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Abstract. For the exact detection of moving targets in video processing, an adap-
tive low-rank sparse decomposition algorithm is proposed in this paper. In the pa-
per’s algorithm, the background model and the solved frame vector are first used to
construct an augmented matrix, then robust principal component analysis (RPCA)
is used to perform a low-rank sparse decomposition on the enhanced augmented ma-
trix. The separated low-rank part and sparse noise correspond to the background
and motion foreground of the video frame, respectively, the incremental singular
value decomposition method and the current background vector are used to update
the background model. The experimental results show that the algorithm can deal
with complex scenes such as light changes and background motion better, and the
algorithm’s delay and memory consumption can be reduced effectively.
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1 INTRODUCTION

The important source of people’s knowledge is from image information in the world.
In many occasions, the transmitted information in images is richer, truer and more
specific than other forms of information. The cooperation between the human eye
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and the brain enables people to acquire, process, and understand visual informa-
tion. Humans use vision to perceive external environmental information efficiently.
In fact, according to statistics of some foreign scholars, about 80 % of the external
information, which is obtained by humans, comes from images which are taken by
the eyes. If computers are to be intelligent, as the main carrier for humans to obtain
external information, our vision must be able to process image information. Espe-
cially in recent years, image data processing with large capacity (such as graphics,
images and video) has been widely used in medical, transportation and industrial
automation fields.

Most images in nature are constantly changing simulated images. In daily life,
the moving targets in these images are often more concerned about us, such as
pedestrians, vehicles, and other moving objects. Moving object detection is a popu-
lar direction in computer vision and digital image processing, and it is widely used
in robot navigation, intelligent video surveillance, industrial detection, aerospace
and many other fields. Therefore, moving object detection has become a research
hotspot in theory and application in recent years. Moving object detect is an im-
portant branch of image processing and computer vision, and it is also a core part
of intelligent monitoring systems. The purpose is how to quickly and accurately
detect moving targets in surveillance video, that is, moving targets are extracted
from sequence images.

The detection of moving targets is the most basic and very important step in
video processing. The accurate detection of moving targets is of great significance
for tracking, classifying, understanding and analyzing the behavior of subsequent
moving targets. In recent years, many scholars have conducted many studies on the
detection of moving targets. However, the detection of moving targets faces many
challenges, such as multi-mode background interference, lighting changes, and cam-
era shake. They are still research hotspots and difficulties in the field of computer
vision.

The representative algorithms include optical flow method, frame difference
method and background modeling method in the research of moving target de-
tection. The optical flow method can detect and track moving targets without prior
knowledge of the background, but there are problems such as high complexity of the
algorithm and sensitivity to illumination changes. In the frame difference method,
the moving target contour is obtained by performing differential operations on two
adjacent frames in the video image sequence. The algorithm is simple and easy to
implement, but it depends on the selected inter-frame time interval. The idea of
the background modeling method is to establish a background model, and the video
frame is detected with the background model to determine the motion foreground.
Compared with the optical flow method and the frame difference method, it has the
advantages of less calculation, faster speed, and higher precision. The core of the
background modeling method is how to build a model, how to update the model
properly to deal with the changes of the background itself.

At present, although there is a large number of moving object detection al-
gorithms, due to the complexity and variability of the actual environment, these
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algorithms are not all very robust. The faced problems and difficulties can be sum-
marized as follows:

1. Model initialization problem: During the background initialization training pe-
riod, because high-quality background models have not been obtained, it often
leads to false detection of moving targets;

2. Camouflage phenomenon: Some moving targets may be extremely similar to the
background, it may cause the moving targets to be indistinguishable from the
background;

3. Illumination change: It is divided into sudden change and gradation of light.
The background model should be able to adapt to the gradual change of light in
the outdoor environment during the day; correspondingly, the background model
can also be adapted to the indoor environment where the lights are suddenly
turned on. In short, the change of light will strongly affect the background
model, which will most likely cause false detection;

