
Computing and Informatics, Vol. 39, 2020, 907–924, doi: 10.31577/cai 2020 5 907

HIERARCHICAL TEXT CLASSIFICATION
USING CNNS WITH LOCAL APPROACHES

Milan Krendzelak, Frantisek Jakab

Technical University of Košice
Faculty of Electrical Engineering and Informatics
Department of Computers and Informatics
Letná 9, 040 01 Košice, Slovakia
e-mail: krendzelak.m@gmail.com, frantisek.jakab@tuke.sk

Abstract. In this paper, we discuss the application of convolutional neural net-
works (CNNs) for hierarchical text classification using local top-down approaches.
We present experimental results implementing a local classification per node ap-
proach, a local classification per parent node approach, and a local classification
per level approach. A 20Newsgroup hierarchical training dataset with more than
20 categories and three hierarchical levels was used to train the models. The exper-
iments involved several variations of hyperparameters settings such as batch size,
embedding size, and number of available examples from the training dataset, includ-
ing two variation of CNN model text embedding such as static (stat) and random
(rand). The results demonstrated that our proposed use of CNNs outperformed
flat CNN baseline model and both the flat and hierarchical support vector machine
(SVM) and logistic regression (LR) baseline models. In particular, hierarchical
text classification with CNN-stat models using local per parent node and local per
level approaches achieved compelling results and outperformed the former and lat-
ter state-of-the-art models. However, using CNN with local per node approach for
hierarchical text classification underperformed and achieved worse results. Further-
more, we performed a detailed comparison between the proposed hierarchical local
approaches with CNNs. The results indicated that the hierarchical local classifica-
tion per level approach using the CNN model with static text embedding achieved
the best results, surpassing the flat SVM and LR baseline models by 7 % and 13 %,
surpassing the flat CNN baseline by 5 %, and surpassing the h-SVM and h-LR
models by 5 % and 10 %, respectively.

Keywords: Hierarchical text classification, convolutional neural network, local top-
down approach

Mathematics Subject Classification 2010: 68-U01

908 M. Krendzelak, F. Jakab

1 INTRODUCTION

Various methods exist for solving the hierarchical text classification (HTC) task,
which is primarily based on how hierarchical relationships are utilized. Flat clas-
sification treats a flattened taxonomy as a set of unique classes that represent its
hierarchy. Therefore, a binary classifier is usually trained for each class to discrimi-
nate it from the remaining classes. Although the flat classification approach is well
known for its efficiency and simplicity when handling small-sized and well-balanced
datasets, its performance suffers when the dimensions of the classes to be predicted
not only increase but also become hierarchically interdependent. Due to the invoca-
tion of binary classifiers for all trained nodes, computation becomes time-consuming
and costly [1].

The application of hierarchically organized categories into a taxonomy has be-
come the most frequent method of organizing large quantities of data. For instance,
enterprise customer care, product knowledge bases, online self-help centers, and
e-learning systems. The most frequent strategy is to flatten a taxonomy so that
all training datasets belong only to leaf classes. However, organizing the train-
ing datasets in this way does not mimic real-world examples very effectively. The
connection between classes is lost because of the flattening process; thus, it is not
possible to forecast the parent category of a new case [2].

However, in the context of HTC hierarchical relationships between parent and
children elements, derived from a taxonomy of classes, should be considered either for
training or predicting phases or both. In this case, the difference between different
approaches to tackle the HTC task is the way the training dataset is leveraged.
Currently, there are well-known hierarchical approaches known as local and global
approaches. A hierarchical local approach is further divided into a local per node
approach, local per parent node approach, and a local per level approach. Then
the local approach involves splitting the hierarchical structure into several smaller
structures for training local learning models; the global approach consumes the entire
hierarchy of classes at once for training the global learning model [3].

2 RELATED WORK

There is a number of studies that focus on solving hierarchical text classification.
For example, a well-known hierarchical top-down approach with level-based support
vector machine models for text classification has been suggested by Sun and Lim [4].
Similarly, Sokolov et al. proposed a model for ontology term forecasting by explicitly
simulating a construction hierarchy using kernel techniques for structured output [8].
Cerri et al. proposed an approach for hierarchical multi-label text classification that
involves training a multi-layer perceptron for each level of the classification hier-
archy [9]. The predictions generated by a neural network in a given level serve as
inputs to the neural network responsible for the forecast in the following level. Their
method was evaluated against several datasets with promising results.

