated to timed events. They correspond to interme-

diate transmissions in the sequence diagram. Hence, S = {s0
e1
, s1

e1
, . . . , s0

e12
, s1

e12
} ∪

{soute1
, sine2 , . . . , s

in
e12
}.

The translations method detailed in Section 3 can now be applied on the se-
quence diagram. Figure 27 depicts the complete construction of the equivalent
DTPN.

te1,a

te2,c,[0,10],0

te3,d

te3e4,e

te4,f,[0,10],0

te5e6,move

te5,g

te6,j

te10,p,[0,10],0

te11e12,move

te11,q

te12,s

te8,m,[0,10],0

te9,n

te9e10,o

s1e6

[0,10],0

[0,10],10

[0,10],0

[0,10],3000

[0,10],0

[10,30],0

[0,10],0

[0,10],0

[0,10],0

[0,10],3000

[0,10],10

[0,10],0

[0,10],0

[0,10],20

=

=

, start

, end

=

=

[0,10],20
te1e2,b

te7,k

te7e8 ,

[0,10],0

Figure 27. DTPN specification corresponding to sequence diagram for requesting an ele-
vator

According to Figure 27, the initial place of the DTPN is s0
fi

with the initial
marking M(s0

fi
) = 1. The final place is s1

fi
. The initial transition is t0fi with time

constraint [0, 0]. The final transition is t1fi with time constraint [2, 5]. The places
corresponding to the states are P = {s0

e1
, s1

e1
, s0

e2
, . . . , s1

e12
, soute1

, sine2 , . . . , s
in
e12
} and the

events corresponding to the Petri net transitions are T = {te1 , te2 , . . . , te11 , te12}.

1052 N. Chabbat, D. E. Saidouni, R. Boukharrou, S. Ghanemi

In the resulting DTPN, the firing of transitions is bound to a time interval. The
transition firing represents action launching which has an explicit duration.

Verification.
To investigate the verification and validation of real time embedded systems, we opt
for the operational semantics developed in [20] to generate a semantics model to
DTPN specification. The true-concurrency semantics based DTPN model is used to
obtain the durational action Timed Automata (daTA) depicted in Figure 28. The
resulting daTA has 42 states and 68 transitions; it is generated automatically using
a tool integrated into FOCOVE environment [45]. For this reason, we represent only
a fragment of the graph. This structure allows the verification of properties related
to parallel evolution of actions as shown in the different states of resulting daTA. As
an example, state s36 is labelled within duration conditions set {x ≥ 3 000 ms, y ≥
3 000 ms}. In this state, actions Move1 and Move2 can comply in parallel, and each
one can finish only if its clock reaches a value equal to its duration.

Note that we have used just two clocks (x and y) to specify all actions of the
case study because we have at most two actions in execution at a given time. This
is possible due to the dynamic creation of clocks with the reuse of free clocks.

The model checking is mainly based upon the region graph and zone graph
algorithms on daTA. The model checking complexity on TA, as daTA, is exponential
in the number of clocks. We can observe that using true-concurrency semantics based
DTPN, the generated daTA has a lower number of clocks. We can then apply CTL
model checking to check some properties.

5 DISCUSSION AND RELATED WORKS

The transformation of MARTE sequence diagrams to formal specifications, for the
formal verification, has been investigated in several approaches like [46, 47, 48, 49,
50, 51], but a few approaches as [12, 52, 53] have taken into consideration time spec-
ification in the transformation process. Previous works just deal with the flowing of
events in sequence diagrams with implicit expression of time and consider only inter-
leaving semantics. On the contrary, we have proposed a translation approach that
supports at the same time timing constraints, explicit actions durations, urgency
and structural and temporal non-atomicity of actions. Thus, our approach is done
to a true concurrency-based real time formal specification models (DTPN and daTA
models). The use of daTA’s structures as semantics allows firstly, to express concur-
rent and parallel behaviors in a natural way, i.e. to distinguish between sequential
and parallel runs of actions. Therefore, with non-null duration under timing con-
straints. This is not the case of the interleaving semantics. Secondly, resetting the
state clocks which are used to specify time and timing constraints. Therefore, this
will lead to reducing the verification time which is often exponential for large size
RTES, and to reducing the number of states and transitions in the graph without
loss of information, and then escaping from the explosion of the underlying graph.