4. Foreground hole phenomenon: When the moving target has a large number of
regions with the same color, the internal changes of these regions may lead to
inaccurate detection, some internal regions of the foreground are misjudged as
the background;

5. Dynamic background: The most common is the leaf shake, of course, water
ripples, small target shake;

6. Suddenly stopped moving targets: After some moving objects enter the scene,
they stop in the scene. Obviously, the moving target in this case should be
identified as the background;

7. Shadow: The shadow of the moving target and the original shadow of the back-
ground area can be detected;

8. Noise interference: Noise interference basically belongs to the low data quality, it
is caused by the video image which is transmitted or compressed by the webcam;

9. Camera shake: Under some conditions, wind will cause camera shake;

10. Camera self-adjustment: At present, many cameras have automatic control func-
tions, such as lighting control, white balance, and zoom-in and zoom-out func-
tions.

2 RELATED WORKS

Computer vision applications based on videos often require the detection of moving
objects in their first steps. Background subtraction is then applied in order to
separate the background and the foreground. Background subtraction is surely
among the most investigated field in computer vision providing a big amount of
publications. Most of them concern the application of mathematical and machine
learning models to be more robust to the challenges met in videos. However, the
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ultimate goal is that the background subtraction methods developed in research
could be employed in real applications like traffic surveillance. There is often a gap
between the current methods used in real applications and the current methods in
fundamental research. In addition, the videos evaluated in large-scale datasets are
not exhaustive in the way that they only covered a part of the complete spectrum
of the challenges met in real applications [1].

Background modeling is a technique for extracting moving objects in video se-
quences. The different foreground sgmentation methods are categorized based on
the way of obtaining the reference frame. The different approaches can be catego-
rized into basic modeling, statistical modeling, clustering algorithms, methods based
on fuzzy modeling, neural and neuro-fuzzy methods, etc.

Neural network methods train networks for a specific amount of video frames,
allowing it to update its weights in order to model the background. Recently, the
most common background subtraction methods are based on deep neural networks.
The convolutional Neural Networks (CNN) was introduced to perform the segmen-
tation task [2]. The benefit of this approach is that foreground objects segmentation
can be achieved independently to the temporal characteristics. CNN can achieve
the segmentation with only spatial characteristics because the incoming examples
are independent. The pertinent features are selected using CNNs and transmit-
ted into a classifier to segment moving objects. Finally, a median filter and or
a fully connected framework are applied. Lim et al. introduced an approach based
on a triplet CNN for a multistage background feature embedding using an encoder-
decoder model [3]. A pre-trained convolutional network, VGG-16 Net is adapted un-
der a triplet framework in the encoder part to incorporate an image in multiple scales
into the feature space. Only a few training samples are used. The network takes an
RGB image in three different scales and generates a foreground segmentation proba-
bility mask for the corresponding image. In the period of 2018–2019, numerous deep
learning models either based on auto-encoder [4, 5, 6] and CNNs [7, 37, 9, 10, 11]
have been proposed. However, all these methods are supervised and have been
trained on ground truth video frames of datasets and tested on the same types of
videos.