Hierarchical Text Classification Using CNNs with Local Approaches 909

Within the context of neural networks, Kurata et al. proposed a strategy for ini-
tializing neural networks’ hidden output by considering multi-label co-occurrence.
Their method treats a number of neurons in the final hidden layer as committed
neurons for every pattern of tag co-occurrence [10]. In addition, there have been
several important studies that proposed the inclusion of multi-label co-occurrence
into loss functions, such as pairwise standing loss by Zhang and Zhou [11]. Further-
more, in more recent work, Nam et al. [12] reported that binary cross-entropy can
outperform pairwise ranking reduction by minding rectified linear units (ReLUs) for
nonlinearity.

3 LOCAL CLASSIFICATION APPROACHES

The hierarchical local classification approach deals with the local cross-section of
hierarchically organized classes in order to consider information about parent-child
and sibling relationships during the training phase. Based on different methods of
applying the cross-section to local information extraction, the local classification
approach is further divided into three subcategories.

3.1 Local Classifier per Node

The local classifier per node (LCN) approach dictates that a binary classifier ψn

is learned for each node n ∈ N except for the root node R in the hierarchy H,
as illustrated in Figure 1. The dashed squares represent binary classifiers that are
assembled into top–down manner execution.

Figure 1. Local classifier per node

The training of a binary classifier at a node is performed by feeding the model
with positive and negative examples. With respect to the LCN, all examples belong-
ing to the nth node and its descendants are considered positive training examples,
while examples belonging to the nth node siblings and their descendants are consid-

910 M. Krendzelak, F. Jakab

ered negative examples. The binary classifier is formulated as follows:

N∑
i=1

L (wl, x(i), y(i)) + λ||wl||22. (1)

This classifier attempts to minimize the weight vectors for each label l, where
λ > 0 is the penalty parameter, L denotes the loss function (e.g., hinge loss or
logistic loss), and ||22 denotes the squared `2-norm. To predict an unknown test
instance, the algorithm generally proceeds in a top-down manner, starting at the
root and recursively selecting the best children until it reaches a terminal node that
belongs to the set of leaf categories L , which is the final predicted node.

The strategy described above is the one most commonly found in the literature.
However, there exist additional strategies with different fine-tuning methods for
annotating training data to differentiate among positive and negative examples.

3.2 Local Classifier per Parent Node

The local classifier per parent node (LCPN) approach states that a multi-class clas-
sifier is learned for each parent node p ∈ N in the hierarchy H , as illustrated in
Figure 2. The dashed squares in the figure represent multi-class classifiers.

Figure 2. Local classifier per node

Like the LCN, the goal of the LCPN is to learn classifiers that can effectively
discriminate between siblings. To train the classifier at each parent node N , we
use the examples from its descendants, in which each of the children categories
C(N) of parent node N corresponds to different classes. The multi-class classifier is
formulated as follows:

minimize
1

N

N∑
i=1

ξi + λ

L∑
l=1

||wl||22, (2)

Hierarchical Text Classification Using CNNs with Local Approaches 911

assuming that

wT
li
x(i)− wT

l x(i) ≥ 1− ξi, ∀l ∈ L− li,∀i ∈ [1, 2, ..., N]

and
wT

li
x(i)− wT

l x(i) >= 1− ξi.

This classifier attempts to minimize the weight vectors, where λ > 0 is the
penalty parameter, L denotes the loss function (e.g., hinge loss or logistic loss), ξi
denotes the slack variables, and ||22 denotes the squared `2-norm.

3.3 Local Classifier per Level

In the local classifier per level (LCL) approach, a multi-class classifier is learned for
every level in the hierarchy, as illustrated in Figure 3. To train the classifier at each
level, examples from the nodes are used individually for each level along with its
descendants. It should be noted that nodes at the same level do not overlap and
correspond to distinct classes. Prediction is performed by selecting the best node at
each level in the hierarchy.