Formal Verification of UML MARTE Based on a Real Time Model 1053

𝑥 ≥ 0,𝑦 ≥ 0

𝑥 ≥ 0,
𝑦 ≥ 3000

𝑥 ≥ 3000,
𝑦 ≥ 3000

𝑥 ≥ 0,𝑦 ≥ 0𝑥 ≥ 20 𝑦 ≥ 20

𝑥 ≥ 0 𝑦 ≥ 0

𝑥 ≥ 0

𝑥 ≥ 0

𝑥 ≥ 3000,
𝑦 ≥ 0

𝑥 ≥ 0

𝒔𝟎

𝒔𝟏

𝒔𝟐

𝒔𝟓
𝒔𝟒

𝒔𝟑

𝒔𝟔

𝒔𝟑𝟔

𝒔𝟑𝟗 𝒔𝟒𝟎

𝒔𝟒𝟏

𝒔𝟒𝟐

𝑠𝑡𝑎𝑟𝑡, 𝑥
𝐺={0 ≤ 𝑥 ≤ 10}
𝐷={𝑥 ≤ 10}

𝑘,𝑦
𝐺={0 ≤ 𝑦 ≤ 10}
𝐷={𝑦 ≤ 10}

ℓ,𝑦
𝐺={0 ≤ 𝑦 ≤ 10}
𝐷={𝑦 ≤ 10}

𝑠, 𝑥
𝐺={3000 ≤ 𝑥 ≤ 3010}
𝐷={𝑥 ≤ 3010}

𝑎, 𝑥
𝐺={0 ≤ 𝑥 ≤ 10}
𝐷={𝑥 ≤ 10}

𝑏, 𝑥
𝐺={0 ≤ 𝑥 ≤ 10}
𝐷={𝑥 ≤ 10} 𝑘,𝑦

𝐺={0 ≤ 𝑦 ≤ 10}
𝐷={𝑦 ≤ 10}

𝑎, 𝑥
𝐺={0 ≤ 𝑥 ≤ 10}

𝐷={𝑥 ≤ 10}

𝑠, 𝑥
𝐺={3000 ≤ 𝑥 ≤ 3010}

𝐷={𝑥 ≤ 3010}

𝑗,𝑦
𝐺={3000 ≤ 𝑦 ≤ 3010}

𝐷={𝑦 ≤ 3010}

𝑗,𝑦
𝐺={3000 ≤ 𝑦 ≤ 3010}

𝐷={𝑦 ≤ 3010}

𝑒𝑛𝑑, 𝑥
𝐺={0 ≤ 𝑥 ≤ 10,0 ≤ 𝑦 ≤ 10}
𝐷={𝑥 ≤ 10,𝑦 ≤ 10}

Figure 28. Fragment of daTA corresponding to DTPN

In the proposed method, we borrowed the idea of associating states to events
of the sequence diagram as made in [41]. However, the translation method of [41]
considers the sequence diagram as a whole entity, in comparison with our translation
method, as a set of rules defined to make the translation method inductive. The
translation rules start by considering elementary component, which are the events
in the sequence diagram. Hence, for each composed component, a translation rule
is defined inductively using the translation result of its sub-components. In this
manner, a construction of a tool implementing the method may easily be done. As
an example, Figure 29 a) shows the asynchronous message events that represent the
moments in which the actions send or receive. In terms of the Petri net, each event
(e, e′, e′′) is translated to a transition, an input place and an output place as shown
in Figure 29 b).

In [12], authors interpreted parallel activities, modeled in MARTE sequence
diagram, by parallel transitions in TCPNIA specification under an interleaving se-
mantics. In this approach, only the execution occurrence duration is modeled. It
is specified by a time interval associated to a transition of TCPNIA. In our pro-
posed method, start occurrence, finish occurrence, message occurrence (complete
UML name, message occurrence specification), which represent sending and receiv-
ing event, and invoking or receiving of operation calls, are considered.

1054 N. Chabbat, D. E. Saidouni, R. Boukharrou, S. Ghanemi

(b)(a)

𝑒
𝑒’

𝑒′′

𝑡𝑒′

𝑡𝑒′′𝑡𝑒

𝑝1

𝑝2

𝑝5

𝑝6𝑝3 𝑝4

a) (b)(a)

𝑒
𝑒’

𝑒′′

𝑡𝑒′

𝑡𝑒′′𝑡𝑒

𝑝1

𝑝2

𝑝5

𝑝6𝑝3 𝑝4

b)

Figure 29. Asynchronous message translating

On the other hand, the proposed works assumed action atomicity hypothesis
imposed by the interleaving semantics which handle parallel behaviors as their com-
bined sequential evolution. For more clarification, let us consider the example of
Figure 30 b). Using the method proposed in [12], these parallel activities are trans-
lated to the TCPNIA specification of Figure 30 c).