The representative work of the background modeling method is as follows: Gaus-
sian mixed model (GMM) was proposed by Stauffer et al. [12], multiple Gaussian
models were used to fit the multi-peak state of pixel brightness changes, and it
has better illumination robustness. The non-parametric kernel density estimation
(KDE) was proposed by Elgammal et al. [13], it does not need to assume the type
of the probability density function in advance, and multiple background samples
were used to estimate the probability density of pixels. The algorithm can effec-
tively suppress shadows, but there exists a large cache size, difficulty in selecting
core bandwidth, etc. The codebook model were used proposed by Kim et al. [14],
CodeBook of a multiple codeword was established for each pixel, multi-modal back-
ground can be detected in real time, there is good global illumination robustness.
However, the memory consumption of the algorithm is large. The self-organizing
background subtraction (SOBS) was proposed by Maddalena et al. [15, 16], it draws
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on the characteristics of neural networks, a pixel in the background model is mapped
to multiple locations in the model. The relevance of pixel neighbors’ domain space
is used in the updating method. The VIBE (visual background extractor) model-
ing method was proposed by Barnich et al. [17], a random sampling strategy was
used to initialize the background model, and the background model is updated with
a second random sampling method. This airspace information propagation mech-
anism enables the algorithm to deal with camera shake, the real-time performance
of the algorithm is also high. Pixelmann adaptive segmentation (PBAS) was pro-
posed by Hofmann et al. [18], the idea of cybernetics is introduced. The foreground
judgment threshold and background model update rate change adaptively, there is
high recognition accuracy in the algorithm, but it takes more time to calculate and
set multiple thresholds. In short, these algorithms based on statistical models treat
each pixel as an independent, unrelated individual, without excavating the inherent
nature of high-dimensional data.

In recent years, compressive sensing has received a great deal of attention as
a new signal sampling theory [19], and it has been widely used in data compression,
pattern recognition, and wireless communication. Compressed sensing is a signal
sparse in a certain transform domain. The signal is sampled at a sampling rate
much lower than the Nyquist frequency. The observation matrix is used to linearly
project the high-dimensional sparse signal to a low-dimensional subspace. By solving
the optimization problem, the original signal with high probability is reconstructed
from the subspace. A low-rank representation can be seen as a generalization of
compressed sensing in two-dimensional data [20]. The rank of the matrix is used as
a sparse measure. Compared with the traditional subspace learning model, sparse
representation has better robustness to data containing outliers and strong noise.
In sparse representation, the robust principal component analysis (RPCA) is also
known as low rank and sparse matrix decomposition[21, 22], it mainly considers how
to recover low rank data from observations that are subject to large sparse noise
pollution observations. Taking into account the low rank of the background and the
sparseness of the motion foreground, Candes et al. first applied the low-rank sparse
decomposition to background modeling [23]. In this method, the moving target and
the background area can be separated effectively from the monitoring video sequence
without an independent training stage. The premise of the algorithm is to assume
that the background is almost or completely stationary. Subsequent researchers
also launched a series of studies based on this method of moving target detection
algorithms. DECOLOR algorithm combines RPCA with motion recognition [24]
and it combines Markov random field (MRF) a priori. Noise and small background
motion can be eliminated effectively in the smoothness of MRF, but the foreground
area will be “Smooth” and result in the loss of details of the moving target. Gao et al.
proposed the block sparse RPCA [25]. First the low-rank sparse decomposition of
the sampled samples was performed to obtain the outlines block, and then the second
decomposition was performed to obtain the moving target. Liu et al. introduced the
concept of structured sparse in considering the spatial correlation of outliers, and
low-rank sparse decomposition is used with different regularization parameters for
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each pixel group [26]. Bouwmans et al. summarized and evaluated the technique of
decomposition into Low-rank [27].

When RPCA is applied to moving target recognition, the above algorithms are
improved from different perspectives. However, they all have the following problems:

1. All vectors of the video are vectorized and loaded into memory once, when the
number of video frames is relatively more, it will cause memory overflow;

2. They do not take into account complex changes such as changes in light, back-
ground motion in the actual video surveillance environment, and poor robust-
ness.

3 RPCA APPLIED TO BACKGROUND SUBTRACTION
A SHORT OVERVIEW

3.1 Matrix Approaches

In many practical applications, the given data matrix D tends to be low-rank or
approximately low-rank, the random amplitude is arbitrarily large, but the error of
sparse distribution destroys the low rank of the original data. Therefore, matrix D
can be decomposed into the sum of two matrices, that is, D = A + E, where
matricesA and E are unknown, andA is a low-rank matrix. When the noise obeys an
independent and identically distributed Gaussian distribution, the classical principal
component analysis (PCA) can be used to obtain the optimal matrix A [28], that
is, the following optimization problem is solved:

min ||D − A|| s.t. rank(A) ≤ k (1)

wherein, rank(·) represents the rank of the matrix, and || · || represents the 2 norm.
Classical PCA can be effectively solved by singular value decomposition, but it is
limited to cases where noise N0 is small and independent of Gaussian distribution.
Candes et al. proposed RPCA to solve the problem of E, it is sparse and large
noise [23]. That is, matrix E in the above model is a sparse matrix with arbitrary
amplitude. The RPCA model is shown in Equation (2), where || · ||0 represents
0 norm.