Figure 3. Local classifier per level

Because classifiers at each level make independent predictions, it is possible that
this approach may result in vertical inconsistency in prediction. For this strategy to
be useful, a post-processing measure is employed to solve inconsistent predictions,
if necessary.

4 HIERARCHICAL PERFORMANCE EVALUATION

4.1 Flat Evaluation Metrics

As metrics, we use the standard micro-F1 (µF1) score and macro-F1 (MF1) score
to evaluate the performance of various methods. To compute µF1, we sum the
category-specific true positives (TPc), false positives (FPc), and false negatives

912 M. Krendzelak, F. Jakab

(FNc). Then, the definition shall be for different categories define micro-F1 as
follows:

µF1 =
2 P R

P +R
(3)

where P is precision and R is recall, defined as follows:

P =

∑
c∈L TPc∑

c∈L (TPc+FPc)

, (4)

R =

∑
c∈L TPc∑

c∈L (TPc+FNc)

. (5)

The MF1 score, which gives equal weight to all categories so that the average
score is not skewed in favor of the larger categories, is defined as follows:

MF1 =
1

|L |
∑
cinL

2PcRc

Pc +Rc

(6)

where |L | is the number of leaf categories, and Pc and Rc are defined as follows:

Pc =
TPc

TPc + FPc

, (7)

Rc =
TPc

TPc + FNc

. (8)

4.2 Hierarchical Evaluation Metrics

With respect to HTC performance, hierarchical metrics should consider the hier-
archical distance between the true class and predicted class. The principle is to
penalize misclassification differently from flat metrics, which penalize each misclas-
sified example equally. Generally, misclassifications that are closer to the actual
class are penalized less than misclassifications which are further from it with respect
to the hierarchy.

The hierarchical metrics include the hierarchical F1 (hF1) score, hierarchical
precision P (hP), hierarchical recall R (hR), and tree-induced error (TE), which
are defined as follows:

hF1 =
2 hP hR

hP + hR
, (9)

TE =
1

N

N∑
i=1

δ(ŷi, yi) (10)

Hierarchical Text Classification Using CNNs with Local Approaches 913

where hP and hR are defined as follows:

hP =

∑N
i=1 |A(ŷi) ∩ A(yi)|∑N

i=1 |A(ŷi)|
, (11)

hR =

∑N
i=1 |A(ŷi) ∩ A(yi)|∑N

i=1 |A(yi)|
. (12)

Here, A(ŷi) and A(yi) are the set of ancestors of the predicted and true labels,
respectively, including the class itself but not the root node. δ(ŷi, yi) represents the
length of the undirected path between categories ŷi and yi in the tree.

5 TOP-DOWN HIERARCHICAL ENSEMBLE

A top-down ensemble of prediction evaluation is one of the most efficient approaches
for solving the HTC task with binary classifiers, either implemented as CNN, SVN or
LR models [8]. The principle of this approach is to recursively evaluate a prediction
from the top of the hierarchy down to the leaf, traversing each node on the path,
as illustrated in Algorithm 1. At each step, the node with the highest prediction
score is selected. This process repeats recursively until the last leaf node is reached,
which corresponds to a certain class and is usually located at the bottom.

Result: Repeat recursively until last leaf node is reached
initialization n := Root;
while n /∈ L do

n := arg maxq∈C(n) fq(x);
end
return n;

Algorithm 1: Local top-down approach

Top-down methods are popular for large-scale problems due to their computa-
tional advantages when only a subset of classes in the appropriate path is considered
in the prediction phase. In addition, these methods minimize problems related to
prediction inconsistencies because the best child node is selected at each level of the
path. Top-down methods have been successfully utilized to resolve HTC problems
either for learning or training and prediction phases.

A major disadvantage of top-down technique that results in poor classification
performance is error propagation, namely, the compounding of errors from misclas-
sifications at higher levels that cannot be corrected at the next lower levels. This
problem can be relieved to a certain extent by shifting the hierarchy to temper the
level of deformation. It is important to note that this top-down technique is applied
only for binary classifiers.

914 M. Krendzelak, F. Jakab

6 CONVOLUTIONAL NEURAL NETWORKS

Convolutional neural networks (CNNs) have been adopted from the field of computer
vision, in which they have been shown to provide state-of-the-art results with default
baseline hyperparameter settings.