[2,3], 3 𝑡3 [1,3], 3

𝑝1

𝑝2 𝑝4

𝑝3

𝑡2

𝑡1

𝑝5

𝑎, 𝑥𝑏,𝑦

𝑆0

{∅}

𝑏,𝑦𝑎, 𝑥

{𝑥  3}

{𝑥  3,𝑦  3} 𝑆3

𝑆1 𝑆2

𝑆4

{𝑦  3}

{𝑥  3,𝑦  3}

(b) DTPN(a) daTA (c) TCPNIA

[2,3]Start 𝑡2 𝑡3 start[1,3]

[4,6]

𝑝1

𝑝4

𝑝2

𝑝3

𝑝5

𝑝6

𝑝7

𝑡1

end 𝑡2 𝑡3 end

𝐺 = {2 ≤ 𝑥 ≤ 3} 𝐺 = {1 ≤ 𝑦 ≤ 3}

𝐺 = {2 ≤ 𝑥 ≤ 3}𝐺 = {1 ≤ 𝑦 ≤ 3} [5,6]

a)

[2,3], 3 𝑡3 [1,3], 3

𝑝1

𝑝2 𝑝4

𝑝3

𝑡2

𝑡1

𝑝5

𝑎, 𝑥𝑏,𝑦

𝑆0

{∅}

𝑏,𝑦𝑎, 𝑥

{𝑥  3}

{𝑥  3,𝑦  3} 𝑆3

𝑆1 𝑆2

𝑆4

{𝑦  3}

{𝑥  3,𝑦  3}

(b) DTPN(a) daTA (c) TCPNIA

[2,3]Start 𝑡2 𝑡3 start[1,3]

[4,6]

𝑝1

𝑝4

𝑝2

𝑝3

𝑝5

𝑝6

𝑝7

𝑡1

end 𝑡2 𝑡3 end

𝐺 = {2 ≤ 𝑥 ≤ 3} 𝐺 = {1 ≤ 𝑦 ≤ 3}

𝐺 = {2 ≤ 𝑥 ≤ 3}𝐺 = {1 ≤ 𝑦 ≤ 3} [5,6]

b)

[2,3], 3 𝑡3 [1,3], 3

𝑝1

𝑝2 𝑝4

𝑝3

𝑡2

𝑡1

𝑝5

𝑎, 𝑥𝑏,𝑦

𝑆0

{∅}

𝑏,𝑦𝑎, 𝑥

{𝑥  3}

{𝑥  3,𝑦  3} 𝑆3

𝑆1 𝑆2

𝑆4

{𝑦  3}

{𝑥  3,𝑦  3}

(b) DTPN(a) daTA (c) TCPNIA

[2,3]Start 𝑡2 𝑡3 start[1,3]

[4,6]

𝑝1

𝑝4

𝑝2

𝑝3

𝑝5

𝑝6

𝑝7

𝑡1

end 𝑡2 𝑡3 end

𝐺 = {2 ≤ 𝑥 ≤ 3} 𝐺 = {1 ≤ 𝑦 ≤ 3}

𝐺 = {2 ≤ 𝑥 ≤ 3}𝐺 = {1 ≤ 𝑦 ≤ 3} [5,6]

c)

Figure 30. Generating models

For the verification of the required properties, the specification of Figure 30 c)
is translated to a Timed Automata. Since the transition execution is instantaneous,
there is no way to observe the parallel execution of the two activities. As a solution
for such situation, it is possible to interpret each activity having a non-null duration
by two sequential transitions modeling the start and the end of the activity. As
shown in Figure 30 c), the activity duration is captured in the intermediate state
conditioning the execution of the ending transition by the elapsed time. We notice
that the composed system may be in the state where the two start transitions are
executed before executing the end transitions. Such state captures the parallelism

Formal Verification of UML MARTE Based on a Real Time Model 1055

between the two activities however, such methods augment the number of states,
transitions and clocks, which contributes to the state space explosion problem of
zone graph corresponding to the Timed Automata specification. As an alternative,
the use of DTPN and daTA is an interesting solution (Figure 30 a)).