min(rank(A, ||E||0) s.t. D = A+ E. (2)

Introducing the regularization parameter λ, this bi-objective optimization problem
is transformed into a single-objective optimization problem:

min rank(A) + λ||E||0 s.t. D = A+ E. (3)

In Equations (2) and (3), the objective functions includes rank(A) and ||E||0, it is
non-linear non-convex combined optimization functions, and its solution is an NP-
Hard problem. Since the matrix norm || · ||∗ of the matrix is the envelope of its rank,
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the 0 norm and the 1 norm of the matrix can be equivalent under certain conditions,
so the convex relaxation of the matrix is the following optimization problem:

min ||A||∗ + λ||E||1 s.t. D = A+ E. (4)

3.2 Tensor Approaches

The convex optimization problem shown in Equation (3) is also called principal
component pursuit (PCP). Candes et al. prove that as long as the singular vector
distribution of the low-rank matrix A is reasonable and the non-zero elements of the
sparse matrix are evenly distributed, then the PCP can recover the original low-rank
matrix A from any unknown error with a probability close to unity [23].

Robust Principal Component Analysis (RPCA) is a modification of the widely
used statistical procedure of principal component analysis (PCA) which works well
with respect to grossly corrupted observations. A number of different approaches
exist for Robust PCA, including an idealized version of Robust PCA, which aims to
recover a low-rank matrix A from highly corrupted measurements D = A+ E [23].
RPCA can be applied to video surveillance, face recognition, collaborative filtering
and other aspects. In video surveillance, each frame of the video is vectorized and
successively arranged into a matrix. The stable background part corresponds to the
low-rank part of the matrix, and the motion foreground can be used as a sparse
noise part. Therefore, PCP can be used to detect moving targets in a smooth
background.

This decomposition in low-rank and sparse matrices can be achieved by tech-
niques such as Principal Component Pursuit method (PCP) [23], Stable PCP [29],
Quantized PCP [30], Block based PCP [31], and Local PCP [32]. Then, opti-
mization methods are used such as the Augmented Lagrange Multiplier Method
(ALM [33]), Alternating Direction Method (ADM [34]), Fast Alternating Minimiza-
tion (FAM [35]) or Iteratively Reweighted Least Squares (IRLS [36]), Real-time Ro-
bust Principal Components Pursuit [37], Memory-efficient dynamic robust PCA [38],
Incremental Principal Component Pursuit [39], Spatio-temporal Sparse Subspace
Clustering [40], Double-constrained RPCA [41], ARF and OR-PCA Background
Subtraction [42].

In addition to the matrix segmentation technique used in target detection, there
are Tensors Decomposition techniques. In mathematics, tensors are geometric ob-
jects that describe linear relations between geometric vectors, scalars, and other
tensors. Elementary examples of such relations include the dot product, the cross
product, and linear maps. Geometric vectors, often used in physics and engineering
applications, and scalars themselves are also tensors. A more sophisticated example
is the Cauchy stress tensor T, which takes a direction v as input and produces the
stress T(v) on the surface normal to this vector for output, thus expressing a rela-
tionship between these two vector. With Tensors Decomposition as target detection,
people study some effective methods, such as Outlier-Robust Tensor PCA [43], Ten-
sor Based Low-Rank and Saliently Fused-Sparse Decomposition [44], Online Stochas-



1068 J. Chong

tic Tensor Decomposition [45], Stochastic Decomposition into Low Rank and Sparse
Tensor [46].