Figure 4. Convolution neural network (CNN)

Let xi ∈ Rk be the k-dimensional word vector relevant to the ith word in a sen-
tence. A sentence of length n (padded if required) is represented as follows:

x1:n = x1 ⊕ x2 ⊕ . . . xn (13)

where ⊕ is the concatenation operator. Furthermore, let xi:i+j refer to the con-
catenation of words xi, xi+1, . . . xi+j. Applying a filter w ∈ Rhk in strides defines
a convolution operation, which is applied to a selected window of h terms to compute
a new feature. Therefore, feature ci is produced for each window of words xi:i+h−1
as follows:

ci = f(w xi:i+h−1 + b). (14)

Let b ∈ R be a bias and f a non-linear function, for example, a hyperbolic tangent
or relu function. Then, a filter is used to stride through each possible window in the
given sentence {x1:h, x2:h+1, . . . xn−h+1:n} to create a feature map, such as

c = [c1, c2, c3, . . . cn−h+1] (15)

where c ∈ Rn−h+1. Thereafter, a max-overtime pooling operation is applied over
the set of feature maps to select a maximum value C = max{c} as the feature. The
general principle is to be able to capture the most important set of features for all
feature maps.

The above process describes how one feature is extracted from one filter. How-
ever, the model uses multiple filters, typically with varying window sizes, to extract
multiple features. Therefore, these features form next to the last layer, which is
directly followed by a fully connected softmax layer whose output is the probability
distribution over the labels.

Hierarchical Text Classification Using CNNs with Local Approaches 915

6.1 Convolution

A 1D convolution is an operation between a vector of weights m, where m ∈ Rm, and
a vector of input sequences s, where s ∈ Rs. Vector m is the filter of the convolution.
Let s be an input sentence and si ∈ R be a single feature value associated with the
ith word in a sentence. Then, a 1D convolution produces the dot product of vector
m with each n-gram in the sentence s to obtain another sequence c as follows:

cj = mTSj−m+1:j. (16)

Equation (16) describes two possible types of convolution – narrow and wide –
depending on the range of index j. The narrow type of convolution requires that
s ≥ m, and yields a sequence c ∈ Rs−m+1 with j ranging from m to s. The wide type
of convolution does not constrain m or s, and yields sequence c ∈ Rs+m−1, where
index j ranges from 1 to s+m− 1. Values si outside of the range are considered to
be zero, where i < 1 or i > s.

Figure 5. Narrow and wide convolutional layers

The result of a narrow convolution is a subsequence of the results of the wide
convolution. The two types of one-dimensional convolutions are illustrated in Fig-
ure 5. The trained weights in filter m correspond to a linguistic feature that learns
to recognize a particular class of n-grams. These n-grams have size n ≤ m, where m
is the width of the filter. Applying the weights m in a wide convolution has several
advantages over applying them in a narrow convolution. A wide convolution ensures
that all weights in the filter reach the entire sentence, including words at margins
and paddings.

6.2 Feature Selection

One of the advantages of a CNN over other neural networks is that it is designed to
automatically extract features from the given text corpora. It does so by applying
convolutional layers in a specific, predefined manner as described in Section 6.1.
These extracted feature maps are more efficient and less error-prone than manually
constructed ones. In addition, they ensure a high level of accuracy in capturing the
most important details for given examples of text data.

In general, convolution layers can be considered a feature extractor whose output
is fed into a fully connected layer for the purpose of simple decision-making, such
as classification or ranking. Because a CNN creates local features for each word in

916 M. Krendzelak, F. Jakab

a sentence, it is possible to combine or stack features to produce a global feature
vector. Several aspects of a CNN’s ability to create and extract text features are as
follows:

• A CNN internally creates features that can be extracted and used as input for
other custom-defined internal layers or external models.

• A CNN automatically creates features that do not rely on a hand-crafted process.
It adapts well to the specifics of a training dataset in a supervised manner.

• A hierarchy of local features is considered during feature creation; therefore, the
CNN captures the context effectively.

Figure 6. Conceptual diagram of experimental CNN for local per level classification

7 EXPERIMENTAL SETUP

To provide a comprehensive assessment of the use of CNNs for hierarchical text
classification using local approaches, we conducted three independent experiments
and observed, measured, and compared the outcomes.