As a consequence, we remark that the number of transitions of each structure
is comparable respectively of those of Figure 30 a). Another advantage concerns
the construction of the set of clocks. In our context, a clock is created dynamically
during the generation of the semantics models with the reuse of free clocks. On
the contrary, other models like Timed Automata, Petri Nets with Deadlines and
Time Petri Nets manage [15, 54, 55, 56], at the beginning of modeling, a finite and
constant number of clocks recording to the number of actions to execute.

6 CONCLUSION

In this paper, we proposed an operational method for translating MARTE SD spec-
ifications to DTPN specifications. As it has been mentioned previously, MARTE
SD allows the specification of several kind of behaviors like concurrency, time con-
straints and action duration. Since, DTPN formal specification model is a true
concurrency based semantics, it allows the consideration of the last three behavior
characteristics in both syntactic and semantics levels. This latter arguments is the
sole motivation of our work. The use of daTA structures as semantics allows prop-
erties formal verification, particularly those related to parallel evolution of actions
that have non-null duration and under timing constraints. Properties related to
reachability may be checked by means of KRONOS and UPPAAL tools, and prop-
erties dealing with true concurrency behaviours may be checked using FOCOVE
model checker.

In this paper, the translation method has been explained by considering sev-
eral examples. As for the perspectives of this work, we suggest that it is applied
on realistic real-time embedded systems. It could be either integrated to an ex-
isting environment system and/or a computer-aided software engineering model
checker. It could also be part of a separate formal specification and verification
tool. Alternatively, it would be useful to develop a full TCTL model-checker for
DTPNs related to MARTE SD specification without passing by Timed Automaton
like structures.

REFERENCES

[1] Lee, I.—Leung, J. T.—Son, S.: Handbook of Real-Time and Embedded Systems.
New York, Chapman and Hall/CRC, 2008, doi: 10.1201/9781420011746.

[2] Gomes, L.—Fernandes, J. M.: Behavioral Modeling for Embedded Systems and
Technologies: Applications for Design and Implementation. Information Science Ref-
erence, 2010.

https://doi.org/10.1201/9781420011746

1056 N. Chabbat, D. E. Saidouni, R. Boukharrou, S. Ghanemi

[3] Rayner, M.—Hockey, B. A.—Chatzichrisafis, N.—Farrell, K.: OMG Uni-
fied Modeling Language Specification. Version 1.3, © 1999 Object Management
Group, Inc., 2005.

[4] Gérard, S.: MARTE: A New Standard for Modeling and Analysis of Real-Time
and Embedded Systems. Proceedings of Euromicro Conference on Real-Time Systems
(ECRTS ’07), Pisa, Italy, 2007.

[5] OMG: UML Profile for MARTE: Modeling and Analysis of Real-Time Embedded
Systems, OMG Document Number: Ptc. 2008.

[6] Ge, N.—Pantel, M.—Crégut, X.: Time Properties Dedicated Transformation
from UML-MARTE Activity to Time Transition System. ACM SIGSOFT Software
Engineering Notes, Vol. 37, 2012, No. 4, pp. 1–8, doi: 10.1145/2237796.2237807.

[7] Ge, M. N.—Cregut, X.: A Framework Dedicated to Time Properties Verification
for UML-MARTE Specifications. 2012.

[8] Berthomieu, B.—Vernadat, F.: Time Petri Nets Analysis with TINA. Third In-
ternational Conference on the Quantitative Evaluation of Systems (QEST ’06), 2006,
pp. 123–124, doi: 10.1109/QEST.2006.56.

[9] Bošnački, D.—Dams, D.: Integrating Real Time into Spin: A Prototype Im-
plementation. In: Budkowski, S., Cavalli, A., Najm, E. (Eds.): Formal Description
Techniques and Protocol Specification, Testing and Verification (PSTV 1998, FORTE
1998). Springer, Boston, MA, IFIP – The International Federation for Information
Processing, Vol. 6, 1998, pp. 423–438, doi: 10.1007/978-0-387-35394-4 26.