4 ADAPTIVE LOW RANK SPARSE
DECOMPOSITION ALGORITHM

Compared with the moving object detection algorithm based on pixel background
modeling, the advantage of RPCA is that it can separate the moving foreground
area from the background area effectively without a separate training stage. But
the premise of the algorithm is to assume that the background is almost or com-
pletely static. However, this assumption is difficult to establish in most of the real
monitoring scenarios. And Equation (4) is used to accurately separate the fore-
ground and the background, you need to load a larger number of video frames. If
the number of frames is too small, slow moving objects are recognized as part of
the background. Since the time complexity of the singular value decomposition is
O(m3) (D ∈ Rm×n) in the RPCA solution, the time cost of the algorithm rises
in a cubic order with the increase of m, and loading and solving a large number
of video frames cause that a low Rank-sparse decomposition has high latency in
moving target recognition.

Based on this, an adaptive low-rank sparse decomposition algorithm is proposed
in this paper. Through the partial loading and iterative updating of the video frame,
the memory occupancy can be reduced while the accuracy of the detection effect
can be effectively guaranteed, and the motion target detection delay can be reduced.
The algorithm framework is shown in Figure 1.

Figure 1. Algorithm framework

Robust PCA considers such a problem: the general data matrix D contains
structural information and also contains noise. Then this matrix can be decomposed
into two matrices D = A+E, A is low rank (due to a certain amount of structural
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information inside causing a linear correlation between rows or columns), E is sparse
(containing noise, here is the foreground (moving image) , it is sparse). Robust PCA
is to decompose a matrix D into a matrix with as low a rank as possible and a matrix
as sparse as possible. D consists of original image sequence frames, its each column
is an image pixel. Ab is the column subset of A (image background). D consists of
original image sequence frames, its each column is an image pixel. Ab is the column
subset of A (image background). The implementation of the algorithm in Figure 1
is described below.

4.1 Dynamic Designer Motion Simulation

In order to reduce delay of the algorithm, we consider processing a small number
of video frames at a time. However, in order to ensure the accuracy of the motion
foreground and background separation, A still needs a large number of columns to
guarantee the low rank of || · ||∗. Therefore, an augmented matrix is composed of
the calculated background vector and the background vector to be calculated [47].

If the background vector of the first k frames of video has been obtained, as-
suming that bj represents the background vector of the jth frame of video, where
j ∈ [1, k],n is the total number of pixels per frame, the following background matrix
is obtained: Ab = [b1, b2, . . . , bk] ∈ Rn×k.

The augmented background matrix Â is composed of Ab and A, where A ∈ Rn×m

is the background matrix of m new frames to be calculated: Â = [Ab, A] ∈ Rn×(k+m).
Therefore, ||A||∗ in the model is shown in Equation (4), it can be replaced by

||Â||∗.

4.2 Low Dimensional Background Modeling and Model Solving

Since the time complexity of optimizing the augmented low-rank matrix Â is O(k+
m)3, as the new frame is continuously processed, its time cost increases in a cubic
order. Therefore, it is very necessary to perform dimensionality reduction on Ab, that
is to project Ab into a low-dimensional subspace. Let this subspace be Asub ∈ Rn×p

in order, a new augmented matrix [Asub, A] ∈ Rn×(p+m)(p� k) is obtained. In other
words, the goal is to find an optimal solution Asub, that makes the nuclear norm of
[Asub, Anew] closest to Âaug, the optimization problem of Equation (5) is obtained:

Asub = arg min |||Â||∗ − ||[Asub, Anew]||∗|. (5)

First, Singular Value Decomposition (SVD) is performed on Ab, the main features
of the high dimensional matrix is extracted to construct Asub:

Ab = UDV T . (6)

In Equation (6), D ∈ Rn×k is a diagonal matrix which is composed of singular
values of Ab; U ∈ Rn×n is a matrix which is composed of left singular vectors;