It should be noted that the following constrains were taken into consideration
and applied throughout the experimentation:

• The training dataset outlined in Figure 7 was used; thus, the results could be
compared with each other and with previously reported applications of h-SVM
and h-LR models using identical local approaches operated in a top-down fash-
ion.

Hierarchical Text Classification Using CNNs with Local Approaches 917

• The same variation of the CNN baseline model was used; thus, the outcome did
not depend on the model specifics, but rather on the effectiveness of the local
approach as a strategy.

• For all experiments in this study, we used 300-dimensional word vectors trained
by Mikolov et al. on roughly 100 billion words from Google News.

7.1 Training Dataset

The 20Newsgroup dataset contained an average of 20 000 e-news items from more
than 20 different categories hierarchically ordered with three hierarchical levels. The
total training dataset contained 11 314 examples.

Figure 7. 20Newsgroup training dataset hierarchy

The category size corresponded to the number of available examples per category,
as outlined in Table 1. The training data was preprocessed, aggregated for each
hierarchy level, and counted for the number of available examples per category.

7.2 CNN Variants

One difference among the many recent studies on word-based CNNs for text classifi-
cation is the choice of using pretrained or end-to-end learned word representations.
In our experiments, we used two variants of the CNN baseline model that differed
in the initialization of embedding.

• CNN-rand which learns the text embedding from scratch during the training.

• CNN-stat which is initialized with pretrained word2vec.

918 M. Krendzelak, F. Jakab

7.3 Hyperparameters and training

• Optimizer. For all experiments, we trained our model’s parameters with the
Adam optimizer initialized with a learning rate of 0.001.

• Batch sizes. We experimented with different batch sizes, such as 64, 128, and
192, as we wished to observe the impact of different values on model performance.

• Embedding sizes. The default embedding size was 128. However, to obtain
an improved understanding of how this hyperparameter value affects perfor-
mance, we experimented with additional settings, such as 256 and 300.

• Number of filters and their sizes. The presented CNN model contained three
convolutional layers, each with three different filters. Each filter had a size of 3,
4, and 5.

8 EXPERIMENTS WITH LOCAL APPROACHES

8.1 LCN Experiment

The hierarchical LCN approach consists of binary classifiers, and each classifier is
built independently for each node. In this case, all categories listed in Table 1 are
considered nodes. For each node, we trained one CNN classifier. In total, we had
27 CNN classifiers corresponding to 27 categories.

Category Size Category Size

comp 2 936 alt-atheism 480
comp.graphics 584 soc-religion 599
comp.os 591 sci 2 373
comp.windows 593 sci.crypt 595
comp.sys 1 168 sci.electronics 591
comp.sys.ibm 590 sci.med 594
comp.sys.mac 578 sci.space 593
rec 2 389 talk 1 952
rec.autos 594 talk.religion-misc 377
rec.motorcycles 598 talk.politics 1 575
rec.sport 1 197 talk.politics.guns 546
rec.sport.baseball 597 talk.politics.mideast 564
rec.sport.hockey 600 talk.politics.misc 465
misc-forsale 585 TOTAL 11 314

Table 1. 20Newsgroup text analysis of training dataset

To perform prediction, top-down sequential evaluation was performed, and at
each node, a binary decision was made regarding which classifier to execute next
in the evaluation chain. The training dataset for each node was carefully manually
crafted in such a way that all examples belonging to the nth node and its descendants

Hierarchical Text Classification Using CNNs with Local Approaches 919

were considered positive training examples and examples belonging to the siblings
of the nth node and their descendants were considered negative examples.

8.2 LCPN Experiment

The hierarchical LCPN was implemented as a multi-class classifier for each parent
node in the given taxonomy. For our experiment, the nodes that were considered
are listed in Table 2.