[10] Bošnački, D.—Dams, D.: Discrete-Time Promela and Spin. In: Ravn, A. P.,
Rischel, H. (Eds.): Formal Techniques in Real-Time and Fault-Tolerant Systems
(FTRTFT 1998). Springer, Berlin, Heidelberg, Lecture Notes in Computer Science,
Vol. 1486, 1998, pp. 307–310, doi: 10.1007/bfb0055359.

[11] Holzmann, G. J.: The Model Checker SPIN. IEEE Transactions on Software Engi-
neering, Vol. 23, 1997, No. 5, pp. 279–295, doi: 10.1109/32.588521.

[12] Yang, N.—Yu, H.—Sun, H.—Qian, Z.: Modeling UML Sequence Diagrams Us-
ing Extended Petri Nets. Telecommunication Systems, Vol. 51, 2012, No. 2-3, pp. 147-
158, doi: 10.1007/s11235-011-9424-5.

[13] Yang, N.-H.—Yu, H.-Q.: Modeling and Verification of Embedded Systems Using
Timed Colored Petri Net with Inhibitor Arcs. Journal of East China University of
Science and Technology, Vol. 36, 2010, No. 3, pp. 411–417.

[14] Alur, R.—Dill, D.: Automata for Modeling Real-Time Systems. In: Pater-
son, M. S. (Ed.): Automata, Languages, and Programming (ICALP 1990). Springer,
Berlin, Heidelberg, Lecture Notes in Computer Science, Vol. 443, 1990, pp. 322–335,
doi: 10.1007/bfb0032042.

[15] Alur, R.—Dill, D. L.: A Theory of Timed Automata. Theoretical Computer
Science, Vol. 126, 1994, No. 2, pp. 183–235, doi: 10.1016/0304-3975(94)90010-8.

[16] McMillan, K. L.: Symbolic Model Checking. Kluwer Academic Publishers, 1993,
doi: 10.1007/978-1-4615-3190-6.

[17] Courcoubetis, C.—Yannakakis, M.: Minimum and Maximum Delay Problems
in Real-Time Systems. Formal Methods in System Design, Vol. 1, 1992, No. 4,
pp. 385–415, doi: 10.1007/bf00709157.

https://doi.org/10.1145/2237796.2237807
https://doi.org/10.1109/QEST.2006.56
https://doi.org/10.1007/978-0-387-35394-4_26
https://doi.org/10.1007/bfb0055359
https://doi.org/10.1109/32.588521
https://doi.org/10.1007/s11235-011-9424-5
https://doi.org/10.1007/bfb0032042
https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1007/978-1-4615-3190-6
https://doi.org/10.1007/bf00709157

Formal Verification of UML MARTE Based on a Real Time Model 1057

[18] Gardey, G.—Roux, O. H.—Roux, O. F.: State Space Computation and Analysis
of Time Petri Nets. Theory and Practice of Logic Programming, Vol. 6, 2006, No. 3,
pp. 301–320, doi: 10.1017/s147106840600264x.

[19] Bouyer, P.—Fahrenberg, U.—Larsen, K. G.—Markey, N.—Ouak-
nine, J.—Worrell, J.: Model Checking Real-Time Systems. In: Clarke, E., Hen-
zinger, T., Veith, H., Bloem, R. (Eds.): Handbook of Model Checking. Springer,
Cham, 2018, pp. 1001–1046, doi: 10.1007/978-3-319-10575-8 29.

[20] Belala, N.—Saidouni, D. E.—Boukharrou, R.—Chaouche, A. C.—Sera-
oui, A.—Chachoua, A.: Time Petri Nets with Action Duration: A True
Concurrency Real-Time Model. International Journal of Embedded and Real-
Time Communication Systems (IJERTCS), Vol. 4, 2013, No. 2, pp. 62–83, doi:
10.4018/jertcs.2013040104.

[21] Saidouni, D. E.—Belala, N.: Actions Duration in Timed Models. International
Arab Conference on Information Technology (ACIT), 2006.

[22] Micskei, Z.—Waeselynck, H.: UML 2.0 Sequence Diagrams’ Semantics. LAAS
Technical Report No. 08389, 37, 2008.

[23] OMG: UML Profile for Schedulability. Performance, and Time Specification, Vol. 1,
2005.

[24] Siegel, J. M.: Model Driven Architecture (MDA), MDA Guide Rev. 2.0. Object
Management Group, Tech. Rep. ORMSC/14-06-0, 2014.

[25] OMG Unified Modeling Language™ (OMG UML). 2013.