1070 J. Chong

V ∈ Rk×k is a matrix which is composed of right singular vectors. Selecting the
first P largest singular values of D, it constitutes a diagonal matrix Dp ∈ p× p, and
selecting the top P column of U , it constitutes a matrix Up ∈ n × p, which results
in a low-dimensional subspace Asub:

Asub = UpDp. (7)

The variables of the model (4) is replaced to obtain the model (8):

min ||[Asub, A]||∗ + λ||E||1 s.t. D = A+ E. (8)

Considering the efficiency of the implementation, the inexact Lagrange multiplier
method (inexact ALM) is used to solve the above optimization problem [33, 34]. In
Equation (8), the augmented matrix of the kernel norm term consists of known and
unknown columns. It is necessary to introduce a new variable to replace the aug-
mented matrix, and the variable splitting method is used to separate the objective
function into: Z = [Asub, A].

Augmented Lagrangian functions are built for the above optimization problem
to be solved:

L(Z,E, Y ) = ||Z||∗ + λ||E||1+ < Y,D − Z − E > +µ||D − Z − E||2F/2

where Y is a Lagrangian multiplier; µ||D − Z − E||2F/2 is a penalty function term,
and µ is a penalty function factor. Repeat the iteration of the following update
formula until convergence:

Zk+1 = arg min
Z
L(Z,Ek+1, Yk, µk) = D1/µk(D − Zk+1 + Yk/µk),

Ek+1 = arg min
E
L(Zk+1, E, Yk, µk) = S1/µk(D − Ek+1 + Yk/µk).

Among them, Sτ (x) is a soft threshold operator, Sτ (x) = sgn(x)×max(|x| − τ, 0);
Dτ (x) is a singular value threshold operator, Dτ (x) = USτ (Σ)V∗ (X = UΣV∗ indi-
cates singular value decomposition for X). The convergence condition is ||D − Z −
E||F ≤ σ||D||F , where σ = 10−7 [24].

4.3 Background Model Updates

In order to obtain a new background model, it is used to process the next batch
of frames, after each calculation, it is necessary to use the currently obtained A to
update Ab. This article uses the incremental SVD method to update Ab [48].

Ab ≈ UpDpV
T
p , [U

new, Dnew] = svd([ωbAb, ωaA])

≈ svd[ωbUpDpV
T
p , ωaA] = svd[ωbUpDp, ωaA] = svd[ωbAsub, ωaA].
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A new background model Anewb is obtained:

Anewsub = Unew
p Dnew

p (9)

werein, Unew
p is composed of the first P columns of Unew; Dnew

p is a diagonal matrix
which are composed of P largest singular values. ωa and ωb are the weights of the
control updating speed (ωa, ωb ∈ [0, 1]). The larger ωa, the faster the updating of
the background model; the larger ωb, the slower the updating of the background
model, so the multimode scenes with complex backgrounds can choose ωa > ωb.
At the same time, the matrix V does not need to be calculated in the above for-
mula operation, which effectively reduces the time complexity when updating the
model.

5 EXPERIMENTAL RESULTS AND PERFORMANCE ANALYSIS

The experimental simulation hardware environment is: Intel Core i3 dual-core pro-
cessor, clocked at 3.4 GHz, and main memory is 4 GB. The software environment is:
Window10 operating system, Matlab R2018a.

5.1 Experiments on CDnet and Wallflower Datasets

The test data selects the standard video libraries CDnet and Wallflower for mo-
tion target detection. CDnet 2014 includes 11 series of basic scenes, dynamic back-
grounds, camera shakes, etc. Wallflower includes 7 scenes such as motion background
and lighting gradient. At the same time, the data set also gives the groundtruth
of each frame segmentation foreground, which facilitates the comparative analysis
of the algorithm. Two scenes, Running and Highway, were selected. The following
algorithm was compared with the GMM algorithm, the PCP algorithm, and the
DECOLOR algorithm. Figure 2 shows the motion foreground recognition effect of
each algorithm.