Parent Node Size Classes

ROOT 11 314 comp, rec, sci, talk, misc-forsale, alt-atheism, soc-religion
comp 2 936 comp.graphics, comp.os, comp.windows, comp.sys
comp.sys 1 168 comp.sys.ibm, comp.sys.mac
rec 2 389 rec.autos, rec.motocycles, rec.sport
rec.sport 1 197 rec.sport.baseball, rec.sport.hockey
sci 2 373 sci.crypt, sci.electronics, sci.med, sci.space
talk 1 952 talk.religion-misc, talk.politics
talk.politics 1 575 talk.politics.guns, talk.politics.mideast, talk.politics.misc

Table 2. Training data for LCPN

We trained eight independent multi-class CNN classifiers for each parent node,
including the ROOT node. Each classifier learned from the subset of training data
created in such a way that only examples belonging to the parent nodes and their
descendants child nodes were selected as positive examples. We did not feed negative
examples into the model because neural networks are usually trained with positive
examples.

8.3 LCL Experiment

The hierarchical LCL was implemented as a multi-class classifier for every level in
the given taxonomy. We thus had three levels, as listed in Table 3. Each level
contained only nodes belonging to a certain hierarchical level.

We trained each of the three multi-class CNN classifiers for every level. A pre-
diction evaluation was performed in a top-down fashion starting from the first level
and iterating through the remainder of the levels. Training of the level-based classi-
fier was performed by feeding the model with examples from the descendant nodes
belonging to their level-based parents.

The conceptual diagram of CNN model with LCL approach is listed in Figure 6.
It can be observed that this model implements only 3 multi-class classifiers, each
classifier represents exactly one of the hierarchical levels as listed in Table 3 in such
way that there is no overlap among categories and different levels.

The final dense layer in CNN baseline contains a single node for each target
class in the model. However, in order to represent LCL approach using CNN, the
baseline model dense layer is modified and implemented 3 fully-connected layers.

920 M. Krendzelak, F. Jakab

Level Size Category

1 11 314 alt-atheism, comp, rec, misc-forsale, soc-religion-christian,
sci, talk

2 9 650 comp.graphics, comp.os, comp.sys, comp.windows,
rec.autos, rec.motorcycles, rec.sport, sci.crypt,
sci.electronics, sci.med, sci.space, talk.religion-misc,
talk.politics

3 3 940 comp.sys.ibm, comp.sys.mac, rec.sport.baseball,
rec.sport.hockey, talk.politics.guns, talk.politics.mideast,
talk.politics.misc

Table 3. LCL training datset

9 EVALUATION OF EXPERIMENTS

To determine the effects of using CNN models in hierarchical text classification, we
performed multiple tests to experiment with a different set of hyperparameters. We
conducted three major experiments with the proposed hierarchical local approaches
and compared our results with available flat LR and SVM baseline models and
state-of-the-art models, such as h-LR and h-SVM. One of our goals was to demon-
strate that CNNs can be successfully used for solving hierarchical text classification
problems in a more effective and simplified manner than existing methods.

Figure 8. Benchmark of experimental CNN-rand and CNN-stat using LCN, LCPN and
LCL with h-LR and h-SVM using LCN, LCPN and LCL

Of the proposed methods, we determined that the LCN hierarchical approach
was the most complex. We observed that different variations of examples with
different dataset sizes had a direct impact on the accuracy of the binary classifier.
It thus requires additional effort during the pre-processing phase to prepare positive

Hierarchical Text Classification Using CNNs with Local Approaches 921

and negative training examples arbitrarily selected from the dataset. Moreover, top-
down prediction requires the evaluation of the final prediction to be proceeded in
a node-chained manner, emulating the path of a hierarchical taxonomy. There is no
mechanism available in the baseline model to mitigate the error propagated from
the previous node prediction.

Our empirical observations of the LCPN approach indicated that it was less
complex than the previous LCN approach mentioned above. The LCPN requires
the construction of only eight multi-class classifiers whose predictions are chained in
a top-down fashion to perform hierarchical prediction. Training a multi-class neural
network is quite different than training a binary classifier. We observed that for this
approach, less effort was required during the pre-processing of the training examples
required to train a model with hierarchically categorical classes. This was due to
the fact that a CNN is capable of consuming raw training data and does not require
positive and negative samples.

Figure 9. Benchmark of experimental CNN-stat and CNN-rand using LCN, LCPN and
LCL with flat LR, SVM, and CNN baseline models

We found that the best results were achieved by using the LCL approach im-
plemented by CNN-stat model with a hF1 score of 0.911 trained with a dataset of
size 10 500. For the CNN-rand model using LCL approach, the best results were
achieved with a hF1 score of 0.906. However, we observed that the latter model,
CNN-rand, required more training data to tune its performance and was unable to
outperform CNN-stat.