[26] André, C.: MARTE Time and Time Constraints Models and Their Applications.
2011.

[27] Merlin, P.: A Study of the Recoverability of Computer Systems. Ph.D. Thesis,
Computer Science Department, University of California, 1974.

[28] Ramchandani, C.: Analysis of Asynchronous Concurrent Systems by Petri Nets
(No. MAC-TR-120). Massachusetts Institute of Technology, Cambridge Project Mac,
1974.

[29] Sifakis, J.: Use of Petri Nets for Performance Evaluation in Measuring Modelling
and Evaluating Computer Systems. 1977.

[30] Alur, R.: Timed Automata. In: Halbwachs, N., Peled, D. (Eds.): Computer Aided
Verification (CAV 1999). Springer, Berlin, Heidelberg, Lecture Notes in Computer
Science, Vol. 1633, 1999, pp. 8–22, doi: 10.1007/3-540-48683-6 3.

[31] Belala, N.: Modèles de Temps et Leur Intérêt à la Vérification
Formelle des Systèmes Temps-Réel. Doctoral Dissertation. 2010, doi:
10.13140/RG.2.2.25932.21129.

[32] Störrle, H.: Trace Semantics of Interactions in UML 2.0. Journal of Visual Lan-
guages and Computing, 2004.

[33] Cavarra, A.—Küster-Filipe, J.: Formalizing Liveness-Enriched Sequence Di-
agrams Using ASMs. In: Zimmermann, W., Thalheim, B. (Eds.): Abstract State
Machines 2004. Advances in Theory and Practice (ASM 2004). Springer, Berlin,
Heidelberg, Lecture Notes in Computer Science, Vol. 3052, 2004, pp. 62–77, doi:
10.1007/978-3-540-24773-9 6.

https://doi.org/10.1017/s147106840600264x
https://doi.org/10.1007/978-3-319-10575-8_29
https://doi.org/10.4018/jertcs.2013040104
https://doi.org/10.1007/3-540-48683-6_3
https://doi.org/10.13140/RG.2.2.25932.21129
https://doi.org/10.1007/978-3-540-24773-9_6

1058 N. Chabbat, D. E. Saidouni, R. Boukharrou, S. Ghanemi

[34] Cengarle, M. V.—Knapp, A.: UML 2.0 Interactions: Semantics and Refinement.
Proceedings of the 3rd International Workshop Critical Systems Development with
UML (CSDUML ’04), 2004, pp. 85–99.

[35] Eichner, C.—Fleischhack, H.—Meyer, R.—Schrimpf, U.—Stehno, C.:
Compositional Semantics for UML 2.0 Sequence Diagrams Using Petri Nets. In:
Prinz, A., Reed, R., Reed, J. (Eds.): SDL 2005: Model Driven. Springer, Berlin,
Heidelberg, Lecture Notes in Computer Science, Vol. 3530, 2005, pp. 133–148, doi:
10.1007/11506843 9.

[36] Haugen, Ø.—Husa, K. E.—Runde, R. K.—Stølen, K.: STAIRS Towards For-
mal Design with Sequence Diagrams. Software and Systems Modeling, Vol. 4, 2005,
No. 4, Art. No. 355, doi: 10.1007/s10270-005-0087-0.

[37] Küster-Filipe, J.: Modelling Concurrent Interactions. Theoretical Computer
Science, Vol. 351, 2006, No. 2, pp. 203–220, doi: 10.1016/j.tcs.2005.09.068.

[38] Hammal, Y.: Branching Time Semantics for UML 2.0 Sequence Diagrams. In:
Najm, E., Pradat-Peyre, J. F., Donzeau-Gouge, V. V. (Eds.): Formal Techniques
for Networked and Distributed Systems (FORTE 2006). Springer, Berlin, Hei-
delberg, Lecture Notes in Computer Science, Vol. 4229, 2006, pp. 259–274, doi:
10.1007/11888116 20.

[39] Fernandes, J. M.—Tjell, S.—Jorgensen, J. B.—Ribeiro, O.: Designing
Tool Support for Translating Use Cases and UML 2.0 Sequence Diagrams into
a Coloured Petri Net. Sixth International Workshop on Scenarios and State Machines
(SCESM ’07: ICSE Workshops 2007), IEEE, 2007, doi: 10.1109/scesm.2007.1.