Figure 2. Experiment results of 4 algorithms in different scenes

The running scene of the first row in Figure 2 is a single-moving target. The mo-
tion scene in a simple background gives the experimental results of the 17th frame.
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The GMM algorithm uses multiple Gaussian models to fit the changes in pixel val-
ues. The identified motion foreground contours are more detailed, but there are
holes in the right and left arms of the motion object. The DECOLOR algorithm
uses the MRF to remove noise and small background motions, but it makes the mo-
tion foreground smooth and loses contour details. Both the PCP and the method
of this paper can completely identify the motion prospects. The second line High-
way is a complex scene with multiple moving objects and multi-modal backgrounds
coexisting with light changes. The branches are shaken in the upper left corner,
that are the sports background. In the figure, the video frame 76 is taken in the
truncated light. Obviously, the speed of updating the background model of GMM
cannot adapt to the sudden change of light, leading to a large area of misjudg-
ment. The DECOLOR algorithm is robust to sudden changes in light, but due
to the loss of contour details, it leads to adhesion of the two motion foregrounds.
Although the PCP algorithm can accurately identify all the moving targets, it mis-
takenly identifies the branches that are sloshing in the upper-left corner as motion
foreground, because the PCP algorithm assumes that the background is completely
stationary. The method in this paper is able to cope with sudden light changes
and multi-mode background disturbances, and it has the best recognition effect
in this scene. Because the inexact Lagrangian multiplier method is used for opti-
mization, for the running scenes with relatively simple background and foreground,
the algorithm can achieve convergence with 33 iterations, and the complex scene
with multiple moving targets has a complex background. It takes 71 iterations
to achieve convergence. That is, the simpler the scene, the faster the algorithm
converges.

In quantitative analysis of the algorithm, the indicators are recall (Re), accuracy
(precision, Pr) and comprehensive performance (F-measure, F1). Among them, TP
(true positive) indicates true positive, that is, the number of pixels are correctly
detected as the front sight; FN (false negative) indicates false negative, that is, the
number of pixels are detected as background points by mistake; FP (false positive)
indicates false positive, that is, the number of pixels are detected as the previous
sighting mistake.

Recall =
TP

TP + FN
,

Precision =
TP

TP + FP
,

F-measure =
2× Precision× Recall

Precision + Recall
.

Table 1 gives a quantitative comparison of the performance parameters of each
algorithm in the two scenarios. It can be seen that the introduction of an adaptive
process in the PCP algorithm significantly improves the ability of the algorithm to
handle complex backgrounds.
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Algorithm Scene Re Pr F1

GMM Running 0.69 0.82 0.87
Highway 0.62 0.42 0.5

DECOLOR Running 0.82 0.76 0.79
Highway 0.83 0.71 0.77

PCP Running 0.89 0.88 088
Highway 0.87 0.79 0.83

Adaptive PCP Running 0.9 0.87 0.88
Highway 0.9 0.88 0.89

Table 1. Comparison of average performance

Note: GMM is Gaussian mixed model; PCP is principal component pursuit;
The entire process of DECOLOR is detecting contiguous outliers in the low-rank
representation.

Figure 3 compares the time efficiency of PCP and Adaptive PCP. Experimental
results show that by loading part of the video frame and singular value decomposition
of the background model, the delay of the algorithm is effectively reduced. At the
same time, since the PCP algorithm needs to load all the frames at once. Compared
to the Running (180× 144× 42 frames) scene, Highway scenes with a low resolution
but a large total number of frames (160 × 112 × 119 frames) require more average
processing time. While Adaptive PCP loads the video frames to be calculated in
batches, the average processing time of a single frame is inversely proportional to
the resolution of the video.