922 M. Krendzelak, F. Jakab

10 CONCLUSION

In this study, we proposed a novel application of a CNN for solving the hierarchical
text classification problem using hierarchical local classification approaches. We
demonstrated that hierarchical local approaches with CNN models achieved results
superior to those of the flat LR and SVM baseline, which results were reported by
Song et al. [14]. Moreover, additionally, experimental results achieved by proposed
use of CNNs surpassed flat CNN baseline model by 5 %, which results were reported
by Prakhya et al. [15].

The results confirmed that the CNN-stat LCL approach achieved the best results
among the tested local approaches, furthermore, outperforming flat SVM baseline
model by 7 % and flat LR baseline model by 13 %. In regards to h-SVM and h-LR
models, these were outperformed by CNN-stat LCL approach by 5 % and h-LR by
10 %, as can be observed in Table 9. Moreover, the CNN-stat LCL approach required
only 3 multi-class CNN classifiers, compared to 27 binary classifiers required by LCN
approach and 8 multi-class classifiers required by LCL approach.

Additionally, we observed that the CNN-stat model, which has the text embed-
ding layer initialized with pre-trained word2vec, outperformed the CNN-rand model
most of the time, except only observed once. This is due primarily to the fact that
pre-trained text embedding has a more precise and comprehensive representation
of words than a randomly initialized embedding layer learned during the training
phase.

REFERENCES

[1] Zimek, A.—Buchwald, F.—Frank, E.—Kramer, S.: A Study of Hierarchical
and Flat Classification of Proteins. IEEE/ACM Transactions on Computational Biol-
ogy and Bioinformatics, Vol. 7, 2010, No. 3, pp. 563–571, doi: 10.1109/tcbb.2008.104.

[2] Babbar, R.—Partalas, I.—Gaussier, E.—Amini, M. R.: On Flat Versus Hi-
erarchical Classification in Large-Scale Taxonomies. In: Burges, C. J. C., Bottou, L.,
Welling, M., Ghahramani, Z., Weinberger, K. Q. (Eds.): Advances in Neural Infor-
mation Processing Systems 26 (NIPS 2013), Vol. 2, 2013, pp. 1824–1832.

[3] Krendzelak, M.—Jakab, F.: Approach for Hierarchical Global All-In Classifi-
cation with Application of Convolutional Neural Networks. 2018 16th International
Conference on Emerging eLearning Technologies and Applications (ICETA 2018),
2018, pp. 317–322, doi: 10.1109/iceta.2018.8572074.

[4] Sun, A.—Lim, E.—Ng, W.: Performance Measurement Framework for Hierarchical
Text Classification. Journal of the American Society for Information Science and
Technology, Vol. 54, 2003, No. 11, pp. 1014–1028, doi: 10.1002/asi.10298.

[5] Demšar, J.: Statistical Comparisons of Classifiers over Multiple Data Sets. Journal
of Machine Learning Research, Vol. 7, 2006, No. 1, pp. 1–30.

https://doi.org/10.1109/tcbb.2008.104
https://doi.org/10.1109/iceta.2018.8572074
https://doi.org/10.1002/asi.10298

Hierarchical Text Classification Using CNNs with Local Approaches 923

[6] Dumais, S.—Chen, H.: Hierarchical Classification of Web Content. Proceedings of
the 23rd Annual International ACM SIGIR Conference on Research and Development
in Information Retrieval (SIGIR ’00), 2000, pp. 256–263, doi: 10.1145/345508.345593.

[7] Wang, K.—Zhou, S.—He, Y.: Hierarchical Classification of Real-Life Documents.
Proceedings of the 2001 SIAM International Conference on Data Mining, 2001, doi:
10.1137/1.9781611972719.22.

[8] Sokolov, A.—Funk, C.—Graim, K.—Verspoor, K.—Ben-Hur, A.: Com-
bining Heterogeneous Data Sources for Accurate Functional Annotation of Proteins.
BMC Bioinformatics, Vol. 14, 2013, No. 3, Art. No. S10, doi: 10.1186/1471-2105-14-
s3-s10.