[40] Harel, D.—Maoz, S.: Assert and Negate Revisited: Modal Semantics for UML
Sequence Diagrams. Software and Systems Modeling, Vol. 7, 2008, No. 2, pp. 237–252,
doi: 10.1007/s10270-007-0054-z.

[41] Bowles, J.—Meedeniya, D.: Formal Transformation from Sequence Diagrams to
Coloured Petri Nets. 2010 Asia Pacific Software Engineering Conference, IEEE, 2010,
pp. 216–225, doi: 10.1109/apsec.2010.33.

[42] Bouneb, M.—Saidouni, D. E.—Ilie, J. M.: Hierarchical System Design Using
Refinable Recursive Petri Net. Computing and Informatics, Vol. 37, 2018, No. 3,
pp. 635–655, doi: 10.4149/cai 2018 3 635.

[43] Daws, C.—Olivero, A.—Tripakis, S.—Yovine, S.: The Tool KRONOS. In:
Alur, R., Henzinger, T. A., Sontag, E. D. (Eds.): Hybrid Systems III (HS 1995).
Springer, Berlin, Heidelberg, Lecture Notes in Computer Science, Vol. 1066, 1995,
pp. 208–219, doi: 10.1007/bfb0020947.

[44] Larsen, K. G.—Pettersson, P.—Yi, W.: UPPAAL in a Nutshell. International
Journal on Software Tools for Technology Transfer, Vol. 1, 1997, No. 1-2, pp. 134–152,
doi: 10.1007/s100090050010.

[45] Säıdouni, D. E.—Benamira, A.—Belala, N.—Arfi, F.: FOCOVE: Formal
Concurrency Verification Environment for Complex Systems. AIP Conference Pro-
ceedings, Vol. 1019, 2008, pp. 375–380, doi: 10.1063/1.2953008.

[46] Ejnioui, A.—Otero, C. E.—Qureshi, A. A.: Formal Semantics of Interactions in
Sequence Diagrams for Embedded Software. 2013 IEEE Conference on Open Systems
(ICOS), Kuching, Malaysia, 2013, pp. 106–111, doi: 10.1109/icos.2013.6735057.

https://doi.org/10.1007/11506843_9
https://doi.org/10.1007/s10270-005-0087-0
https://doi.org/10.1016/j.tcs.2005.09.068
https://doi.org/10.1007/11888116_20
https://doi.org/10.1109/scesm.2007.1
https://doi.org/10.1007/s10270-007-0054-z
https://doi.org/10.1109/apsec.2010.33
https://doi.org/10.4149/cai_2018_3_635
https://doi.org/10.1007/bfb0020947
https://doi.org/10.1007/s100090050010
https://doi.org/10.1063/1.2953008
https://doi.org/10.1109/icos.2013.6735057

Formal Verification of UML MARTE Based on a Real Time Model 1059

[47] Saputra, A. B.—Basuki, T. A.—Tirtawangsa, J.: Transformation of UML 2.0
Sequence Diagram into Coloured Petri Nets. 2014 International Conference of Ad-
vanced Informatics: Concept, Theory and Application (ICAICTA), IEEE, 2014,
pp. 243–248, doi: 10.1109/icaicta.2014.7005948.

[48] Meedeniya, D.—Bowles, J.—Perera, I.: SD2CPN: A Model Transformation
Tool for Software Design Models. 2014 International Computer Science and Engineer-
ing Conference (ICSEC), IEEE, 2014, pp. 354–359, doi: 10.1109/icsec.2014.6978222.

[49] Zafar, N. A.: Formal Specification and Verification of Few Combined Fragments of
UML Sequence Diagram. Arabian Journal for Science and Engineering, Vol. 41, 2016,
No. 8, pp. 2975–2986, doi: 10.1007/s13369-015-1999-9.

[50] Meedeniya, D.—Perera, I.—Bowles, J.: Tool Support for Transforming Unified
Modelling Language Sequence Diagram to Coloured Petri Nets. Maejo International
Journal of Science and Technology, Vol. 10, 2016, No. 3, pp. 272–283.

[51] Soares, J. A. C.—Lima, B.—Faria, J. P.: Automatic Model Transformation from
UML Sequence Diagrams to Coloured Petri Nets. Proceedings of the 6th International
Conference on Model-Driven Engineering and Software Development – Volume 1:
AMARETTO, 2018, pp. 668–679, doi: 10.5220/0006731806680679.