5.2 Experiments on the VOT2014 Dataset

In order to intuitively compare the experimental results of the algorithm, the two
running and highway modes with no lower resolution and fewer frames are selected.
If we choose the PETS2006 scene of the dataset (320 × 240 × 1 200 frames), the
memory overflow will occur in the traditional PCP algorithm, and the algorithm
can still obtain the detection result. Figure 4 shows the foreground detection result
of the 740th frame of the scenario.

The algorithm has been implemented. We have tested the algorithm with both
simulated and actual sequences of images of vehicles in different landscapes. The
system can detect and track targets in real-time. We achieved the frame rate of
4 frames/second for detection and 15 frames/second for tracking of 100× 90 pixels
target in 352 × 288 pixels video frames. We tested the proposed algorithm with
wide variety of image sequence. Figure 5 shows some results for detection of various
objects in arbitrary background. As it is shown the algorithm has successfully
detected the targets. In Figure 6 the tracking results for a vehicle are shown. In
this example, the tracked vehicle turns over the road and its shape and size change.
As it shown in the pictures both the size and the shape of the vehicle varies but
our tracking algorithm can successfully track it. Results showed the accuracy of
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Figure 3. Comparison of running time between PCP and Adaptive PCP

Figure 4. Detection result of 740th frame of this paper method

the method in detecting and tracking of moving objects. Comparison of results
generated by the proposed method with those of other methods showed that more
reliable results could be obtained using the proposed method in real-time.

Further, the experimental data is taken from the VOT2014 dataset (https:
//www.votchallenge.net/vot2014/dataset.html) [49]. In order to ensure the
effectiveness and stability of the algorithm, the moving target is selected here, where
the dataset name is jogging. Detect and track the moving object with the largest
moving area in the first 22 frames of video of each data set. This video is a video of
the movement of two joggers. The feature is that the background is relatively single,

https://www.votchallenge.net/vot2014/dataset.html
https://www.votchallenge.net/vot2014/dataset.html
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Figure 5. Various targets are detected in the detection algorithm

Figure 6. Tracking a vehicle while it turns over and changes its size and shape

but the two targets appear too close to each other. At this time, they are treated
as a moving target for tracking and detection. The first five frames are shown in
Figure 7. The experimental results show that the background of the entire video is
relatively stable. When using the algorithm in this article to track two joggers, the
target is almost marked in the ellipse.

6 CONCLUSIONS

In this paper, an adaptive low-rank sparse decomposition algorithm is proposed
or it is known as adaptive principal component pursuit (A-PCP). First, a part of
video frames are loaded, and the initial background Ab is obtained by low-rank
sparse decomposition, and singular value decomposition is performed to obtain
a low-dimensional subspace Asub, Asub connects with a new number of frames of the
calculated video background vector, an augmented low-rank matrix is constructed.
Then, a low-rank sparse decomposition of the objective function containing Â results
in a new low-rank background matrix A. Finally, the low-dimensional background
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a) Current frame image b) Background extracted
by the algorithm in this
paper

c) Sports targets of inter-
est

Figure 7. Jogging target tracking effect map
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is updated with the current A model Asub, the above process is repeated until all
frames are processed.

This adaptive low-rank sparse decomposition algorithm is applied to the de-
tection of moving targets in intelligent video surveillance. In the algorithm, the
background model Ab is established by low-rank sparse decomposition, and it is
reduced to the low-dimensional space Asub. The background of the new frame is
obtained by performing low-rank sparse decomposition on the augmented matrix
containing Asub, and then the current background vector is used to update the
background model. In this paper, an adaptive process is introduced in the tradi-
tional PCP algorithm, experiments show that the robustness of the algorithm is
improved to complex backgrounds, and it can achieve better detection results. At
the same time, compared to the PCP algorithm, all frame vectors are loaded at
once, this adaptive update mechanism can improve the robustness of the algorithm.
The mechanism of partially loading video frames can also reduce the delay of the al-
gorithm and avoid memory overflow at the same time, thus the overall performance
of moving target recognition is improved.
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