[9] Cerri, R.—Barros, R. C.—de Carvalho, A. C. P. L. F.: Hierarchical Multi-
Label Classification Using Local Neural Networks. Journal of Computer and System
Sciences, Vol. 80, 2014, No. 1, pp. 39–56, doi: 10.1016/j.jcss.2013.03.007.

[10] Kurata, G.—Xiang, B.—Zhou, B.: Improved Neural Network-Based Multi-Label
Classification with Better Initialization Leveraging Label Cooccurrence. Proceed-
ings of the 2016 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, 2016, pp. 521–526, doi:
10.18653/v1/n16-1063.

[11] Zhang, M. L.—Zhou, Z. H.: Multilabel Neural Networks with Applications to
Functional Genomics and Text Categorization. IEEE Transactions on Knowledge and
Data Engineering, Vol. 18, 2006, No. 10, pp. 1338–1351, doi: 10.1109/tkde.2006.162.

[12] Nam, J.—Kim, J.—Mencia, E. L.—Gurevych, I.—Fürnkranz, J.: Large-
Scale Multi-Label Text Classification – Revisiting Neural Networks. In: Calders, T.,
Esposito, F., Hüllermeier, E., Meo, R. (Eds.): Machine Learning and Knowledge
Discovery in Databases (ECML PKDD 2014). Springer, Berlin, Heidelberg, Lecture
Notes in Computer Science, Vol. 8725, 2014, pp. 437–452, doi: 10.1007/978-3-662-
44851-9 28.

[13] Kim, Y.: Convolutional Neural Networks for Sentence Classification. Proceedings
of the 2014 Conference on Empirical Methods in Natural Language Processing
(EMNLP), 2014, pp. 1746–1751, doi: 10.3115/v1/d14-1181.

[14] Song, Y.—Roth, D.: On Dataless Hierarchical Text Classification. AAAI Publica-
tions, Twenty-Eighth AAAI Conference on Artificial Intelligence, Québec, Canada,
2014, pp. 1579–1585.

[15] Prakhya, S.—Venkataram, V.—Kalita, J.: Open Set Text Classification Us-
ing Convolutional Neural Networks. International Conference on Natural Language
Processing, USA, 2017.

https://doi.org/10.1145/345508.345593
https://doi.org/10.1137/1.9781611972719.22
https://doi.org/10.1186/1471-2105-14-s3-s10
https://doi.org/10.1186/1471-2105-14-s3-s10
https://doi.org/10.1016/j.jcss.2013.03.007
https://doi.org/10.18653/v1/n16-1063
https://doi.org/10.1109/tkde.2006.162
https://doi.org/10.1007/978-3-662-44851-9_28
https://doi.org/10.1007/978-3-662-44851-9_28
https://doi.org/10.3115/v1/d14-1181

924 M. Krendzelak, F. Jakab

Milan Krendzelak is Tech Lead of Web Solutions Engineers
team at Google Inc. that delivers innovative solutions to help
drive revenue and make Google’s global sales field more effi-
cient. As Web Solutions Engineer, his responsibilities include
prototyping proofs of concept, developing and supporting tools,
and enhancing core products to meet the needs of his sales field.
He earned a master of computer science degree in 2004 at the
Department of Computers and Informatics at the Technical Uni-
versity of Košice, Slovakia. Currently, he is continuing his Ph.D.
research in Hierarchical Text Classification at the Department

of Computers and Informatics at the Technical University of Košice, Slovakia. He has
published more than six scientific publications.

Frantisek Jakab is Director of the University Science Park
TECHNICOM and Head of the Computer Networks Laboratory
(www.cnl.sk) that he created during his career at the Depart-
ment of Computers and Informatics at the Technical University
of Košice, Slovakia. He graduated from the Faculty of Com-
puter Science and Electrical Engineering at the St. Petersburg
Institute of the Electrical Engineering in the field of System En-
gineering (Russian Federation). Main areas of his research ac-
tivities: computer networks, which is a new form of multimedia-
based communication (video conferences, IP streaming). He is

renowned author of more than 200 scientific publications and textbooks.

www.cnl.sk