[52] Menad, N.—Dhaussy, P.—Drey, Z.—Mekki, R.: Towards a Transformation
Approach of Timed UML MARTE Specifications for Observer-Based Formal Verifi-
cation. Computing and Informatics, Vol. 35, 2016, No. 2, pp. 338–368.

[53] Andrade, V. C.—Peres, L. M.—Del Fabro, M. D.: Handling Global and Local
Time and Energy Constraints of Sequence Diagrams. 2018 UKSim-AMSS 20th Inter-
national Conference on Computer Modelling and Simulation (UKSim), IEEE, 2018,
pp. 73–78, doi: 10.1109/uksim.2018.00025.

[54] Laroussinie, F.—Markey, N.—Schnoebelen, P.: Model Checking Timed Au-
tomata with One or Two Clocks. In: Gardner, P., Yoshida, N. (Eds.): CONCUR
2004 – Concurrency Theory. Springer, Berlin, Heidelberg, Lecture Notes in Com-
puter Science, Vol. 3170, 2004, pp. 387–401, doi: 10.1007/978-3-540-28644-8 25.

[55] Cassez, F.—Roux, O. H.: Structural Translation from Time Petri Nets to Timed
Automata. Journal of Systems and Software, Vol. 79, 2006, No. 10, pp. 1456–1468,
doi: 10.1016/j.jss.2005.12.021.

[56] D’Aprile, D.—Donatelli, S.—Sangnier, A.—Sproston, J.: From Time Petri
Nets to Timed Automata: An Untimed Approach. In: Grumberg, O., Huth, M.
(Eds.): Tools and Algorithms for the Construction and Analysis of Systems (TACAS
2007). Springer, Berlin, Heidelberg, Lecture Notes in Computer Science, Vol. 4424,
2007, pp. 216–230, doi: 10.1007/978-3-540-71209-1 18.

https://doi.org/10.1109/icaicta.2014.7005948
https://doi.org/10.1109/icsec.2014.6978222
https://doi.org/10.1007/s13369-015-1999-9
https://doi.org/10.5220/0006731806680679
https://doi.org/10.1109/uksim.2018.00025
https://doi.org/10.1007/978-3-540-28644-8_25
https://doi.org/10.1016/j.jss.2005.12.021
https://doi.org/10.1007/978-3-540-71209-1_18

1060 N. Chabbat, D. E. Saidouni, R. Boukharrou, S. Ghanemi

Nadia Chabbat received her B.Eng. degree from the University of Badji Mokhtar, Anna-
ba, Algeria in 2005. In July 2014, she received her M.Sc. degree in computer science
from the University of Badji Mokhtar, Annaba, Algeria. Her research domain is formal
specification and verification of real-time embedded systems.

Djamel Eddine Saidouni received his B.Eng. degree from the University of Mentouri,
Constantine, Algeria, in 1990. He received his Ph.D. in theoretical computer science from
the University of Paul Sabatier, Toulouse, France in 1996. His domain research is the
formal specification and verification of complex distributed and real time systems.

Radja Boukharrou is currently Associate Professor in the Faculty of New Technolo-
gies of Information and Communication at University of Constantine 2, Algeria. She
holds her Ph.D. in computer science from Constantine 2 University. Her current research
interests include formal modeling and verification, security and privacy in IoT systems,
blockchain technology.

Salim Ghanemi graduated as Computer Science Engineer in June 1981 from Constantine
University, Algeria. In December 1982, he received his Master degree in computer science
from Aston University, Birmingham, England. In November 1987, he publicly discussed
his Ph.D. research in the parallel and distributed programming at Loughborough Uni-
versity, Loughborough, England. From September 1988 till now, he has assumed several
teaching and supervising research positions at many universities: Badji Mokhtar Univer-
sity, Annaba, Algeria, Philadelphia University, Amman, Jordan and King Saud University
at Riyadh, Kingdom of Saudi Arabia. He has many scientific publications on several
topics. In his main research focus is parallel programming, image processing, real time
processing and formal verification. At present, he is the Head of a research team working
on parallel processing on SoC, a project group attached to the Embedded Systems Labo-
ratory at Badji Mokhtar Annaba, LASE. He occupied several administrative duties such
as the Head of the Computer Science Department and the Vice Dean of the Engineering
Science Faculty.

